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ABSTRACT This paper presents an overview of how Artificial Intelligence (AI) and edge technology have
been used to improve wireless connectivity in multiple industrial Use Cases (UCs) of the EU project “Intelligent
Secure Trustable Things” (InSecTT). We present a brief introduction of the InSecTT framework for cross-
domain architecture design, which targets UCs assisted by reusable and/or interoperable technical Building
Blocks (BBs). These BBs constitute the construction bricks containing AI and supporting components that were
used to build different UCs. The framework consists of multiple stages based on the processing of UC/BB
requirements (RQs). These stages include: i) collection, ii) harmonization, iii) refinement, iv) classification, v)
architecture alignment, and vi) functionality modeling of RQs. The most relevant results of these stages are
discussed here, with emphasis on the need for a refined granularity of technical components with common
functionalities named sub-building blocks (SBBs), where collaboration and cross-domain reusability were
optimized. The design process shed light on how AI and SBBs were implemented across different layers and
entities of our reference architecture for the Internet-of-Things (IoT), including the interfaces used for infor-
mation exchange. This detailed interface analysis is expected to reveal issues such as bottlenecks, constraints,
vulnerabilities, scalability problems, security threats, etc. This will, in turn, contribute to identifying design gaps
in AI-enabled IoT systems. The paper summarizes the SBBs related to wireless connectivity, including a general
description, implementation issues, comparison of results, adopted interfaces, and conclusions across domains.

INDEX TERMS IoT, Artificial Intelligence (AI), Edge Computing, wireless, Reference architecture.

I. INTRODUCTION

A. BACKGROUND

In the post-pandemic world, Artificial Intelligence (AI) has
created an indelible footprint on multiple aspects of our
everyday lives. Despite emerging skepticism, indicators show
that this trend will continue to increase rather than recede [1].

Therefore, understanding the impact of AI on our society is
key to generate regulatory frameworks that will emphasize its
advantages and minimize potential problems [2].

In the field of wireless communications, the adoption of
AI is progressing at a fast pace. Next-generation radio tech-
nologies are expected to incorporate new AI-specific layers
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TABLE 1. Industry-lead UCs defined in the EU InSecTT project.

UC Description
UC1 Wireless Platooning communications based on AI-enhanced

5G
UC2 AI-enriched Wireless Avionics Resource Management and

Secure/Safe Operation
UC3 Wireless Security Testing Environment for smart IoT
UC4 Intelligent wireless systems for smart port cross-domain ap-

plications
UC5 Smart and adaptive connected solutions across health contin-

uum
UC6 Location awareness for improved outcomes and efficient care

delivery in healthcare
UC7 Intelligent Transportation for Smart Cities
UC8 Intelligent Automation Services for Smart Transportation
UC9 Cybersecurity in Manufacturing

UC10 Robust resources management for construction of large in-
frastructures

UC12 Smart airport
UC13 Driver Monitoring and Distraction Detection using AI
UC14 Secure and Resilient Collaborative Manufacturing Environ-

ments
UC15 Intelligent Safety and Security of Public Transport in Urban

Environments
UC16 Airport security - Structured and Unstructured People Flow

in Airports

[3] that will enhance their performance in aspects such as:
latency reduction, resilience to fading, rejection of multipath
distortion, resistance to shadowing phenomena, interference
mitigation, and protection against multiple attacks (e.g., jam-
ming, eavesdropping, tampering, impersonation, etc.) [4].

B. INSECTT PROJECT
This paper presents a summary of how task T2.2 of the
European project “Intelligent Secure Trustable Things” (In-
SecTT) [5] focused on improving connectivity in multiple
industry-led use cases (UCs) by employing AI tools. InSecTT
was a project dedicated to the industrial demonstration of the
convergence of edge computing, the Internet of Things (IoT),
and AI. The InSecTT consortium was formed by more than
50 partners across Europe collaborating in 17 industrial UCs
in strategic domains such as automotive, railway, building,
aeronautics, maritime, and healthcare (see list of UCs in
Table 1 and demonstration videos in [6]). As shown in
Fig. 1, InSecTT proposed a bidimensional project structure:
the horizontal axis represents the technical Building Blocks
(BBs) (listed in Table 2), and the vertical axis shows the
different UCs (Table 1). This grid of BBs vs. UCs facilitated
reusability, interoperability, and cross-domain development
(see Table 3 for the specific links between UCs and BBs).

C. TASK AI FOR WIRELESS (T2.2)
The objective of Task T2.2 in the InSecTT project was to
provide a set of AI tools to improve wireless technologies
in different industrial scenarios. The need for better connec-
tivity can be directly linked to the growing demand for IoT
applications with higher criticality requirements. Therefore,
wireless connectivity plays a central role in ensuring safety,
security, and optimized performance in industrial IoT. The
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FIGURE 1. Infrastructure framework for cross-domain design of InSecTT:
UCs, BBs, and Reference Architecture (RA).

TABLE 2. Technical BBs defined in the EU InSecTT project.

BB Description
BB2.1 AI on application level
BB2.2 AI wireless communication
BB2.3 AI on computational level
BB2.4 AI verification & validation
BB2.5 Trustworthy AI
BB3.1 Solutions for safety and security
BB3.2 Dependable wireless communication systems
BB3.3 Real-time monitoring and response
BB3.4 Real-time critical communication
BB3.5 Verification, validation, accountability

wireless component enables a key ingredient: mobility, which
means that embedded processors with sensing, actuation, and
resource-constrained intelligence can be easily deployed in
multiple environments at moderate costs. This is important
for the commercial viability of end products.

Despite its importance and considerable evolution in re-
cent years, wireless technology continues to be prone or
vulnerable to i) issues caused by harsh propagation settings,
and ii) attacks due to the broadcast nature of its trans-
missions. Therefore, the potential improvements offered by
AI algorithms promise to achieve new goals for industrial
applications of IoT. These goals include real-time operation,
high reliability (wireline-like), ultra-low latency, increased
data rates, better scalability, and improved security [7]. This
will, in turn, enable a new generation of automated intelligent
services in line with the concepts of the Internet of Every-
thing (IoE) [8], [9], 5G [10], and 6G [11].

D. OTHER CONTRIBUTIONS AND ORGANIZATION
This paper presents an overview of real-life industrial exam-
ples addressed by the InSecTT project on how to use AI to
improve wireless communications. This cross-domain study
reveals useful information on the common challenges that
multiple industrial players face today. The work also involves
how relevant industrial-level metrics have been addressed by
such implementations.

The paper includes a brief summary of the InSecTT cross-
domain architecture design process, which includes the col-
lection of initial requirements and their eventual harmo-
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TABLE 3. Use cases vs Building blocks

UC/BB 2.1 2.2 2.3 2.4 2.5 3.1 3.2 3.3 3.4 3.5
UC1 x x x x x x x x
UC2 x x x x x
UC3 x x x x x
UC4 x x x x x x x x
UC5 x x x x x x
UC6 x x x x x x x
UC7 x x x x x
UC8 x x x x x
UC9 x x x x x x x

UC10 x x
UC11 x x x x x
UC12 x x x x
UC13 x x x
UC14 x x x
UC15 x x x x x x x
UC16 x x x x x x

nization, alignment, and refinement, which then led to the
definition of architectural functional models. We introduce
the concept of sub-building block (SBB) as a new granularity
of technical contributions that was found to be more useful
to enable cooperation and cross-domain reusability. The new
granularity lies in between building block and individual
technical components. The paper also presents an overview
of the functionality analysis based on international standards
of IoT reference architectures (RAs). This RA alignment is
expected to contribute to generate fully interoperable, stan-
dardized, and certified AI and edge processing architectures
in different industrial domains.

The remainder of this paper is organized as follows.
Section II presents a non-exhaustive review of the work in
the area. Section III presents the processes of collection,
refinement, and harmonization of RQs, while also providing
results on the alignment of refined RQs with the InSecTT
RA (summarized in Annex 1, and Annex 3). Detailed issues
of the different BB subclasses and their implementation in
different UCs are presented in Section IV. A summary that
highlights the cross-domain issues related to the implemen-
tation of SBBs and their differences is given in Section V.
Finally, Section VI presents the conclusions of task T2.2.
Annex 1 summarizes the InSecTT RA. Annex 2 describes
other RQ-related approaches in the project, and Annex 3
presents the definition of SBBs and the classification of RQs.

II. RELATED WORKS
A. CHANNEL ESTIMATION AND EQUALIZATION
Channel estimation and equalization are core operations in
wireless networks [12]. They share multiple aspects with
AI and Machine-Learning (ML) algorithms [13] that facil-
itate their convergence: a training/learning stage is usually
followed by an adaptation/detection process. Unsupervised
equalization/estimation tools are expected to reduce the sig-
naling bandwidth required by future wireless networks, par-
ticularly in emerging deployments with large antenna arrays.

Single-carrier equalization employs filter banks with adap-
tive weights that resemble operations in neural networks
(NNs) [12] [13]. The Kalman filter, which is a textbook
topic in channel estimation problems, has been improved and
extended in multiple works using AI (see overview in [14]),
showing the link between wireless networks, estimation the-
ory, and AI.

B. SYMBOL DETECTION, DIRECTION OF ARRIVAL
ESTIMATION, COGNITIVE RADIO AND MIMO
(MULTIPLE-INPUT MULTIPLE-OUTPUT)
Other wireless signal processing operations can also be as-
sisted or replaced by AI. For example, symbol detection
[15] can be regarded as an AI-classification problem, while
beam-forming can be formulated as a supervised adaptation
or support vector machine (SVM) algorithm [16]. Other op-
erations such as direction-of-arrival (DoA) estimation [17],
subspace detection/adaptation [18], object tracking [19], etc.,
can also be solved using AI. A list of works using AI in
communication problems, including wireless networks, can
be found in [20]. A survey on AI for cognitive radio systems
can be found in [21], [22]. Other more recent surveys can
be found in [23] and [24]. The release of 5G and the use
of massive multiple-input multiple-output (MIMO) systems
to improve data rate and latency point toward the adoption
of ML to exploit spatial diversity. The post in [25] reports
the evaluation of ML-based MIMO transmission/reception
systems. The authors in [19] used Convolutional Neural
Networks (CNNs) for MIMO positioning.

C. CHANNEL PREDICTION
Channel/link prediction has multiple applications in wire-
less networks: reduction of training bandwidth, improved
resource allocation, and higher efficiency in link adapta-
tion. The paper in [26] focused on multi-step prediction for
Rayleigh channels using CNNs and Deep Learning (DL).
DL-based channel prediction for railway MIMO communi-
cations has been presented in [27]. Real-time channel pre-
diction based on NNs for dedicated short-range networks is
presented in [28]. Massive MIMO prediction for mm-wave
channels has been studied in [29].

D. MULTIPLE ACCESS INTERFERENCE
Mitigation of multiple access interference is particularly
well-suited for the use of supervised and unsupervised learn-
ing (e.g., [30]). Conflict resolution can be formulated as
a source separation problem that has been addressed us-
ing parallel factor analysis (PARAFAC) [31], independent
component analysis (ICA) [32], and the constant modulus
algorithm (CMA) [33].

E. APPLICATION LAYERS AND ARCHITECTURES FOR
THE INTERNET-OF-THINGS
AI is one of the main candidates to improve the application
layers of IoT. The information collected by distributed em-
bedded processors will feed AI algorithms running on cloud
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FIGURE 2. Entity model of the InSecTT RA.

FIGURE 3. Functionality model of the InSecTT RA.

or edge servers. Typical implementations include anomaly
detection [34] [35], AI-based cyber-risk evaluation [36]-
[37], object detection/classification [38], tracking [19], re-
source management [39], and home network security [40].
In spite of these advances, a detailed analysis of how AI
is employed across different functional layers, entities, or
different types of applications and architectures remains with
multiple open issues today. InSecTT has used the concept
of reference architecture (RA) to shed light on the inter-
actions of AI with all these different functionality/entity
layers. One of the first RAs for IoT was proposed in the
European project IoT-A [41], using the concept of multiple
views or perspectives of the system. This multidimensional
approach is well-suited for the diverse metric and stakeholder
framework in modern system design. Several standardization
bodies proposed different versions of RAs, for example, the
International Telecommunications Union (ITU) architecture
in [42], the Institute of Electrical and Electronic Engineers

(IEEE) architecture [43], and the International Standards
Organisation (ISO) standard architecture [44]. The alliance
for IoT industrial innovation (AIOTI) [45] proposed a frame-
work of interoperability between existing RAs. The InSecTT
RA is a hybrid architecture that combines the virtues of
existing frameworks, enforcing the objectives and visions of
the consortium. The entity and functionality views of the
InSecTT RA are shown, respectively, in Fig. 2 and Fig. 3.
An overview of the InSecTT RA is given in Appendix 1.

F. TRUSTWORTHINESS METRICS AND SOFTWARE
BILLS OF MATERIALS (SBOMS)
InSecTT implemented the concept of trustworthiness metrics
to evaluate functionalities and entities under the framework
of the InSecTT RA. These metrics are an extension of stan-
dard security metrics as explained in more detail in Annex 2.
This approach can lead to a detailed evaluation of risks per
interface and per functionality of the proposed BB and SBB
granularity. InSecTT also proposed the use of AI-ML for the
global evaluation of the variations of trustworthiness metrics.
This is in line with recent approaches for AI in cybersecurity
risk analysis and evaluation based on the concept of Software
Bill of Materials (SBOMs). This approach aims to to enhance
security, transparency, and trustworthiness in AI systems.
The authors in [46] explore cybersecurity threats, exploits,
and vulnerabilities in AI-driven Software BOMs (SBOMs)
and evaluates how memory safety features can mitigate these
risks. The paper also discusses regulatory implications, AI
risk management, and future directions for securing AI and
ML technologies through structured AI BOM frameworks.
The work in [47] explores cybersecurity risks in low-memory
IoT devices and evaluates existing risk management. The
study integrates AI/ML techniques for real-time cyber-risk
estimation and discusses the role of cyber-insurance in miti-
gating IoT-related threats. The main categories of cyber-risk
listed include ethical risk, privacy risk, and security risk,
among others. While AI/ML techniques enhance risk as-
sessment by identifying vulnerabilities and predicting cyber-
threats, their black-box nature raises concerns about trust,
interpretability, and decision-making accountability.
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III. REQUIREMENTS AND ARCHITECTURE ALIGNMENT
A. OVERVIEW OF THE INSECTT ARCHITECTURE
DESIGN PROCESS
The first step in the InSecTT cross-domain design process
was the collection and architecture alignment of RQs. This
first step is shown in Fig. 4, which displays the timeline
for the entire design process. As observed in this figure, the
initial collection stage was followed by successive stages
of harmonization and refinement of RQs. This sequential
processing approach was necessary to reflect changes in
UC/BB contributions over the duration of the project.

B. HARMONIZATION, REFINEMENT, AND
FUNCTIONALITY MODELING
The initial collection of RQs produced over 600 entries with
different levels of abstraction and functional scope. There-
fore, additional processing stages were needed to find com-
mon interests and similar functional scopes across different
UCs. This also led to the consolidation of opportunities for
collaboration and cross-domain fertilization.

The Harmonization stage addressed the consolidation of
ideas and objectives across different UCs to create common
functional needs in the building blocks. By contrast, the
refinement stage usually led to a reduction or narrowing
of the functional scope of requirements to maximize their
reusability across different UCs. These two stages were es-
sential to bring RQs to a similar level of complexity that was
needed for a more effective cross-domain design. Once these
harmonization and refinement stages were completed, the
processed RQs and their associated functionalities were clas-
sified, grouped, and eventually transformed into a more de-
tailed architecture functionality model for the entire project.

C. ARCHITECTURE ALIGNMENT OF T2.2
The task of AI for wireless communications (T2.2) produced
27 initial RQs. These RQs are listed in Table 4, and were
individually aligned with the functionality and entity models
of the InSecTT RA (as shown in Fig. 5). More details of the
InSecTT RA can be found in Appendix 1. The classification
of RQs in different subclasses is also shown in Table 4 and
the process followed for this classification and architecture
alignment is detailed in Annex 3. The concept of sub-building
block (SBB) as a refined granularity of BBs is also detailed
in Annex 3. The following section summarizes the different
SBBs with the defined classification C2 shown in Fig. 6.

IV. SBB DESCRIPTION, INTERFACES,
IMPLEMENTATION, AND INTEROPERABILITY
This section provides the details of the different SBBs of
BB2.2, focusing on interfaces, links to the UCs, the informa-
tion of the data sets used for training, implementation issues,
etc. The information is also summarized in Table 5.

A detailed interface analysis per entity (as described in
Section III and in Annex 3) is useful to identify the function-
alities triggered by the dynamic flow of a UC. This approach
aims to find potential security, scalability, capacity, signaling,

FIGURE 4. Timeline of RQ processing, SBB definition, and UC alignment
process with the InSecTT RA.

TABLE 4. RQs identified in the task T2.2 of the EU InSecTT project and
assignment to SBB classification.

RQ Description C1 C2
1 Intelligent Routing Algorithms B C

13 Intelligent connection mgmt B C
70 Smart connectivity B C

109 Interference detection A A
110 Interference identification B A
111 Interference mitigation B A
113 AI Direction of Arrival A B
114 AI modulation recognition A A
116 Localization simulation A B
140 Predict Imminent Connection Loss C C
141 Rating of Interfaces A C
142 Redundant Transmission A A
143 Link Aggregation B C
144 Parallel Connections A A
145 Load Balancing on SW Level B A
152 Dashboard connectivity A C
158 Intelligent connectivity A C
164 Radar for vital sign monitoring A A
218 Learning representations E E
228 Device free localization A B
238 Network anomaly detection D D
242 Anomaly Detection Form Factor D D
245 Wireless Authentication A B
270 Wireless Failure Estimation A C
271 Link Quality Measurement A C
310 Energy Eff. Comm. Anom. Detect. D A
318 MIMO scalability C D
322 AI for conflict resolution C A
325 Non-linear processing C A
327 MAC-PHY security C B
329 AI-based resource allocation C C
349 Local access data collection D D
390 Data pre-processing & filtering D D
391 Centralized cloud analysis D D
392 Learning and model update E E
393 Feedback for detection model E A

and performance issues. The following subsections provide
details of the architecture analysis of the SBBs of T2.2.

A. SBB2.2A – SIGNAL IMPROVEMENT IN
INTERFERENCE SCENARIOS
1) General Description
The objective of this SBB is to use radio/network resource
diversity or subspace refinement process, usually based on
multiple antennas (MIMO systems), to improve signal re-
ception, detect interference and/or remove unwanted impair-
ments (such as multi-path interference, fading, shadowing,
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TABLE 5. SBBs identified for the BB2.2 in the InSecTT project.

SBB Description UCs, BBs Interfaces Datasets Value/Format Algorithms

2.2A-1 Artificial signal generation (for interfer-
ence detection)

UC: 2,3,4,11
BB: 3.2,3.5 offline Channel meas./CSV SVM,CNN

2.2A-2 MIMO receiver UC: 1,2,3
BB: 3.2,3.5,2.5 5G/WAICs Synthetic model/CSV CNN, Markov chain

PARAFAC, ICA
2.2A-3 RadCom to minimize interferences UC: 5 60GHz (5G) OFDM signals Chirp mod.

2.2B-1 Automatic setup of testing in laboratory
and real-world environments

UC: 2,3,4,11
BB: 3.2,3.5 offline CSV N/A

2.2B-2 DoA estimation, Spatial authentication UC: 1,2,3
BB: 3.2,3.5,2.5 5G/WAICs Synthetic/ CSV CNN,ESPRIT

2.2B-3 Fault detection and compensation in ve-
hicular networks

UC: 1,6 UWB CSV Geometric Kalman

2.2B-4 RadCom based DoA, range and velocity
estimation

UC: 5 60GHz N/A RIT

2.2C-1 Multi-interface GW (MIG) UC: 15,16
BB: 3.2,3.3,3.4

BLE, Wi-Fi,
LoRaWAN CSV Markov chain

2.2C-2 Channel prediction UC: 1,2,3
BB: 3.2,3.4,3.5,2.5 5G/WAICs CSV/synthetic TCN, MM, LSTM,

RNN

2.2C-3 Railway certified platform with AI HW
accelerators

UC: 7
BB: 3.3,3.4 TCP, 5G N/A N/A

2.2C-4 Routing and connection management
platform for multiple cellular links

UC: 7
BB: 3.3,3.4 TCP, 4G, 5G CSV SVR, LSTM, GRU

Multi-armed Bandit

2.2C-5 Detection, estimation and compensation
in vehicular networks of faults in decen-
tralized vehicular net.

UC: 1,6 UWB CSV Geometric Kalman

2.2C-6 SW platform for V2x message ex-
change

UC: 3 5G, MQTT N/A N/A

2.2D-1 Anomaly detection in a consumer home
network

UC: 13
BB: 3.3 Network flows Real world customer data Random forest

2.2D-2 Interference detection at bit-level UC: 2 WAICs Channel meas./ CSV CNN, SVM

2.2D-3 MIMO-based anomaly detection UC: 1,2,3
BB: 3.2,2.5,3.5 5G, WAICs (meas.)CSV

synthetic CNN

2.2D-4 Anomaly detection for the EPhESOS
communication protocol

UC: 3
BB: 3.5 2.4 GHz ISM Channel meas./ CSV Unsupervised Methods

2.2D-5 Network anomaly detection UC: 4,9
BB: 2.1,3.2

RESTful
MQTT MQTT traffic

2.2D-6 Anomaly detection OPA UC UC: 9 TCP TCP traffic CNN

2.2D-7 Hybrid anomaly detection UC: 4
BB: 3.1 TCP TCP traffic LSTM, RNN

etc.).

2) Datasets
There are multiple similarities between the data sets of all
the SBBs, mainly because they all rely on measurements or
models of the wireless channel. However, there are specific
differences that are here discussed. In this SBB, the datasets
contain the information of both propagation wave and more
importantly the PHY-layer impairments to be removed. Ad-
ditionally, in this SBB, many of the data sets considered
multiple antennas, as they are exploited to mitigate impair-
ments. In some cases (such as vehicular channels with high
speeds), the statistics can change very quickly, thus leading
to the issue of non-stationary statistics. Under this issue,
channel measurements or conventional electromagnetic mod-
eling (EM), commonly used to create accurate datasets, are
difficult to obtain due to complexity constraints or incom-
plete (rapidly changing) information. To mitigate this issue,
synthetic channel modeling has been proposed. Some of

the adopted solutions include hybrid algorithms using ray-
tracing and geometric-based stochastic channels.

In the case of scenarios with stationary statistics, measure-
ment campaigns have been conducted in different industrial
domains. Some of the measurements in this SBB were con-
ducted in realistic settings. For example, using nodes onboard
operational trains, railway stations, or by using antennas on
the surface of moving vehicles (low speed), inside airports,
and other industrial operational environments. In the case
of Wireless Avionics Intra-Communications (WAICs), exten-
sive channel measurements were conducted on board com-
mercial aircraft considering multiple sources of interference.
Some of the conducted measurements included the effects of
the human users, such as: shadowing, absorption, reflection„
diffraction, etc. For example, some of the channel modeling
on airplanes considered passengers inside the cabin. A simi-
lar example was conducted inside hospitals or inside critical
buildings where users or passing-by persons influenced the
collected datasets.
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FIGURE 5. Mapping of the RQs of BB2.2 to the functionality model of the
InSecTT RA.

FIGURE 6. SBB classification based on communication concepts (category
C2).

3) BB Interfaces
This BB has a strong connection with BB3.2, which was
focused on channel models, measurements, and wireless sig-
nal processing algorithms. This BB2.2/3.2 partnership was
expected to propel the lower layers of wireless networks
to be more reliable, secure, and trusted. Thus, the adopted
interfaces mainly connect the lower layers (PHY-layer infor-
mation of BB3.2) with intermediate/upper layers (BB2.2),
where AI resides. In some cases, this usually involves a
hardware interface linking nodes that are distributed in the
environment to the edge of the network or, in only a few
of cases, directly to the cloud. The interface provides AI
with access to the base-band processing information and the
resources of routers or nodes. An issue identified in this BB
is the potential impact of the use of AI on the capacity of
the required cross-layer signaling interfaces. This interface
bandwidth is needed to capture the full complexity of the
wireless environment. Therefore, some of the developments
in this SBB have assumed incomplete, inaccurate, and/or
hybrid datasets. Alternatively, synthetic models have been
used to compensate for the unavailability of information due
to capacity constraints on the cross-layer interfaces. In the
future, when AI sublayers need to collect information in real-
time to train and/or update models, there will be a need
to evaluate the capacity of existing signaling interfaces and
potentially use unsupervised (blind) or hybrid (semi-blind)
solutions to minimize degrading effects.

The SBB2.2a algorithms also have an interface with BB3.3

and BB3.4 to enable higher-level services. For example, in
the case of MIMO, it enables ultra-low latency resource allo-
cation, PHY-layer security, and beam-forming per terminal.
The interfaces of this SBB with other BBs of the InSecTT
framework are graphically illustrated in Fig. 7.

4) Implementation Details and Issues
Most of these algorithms have been implemented in SW-
defined radio platforms, wireless emulators, and/or system-
level simulators enabled with realistic channel/network em-
ulation. Some of the algorithms also reside on state-of-the-
art open source base station platforms that currently prolif-
erate in wireless network design (e.g. [48], [49] ). These
platforms facilitate the development, implementation, and
integration of algorithms with packet core networks such
as [50], thus producing high Technology Readiness Level
(TRL) prototypes. In aeronautics, a system-level simulator
with new channel models developed in [51] has been used to
investigate the emerging technology called wireless avionic
intra-communications (WAICs) [52]- [53].

In some use cases, the existing infrastructure dictates the
type of network platform to be used. For example, in aero-
nautics, the dominant data bus standard is ARINC 664 [54],
while in the railway domain multiple standards were used to
design the gateway server, e.g., Multi Vehicle Bus (MVB)
[55] and Wired Train Bus (WTB) [56] as part of the Train
Communication Network (TCN) standard. In the automotive
domain, some of the standards are Controller Area Network
(CAN) [57] and Local Area Interconnect (LIN) [58]. The use
case of vehicle platooning exploits the results of previous EU
projects, such as Esemble [59], which produced V2x HW and
SW platforms to build new AI-based services.

From a reliability point of view, the aeronautics and ve-
hicular data buses are more demanding in terms of real-time
processing than the data-bus standards in other domains. This
has consequences on implementation, because there is a need
to provide a solution that regulates the network flows between
the wireless and the wireline domains, while preserving the
quality of service across the hybrid infrastructure.

5) Target Metrics
The main metrics addressed by these algorithms lie in
the MAC and PHY layers, e.g., Signal-to-Interference-plus-
Noise Ratio (SINR) [60], spectral efficiency, throughput, ca-
pacity, achievable data rate, signal-to-leakage ratio, rejection
ratio, latency, queuing delay, etc. Most of the metrics consti-
tute a measure of the desired indicator with respect to existing
impairments. In critical applications, such as aeronautics and
vehicle platooning, metrics have more critical thresholds than
in other applications such as localization and object tracking
inside buildings.

6) Types of Algorithms
CNNs [61] were used for MIMO receivers for vehicular
beam-forming. Support Vector Machine (SVM) [62] was

IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY. VOLUME XX, 20XX 7

This article has been accepted for publication in IEEE Open Journal of the Industrial Electronics Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJIES.2025.3560946

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Author et al.: Preparation of Papers for IEEE Open Journal of the IES

FIGURE 7. Interfaces of SB2.2BA with other BBs

used for beam-forming with reduced complexity, while Paral-
lel Factor Analysis (PARAFAC) [63] and Independent Com-
ponent Analysis (ICA) [64] were used to remove multiple
access interference and to reduce training bandwidth (i.e., un-
supervised learning). Deep learning has shown good results
in MIMO systems, but the disadvantage is the complexity of
calculations, particularly in scenarios with ultra-low latency
needs and with non-stationary channel statistics (i.e., rapid
changing datasets).

7) Outcomes
In this SBB, multiple AI algorithms for improving wireless
signals have been compared in both simulation and real-
life hardware platforms. For example, in wireless platooning,
the use of AI for massive MIMO reduces the vehicle colli-
sion probability in multiple different sub-scenarios, including
those with complicated propagation conditions such as in
tunnel environments [65]. In the case of wireless avionics, AI
was helpful in improving signal reception, thus enabling real-
time operation and reduction of distortion of sensor readings
collected across the aircraft [66]. In airport environments,
AI was used to detect changes in line- or non-line-of-sight
conditions (LOS and NLOS, respectively), thereby improv-
ing either network performance or the ability to detect the
presence/absence of obstacles and/or passengers.

One of the findings in this SBB was the impact of non-
stationary statistics of the channel measurements or datasets.
Future developments are foreseen to minimize the impact
of this issue. The outcome of this SBB has also shown that
capacity and performance limits can be effectively improved
by AI, but the analysis is more complex than previously
considered. The exact definition of the optimality regions for
different AI and conventional signal processing algorithms
was found to be a complex problem that needs to be ad-
dressed in future work.

B. SBB2.2B – PARAMETER ESTIMATION FOR PHY
LAYER SECURITY
1) General Description
This SBB explicitly exploits or extracts information from
physical waves about direction-of-arrival or other spa-

tial/geometrical patterns that can be used to improve recep-
tion, reject interference, increase security, and protect infor-
mation from different types of attack, including jamming,
eavesdropping, impersonation, etc. This type of PHY-layer
information can also be used indirectly to estimate other envi-
ronmental parameters. Examples include airflow estimation
in avionics, patient health indicators by using waves bounc-
ing back from target patients (Radcom), obstacle detection,
and/or object tracking based on LOS/NLOS detection.

2) Datasets
The datasets are similar to those discussed in Subsec-
tion IV-A2, but in this case, the estimated parameters explic-
itly contain geometric information about the environment.
When using realistic datasets, it was important to have ac-
curate environmental information to allow the learning al-
gorithm to resolve the direction of incumbent transmissions.
In the case of synthetic models, geometric-based stochastic
channel distributions or ray tracing are typically needed to
correctly replicate environmental (geometrical) information.

3) BB Interfaces
The interfaces of SBB2.2B are similar to those presented in
Subsection IV-A3, but in this case, the algorithms handle
specific spatial information embedded in the measurements
that can be used for security, encryption, and attack detection
capabilities. Therefore, this additional information means the
use of interfaces with application layers dealing with those
security features. The interfaces of this SBB with other BBs
of the InSecTT framework are illustrated in Fig. 8

4) Implementation Details and Issues
These algorithms have been implemented in SW defined
radios, emulators, and/or system-level simulators enabled
with realistic channel conditions. Most of the implementa-
tion details are the same as the previous SBBs. The main
difference lies on which interfaces are used to enable security
features on the application layers.

5) Target Metrics
The main target metrics were localization accuracy, DoA
Mean Square Error (MSE) [67], interference rejection, SINR,
and information secrecy ratio. These are metrics that measure
directly the accuracy of the estimation process. However,
secondary metrics that measure the impact in other processes,
mainly security, safety, reliability, and trustworthiness have
also been used across different use cases.

6) Types of Algorithms
The estimation of Signal Parameters via Rotational Invariant
Techniques (ESPRIT) [68] was used in non-dispersive ve-
hicular channels. Sub-space MIMO processing was used to
resolve the direction of arrival in more complex multi-path
scenarios. SVM was also used to estimate DoA inside build-
ings [69]. Conventional CNNs were used in some specific
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FIGURE 8. Interfaces of SBB2.2B with other BBs

applications of vehicle platooning (e.g., emergency braking).
A similar approach was used in the healthcare domain to
achieve joint communication and radar operation (Radcom).
The signals bouncing back from the bodies of patients were
used to estimate health indicators.

7) Outcomes
The resolution of DoA information from wireless signals us-
ing AI has shown several improvements compared to conven-
tional algorithms. However, NN-based ML showed limited
gains in highly time-variant scenarios (such as vehicular net-
works). Hybrid schemes based on SVM and linear prediction,
as well as other conventional schemes, such as ESPRIT-based
tools or PPCC (Power Pattern Cross-Correlation), were used
for this problem with good results. In the case of vehicle
platooning, the elements of the platoon conform a reinforced
entity for DoA-based PHY-layer security [70]. Each platoon
with several vehicles forms a unique spatial signature made
of the combined DoAs of all the vehicles. A similar effect can
be achieved in cases with a network of distributed sensors on
board aircraft with fixed spatial signatures.

C. SBB2.2C – LINK AND CHANNEL PREDICTION
1) General Description
The objective of SBB2.2C was to use AI/ML to detect
and/or predict future channel outcomes. The prediction was
not only limited to channel outcomes, but it also addressed
other parameters, for example, the number of retransmis-
sions needed to achieve reliable communications, upcoming
system failures, and potential attacks (e.g., jamming, node
misbehavior, impersonation, etc.).

2) Datasets
These datasets are similar to SBB2.2A and SBB2.2B (pre-
sented in Subsection IV-A and Subsection IV-B, respec-
tively). The datasets of this SBB also include channel mea-
surements and/or synthetic channel models. However, in this
case, the channel models have a strong temporal dependency
(correlation), mainly because this feature was found to dic-
tate the prediction capabilities of ML algorithms. Therefore,
channel measurements or the synthetic models must follow

the temporal dynamics of the UC. For example, in vehicular
platoons, they must change according to the trajectory and
control operations of the platoon. In wireless avionics, they
must follow the relative changes inside the cabin or the
external conditions of the aircraft across different moments
of a mission. Multiple channel measurements with these
time-domain features have been completed in several UCs
of the EU InSecTT project (see the data sets of SBB2.2A in
Subsection IV-A).

This SBB has also considered imperfections of the
datasets, mainly because multiple industrial applications will
not have ideal or complete datasets. Some use cases with
rapidly changing settings with have only a few past samples
are reliable environmental information. These samples can
enriched with context information available from other func-
tional layers (positioning/geographical information, etc.).
The impairments considered in the datasets were the follow-
ing: incorrect sampling conditions, incomplete or constrained
datasets, and noisy samples.

3) BB Interfaces

This SBB was one of the most used in the project. One of
the reasons for this predominance is that this type of algo-
rithm improves the ability of emerging wireless systems to
predict the fast variations of the channels. This ability is ideal
for improving efficiency, reducing energy consumption, and
increasing data rate performance. Additionally, algorithms
can exploit this feature in different layers of the network,
with different interfaces and with flexible implementation in
different physical entities. For example, in the lower layers,
channel prediction can be used to reduce training sequence
bandwidth, improve resource allocation, and reduce the num-
ber of required retransmissions. This has an impact on the
load of the MAC and link-layer signaling overhead. In the
upper layers, link prediction can be used to enable seamless
vertical handover, reduce session drop probability, improve
load balancing, reduce multi-paths or trajectories, and for
optimum route selection. Link prediction is also relatively
flexible in terms of implementation. The interfaces of this
SBB with other BBs of the InSecTT framework are shown
in Fig. 9

4) Implementation Details and Issues

The algorithms in SBB2.2C have been implemented in mul-
tiple platforms that include: custom-made HW devices for
V2X technology, multi-interface gateways (MIGs) [71], [72],
routers used for multiple link selection and optimization, and
radio platforms that aim to detect the best link conditions
with Line- or Non-Line-Of-Sight conditions [73], [74]. We
highlight the level of maturity of the implementation in
industrial prototypes of this class of algorithms as compared
to other SBBs, particularly in the networking layers, where
constraints are less strict than in the PHY-layer, which facili-
tates development and implementation.
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FIGURE 9. Interfaces of SBB2.2C with other BBs

5) Target Metrics
Some of the metrics used in this SBB were the MSE of
predicted values, spectral efficiency to measure the impact
of improved allocation based on prediction, latency, re-
source usage efficiency, load balancing, vertical handover
success probability, call drop rate, and energy consump-
tion/efficiency. In some cases, distortion metrics were used
to compare the estimated/predicted feature with the real
outcome of the target parameter. This SBB had a specific
target on resource allocation, so multiple metrics of this type
of solution were used to measure either directly or indirectly
the performance of this type of algorithm.

6) Types of Algorithms
Polynomial weighted linear regression was used to predict
oversampled channels in vehicular platooning applications.
CNN, Long-Short-Term Memory (LSTM) [75], [76], and
Recurrent Neural Networks (RNN) [77] were used for data
sets with near-undersampling distortion in both vehicular
and avionics systems. Support Vector Regression (SVR) [78]
was used for data rate estimation, while LSTM and Gated
Recurrent Unit (GRU) [79], [80] for data rate prediction
in railway domains. Finally, multi-armed bandit approaches
were used for link selection in V2x communications and
inside airports.

7) Outcomes
The results of the implementation of this SBB showed how
AI can be used effectively to optimize wireless network per-
formance and resource management. However, it is equally
clear how sensitive AI was to some of the realistic impair-
ments considered in different use cases (constrained data sets,
undersampled information, and low SNR). It became evident
that in some conditions, AI can be outperformed by con-
ventional algorithms. However, in general, when complete
and nearly ideal data sets were used, ML showed important
advantages. The exact boundary for the optimum region of
each solution is an open issue to be addressed in future
research.

D. SBB2.2D – ANOMALY DETECTION

1) General Description
This family of algorithms uses ML and DL to capture nor-
malized system behavior by training models over data sets
that involve metrics or parameters that span different layers
of the communication protocol stack. These algorithms can
detect multiple system threats, potential failures, hazards in
the PHY-layer environment, or intentional attacks to commu-
nication interfaces.

2) Datasets
It is worth pointing out that the proposed SBB classification
is not entirely orthogonal. Therefore, different algorithms
presented in previous SBBs can also be considered here,
with some modifications, as part of anomaly detection. This
is the case of DoA detection and channel prediction. Based
on existing datasets, these algorithms can be used to detect
changes in the environment (i.e. a change from LOS to
NLOS conditions), changes in received power or Received
Signal Strength Indicator (RSSI) due to obstacles (e.g., object
detection AI for wireless platoons), or to detect the distortion
of the spatial signature of a fixed network of sensors on board
an aircraft. This detection of changes can be tuned to be used
as an intrusion or anomaly detection.

The datasets used by anomaly detection in the PHY-layers
are similar to those mentioned in the previous SBBs, except
for the explicit security parameter dependency. This means
that the data sets are obtained with the explicit purpose of
detecting an inconsistency in the test data and thus triggering
the detection indicator(s). By contrast, algorithms running
on edge application servers consider data sets which have a
different granularity level compared to the PHY-layers. This
means that the problem of non-stationary data sets of the
PHY-layer environment is considerably reduced in anomaly
detection in the networking layers.

Anomaly detection algorithms in the network and appli-
cation layers are usually based on a model that has been
trained under conventional network operation. Therefore,
when using test data, the trained model can detect deviations
from the normal behavior as stored in the model.

3) BB Interfaces
The algorithms of SBB2.2D used multiple interfaces across
several layers. However, the core layers for their operation
are those related to security and application control. The de-
tection and exchange of signaling information generally uses
cross-layer and security management interfaces, as depicted
in reference IoT architectures (see Annex 1). The interfaces
of this SBB with other BBs of the InSecTT framework are
shown in Fig. 10.

4) Implementation Details and Issues
Anomaly detection algorithms have been implemented in
dedicated HW platforms for application layer management of
the different UCs. For example, in vehicular networks, open
source 5G core network platforms were used for the imple-
mentation of application layer anomaly detection, while in
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wireless avionics, an internal aeronautics network emulation
platform of ARINC 664 has been used for all simulations
and security testing. In consumer applications, realistic home
routers and commercial firmware emulation platforms were
used to detect anomalies and intrusion attacks.

5) Target Metrics

Some of the metrics used in this type of algorithm include
the following: correct anomaly identification rate, false alarm
probability, and the percentage of anomalies correctly de-
tected/rejected. Similar to other SBBs, secondary metrics can
be used to measure the impact of the success of the different
detection algorithms.

6) Types of Algorithms

CNNs were used to detect objects or obstructions in LOS
in vehicular networks, triggering emergency braking. DoA
distortion and localization errors were used in building,
maritime, and airport scenarios to detect potential imper-
sonations. Geometric Kalman was used to detect faults in
vehicular scenarios. Random forest was used in anomaly
detection for consumer home network protection. Unsuper-
vised energy-based anomaly detection was used in short-
range wireless communications. DL algorithms were used for
anomaly detection in IoT networks based on MQ Telemetry
Transport (MQTT). Hybrid algorithms based on ML and
conventional statistical approaches were also reported. They
provided flexibility of implementation and higher accuracy,
as they exploited the virtues of both approaches.

7) Outcomes

Anomaly detection was implemented on multiple layers of
the protocol stack. Several of the implementation examples
targeted edge infrastructure for each UC. One of the main
outcomes of this SBB is the clear trade-off between the com-
plexity of the algorithm, the granularity of events captured
in the data set, and the layer of the protocol stack where the
algorithm resides. Lower-layer events required a higher gran-
ularity, as the learning process, the dataset generation and,
in general, the identification process are resource consuming
and usually constrained in latency. By contrast, in the upper
layers of the protocol stack, other issues were found, includ-
ing privacy, confidentiality, and interface bottlenecks. These
results point towards the need of frameworks specialized on
AI cyber risk management (e.g., [36]- [37]).

V. DISCUSSION
One of the main contributions of the InSecTT project is
the cross-domain analysis of AI implementations. The SBBs
described in the previous section have multiple similarities,
differences, as well as cross-domain links and trade-off is-
sues. This section provides a summary of some of these
issues identified in the previous sections.

FIGURE 10. Interfaces of SBB2.2D with other BBs

A. COMPARISON BETWEEN SBBS
The SBBs described in the previous subsections show mul-
tiple similarities and differences in terms of data sets, in-
terfaces, and implementation details. We briefly summarize
some of these similarities and differences. Most of the SBBs
share the fact that data sets are related to the wireless
propagation channel. Except for some instances of anomaly
detection and link prediction, which can also target upper
layer protocol streams. The main difference observed is
that SBB2.2B and SBB2.2C algorithms require, respectively,
spatial (geometric) and temporal features to operate, while
SBB2.2A algorithms need detailed information of the im-
pairments to be removed. Different constraints have also
been observed, mainly because SBB2.2A seems to be more
prone to non-stationary issues than the other SBBs, while
SBB2.2C seemed more prone to issues of noise, sampling,
and incompleteness of data sets.

In terms of implementation, there were important differ-
ences among the different SBBs. SBB2.2C was one of the
most frequently deployed types of algorithms on a multitude
of existing hardware platforms of multiple use cases. The
flexibility of link prediction was key in its successful imple-
mentation across a number of layers and domains. Probably
the second best SBB was anomaly detection, due to the strong
security and robustness implications for multiple domains
and also the decoupling from stringent physical layer real-
time requirements and issues that may limit their operation.

Regarding interfaces, the difference is clear among the
different SBBs. SBB2.2A probably has the lower level type
of interfaces as it pertains mainly to symbol and PHY-layer
impairment removal processes. However, it is also the most
demanding as this type of processes require constant moni-
toring of environmental changes and adaptation. In contrast,
SBB2.2B has a more flexible implementation margin, as
DoA information depends on the mobility of the use cases.
Only some of the use cases will experience DoA temporal
variance that requires high signaling rates for their operation.
In addition, this SBB has interfaces with upper-layer security
applications, which in general, handle a more relaxed time
granularity in the event distribution that the ultra-low latency
PHY-layer. The case of SBB2.2C and SBB2.2D depend on
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the type of use case application, but in general they also occur
with less critical issues as in the lower layers. However, other
types of issues start to emerge, including security, privacy,
confidentiality, etc.

B. CRITICALITY AND EXISTING INFRASTRUCTURE
Wireless avionics and vehicle platooning control have shown
some of the strictest requirements in terms of criticality,
real-time operation, reliability, and ultra-low latency com-
munications. This is mainly due to the need to comply with
industry standards (buses) and also with the requirements of
future applications, such as autonomous vehicles, intelligent
transportation, and aircraft monitoring and control. Maritime
vessels and trains use similar internal bus standards to the
automotive domain. However, many of the applications of
IoT in this domain focused on added features that are not ex-
plicitly interacting with, replacing, or modifying the internal
buses. Instead, the investigated applications focused on over-
lay features such as logistics, localization, and infrastructure
control and management, where different requirements and
issues usually arise.

C. PERFORMANCE RELIABILITY AND DATA SET
ISSUES
Massive MIMO assisted by AI was used in urban vehicular
scenarios, showing the possibility of considerably reducing
interference and even preventing jamming attacks. In con-
trast, in the operation of WAICs, massive MIMO showed
more limitations, mainly due to reduced antenna spacing,
which yields stronger channel correlation. In contrast, DL-
based channel prediction became more attractive and fea-
sible in aeronautics and low-speed vehicular applications.
This is mainly due to the issue of non-stationary data sets
and limited measurements in time-varying vehicle applica-
tions that turned the balance of algorithm selection toward
conventional linear regression algorithms. In healthcare and
indoor building applications, the non-stationary problem is
considerably minimized. This means that more advanced and
complex ML algorithms, such as deep learning, were used
for purposes such as localization, channel prediction, and
biometrical applications.

D. PROPAGATION ISSUES
The channel environment is also relevant for the performance
of AI algorithms for wireless applications. The most com-
plex propagation settings found in the project were mainly
in indoor or dense urban vehicular scenarios that usually
experience complex scattering, diffraction, and shadowing
phenomena. Indoor scenarios include sensor communication
between the nodes onboard an aircraft, and some of the
airport use cases. The main difference between these two do-
mains is that inside some of the vehicles or aircraft, channels
can remain more stable over several moments of a mission
(stationary), which can facilitate the use of more advanced
ML algorithms. In contrast, in vehicular applications with
high speeds or dense urban settings, inaccurate sampling

frequencies, and constrained data sets were found to reduce
the optimality of DL. Healthcare and building use cases
were not found highly affected by significant channel time
variations (low Doppler shift), but they can show coverage
holes, dense multi-path, and shadowing conditions. In the
maritime domain, reflections over water were found to pro-
duce an effect that resembles stochastic fading found in other
domains. However, more research is needed to investigate its
impact on different maritime applications.

E. LOW-LAYER VERSUS APPLICATION-LAYER ISSUES
In many of our UCs, the use of AI for anomaly detection in
the networking and application layers seems to be less prone
to the critical problems of PHY-layer algorithms. However,
other emerging issues were observed, such as privacy, con-
fidentiality, robustness, incomplete data sets, etc. In terms
of explainability, it was possible to verify some properties
and bounds of AI algorithms, particularly when predicting
fast-fading wireless channel components that are common in
vehicular and aeronautical scenarios. These findings can also
be applied in building, maritime, and healthcare scenarios,
except for the existence and prevalence in some cases of
long-term deterministic channel components. In such cases,
the prediction can become more reliable for periods of time
longer than the coherence time of the fast-fading compo-
nents. This deterministic component changes the applicabil-
ity of some of the prediction algorithms.

F. STANDARDIZATION AND REGULATION
In several industrial domains and their associated regula-
tory or standardization groups, there is a growing interest
in AI, but the focus is generally on aspects central to the
type of application of the industrial domain rather than
wireless connectivity. Instead, we found more active work
in those bodies with explicit working groups on wireless
communications such as the European Telecommunications
Standards Institute (ETSI) [81], IEEE [82], ITU [83], and the
Third Generation Partnership Project (3GPP) [10]. In the IoT
realm, ISO [84] has set up multiple groups working on AI for
IoT. In contrast, in network and application layers, AI-based
security is extensively covered by the main governmental
bodies, such as the European Agency for Cyber Security
(ENISA) [85].

In the automotive domain, AI for autonomous cooperative
vehicle control has dominated the discussions in recent years,
for example, in the Society of Automotive Engineers (SAE)
[86] and in the 5G Automotive Association (5GAA) [87].
In the aeronautics domain, the International Civil Aviation
Organization (ICAO) [88], the European Organization for
Civil Aviation Equipment (EUROCAE) [89] and the Euro-
pean Union Aviation and Safety Association (EASA) [90]
have considered AI mainly for control of functionalities on
board aircraft, but not precisely for the improvement of
WAICs. This is also due to the fact that, unlike solutions in
other domains, WAICS is still in the phase of evaluation and
standardization. The aeronautics industry has high-quality

12 IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY. VOLUME XX, 20XX

This article has been accepted for publication in IEEE Open Journal of the Industrial Electronics Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJIES.2025.3560946

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Author et al.: Preparation of Papers for IEEE Open Journal of the IES

and secure/safety-critical standards for the integrity of air-
craft. Therefore, it takes more time for a technology to gain
the trust of the different stakeholders. This is not the same
for terrestrial networks, where 5G, Bluetooth Low Energy
(BLE), WiFI, Long Range (LoRA), Ultra-WideBand (UWB),
and other standard technologies have started to be used in
airports, on board buses, etc.

VI. CONCLUSIONS
This paper presented a summary of how AI has been used
to improve the wireless connectivity of multiple industrial
use cases (UCs) of the InSecTT EU project. The paper also
described some of the details of the alignment process of UCs
and their building blocks (BBs) with the InSecTT Reference
Architecture and the investigation of which interfaces or sub-
layers of the different protocol stacks are more used by new
AI functionalities. This investigation returns interesting re-
sults, providing details to designers on how AI is being used
in realistic industrial applications, the issues that are being
faced, challenges, and potential benefits that are currently
being more exploited. More specific information for each use
case can be found in the website of the project. The paper
also highlights the multiple gaps found in the project on how
AI behaves in different types of impairments and different
challenging situations. As an example, in the lower layers
of the protocol stack with critical requirements, such as low
latency and high reliability, deep learning (DL) still faces
several practical challenges, including non-stationary, incom-
plete, or corrupted data sets. This gap seemed to be filled
by conventional algorithms, such as linear regression, SVM,
ESPRIT, Random Forest, etc., particularly for applications
such as beam-forming, PHY-layer security, and interference
rejection. In contrast, in the upper layers of the protocol
stack, the obstacles found in the applicability of AI and ML
were related to aspects such as information confidentiality,
privacy, storage, and security. All of the above-mentioned
issues showed different details depending on the industrial
domains. As an example, in the vehicular domain, challenges
are also the adaptation of ML to multiple issues and realistic
situations with the lack of datasets or with distorted or
inaccurate information due to the highly time-varying media.
In contrast, in healthcare and in general in indoor applica-
tions, the low latency requirements of vehicular or avionics
applications were considerably relaxed. Instead, privacy, con-
fidentiality, and the probability of eavesdropping were found
to be issues of more concern. The railway use cases showed
some issues similar to the vehicular use cases, but with
interesting deviations. One major difference is the extension
of the wireless footprint required for long-distance railway
infrastructure. Another difference is the propagation between
contiguous vehicles of a train, which shows considerable de-
viations from a vehicular platoon scenario, including scatter-
ing, shadowing, and interference distributions. Furthermore,
railway control and operation of the applications investigated
in the project showed no major need for ultra-low-latency
requirements, unlike the critical vehicular link reliability and

latency needed in autonomous vehicular applications. These
are examples of how the InSecTT cross-domain perspective
and the reference architecture can provide in the study of the
implementation trade-offs of AI in different entities and stack
layers of IoT use cases.
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ANNEX 1: INSECTT REFERENCE ARCHITECTURE (RA)
The InSecTT RA is a collection of views, models, per-
spectives, and/or recommendations for the design of UC
architectures based on the objectives of the InSecTT project
(i.e., convergence of AI, edge computing, and IoT) targeting
trustworthiness and security metrics. The InSecTT RA (pre-
sented in a preliminary form in [7]) is based on a combination
of modern standard RAs and was the result of an evolution
of two previous EU projects, namely “Dependable Wire-
less Infrastructure” (DEWI) [91] and “Secure Connected
Trustable Things” (SCOTT) [51]. In particular, the InSecTT
RA inherits functional layers of the ISO Sensor Network
RA (SNRA) [92] through the evolution of the DEWI High-
Level Architecture (HLA), and adopts a convergence of
functionality models previously used in SCOTT, including
components from ISO IoT RA [44], the ITU RA [42], the
IEEE [43], and the AIOTI [45] RAs. Therefore, by aligning
UCs to the InSecTT RA, UCs are also largely compatible
with the main views of these standard RAs. Fig. 2 and Fig. 3
show the two central perspectives of the InSecTT RA: (i)
the entity and (ii) the functionality models, respectively. The
InSecTT entity model is an evolution of the representation of
physical entities of legacy architectures with devices, objects,
and network elements. These elements interact with each
other via hardware (HW) interfaces. By contrast, the func-
tionality model consists of layers and sub-layers of organized
functionalities running on each entity, and mainly interacting
with each other via software (SW) interfaces. A hybrid
entity-functionality model can also be used to illustrate the
interaction between functionality sub-layers across different
HW entities (see Annex 3).

The analysis of functionalities of multiple UCs and BBs
using a standard RA can help not only to gain insight into
the project infrastructure and its organization, but it can
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also reveal stress points, vulnerabilities, scalability issues,
technical needs, or even future technology trends.

One of the main aspects that differentiates the InSecTT
RA from other architectures is the concept of “Bubble”,
inherited from previous projects (DEWI and SCOTT). The
Bubble can be defined as a construct used for the organi-
zation of infrastructure in industrial networks, encapsulating
legacy technology via wrapping layers based on modern IoT
protocols, where the Bubble gateway (BGW) orchestrates
and manages all the interactions between the internal legacy
network and the modern IoT cloud-edge continuum (see
Fig. 2). The Bubble has a specialized three-tier (L0/L1/L2)
entity model that is useful for industrial scenarios with an
existing wired or critical infrastructure (e.g., internal bus of
a vehicle or an aircraft). The Bubble concept has evolved in
recent years to encapsulate new features, such as objects with
multiple interfaces, direct cloud links based on technologies
like 5G [10] or Narrow-band IoT (NB-IoT) [93], and new
technologies such as edge computing, blockchain [94], and
now, in the current project, using edge technology and AI.

ANNEX 2. OTHER USAGES OF THE INSECTT
REQUIREMENTS PROCESSING FRAMEWORK
The InSecTT framework for the processing of RQ infor-
mation (Section III) was inherited from previous projects.
This processing framework, as detailed in the main body
of this paper, was used for architecture design. However, it
has evolved and it has additional usages. For example, the
status of implementation of RQs was used for monitoring
and objective completion evaluation. This methodology con-
sists of providing scores to the implementation progress of
each requirement and its associated objectives. This scoring
methodology provided us with a useful perspective on how
the project was being completed at different stages, and it
became a valuable tool to detect potential risks or issues in
the technical work of the project. Another RQ-based scor-
ing methodology was also developed for the evaluation of
trustworthiness metrics of SBBs. These metrics were based
on well-known certification metric methodologies such as
Common Weakness Score System (CWSS) [95], Common
vulnerability Score System (CVSS) [96], and certification
frameworks such as ARMOUR [97]. This trustworthiness
approach constitutes a more realistic evaluation of complex
IoT systems.

ANNEX 3:FUNCTIONALITY MODEL AND SBBS
DEFINITION
The objective of the alignment of the RQs with the InSecTT
RA was the layered organization of the functional compo-
nents of the BBs, and the eventual definition of the InSecTT
functionality model. These functionality components can be
seen as the “basic bricks” that enable the main features
of the different UCs. An important result of our analysis
was the need for an intermediate granularity level between
the raw technical components and the BBs listed in Table
2. This intermediate granularity was needed to consolidate

FIGURE 11. SBB classification based on AI-related functionalities (category
C1).

contributions with similar scope across industrial domains.
The new granularity was called sub-building block (SBB),
where cross-domain development was more effective due to
the narrowing and alignment of the functional scope of each
category across domains. Therefore, a SBB is defined as a
group of functionalities that are common to multiple use
cases in different industrial domains, thus fostering cross-
domain collaboration. Fig. 4 shows the timeline of the In-
SecTT cross-domain design process and the stage at which
the definition of SBBs was achieved in the project.

Two possible SBB classifications for BB2.2 are shown in
Table 4. The first classification, denoted as C1, considers
AI functionalities as classification criteria. These functional-
ities include parameter extraction, estimation, classification,
detection, learning, and adaptation. By contrast, the sec-
ond classification, denoted as C2, considers communication-
related goals as classification criteria. C2 was selected as the
official SBB definition of T2.2 in the project. Both classi-
fications were not entirely orthogonal, meaning that some
algorithms could belong in more than one sub-division. For
example, a link prediction algorithm can also be used (with
modifications) for anomaly detection. For simplicity, they
were assigned the most relevant classification (see Table 4).

A. CLASSIFICATION BY AI FUNCTIONALITY (C1)
As portrayed in Fig. 11, this category has employed AI-
related functionalities as classification criteria.

1) Parameter Estimation
These algorithms are used to estimate a value, parameter,
metric, or functional rule embedded or inherent to a dataset.
The estimated quantities can be used explicitly by another
process or an application layer algorithm (e.g., localization,
identification, etc.).

2) Classification and Smart Decision
The objective of this category is to distinguish the outcomes
of a set and assign them to categories. In order to achieve
this goal, the training is conducted over sets that capture the
possible outcomes of the experiment.

3) Prediction and ML
The prediction of a parameter (such as channel and/or inter-
ference attack) is helpful in wireless opportunistic systems
that aim to improve the transmission of information by adapt-
ing its configuration to the foreseen impairments. Because
the wireless medium consists of random phenomena, any
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information ahead of potential impairments or attacks can be
used to improve the reliability of the system by assigning ad-
ditional, complementary, or parallel resources to compensate
for the negative effects and keep link quality at the desired
level.

4) Anomaly Detection and Cloud/Edge Processing

Wireless system indicators/metrics can be used to train ML
models to capture the patterns of correct or normalized sys-
tem behavior. An attack occurrence, as well as a failure, can
be detected by the ML model in almost real-time, particularly
when such ML algorithms are running at the edge. The ability
to detect these anomalies in the shortest amount of time
and with the highest possible accuracy is one of the main
objectives of research in critical industrial environments.

5) Explainable AI and ML

One central objective of the EU InSecTT project was to
understand how and why exactly various AI algorithms work,
under which circumstances they show stable operation, and
how impairments can lead to failure. This aspect has received
the name of explainability of AI [98], a topic that currently
attracts more attention in academic and industrial arenas.

B. CLASSIFICATION BY COMMUNICATION
FUNCTIONALITY (C2)
The second proposed category (denoted as C2) used commu-
nication aspects as classification criteria. This is compared
to C1 presented in Subsection VI-A, which used specific
AI-related functionalities. C2 was also the finally selected
category for task T2.2 in the EU InSecTT project. A graph-
ical representation of C2 is given in Fig. 6. We recall that
this classification was used to foster collaboration between
different partners that were dealing with similar design issues
in different UCs or industrial domains.

1) Signal Improvement in Interference Scenarios

The main goal of this type of algorithm is to improve wireless
signal reception by explicitly optimizing a target signal do-
main or the information subspace of a MIMO wireless system
[99] while removing the sources of impairments (such as
fading, noise, and interference). The learning process can
be conducted along the physical resources (space, time, fre-
quency, etc.) that carry the desired information symbols.

2) Parameter Estimation/Extraction for PHY-layer Security

In this category, the goal is the extraction of PHY-layer
information (such as position, Angle-of-Arrival, AoA [100],
distance, etc.) from the wireless signal. We focus on spatial
(geometric) information to achieve security in the PHY-layer,
such as the Angle- or Direction-of-Arrival (DoA) [101],
whose values correspond to unique spatial signatures of the
elements of a network.

3) Link and Channel Prediction
Algorithms explicitly target the prediction of future channel
or link states (as detailed in Subsection VI-A3). In the C1
classification, link and channel prediction are aligned with
communication-related goals, such as resource allocation,
link adaptation, beam-forming, equalization, etc.

4) Anomaly Detection
In this category, the models have been trained with datasets
that capture normalized network behavior and that can be
used to detect deviations from such behavior (as detailed in
Subsection VI-A4). Anomaly detection has been conducted
in the project at different layers of the protocol stack, feeding
or triggering events in the same or across other layers/entities
of the architecture that contain security-specific BBs. This
triggering usually depends on an interface that wraps-up
information from one layer to present it in a higher security
layer (i.e., cross-layer interface).

C. ARCHITECTURE ALIGNMENT
The first step in the alignment process with the InSecTT RA
was the grouping of RQs into technical components that con-
tain the common functionalities of each UC and/or BB. These
components were initially mapped to the two central views of
the InSecTT RA: the entity and functionality model views. To
illustrate this process, Fig. 12 and Fig. 13 show, respectively,
the explicit mapping of functionalities and components of
BB2.2 and BB3.2. BB3.2 deals with reliable wireless models,
datasets, and algorithms, particularly to be optimized by the
AI algorithms of BB2.2. Therefore, BB3.2 can be considered
as the twin partner of BB2.2. It can be observed that all
the AI algorithms of BB2.2 lie in higher functionality layers
with respect to BB3.2. This denotes the synergy between
the real world (PHY-layer) models and the optimization and
organization functionalities provided by BB2.2.

An example of the alignment of all BB components of
a UC and their functionality information flow is illustrated
in Fig. 14 for the case of UC1 (Wireless platooning intra-
communications). In this figure, different colors denote the
different BBs; arrows denote the interface and the direction
of the information flow in the UC; and the text inside the
arrows denotes the technological interface or data format
used. This mapping/alignment process can also be conducted
over a hybrid entity-functionality model, which provides
us with a more detailed perspective of both HW and SW
interfaces used in a UC. An example of this hybrid modeling
is illustrated in Fig. 15 for the particular case of UC1. Each
entity of each UC replicates a copy of the functionality
layered model of the InSecTT RA. In this hybrid model, the
SBBs are placed in different functional layers of different
entities and the communication between them takes place
over a combination of HW/SW interfaces.
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