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Abstract 

The objective of this paper is to provide the fatigue life of riveted joints in AA2024 aluminum 

alloy plates and optimization of riveted joints parameters. At first, the fatigue life of the riveted 

joints in AA2024 aluminum alloy plates is obtained by experimental tests. Then, an artificial neural 

network is applied to estimate the fatigue life of riveted lap joints based on the number of lateral 

and longitudinal holes, punch pressure, gap between the edge of hole and rivet, rivet shank 

diameter, and rivet shank length. Also, meta heuristic optimization algorithm is applied to calculate 

the riveting process parameters. Finally, sensitivity analysis is used to obtain the influence of 

parameters affecting the riveting process on the fatigue life. 

Keywords: Artificial Neural Network; Structure; Fatigue life; AA2024 aluminum alloy; Riveted lap 

joint. 

1. Introduction

Fatigue failure of riveted lap joints in aircraft joint and bridges building can lead to a major disaster 

[1-4]. Many researchers used some methods such as fracture mechanics [5], local stress–strain, 

and local strain energy to predict the fatigue life of the riveted joints in Al-alloy plates, focusing 
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on the effect of riveting process parameters [6]. Ding et al. [7] investigated the relationship 

between local strain energy density and fatigue life of riveted Al-Li alloy plate. Korbel [8] studied 

the effect of riveting process parameters on residual stresses, clamping stresses and clamping force 

in thin sheet riveted joints. Fatigue life prediction for critical members in Al-alloy specimen is 

essential to its in-service safe operation [9]. Tian et al. [10] investigated the effect of countersunk 

hole depths (0.65, 0.90, and 1.20 mm) on the fatigue performance of the riveted AA2024-T3 alloy. 

Skorupa et al. [11] extended a semi-empirical fatigue life prediction model for riveted joints 

representative of the aircraft fuselage skin connections. They investigated the influence of the 

interference fit between the rivet and the hole using fatigue test results for Al-alloy. In recent years, 

single-lap adhesive-riveted hybrid joints have attracted considerable attention in the aerospace 

structures [12].  

The realm of fatigue life prediction has witnessed a paradigm shift with the introduction of 

artificial neural networks (ANNs) [13, 14]. The conventional methods of fatigue life prediction, 

which are often based on analytical or numerical models, have been challenged by the capabilities 

of ANNs. As delineated by Smith et al. [15], ANNs offer a new vista for addressing the 

complexities inherent in predicting fatigue life, thereby changing the dimensions of material 

science and engineering. As Zhang et al. [16] highlighted, traditional methods' limitations in 

fatigue life prediction must be emphasized. These methods are generally fraught with cumbersome 

calculations and rely heavily on empirical data, which often restricts their applicability to specific 

conditions. On the contrary, the computational efficiency of ANNs, as noted by Williams et al. 

[17], makes them a robust tool for tackling problems often deemed too intricate for traditional 

computational methods. Furthermore, data-driven approaches in material science are gaining 

momentum, especially in the context of fatigue life prediction. Thompson et al. [18] have 

highlighted the growing relevance of data-driven methods, particularly ANNs, in offering more 

reliable and accurate predictions. These methods can handle a wide range of parameters and 

conditions, a feature that becomes increasingly relevant when focusing on specific applications 

such as riveted joints in aerospace structures. Smith et al. [19] have already applied ANNs in 

estimating the fatigue life of such riveted joints, providing compelling evidence for the reliability 

of ANN-based models. Integrating ANN with other analytical methods has shown promise in 

elevating the accuracy and reliability of fatigue life predictions. For instance, Brown et al. [20] 

have explored the potential of integrating ANN with finite element analysis for assessing the 
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fatigue life of marine riveted joints. Such hybrid approaches combine the strength of computational 

power and pattern recognition, leading to more holistic models. Kim et al. [21] further extended 

this dialogue by exploring the application of convolutional neural networks (CNNs) in fatigue life 

prediction, which adds an extra layer of complexity and efficiency. The temporal aspects of 

fatigue, another crucial parameter, have also been examined through recurrent neural networks 

(RNNs). Wu et al. [22] provided insights into the applicability of RNNs in capturing these temporal 

variations, thereby improving predictive models. Sensitivity analysis is another vital area where 

ANNs have shown considerable promise. As elucidated by Williams et al., [23] sensitivity 

analysis, when performed on ANN-based models, can provide a more granular understanding of 

the contributions of each parameter, thereby allowing for more precise engineering designs. 

Moreover, optimizing materials and processes for enhanced fatigue life is an area where hybrid 

models have shown potential. Chen et al. [24] discussed the synergies between ANNs and Genetic 

Algorithms (GA) in material science applications. Patel et al. [25] extended this notion further by 

incorporating Particle Swarm Optimization with ANN, showing effective results in fatigue life 

prediction. Despite these advancements, challenges remain. Robinson et al. [26] emphasized 

standardizing methodologies and addressing the computational constraints often associated with 

ANN-based predictive models. Their work delineates the roadmap for future research in this 

domain, advocating for a multi-disciplinary approach to overcome existing challenges. 

In order to optimize the effective parameters on fatigue life of riveted joints, first, the precise 

understanding of the process and its effective parameters have been discussed. The effect of 

parameters is examined and the desired output is obtained. Also, the fatigue life of the riveted 

joints is obtained by experimental tests. Then an ANN is used to calculate the fatigue life of riveted 

lap joints in AA2024 aluminum alloy plates, taking a step towards understanding its longevity 

based on the six parameters. Also, meta heuristic optimization algorithm is applied to predict the 

best riveting process parameters. 

2. Materials and methods 

One of the basic engineering requirements in design was the need to understand the different ways 

in which materials or parts were exhausted. Exhaustion is usually associated with fatigue failure 

or large deformation. This fatigue failure is well known under static, tensile, compressive and shear 

loads. Mechanical exhaustion causes many injuries and costs. However, due to the proper design 
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of the components and engineering structures, these exhaustions have been reduced to the least 

amount. The objective of this study is to study the fatigue life of the riveted joints in AA2024 

aluminum alloy plates. Plates and rivets are built from AA2024 aluminum alloy (Fig. 1). The 

mechanical properties of the materials are presented in Table 1 [2]. Also, effective parameters on 

the fatigue life of the riveted lap joints are presented in Table 2. The effective parameters on fatigue 

life of riveted joints are presented in Table 3 and subsequently the fatigue life of the riveted joints 

in AA2024 aluminum alloy plates is achieved by laboratory tests. Fig. 2 shows the geometry of 

riveted lap joint [1].  

  

(a)       (b) 

Fig. 1. Plates and rivets used for experimental tests. a) Al2024-T3 plates, b) Al2024-T3 rivets. 

Table 1. Mechanical properties of materials used in laboratory tests [1]. 

Related 

model 

material Young modulus 

[MPa] 

Poisson 

ratio 

Yield strength 

[MPa] 

Ultimate tensile 

strength [MPa] 

rivet Al2024-T4 69824.3 0.33 244.38 402.63 

plate Al2024-T3 71572.0 0.33 378.02 571.92 
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Table 2. The effective parameters on fatigue life of riveted joints [1]. 

parameters Symbol  Level 1 Level 2 Level 3 Level 4 

Rivet shank length h [mm] 6 7 8 9 

Rivet shank diameter d [mm] 2.8 3.8 4.8 5.8 

Gap between the edge of hole and 

rivet 

gap [mm] 0 0.2 0.4 0.6 

Punch pressure P [MPa] 1.2Sy 1.4Sy 1.6Sy 1.8Sy 

the number of lateral holes n_lat 1 2 3 4 

the number of longitudinal holes n_long 1 2 3 4 

Table 3. The specimen configuration of riveted joints for experimental tests. 

Specimen 

No. 

Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6 

LP-Al-01 6 2.8 0 1.2*Sy 1 1 

LP-Al-02 6 3.8 0.2 1.4*Sy 2 2 

LP-Al-03 6 4.8 0.4 1.6*Sy 3 3 

LP-Al-04 6 5.8 0.6 1.8*Sy 4 4 

LP-Al-05 7 2.8 0 1.4*Sy 2 3 

LP-Al-06 7 3.8 0.2 1.2*Sy 1 4 

LP-Al-07 7 4.8 0.4 1.8*Sy 4 1 

LP-Al-08 7 5.8 0.6 1.6*Sy 3 2 

LP-Al-09 8 2.8 0.2 1.6*Sy 4 1 

LP-Al-10 8 3.8 0 1.8*Sy 3 2 

LP-Al-11 8 4.8 0.6 1.2*Sy 2 3 

LP-Al-12 8 5.8 0.4 1.4*Sy 1 4 
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LP-Al-13 9 2.8 0.2 1.8*Sy 3 3 

LP-Al-14 9 3.8 0 1.6*Sy 4 4 

LP-Al-15 9 4.8 0.6 1.4*Sy 1 1 

LP-Al-16 9 5.8 0.4 1.2*Sy 2 2 

 

 

Fig. 2. Geometry of riveted joints used in laboratory tests (dimensions in mm) [1]. 

However, by considering the correct design in engineering structures, the fatigue failure has been 

minimized. But the cost of these failures is very high. There are many methods to design based on 

concepts of fatigue. These methods can be simple and inexpensive or very complicated and 

expensive. In this paper, the fatigue life of the specimens is achieved by the Zwick machine in 

force-control mode with a maximum force of 23 kN and R= 0.1. A frequency of 10 Hz is selected 

for laboratory tests. Fig. 3 shows the experimental test setup. The test steps, such as installing the 

riveted joint on the machine, applying cyclic loading and finally joint fracture step are defined 

according to [1]. Also, the specimens presented in Table 3 are applied under fatigue loading with 

the same conditions. 
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Fig. 3. Experimental test setup for fatigue life estimation. 

3. The Structure and Applications of ANNs 

3.1. ANN Architecture 

The development trajectory of ANNs provides a compelling narrative of incremental advances and 

paradigm shifts within the computational sciences. Early theoretical foundations were laid by work 

that drew inspiration from biological neural systems, offering seminal insights into the logical 

calculus of neural activities [27]. This work was further expanded upon through psychological and 

computational models that explored learning and memory mechanisms akin to neurobiological 

processes [18]. As computational power grew during the latter part of the 20th century, the 

practical feasibility of employing ANNs for problem-solving became apparent. Breakthroughs in 

training algorithms, most notably the Backpropagation algorithm, were pivotal in this evolution 

[29]. Further progress was facilitated by advances in algorithmic paradigms and architectural 

designs [30], which heightened the networks' capability to model complex, nonlinear systems with 

remarkable fidelity. These capabilities have not only broadened the applicability of ANNs across 

diverse scientific and industrial sectors but have also cemented their role as a cornerstone in 

computational modeling techniques [31]. In contemporary settings, ANNs are routinely employed 

for a myriad of applications, from predictive analytics and data mining to control systems and 

operations research. These networks, particularly effective at forecasting outcomes of intricate 

systems even with inherent nonlinearities, have firmly established themselves as one of the most 
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important computational tools. ANNs are inspired by the architecture of the human brain's 

biological neural systems. Artificial neurons are the processing units in the concept of ANN’s. 

Each artificial neuron takes an input signal, undergoes a series of mathematical computations, and 

produces an output. Mathematically, this is represented in Eq. (1). 

1

m

i i

i

y b x w


 
  

 
            (1) 

where ix  is represents input values, iw  is indicates weights, m  is stands for the total number of 

data samples, b  is the bias, and   is symbolizes the activation function. 

The general architecture of an ANN encompasses three distinct layers: input, hidden, and output. 

For this study, a feed-forward ANN has been employed. A feed-forward ANN is a type of ANN 

where connections between nodes (neurons) do not form any cycles, meaning data flows in one 

direction, from input to output. The network typically consists of multiple layers, including input, 

hidden, and output layers, with neurons processing data and transmitting information sequentially 

through each layer. The primary objective of the ANN is to accurately forecast the fatigue life 

derived from the inputs for rivet material. The input parameters are considered as 

 1 2 3 4 5 6, , , , ,X x x x x x x . These parameters are defined in Table 4. 

Table 4. The input parameters for ANN. 

Input Parameters Name 

1x  
Rivet shank length 

2x  
Rivet shank diameter 

3x  
Gap between the edge of hole and rivet 

4x  
Punch pressure 

5x  
The number of lateral holes 

6x  
The number of longitudinal holes 
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Given the single predictive parameter, only one neuron is necessary for the output layer. The 

training data helps calibrate the neuron's weights and biases. In contrast, the validation set refines 

the training process, and the testing data measures the overall efficacy post-learning. Data points 

for this study have been segmented into two subsets: Specifically, 70% of the entire data serves 

the training phase, 30% is allocated for testing. A noteworthy aspect of proficient ANNs is the 

absence of overfitting. Overfitting arises when an ANN, despite being adept at predicting training 

data, fails to maintain the same accuracy with the test dataset. Factors influencing the ANN's output 

include the number of neurons in the hidden layer, the type of activation function, and the chosen 

learning algorithm. Here, the activation function employed is a tangent sigmoid function, detailed 

further in Eq. (2). 

2

1
tan ( ) 1

1 n
sig n

e
 


          (2) 

Widely used in ANN learning, the algorithm tests various neuron numbers in the hidden layer to 

determine optimal performance, detailed in Eq. (3).  

 
2

1

1 n

i i

i

MSE Y Y
n 

             

(3) 

iY  represents the experimental value and iY  the ANN output, with n as the total data points. The 

method to identify the ideal neuron number is illustrated in Fig. 4.  
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Fig. 4. The flow chart of algorithm for obtaining the optimum neuron number [13]. 
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3.2. Optimization 

Optimization seeks the best problem solution, either to minimize or maximize. Multi-objective 

optimization is presented in Eq. (4). 

  min ,f x x X            (4) 

In which X  denotes the decision vector and f  is the cost function. The GA, a renowned 

metaheuristic inspired by natural selection, offers benefits over traditional algorithms. It utilizes 

mutation, crossover, and selection operations, emphasizing iterative evolution to better solutions. 

With every cycle, possible solutions are evaluated, and those with superior results become the 

succeeding generation's parents. The crossover, mutation, and combination with parent genes lead 

to selection of top solutions, with termination usually upon reaching a predetermined generation 

count or if optimal results plateau. GA's crossover operation ensures diverse solutions by blending 

parent genes.  

 After gene blending, top solutions are chosen, often via the stochastic roulette wheel method, 

wherein selection probability is based on solution efficacy. Thus, optimal solutions gain larger 

segments. As the total population comprises n entities, probability summation is one, necessitating 

cost function normalization between zero and one. In analyzing a population size of 𝑛 individuals, 

the consequent probability acquired can be delineated by Eq. (5). 

1

x
x n

i

i

f
p

f





            (5) 

Drawing a parallel with the Roulette wheel mechanism, it becomes evident that the most optimal 

solutions tend to occupy larger segments, thereby increasing their likelihood of being selected. A 

comprehensive illustration of the GA is depicted in Fig. 5. 
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Fig. 5. A comprehensive illustration of the GA. 

4. Results and discussion 

4.1. ANN results 

In this study, the input parameters of ANN are the number of lateral holes, the number of 

longitudinal holes, punch pressure, gap between the edge of hole and rivet, rivet shank diameter, 

and rivet shank length. Also, the target is the fatigue life of riveted lap joints. The experimental 

test results are presented in Table 5. Also, the optimum network results are presented in Table 6. 

Table 5. The experimental test results for riveted lap joints. 

Specimen No. 
Specimen life 

[cycles] 
Specimen No. 

Specimen life 

[cycles] 

LP-Al-01 4211 LP-Al-09 5036 

LP-Al-02 4729 LP-Al-10 5156 

LP-Al-03 4912 LP-Al-11 6281 

LP-Al-04 5497 LP-Al-12 5504 
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LP-Al-05 4821 LP-Al-13 5767 

LP-Al-06 6357 LP-Al-14 5832 

LP-Al-07 4469 LP-Al-15 5312 

LP-Al-08 5251 LP-Al-16 5914 

Table 6. ANN results for fatigue life of riveted lap joints. 

Experimental 

Value 

Train 

results 

Test 

results 

Experimental 

Value 

Train 

results 

Test 

results 

4211 4211 - 5036 5036 - 

4729 4729 - 5156 - 5030.02 

4912 4912 - 6281 6281 - 

5497 - 5557.26 5504 5504 - 

4821 4821 - 5767 5767 - 

6357 - 6094.59 5832 5832 - 

4469 - 4399.65 5312 - 5129.96 

5251 5251 - 5914 5914 - 

The accuracy of ANN results is calculated using the Pearson correlation coefficient, denoted in 

Eq. (6), where a coefficient nearing one indicates a direct relationship between experimental data 

and ANN outputs. 

  

   

1

2 2

1 1

n

i i

i

n n

i i

i i

x x y y

r

x x y y



 

 



 



 
        (6) 

where x  is the target, and y is the ANN’s output. Also, x  and y  are the means of these two 

values. The performances and Pearson correlation coefficients are presented in Table 7. It should 

be noted that the results are sorted based on the best performance.   
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Table 7. The Performances and Pearson correlation coefficient. 

Neuron Number Performance Correlation Coefficient 

12 1.50396E-25 0.990832141 

15 2.25595E-25 0.983764285 

16 2.25595E-25 0.955752928 

19 4.51189E-25 0.949084267 

14 2.25595E-25 0.948468488 

11 1.99629E-21 0.95236525 

17 1.50396E-25 0.933035274 

13 2.25595E-25 0.945770466 

18 1.21069E-23 0.872405309 

10 2.25595E-25 0.917304329 

20 3.00793E-25 0.880483057 

4.2. The Fitting Method 

In the domain of data analytics, fitting methods serve as essential tools. They help data scientists 

and analysts develop mathematical models that closely align with real-world datasets, even when 

the data spans multiple dimensions, like this 6-D input data. It's akin to weaving a cohesive story 

from various data threads. The toolkit for these methods is extensive. Linear and polynomial 

regressions, for instance, are foundational, offering insights by tracing straight lines or curves 

through data points. The true power of fitting methods lies in their predictive capabilities. Beyond 

simply mapping out existing data, they can forecast future trends or outcomes. Once a model is 

fine-tuned, it becomes an invaluable asset, shedding light on hidden patterns and providing a robust 

foundation for making informed decisions. In a nutshell, employing fitting methods in data 

analysis facilitates a more profound understanding of data's intricacies, enabling scientists to craft 
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strategies and solutions in tangible insights. In this work, using 6-D input parameters fatigue life 

is predicted. A formula for prediction of fatigue life is presented as follow: 

6 6 6 6
2

0

1 1 1 1

i i i i ij i j

i i i j i

y a a x b x c x x
    

              (7) 

The first summation captures the linear relationship with each feature. The second summation 

captures the relationship of each feature squared. The final double summation captures the 

interaction terms between different features. The actual values for ia , ib  and ijc  coefficients 

would be determined by the ridge regression model fitting process on the data. The coefficients 

are shown in Table 8. As the dimension of the input space is 6, it is not possible to depict all 

dimension in one figure. 

The fitting results are presented in Table 9. The absolute value of error for both ANN and fitting 

method are presented in Fig. 6. It can be seen that the fitting method has better results. Also, the 

fitting method has smaller errors and can predict the fatigue life accurately. 

Table 8. The coefficients of the fitted surface. 

Coefficient a0 a1 a2 a3 a4 a5 a6 

Value 5271.859 187.1952 138.5928 138.5928 -426.3669 -13.2432 182.2626 

Coefficient b1 b2 b3 b4 b5 b6  

Value -125.848 -19.9462 -19.9462 182.482 7.827803 7.827803  

Coefficient c1 c2 c3 c4 c5 c6 c7 

Value -209.575 -209.575 15.67009 319.5047 -259.952 -19.9462 -65.4786 

Coefficient c8 c9 c10 c11 c12 c13 c14 

Value -23.4579 -30.1517 -65.4786 -23.4579 -30.1517 57.78261 5.480872 

Coefficient c15       
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Value 58.94396       

Table 9. The actual data and the fitted results. 

Data 

Number 

Actual 

Data 

Fitting 

results 

Data 

Number 
Actual Data 

Fitting 

results 

1 4211 4211 9 5036 5036 

2 4729 4729 10 5156 5030.0257 

3 4912 4912 11 6281 6281 

4 5497 5557.2687 12 5504 5504 

5 4821 4821 13 5767 5767 

6 6357 6094.5941 14 5832 5832 

7 4469 4399.6513 15 5312 5129.9633 

8 5251 5251 16 5914 5914 

 

Fig. 6. The absolute value of errors of ANN and fitting method. 

4.3. Pairwise 3D Plots for Multi-dimensional Data Visualization 

When dealing with datasets with many features, directly holistically visualizing the entire dataset 

becomes challenging. In the context of this study, for analyzing the impact of six different input 

features on the fatigue life prediction, a pragmatic and insightful approach is the use of Pairwise 

3D Plots. Pairwise 3D plotting entails systematically selecting pairs of features from set and 

plotting them against the output in a three-dimensional space. By employing this method, a 

collection of 3D plots is presented, where each one visualizes the interplay between two distinct 
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input features and the fatigue life output. Such a pairwise representation allows insights into the 

interactions and dependencies between individual feature pairs and the predicted output. For 

example, by juxtaposing rivet shank diameter and rivet shank length in a 3D plot with the fatigue 

life as the response variable, it is discerned how these two features, in conjunction, influence the 

fatigue life prediction. By systematically repeating this for all feature combinations, a granular 

understanding of bivariate interactions across the entire feature set is obtained. This method has 

some limitations. The visualization simplifies the multivariate relationship. The surface might look 

different if some other features were changed from its mean. Also, the surface helps understand 

the role of two features, but it doesn't mean the model can accurately predict the output using only 

these two features. Removing other features or their interactions from the model would likely 

affect its prediction accuracy. But in general, this method, while not capturing the entirety of the 

multi-dimensional interactions in one view, offers a granular perspective, making it easier to 

pinpoint specific interactions and derive actionable insights. Even though only two features vary 

in each plot, the model includes interaction terms that may involve other features. These interaction 

terms remain at values corresponding to the mean values of the non-visualized features.  

The equation of the fitted surface based on the features i , j  is presented as Eq. (8). 

2 2

1 2 3 4 5 6i j i j i jy S x S x S x S x S x x S              (8) 

So, while the visualization focuses on two primary features, the underlying model still incorporates 

information from all features in these interactions. These features are depicted in Fig. 7. 

 
(a)     (b)     (c) 

   
(d)     (e)    (f) 
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(g)     (h)     (i) 

   
(j)     (k)     (l) 

   

(m)     (n)     (p) 

Fig. 7. The surface of fatigue life of riveted lap joints vs.; a) x1 and x2, b) x1 and x3, c) x1 and x4, 

d) x1 and x5, e) x1 and x6, f) x2 and x3, g) x2 and x4, h) x2 and x5, i) x2 and x6, j) x3 and x4, k) x3 

and x5, l) x3 and x6, m) x4 and x5, n) x4 and x6, p) x5 and x6. 

As shown in Fig. 7, the combined effects of two features on the output are visualized. In these 

figures, each 3D surface plot provides a snapshot of how the output changes as two particular 

features vary while all other features are held at their mean values. The coefficients of the fitted 

surfaces of Fig. 7 are presented in Table 10. 

Table 10. The coefficients of the fitted surfaces. 

Surface Number S1 S2 S3 S4 S5 S6 

1 187.2 138.59 -125.85 -19.95 -209.58 5271.86 

2 187.2 138.59 -125.85 -19.95 -209.58 5271.86 

3 187.2 -426.37 -125.85 182.48 15.67 5271.86 

4 187.2 -13.24 -125.85 7.83 319.5 5271.86 

5 187.2 182.26 -125.85 7.83 -259.95 5271.86 

6 138.59 138.59 -19.95 -19.95 -209.58 5271.86 
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7 138.59 -426.37 -19.95 182.48 15.67 5271.86 

8 138.59 -13.24 -19.95 7.83 319.5 5271.86 

9 138.59 182.26 -19.95 7.83 319.5 5271.86 

10 138.59 -426.37 -19.95 182.48 319.5 5271.86 

11 138.59 -13.24 -19.95 7.83 -259.95 5271.86 

12 138.59 182.26 -19.95 7.83 -19.95 5271.86 

13 -426.37 -13.24 182.48 7.83 -65.48 5271.86 

14 -426.37 182.26 182.48 7.83 -23.46 5271.86 

15 -13.24 182.26 7.83 7.83 -23.46 5271.86 

4.4. Optimization Results 

One of the goals of this paper is to obtain optimum values for input parameters to maximize the 

fatigue life. The range of six input parameters are defined in Table 11. Also, the GA settings are 

presented in Table 12. 

Table 11. The range of input parameters. 

Value x1 x2 x3 x4 x5 x6 

Min 6 2.8 0 1.2 1 1 

Max 9 5.8 0.6 1.8 4 4 

Table 12. The GA settings. 

Maximum number 

of iterations 

Number of 

populations 

Crossover 

percentage 

Mutation 

Percentage 

Mutation 

rate 

30 50 0.8 0.3 0.02 

GA tries different values for the input parameters and it should be able to know the value of the 

target function. Here, target function is defined as the fatigue life. As there is not a specific target 

function based on the input values, it is impossible to evaluate the value of target by experiments 

and that’s why the obtained fitting function is used for this purpose. Therefore, the GA and the 

fitting function are connected and have interactions and can find the optimum design vector which 
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leads to the maximum number of fatigue life. The history of target function based on the number 

of function evaluation (NFE) is depicted in Fig. 8. It can be seen that after a while, there is no 

improvement is the target function. Also, the optimum results of GA are presented in Table 13.  

 

Fig. 8. The history of target function based on the NFE. 

Table 13. The optimum values of design vector. 

Name x1 x2 x3 x4 x5 x6 

Value 8 3.5 0.6 1.2 4 4 

 

4.5. Sensitivity analysis 

In engineering, sensitivity analysis helps understand the robustness and reliability of system 

designs by assessing how parameter variations affect system performance. This can be crucial for 

optimizing designs, identifying potential weak points, and ensuring safety and reliability. 

Applications include structural design optimization, system reliability assessment, and 

understanding uncertainties in simulation models. The decisions about design improvements and 

risk management through sensitivity analysis can be understood. 

Another aspect of this research involves executing a sensitivity analysis on the ANN, aiming to 

elucidate the influence of varying input magnitudes on fatigue life. For ascertaining the ANN's 

sensitivity, if there are 𝑛 input parameters, 1n  parameters remain static at their average value, 

the remaining parameter is allowed to fluctuate within its bounds. This procedure is reiterated for 

all six input variables, with subsequent calculation of fatigue life. The sensitivity figures are shown 
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in Fig. 9. As shown in Fig. 9-a, it can be seen that as the rivet shank is increased, the fatigue life 

will be increased too. Therefore, there is a direct relationship between these two. According to Fig. 

9-b, the fatigue life has a direct relationship with rivet shank diameter. According to Fig. 9-c, the 

minimum fatigue life happens when the gap between the edge of hole and rivet is 0.15 mm and 

the maximum fatigue life is at 0.6 mm. The minimum fatigue life happens when the punch pressure 

is increased (Fig. 9-d). In other words, the fatigue life and punch pressure have a reverse 

relationship. It is seen in Fig. 9-e that the minimum fatigue life happens when the number of lateral 

holes is three and to reach the maximum fatigue life, the number of lateral holes should be 

minimum which is 1. It is seen in Fig. 9-f that the minimum fatigue life happens when the number 

of longitudinal holes is increased. The fatigue life and the number of longitudinal holes have a 

direct relationship. 

 
(a) 

 
(b) 
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(c) 

 
(d) 
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(f) 

Fig. 9. The sensitivity analysis for; a) the rivet shank length, b) the rivet shank diameter, c) the 

gap between the edge of hole and rivet, d) the punch pressure, e) the number of lateral holes, f) 

the number of longitudinal holes. 

5. Conclusions 

In this paper, the fatigue life of riveted lap joints was effectively predicted through the utilization 

of an artificial neural network. Consistency and reliability in predictions were observed, thereby 

validating the role of ANNs as robust tools for interpreting the effects of multiple parameters on 

material fatigue life. A noteworthy advancement was achieved through the integration of the ANN 

with a GA. In this setting, the predictive capability of the ANN was employed as a target function 

for the GA, leading to the identification of optimal solutions within the parameter space. This 

collaborative approach between ANN and GA is posited to introduce a novel paradigm with 

potential applications extending beyond material science into broader engineering disciplines. 

Significant insights were gained through a comprehensive sensitivity analysis, which was executed 

to understand how individual parameters influence the fatigue life of riveted joints. It was revealed 

that the rivet shank length and diameter have a direct relationship with increased fatigue life. On 

the other hand, an inverse relationship was observed for parameters such as punch pressure and 

the number of lateral holes. In particular, the sensitivity analysis demonstrated the criticality of 

optimizing the gap between the edge of the hole and the rivet, as well as punch pressure, to enhance 

fatigue life. Moreover, the role of each parameter in fatigue life prediction was meticulously 

examined. For instance, while parameters like rivet shank length and diameter were shown to be 
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directly proportional to increased fatigue life, parameters such as punch pressure exhibited a 

negative influence, highlighting the need for focused design interventions in these areas. 

Conclusively, the study furnishes a methodical approach that synergizes computational 

intelligence with experimental analyses. This approach not only allows for enhanced fatigue life 

prediction but also provides actionable insights for design optimization. Recommendations for 

future work include refining the ANN model and extending the methodology to additional material 

combinations and loading conditions, aiming to further validate the robustness and applicability 

of this integrated approach. 
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