
Approximate Cramér-Rao bound on Doppler error in

correlation-processing relatively narrowband noise radar ∗

Micha l Meller

Telecommunications Research Institute Gdansk Division

Department of Signal and Information Processing

Hallera 233A, 80-502 Gdańsk, Poland
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Abstract

The paper studies limitations on accuracy of Doppler estimation in continuous-wave noise radar with

correlation processing. Second order properties of output of the correlation receiver are evaluated and

an approximate Cramér-Rao bound on errors of Doppler measurement is derived. The accuracy of

Doppler measurements is found to be affected by the following factors: power spectral density of noise

signal, frequency response of the lowpass filter in correlator, observation time, velocity of the target and

signal to noise ratio. It is shown that the random nature of the transmitted signal induces additional

fluctuations at the output of correlator which limit the accuracy even in the infinite signal to noise case.

Qualitative extension of the results to a case covering multiple targets and clutter is made. It is argued

that the performance will decrease and that increasing transmitted power may not provide significant

improvement when clutter is present.
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1 Introduction

Noise radars use truly random signals, a class of signals which offers some strong advantages, namely: nearly

ideal ‘thumbtack’ ambiguity function, unambiguity in both range and Doppler[1, 2, 3], low probability of

intercept, and high immunity agains jamming and interference [4].

Since the signal is unknown until its generation, special processing techniques must be used in noise

radars. Probably the most common one is correlation processing[1, 5, 2]. The received signal is cross-

correlated with the delayed replica of the transmitted signal to provide an estimate of reflectivity at a range

corresponding to a given time-delay. The importance of this approach stems from the fact that it is equivalent

to a matched filter. In pulsed radars, each output sample of the matched filter can easily be shown to equal

the correlation sum of the appropriately delayed pulse and the received signal. Since however, the noise

signal is unpredictable, one cannot implement matched filter as typical time-invariant filter and must use a

bank of correlators – each ‘matched’ to a different delay.

This technique has its limitations, however. From the practical viewpoint, the most important is that

correlation result always contains some residual fluctuations. Most vaguely speaking, even in point scatterer

and infinite signal-to-noise ratio scenario, the result of correlation processing will be nonzero at all range

cells. Some efforts to cope with this issue has been made by Kulpa[6, 7], Axelsson[8] and Narayanan and

coworkers[9].

This paper studies the limitations of correlation processing in Doppler estimation. The ability of noise

radar to estimate the Doppler was demonstrated by Narayanan and coworkers[10, 11, 12]. In [10] some

qualitative remarks are made on the possible accuracy. In [12] the empirical phase-noise model was developed.

The aim of this paper is to extend results from mentioned papers by providing both quantitative and

qualitative results. First, we derive the expressions for the power spectral density of the stochastic part of

correlation receiver output. This in turn, allows to derive approximate Cramér-Rao bound on the accuracy

of Doppler processing. Both results were obtained in a point scatterer scenario. Additionally, a short

discussion is made on the extension to a more realistic multiple scatterer case. It is found that in such case

the performance of noise radar with correlation processing will inevitably deteriorate.

The paper is organised as follows: section 2 presents the mathematical model of the noise radar system.

In section 3 spectral analysis of signals in system for the point scatterer case is performed. In section 4

Cramér-Rao bound is derived. Section 5 concludes.
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2 Mathematical model of radar system

A block diagram of a mathematical model of a coherent continuous wave noise radar with correlation pro-

cessing is shown in Fig. 1

A stochastic process x(t) is generated in a noise source NS and divided into two paths: the transmit

antenna path and the reference path. The reference signal is delayed in a delay line DL by the amount D.

The received signal, y(t) - contaminated by the noise n(t) - is multiplied with the reference in a mixer

MIX. The product of multiplication cD(t) (further called ‘raw product’ since this signal is very noisy) is

lowpass-filtered in a filter with frequency response G(jω) to form a smoothed correlation signal c̃D(t). The

latter is sampled with sampling frequency 1/Ts to form the discrete-time signal c̃D(n) = c̃D(nTs) which is

then digitally Doppler processed.

Let us now form basic assumption about the signals x(t) and n(t) in the system:

(A1) x(t) and n(t) are zero-mean, wide-sense stationary circular complex Gaussian1 stochastic processes

with correlation function

R(τ) = E




x(t)

n(t)




[

x(t − τ) n(t − τ)

]
∗

=

=




Rxx(τ) 0

0 Rnn(τ)



 (1)

where * denotes complex conjugation. The power spectral density

S(ω) = F [R(τ)] =




Sxx(ω) 0

0 Snn(ω)



 (2)

is focused around angular frequency ω0.

Remark

The assumption of the signals in system being complex simplifies the discussion considerably. However,

the results obtained here are also valid for the real signals. This stems from the fact that, for any real signal,

it’s complex equivalent can be found using Hilbert transform. Such Hilbert-transformed signal satisfies (A1)

1The term circular means that the real and imaginary part are jointly Gaussian, independent, and have equal variance.
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and carries exactly the same amount of information as the original real signal. It follows that bounds on

Doppler error of these two signals are equal.

3 Signal properties

In this section, second order properties of the correlator output will be analysed. Before we proceed further,

let us introduce natural assumption

(A2) The target is moving with radial velocity v ≪ c. It is assumed that v is positive when the Doppler

shift is also positive, i.e. the target is closing towards the radar.

Also assume

(A3) The process x(t) is relatively narrowband, i.e. its bandwidth B satisfies B ≪ F0

Some remarks about (A3) are given at the end of the section.

Under (A2)-(A3) the received signal can be written as

y(t) = Fx(t − τ(t)) + n(t) (3)

where F is complex reflection coefficient and

τ(t) ≅ τ(0) −
2v

c
t = 2

R0 − vt

c

is the two-way propagation delay.

3.1 First and second order properties of the raw product signal

Consider now the value of the raw product

cD(t) = y(t)x∗(t − D) .

By analysing first and second order properties of this signal, we will be able to guess on the properties of

the smoothed correlation signal using basic results from linear filtration theory.
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One can perform decomposition into deterministic and stochastic part

cD(t) = E[cD(t)] + (cD(t) − E[cD(t)]) = E[cD(t)] + w(t)

The expectation is purely deterministic, while w(t) represents the random fluctuations of cD(t). It is straight-

forward to check that [12]

E[cD(t)] = FRxx(D − τ(t)) = FRxx(D − τ(0) + βt) (4)

where β = 2v/c. Also note that for D = τ(0) [12]

FE[cD(t)] =
F

β
Sxx(

ω

β
). (5)

This means that the deterministic part is localized in the frequency domain around angular frequency ω0β.

We now move on to the calculation of correlation function and power spectral density of the stochastic

part w(t). The correlation function of w(t) (which is also the covariance function of cD(t)) is

Rww(t, s) = E[w(t)w∗(s)] =

= E[(cD(t) − E[cD(t)])×

× (cD(s) − E[cD(s)])∗] =

= E[cD(t)c∗D(s)] − E[cD(t)]E[c∗D(s)] =

= I1 − I2 (6)

Evaluation of I2 is trivial

I2 = |F |2Rxx(D − τ(t))R∗

xx(D − τ(s)).

I1 is sum of four components

I1 = I1,1 + I1,2 + I1,3 + I1,4
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where

I1,1 = E[|F |2x(t − τ(t))x∗(t − D)×

× x(s − D)x∗(s − τ(s))]

I1,2 = E[Fx(t − τ(t))x∗(t − D)n(s)x(s − D)]

I1,3 = E[F ∗n(t)x(t − D)x∗(s − τ(s))x(s − D)]

I1,4 = E[n(t)n∗(s)x(s − D)x∗(t − D)]

From (A1) it immediately follows that

I1,2 = 0

I1,3 = 0

I1,4 = Rnn(t − s)Rxx(s − t)

and I1,1 can be further decomposed into [13]

I1,1 = |F |2(I1,1,1 + I1,1,2 + I1,1,3)

where

I1,1,1 = E[x(t − τ(t))x∗(t − D)]×

× E[x(s − D)x∗(s − τ(s))] =

= Rxx(D − τ(t))R∗

xx(D − τ(s))

I1,1,2 = E[x(t − τ(t))x∗(s − τ(s))]×

× E[x∗(t − D)x(s − D)] =

= Rxx(t − s + τ(s) − τ(t))Rxx(s − t)

I1,1,3 = E[x(t − τ(t))x(s − D)]×

× E[x∗(t − D)x∗(s − τ(s))] =

= 0
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and the last equality stems from circularity of x(t).

Putting all together, one obtains

Rww(t, s) = |F |2Rxx(t − s + τ(s) − τ(t))Rxx(s − t)

+ Rxx(s − t)Rnn(t − s) =

= |F |2Rxx((1 + β)(t − s))Rxx(s − t)

+ Rxx(s − t)Rnn(t − s) =

= Rww(t − s) = Rww(∆t), (7)

i.e. the process random fluctuations w(t) is wide sense stationary.

By duality of multiplication in time domain and convolution in Fourier domain, the power spectral density

of w(t) is then

Sww(ω) = FRww(∆t) =

=

[
|F |2

1 + β
Sxx(

ω′

(1 + β)
) � Sxx(−ω′)

]
(ω)

+ [Sxx(−ω′) � Snn(ω′)] (ω) (8)

where � denotes the convolution. This equation is schematically illustrated on Fig. 2, where it was assumed

that both x(t) and n(t) have rectangular power spectral densities with bandwidth B and β = 0.05. Note

however that typical order of β is much smaller, β ∈ [10−7–10−5]. The high value of β improves clarity of

Fig. 2, but produces the false impression that the power spectral density of w(t) decreases significantly with

the velocity increasing.

The first component of the sum is centred around ω0β/(1 + β) ≅ ω0β, the same as (5). The second

component, focused around DC, will additionally contaminate the output of the lowpass filter G(jω). Notice

that even when the power of measurement noise v(t) is 0, the ‘noise floor’ exists in Fourier domain due to

stochastic nature of x(t).
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3.2 Properties of the smoothed correlation signal

Similar to above, the signal after the filter can be decomposed into expectance and residual fluctuations

c̃D(t) = s(t) + z(t) .

The signal s(t) is simply

s(t) = g(t) � E[cD(t)] (9)

where g(t) = F−1G(jω) is the impulse response of the filter and, again, � denotes the convolution.

Similarly, the power spectral density of stochastic fluctuations z(t) at the output of the filter is

Szz(ω) = |G(jω)|2Sww(ω) , (10)

or in terms of the correlation function

Rzz(∆t) = g(∆t) � Rww(∆t) � g∗(−∆t) . (11)

Remark 1

In essence, (A3) allowed us to assume that the complex reflection coefficient F does not depend on

the frequency. Note that (A3) does not in fact exclude the ultrawideband signals; the signal is considered

ultrawideband when its fractional bandwidth B/F0 exceeds 20% or when its bandwidth B exceeds 500 MHz

[14]. Such ‘ultrawideband but relatively narrowband’ radars are described in [15].

Remark 2

Equations (9)-(11) fully describe first and second-order properties of the correlator’s output. In this

remark we provide the reader with some convenient approximations.

Equation (9) can be approximated as

s(t) ≈ G(jω0β)E[c(t − gd(ω0β))]

where

gd(ω) = −
∂G(ω)

∂ω
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is the group delay of the filter. The approximation is valid if (A3) holds.

Similarly, since the bandwidth of w(t), is many orders greater than passband of G(jω) (c.f. (8)), (10)

can be approximated as

Szz(ω) ≈ |G(jω)|2Sww(0)

When power spectral densities of x(t) and n(t) are rectangular it is straightforward to check that

Sww(0) ≈
|Rxx(0)|2 + Rxx(0)Rnn(0)

B
= Rww(0)/B

It follows the variance of z(t) can be approximately evaluated with

Rzz(0) ≈ Rww(0)|G(0)|2
Bf

B

where Bf is the bandwidth of the filter G(jω).

4 Approximate Cramér-Rao bound

We are now ready to derive the approximate Cramér-Rao bound on the accuracy of estimation of velocity

v. Our derivation will be performed indirectly. Initially, the bound on more convenient quantity β = 2v/c

will be derived, which will later be used to obtain bound on v itself.

First of all, notice that the raw product cD(t) is not Gaussian. However, the smoothed correlation signal

c̃D(t) has almost normal distribution[16]. We will employ this fact in our analysis. For short discussion

about the accuracy of Gaussian approximation, see remark 1 at the end of the section.

For the sake of brevity, assume

(A4) The delay D introduced in the delay line equals to τ(0); delay introduced by the lowpass filter is

negligible; the reflection coefficient F = 1.

Let sN be a vector of 2N + 1 samples of the expected output of the lowpass filter

sN(k) = s(kTs), k = −N,−N + 1, · · · , N − 1, N.

where Ts is the sampling period of lowpass filter output. Similarly, we introduce the vector of observed data
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cN

cN(k) = c̃D(kTs), k = −N,−N + 1, · · · , N − 1, N

and the vector of fluctuations at the output of the filter

zN = cN − sN.

The lower bound on the covariance of any unbiased estimator θ̂ of unknown parameter vector θ is

determined by the celebrated Cramér-Rao inequality:

E[(θ̂ − θ)(θ̂ − θ)H ] ≥ F =

(
E

[
∂2 lnL

∂θ∂θH

])−1

where AH denotes the Herimitian transpose of A, F is the Fisher information matrix, L denotes the likelihood

function L(x, θ) = p(x|θ) and the averaging is performed on all possible realisations of observed data. Since

however, we seek the bound on only one variable, the matrix F reduces to the scalar F .

The expression for Fisher’s information of 2N + 1 samples is [17]

FN = 2(
∂sN
∂β

)HC−1(
∂sN
∂β

) + tr(C−1 ∂C

∂β
C−1 ∂C

∂β
) (12)

where C is the covariance matrix

C(m,n) = Rzz((m − n)Ts) .

Evaluating the derivatives one obtains

∂s(t)

∂β
=

∂

∂β
(g(t) � Rxx(βt)) =

= g(t) � [R′

xx(βt)t]

∂Rzz(τ)

∂β
=

(
g(τ) �

∂Rww(τ)

∂β
� g∗(−τ)

)
(τ)

Using above two equations, the Fisher’s information and the Crámer-Rao bound can be calculated for any

particular case of signal spectral densities and filter’s response. However, it is rather hard (if possible at all)

to arrive at any general result without further approximations and assumptions.
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To cope with that issue we will once again employ (A3). It is then easy to show that

R′

xx(t) ≅ Rxx(t)jω0

because the envelope |Rxx(t)| changes slowly compared to ejω0 . It follows that

∂s(t)

∂β
≅ G(jω0β)Rxx(βt)jω0t = s(t)jω0t. (13)

For the same reason (c.f. (7))

∂Rww(∆t)

∂β
≅ |F |2Rxx((1 + β)∆t)Rxx(−∆t)jω0∆t . (14)

To simplify matters more, we will assume that the matrix C is diagonal (see remark 2) and that ∂C/∂β ≈

0. This greatly simplifies the quadratic form and makes the trace term negligible, leading to

FN =
2

σ2
z

+N∑

k=−N

|s(kTs)kTsω0|
2, (15)

VarN [β̂] ≥ F−1
N .

Taking the limit of (15) for N → ∞ we obtain Fisher’s information of infinite number of samples

F∞ =
2

σ2
z

+∞∑

k=−∞

|s(kTs)kTsω0|
2

Var∞[β̂] ≥ F−1
∞

.

Introducing the quantities

α2 =

∑+∞

k=−∞
|s(kTs)kTsω0|

2

∑+∞

k=−∞
|s(kTs)|2

E =
+∞∑

k=−∞

|s(kTs)|
2

we arrive at

Var∞[β̂] ≥
1

2(E/σ2
z)α2

. (16)
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Finally, exploiting the fact that β = 2v/c, one can obtain the bound on the velocity itself

Var∞[v̂] ≥
c2

8(E/σ2
z)α2

. (17)

which closely resembles a discrete-time version of the well known result for pulse radars[18].

Having derived (17) we can formulate some conclusions of qualitative nature:

1. s(t) is the equivalent of the pulse envelope. Since it is a filtered version of time-stretched autocorrelation

function of noise signal, its shape is determined by spectral properties of the noise signal and the

frequency response of the lowpass filter.

2. The main lobe of s(t) narrows as the velocity increases (this is simply a mathematical way of expressing

the fact the target is leaving the range cell faster), less high power samples of s(t) can be gathered

and the accuracy of Doppler measurement decreases correspondingly. This is shown on fig. 3 which

plots the mean square errors (17) for a range of velocities against (2N + 1)Ts. The configuration is

as follows: B = 100 MHz (rectangular PSD), F0 = 10 GHz, σn/σx = 1, Bf = 10 kHz (ideal lowpass

filter), Ts = 1/Bf .

3. When |Rxx(τ)|2 vanishes no faster than 1/τ3, F∞ = ∞, i.e. arbitrarily low errors can be achieved

provided that the observation time is long enough. This can also be seen on Fig 3.

4. The Cramér-Rao bound is affected by velocity only little when considering short time observations,

i.e. when the target does not change it’s position much within the measurement. Indeed for small N ,

|s(t)| ≈ |s(0)| and the information FN is approximately

FN =
2

σ2
z

+N∑

k=−N

|s(kTs)kTsω0|
2

≅ 2 SNRf

+N∑

k=−N

|kTsω0|
2

where SNRf = |s(0)|2/σ2
z is the signal to noise ratio at the output of the lowpass filter. Therefore

VarN [β̂] ≥
1

2 SNRf

∑+N

k=−N |kTsω0|2

12
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and

VarN [v̂] ≥
c2

8 SNRf

∑+N

k=−N |kTsω0|2
. (18)

This result stresses the importance of high signal to noise ratio at the output of correlator in Doppler

estimation.

5. The relative accuracy Var v̂/v2 depends on velocity for short observations , but for longer ones it

gradually becomes independent (Fig. 4).

6. σ2
z is the variance at the output of correlator and consist of two factors: measurement noise and noise

signal induced fluctuations. Therefore, even in noise-free case the accuracy of measurement is limited.

7. It is worth to compare (18) with some ‘natural’ bounds on accuracy. When using filterbank to perform

estimation, obvious limitation is the bandwidth of the filters, which is roughly proportional to the

reciprocal of the measurement time

∆f =
1

(2N + 1)Ts

.

Since

∆f =
2∆v

c

ω0

2π
=

∆vω0

cπ

it follows that

∆v =
cπ

(2N + 1)Tsω0
. (19)

To allow fair comparison, we take square root of (18) which leads to the bound on standard deviation

of measurement

σv ≥
c

2
√

2 SNRf

√∑+N

k=−N |k|2 Tsω0

.

The comparison with (19) once again shows the importance of high-quality signal at the output of the

correlator. When SNRf is high, it is the bandwidth of the filters that will limit the precision. On the

other hand, when SNRf is low, even the narrowest filterbank will not allow for precise measurement.

8. Finally, we stress the fact that derived formulas provide the limit of Doppler estimation based on

observation of correlator output for single range cell. Naturally, by observing the target as it passes

through adjacent range cells, one can achieve lower errors.

Remark 1
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The lower the bandwidth Bf of the lowpass filter, the better the Gaussian approximation to probability

density function of z(t). Consider a noise radar with bandwidth B = 100 MHz. The approximate number

of independent samples averaged in the filter is B/Bf . For Bf = 10 kHz, about 10000 independent samples

are averaged in the filter, surely enough for the Gaussian hypothesis to be justified.

Remark 2

The matrix C is approximately diagonal for example if Bf ≪ B, Ts = 1/2Bf , and the frequency response

|G(jω)| is close to ideal lowpass filter response.

4.1 Extension to multiple targets and presence of clutter

To cope with the presence of other targets and/or clutter it is sufficient here to say that returns from range

cells other than D (the cell for which the measurement is made) add up to the noise n(t). All targets are

competing in terms of power against the total variance of the echo signal, which hampers the measurement

accuracy, especially for weak targets. This also leads to somewhat unexpected conclusion that increasing

the power of the transmit signal is unlikely to provide any significant improvement because eventually most

of the total variance is from returns of the transmitted signal itself and not ‘true’ noise.

To cope with that issue, it may be most beneficial to utilise some clutter removal algorithm such as those

described in [6, 7, 8], which should restore the performance of a noise radar to nearly that of a single-scatterer

case.

5 Conclusions

Second order statistics of the output of correlator and approximate Cramér-Rao bound for the Doppler

estimation accuracy were derived. The latter result was obtained for the point-scatter case and the discussion

on the influence of presence of other targets and/or clutter was made. The limit on mean-squared Doppler

error is affected by spectral properties of noise signal, thermal noise power, correlator lowpass filter frequency

response, observation time, velocity of the target and the presence of other targets/clutter. It was shown

that the random nature of transmitted signal causes fluctuations at the output of correlator which limit the

accuracy even when thermal noise is not present. Finally, we argued that increasing transmitted power may

not provide significant improvement in Doppler measurement when strong clutter is present and no means

to remove clutter are taken.
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Figure 1: Block diagram of mathematical model of coherent noise radar
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Figure 2: Two components of power spectral density of fluctuations at the output of the correlation receiver.
It was assumed that both the noise signal x(t) and measurement noise n(t) have rectangular power spectral
densities with bandwidth B and β = 0.05.
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Figure 3: Mean squared errors for v = 1, 4, 16, 64 m/s and different observation intervals.
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Figure 4: Relative mean squared errors for v = 1, 4, 16, 64 m/s and different observation intervals.
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