i?‘lg electronics

Article

Assessment of OpenMP Master-Slave Implementations for
Selected Irregular Parallel Applications

Pawel Czarnul

check for

updates
Citation: Czarnul, P. Assessment of
OpenMP Master-Slave
Implementations for Selected Irregular
Parallel Applications. Electronics 2021,
10, 1188. https://doi.org/10.3390/
electronics10101188

Academic Editor: Antonio F. Diaz

Received: 16 April 2021
Accepted: 12 May 2021
Published: 16 May 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Faculty of Electronics, Telecommunications and Informatics, Gdarisk University of Technology, Narutowicza
11/12, 80-233 Gdansk, Poland; pczarnul@eti.pg.edu.pl; Tel.: +48-58-347-12-88

Abstract: The paper investigates various implementations of a master—slave paradigm using the
popular OpenMP API and relative performance of the former using modern multi-core workstation
CPUs. It is assumed that a master partitions available input into a batch of predefined number of
data chunks which are then processed in parallel by a set of slaves and the procedure is repeated
until all input data has been processed. The paper experimentally assesses performance of six
implementations using OpenMP locks, the tasking construct, dynamically partitioned for loop,
without and with overlapping merging results and data generation, using the gcc compiler. Two
distinct parallel applications are tested, each using the six aforementioned implementations, on
two systems representing desktop and worstation environments: one with Intel i7-7700 3.60 GHz
Kaby Lake CPU and eight logical processors and the other with two Intel Xeon E5-2620 v4 2.10 GHz
Broadwell CPUs and 32 logical processors. From the application point of view, irregular adaptive
quadrature numerical integration, as well as finding a region of interest within an irregular image
is tested. Various compute intensities are investigated through setting various computing accuracy
per subrange and number of image passes, respectively. Results allow programmers to assess which
solution and configuration settings such as the numbers of threads and thread affinities shall be
preferred.

Keywords: master—slave; parallel programming; OpenMP; thread affinity

1. Introduction

In today’s parallel programming, a variety of general purpose Application Program-
ming Interfaces (APIs) are widely used, such as OpenMP, OpenCL for shared memory
systems including CPUs and GPUs, CUDA, OpenCL, OpenACC for GPUs, MPI for cluster
systems or combinations of these APIs such as: MPI+OpenMP+CUDA, MPI+OpenCL [1],
etc. On the other hand, these APIs allow to implement a variety of parallel applications
falling into the following main paradigms: master—slave, geometric single program multi-
ple data, pipelining, divide-and-conquer.

At the same time, multi-core CPUs have become widespread and present in all com-
puter systems, both desktop and server type systems. For this reason, optimization of
implementations of such paradigms on such hardware is of key importance nowadays,
especially as such implementations can serve as templates for coding specific domain appli-
cations. Consequently, within this paper we investigate various implementations of one of
such popular programming patterns—master-slave, implemented with one of the leading
APIs for programming parallel applications for shared memory systems—OpenMP [2].

2. Related Work

Works related to the research addressed in this paper can be associated with one of
the following areas, described in more detail in subsequent subsections:

1. frameworks related to or using OpenMP that target programming abstractions even
easier to use or at a higher level than OpenMP itself;

Electronics 2021, 10, 1188. https://doi.org/10.3390/electronics10101188

https:/ /www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-4918-9196
https://www.mdpi.com/2079-9292/10/10/1188?type=check_update&version=1
https://doi.org/10.3390/electronics10101188
https://doi.org/10.3390/electronics10101188
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10101188
https://www.mdpi.com/journal/electronics

A\ MOST

Electronics 2021, 10, 1188

20f19

2. parallelization of master-slave and producer—-consumer in OpenMP including details
of analyzed models and proposed implementations.

2.1. OpenMP Related Frameworks and Layers for Parallelization

SkePU is a C++ framework targeted at using heterogeneous systems with multi-core
CPUs and accelerators. In terms of processing structures, SkePU incorporates several
skeletons such as Map, Reduce, MapReduce, MapOverlap, Scan and Call. SkePU supports
back-ends such as: sequential CPU, OpenMP, CUDA and OpenCL. Work [3] describes a
back-end for SkePU version 2 [4] that allows to schedule workload on CPU+GPU systems.
Better performance than the previous SkePU implementation is demonstrated. The original
version of hybrid execution in SkePU 1 ran StarPU [5] as a back-end. The latter allows
to encompass input data with codelets that can be programmed with C/C++, OpenCL
and CUDA. Eager, priority and random along with caching policies are available for
scheduling. Workload can be partitioned among CPUs and accelerators either automatically
or manually with a given ratio. Details of how particular skeletons are assigned in shown
in [3]. In terms of modeling, autotuning is possible using a linear performance formulation
and its speed-ups were shown versus CPU and accelerator implementations.

OpenStream is an extension of OpenMP [6,7] enabling to express highly dynamic
control and data flows between dependent and nested tasks. Additional input and output
clauses for the task construct are proposed with many examples presenting expressiveness
of the approach. There is a trade-off between expressiveness of streaming annotations and
overhead which is studied versus Cilk using an example of recursive Fibonacci implemen-
tations and obtaining granularity threshold above which task’s overheads are amortized.
Additional clauses peek and tick allow reading data from a stream without advancing the
stream as well as advancing the read index in streams. Speed-ups of the proposed OpenMP
streaming solution over sequential LAPACK are demonstrated [6] for Cholesky factoriza-
tion of various sizes (up to superlinear 27.4 for 4096 x 4096 matrix size and 256 numbers of
blocks per matrix, due to caching effects) as well as SparseLU (19.5 for block size 64 x 64
and 22 for block size 128 x 128 for 4096+ numbers of blocks). A Gauss-Seidel algorithm
using the proposed solution, hand coded, achieved the speed-ups of 8.7 for 8k x 8k matrix
and 256 x 256 tile size. Tests were conducted on a dual-socket AMD Opteron Magny-Cours
6164HE machine with 2 x 12 cores running at 1.7 GHz and 16 GB of RAM.

Argobots [8] is a lightweight threading layer that can be used for efficient processing
and coupling high-level programming abstractions to low-level implementations. Specifi-
cally, the paper shows that the solution outperforms state-of-the-art generic lightweight
threading libraries such as MassiveThreads and Qthreads. Additionally, integrating Ar-
gobots with MPI and OpenMP is presented with better performance of the latter for an
application with nested parallelism than competing solutions. For the former configuration,
better opportunities regarding reduction of synchronization and latency are shown for
Argobots compared to Pthreads. Similarly, better performance of Argobots vs Pthreads is
discussed for I/O operations.

PSkel [9], as a framework, targets parallelization of stencil computations, ina CPU+GPU
environment. As its name suggests, it uses parallel skeletons and can use NVIDIA
CUDA, Intel TBB and OpenMP as back-ends. Authors presented speed-ups of the hybrid
CPU+GPU version up to up to 76% and 28%, versus CPU-only and GPU-only codes.

Paper [10] deals with introduction of another source layer between a program with
OpenMP constructs and actual compilation. This approach translates OpenMP constructs
into an intermediate layer (NthLib is used) and the authors are advocating future flexibility
and ease of introduction of changes into the implementation in the intermediate layer.

Optimization of OpenMP code can be performed at a lower level of abstraction, even
targeting specific constructs. For example, in paper [11] authors present a way for automatic
transformation of code for optimization of arbitrarily-nested loop sequences with affine
dependencies. An Integer Linear Programming (ILP) formulation is used for finding good
tiling hyperplanes. The goal is optimization of locality and communication-minimized

http://mostwiedzy.pl

A\ MOST

Electronics 2021, 10, 1188

30f19

coarse-grained parallelization. Authors presented notable speed-ups over state-of-the-art
research and native compilers ranging from 1.6x up to over 10x, depending on the version
and benchmark. Altogether, significant gains were shown for all of the following codes:
1-d Jacobi, 2-d FDTD, 3-d Gauss-Seidel, LU decomposition and Matrix Vec Transpose.

In paper [12], the author presented a framework for automatic parallelization of
divide-and-conquer processing with OpenMP. The programmer needs to provide code
for key functions associated with the paradigm, i.e., data partitioning, computations
and result integration. Actual mapping of computations onto threads is handled by the
underlying runtime layer. The paper presents performance results for an application of
parallel adaptive quadrature integration with an irregular and imbalanced corresponding
processing tree. Obtained speed-ups using an Intel Xeon Phi system reach around 90
for parallelization of an irregular adaptive integration code which was compared to a
benchmark without thread management at various levels of the divide-and-conquer tree
which resulted in maximum speed-ups of 98.

OmpSs [13] (https://pm.bsc.es/ompss (accessed on 16 April 2021)) extends OpenMP
with new directives to support asynchronous parallelism and heterogeneity (like GPUs,
FPGAs). A target construct is available for heterogeneity implementation, data dependen-
cies can be defined between various tasks of the program. Functions can also be annotated
with the task construct. While OpenMP and OmpSs are similar, some differences exist
(https:/ /pm.bsc.es/ftp/ompss/doc/user-guide/fag-openmp-vs-ompss.html (accessed
on 16 April 2021)). Specifically, in OmpSs, that uses #pragma omp directives, one creates
work using #pragma omp task or #pragma omp for and the program already starts with
a team of threads out of which one executes the main function. #pragma omp parallel
is ignored. For the for loop, a compiler creates a task which will create internally sev-
eral more tasks out of which each implements some part of the iteration space of the
corresponding parallel loop. OmpSs has been an OpenMP forerunner for some of the
features [14,15]. Recent paper [16] presents an architecture and a solution that extends the
OmpSs@FPGA environment with the possibility for the tasks offloaded to FPGA to create
and synchronize nested tasks without the need to involve the host. OmpSs-2, following
its specification (https://pm.bsc.es/ftp/ompss-2/doc/spec (accessed on 16 April 2021)),
extends the tasking model of OmpSs/OpenMP so that both task nesting and fine-grained
dependencies across different nesting levels are supported. It uses #pragma oss constructs.
Important features include, in particular: nested dependency domain connection, early
release of dependencies, weak dependencies, native offload API task Pause/Resume API. It
should be noted that the latest OpenMP standard also allows tasking as well as offloading
to external devices such as Intel Xeon Phi or GPUs [2].

Paper [17] presents PLASMA—the Parallel Linear Algebra Software for Multicore
Architectures—a version which is an OpenMP task based implementation adopting a tile-
based approach to storage, along with algorithms that operate on tiles and use OpenMP for
dynamic scheduling based on tasks with dependencies and priorities. Detailed assessment
of the software performance is presented in the paper using three platforms with 2 x Intel
Xeon CPU E5-2650 v3 CPUs at 2.3 GHz, Intel Xeon Phi 7250 and 2 x IBM POWERS CPUs at
3.5 GHz, respectively, using gcc compared to MKL (for Intel) and ESSL (for IBM). PLASMA
resulted in better performance for algorithms suited for its tile type approach such as LDLT
factorization as well as QR factorization in the case of tall and skinny matrices.

In [18] authors presented parts of the first prototype of sLaSs library with auto tunable
implementations of operations for linear algebra. They used OmpSs with its task based
programming model and features such as weak dependencies and regions with the final
clause. They benchmarked their solution using a supercomputer featuring nodes with
2 sockets with Intel Xeon Platinum 8160 CPUs, with 24 cores and 48 logical processors.
Results are shown for TRSM for th original LASs, sLaSs and PLASMA, MKL and ATLAS, for
NPGETREF for LASs, sLaSs and MKL and for NPGESV for LASs and sLaSs demonstrating
improvement of the proposed solution of about 18% compared to LASs.

https://pm.bsc.es/ompss
https://pm.bsc.es/ftp/ompss/doc/user-guide/faq-openmp-vs-ompss.html
https://pm.bsc.es/ftp/ompss-2/doc/spec
http://mostwiedzy.pl

A\ MOST

Electronics 2021, 10, 1188

40f19

2.2. Parallelization of Master—-Slave with OpenMP

master—slave can be thought of as a paradigm to enable parallelization of processing
among independently working slaves that receive input data chunks from the master and
return results to the master.

OpenMP by itself offers ways of implementing the master-slave paradigm, in particu-
lar using:

1. #pragma omp parallel along with #pragma omp master directives or
#pragma omp parallel with distinguishing master and slave codes based on thread ids.
2. #pragma omp parallel with threads fetching tasks in a critical section, a counter can
be used to iterate over available tasks. In [19], it is called an all slave model.
Tasking with the #pragma omp task directive.
4. Assignment of work through dynamic scheduling of independent iterations of a
for loop.

®

In [19], the author presented virtually identical and almost perfectly linear speed-up
of the all slave model and the (dynamic,1) loop distribution for the Mandelbrot application
on 8 processors. In our case, we provide extended analysis of more implementations and
many more CPU cores.

In work [20], authors proposed a way to extend OpenMP for master—slave programs
that can be executed on top of a cluster of multiprocessors. A source-to-source translator
translates programs that use an extended version of OpenMP into versions with calls
to their runtime library. OpenMP’s APl is proposed to be extended with #pragma domp
parallel taskq for initialization of a work queue and #pragma domp task for starting
tasks as well as #pragma domp function for specification of MPI description for the ar-
guments of a function. The authors presented performance results for applications such
as computing Fibonacci numbers as well as embarrassingly parallel examples such as
generation of Gaussian random deviates and Synthetic Matrix Addition showing very
good scalability with configurations up to 4 x 2 and 8 x 1 (processes x threads). More
interesting in the context of this paper were results for MAND which is a master—slave
application that computes the Mandelbrot set for a 2-d image of size 512 x 512 pixels.
Speed-up on an SMP machine for the best 1 x 4 configuration (4 CPUs) amounted to 3.72
while on a cluster of machines (8 CPUs) was 6.4, with a task stealing mechanism.

OpenMP will typically be used for parallelization within cluster nodes and integrated
with MPI at a higher level for parallelization of master-slave computations among cluster
nodes [1,21]. Such a technique should yield better performance in a cluster with multi-
core CPUs than an MPI only approach in which several processes are used as slaves as
opposed to threads within a process communicating with MPI. Furthermore, overlapping
communication and computations can be used for earlier sending out data packets by the
master for hiding slave idle times. Such a hybrid MPI/OpenMP scheme has been further
extended in terms of dynamic behavior and malleability (ability to adapt to a changing
number of processors) in [22]. Specifically, the authors have implemented a solution and
investigated MPI's support in terms of needed features for an extended and dynamic
master /slave scheme. A specific implementation was used which is called WaterGAP that
computes current and future water availability worldwide. It partitions the tested global
region in basins of various sizes which are forwarded to slaves for independent (fro other
slaves) processing. Speed-up is limited by processing of the slave that takes the maximum
of slaves’ times. In order to deal with load imbalance, dynamic arrival of slaves has been
adopted. The master assigns the tasks by size, from the largest task. Good allocation results
in large basins being allocated to a process with many (powerful) processors, smaller basins
to a process with fewer (weaker) processors. If a more powerful (in the aforementioned
sense) slave arrives, the system can reassign a large basin. Furthermore, slave processes
can dynamically split into either processes or threads for parallelization. The authors have
concluded that MPI-2 provides needed support for these features apart from a scenario of
sudden withdrawal of slaves in the context of proper finalization of an MPI application.
No numerical results have been presented though.

http://mostwiedzy.pl

A\ MOST

Electronics 2021, 10, 1188

50f19

In the case of OpenMP, implementations of master—slave and the producer-consumer
pattern might share some elements. A buffer could be (but does not have to be) used for
passing data between the master and slaves and is naturally used in producer—consumer
implementations. In master-slave, the master would typically manage several data chunks
ready to be distributed among slaves while in producer-consumer producer or producers
will typically add one data chunk at a time to a buffer. Furthermore, in the producer—
consumer pattern consumers do not return results to the producer(s). In the producer—
consumer model we typically consider one or more producers and one or more consumers
of data chunks. Data chunk production and consuming rates/speeds might differ, in which
case a limited capacity buffer is used into which producer(s) inserts() data and consumer(s)
fetches() data from for processing.

Book [1] contains three implementations of the master—slave paradigm in OpenMP.
These include the designated-master, integrated-master and tasking, also considered in this
work. Research presented in this paper extends directly those OpenMP implementations.
Specifically, the paper extends the implementations with the dynamic-for version, as
well as versions overlapping merging and data generation—tasking?2 and dynamic-for2.
Additionally, tests within this paper are run for a variety of thread affinity configurations,
for various compute intensities as well as on four multi-core CPU models, of modern
generations, including Kaby Lake, Coffee Lake, Broadwell and Skylake.

There have been several works focused on optimization of tasking in OpenMP that,
as previously mentioned, can be used for implementation of master—slave. Specifically,
in paper [23], authors proposed extensions of the tasking and related constructs with
dependencies produce and consume which creates a multi-producer multi-consumer queue
that is associated with a list item. Such a queue can be reused if it already exists. The life
time of such a queue is linked to the life time of a parallel region that encompasses the
construct. Such a construct can then be used for implementation of the master-slave model
as well. In paper [24], the authors proposed an automatic correction algorithm meant for
the OpenMP tasking model. It automatically generates correct task clauses and inserts
appropriate task synchronization to maintain data dependence relationships. Authors of
paper [25] show that when using OpenMP’s tasks for stencil type of computations, when
tasks are generated with #pragma omp task for a block of a 3D space, significant gains in
performance are possible by adding block objects to locality queues from which a given
thread executing a task dequeues blocks using an optimized policy.

3. Motivations, Application Model and Implementations

It should be emphasized that since the master—slave processing paradigm is wide-
spread and at the same time multi-core CPUs are present in practically all desktops and
workstations/cluster nodes thus it is important to investigate various implementations and
determine preferred settings for such scenarios. At the same time, the processor families
tested in this work are in fact representatives of the new generations CPUs in their respec-
tive CPU lines. The contribution of this work is experimental assessment of performance
of proposed master—slave codes using OpenMP directives and library calls, compiled with
gcc and -fopenmp flag for representative desktop and workstation systems with multicore
CPUs listed in Table 1.

The model analyzed in this paper distinguishes the following conceptual steps, that
are repeated:

1. Master generates a predefined number of data chunks from a data source if there is
still data to be fetched from the data source.

2. Data chunks are distributed among slaves for parallel processing.

3. Results of individually processed data chunks are provided to the master for integra-
tion into a global result.

It should be noted that this model, assuming that the buffer size is smaller than the
size of total input data, differs from a model in which all input data is generated at once by

http://mostwiedzy.pl

A\ MOST

Electronics 2021, 10, 1188

6 of 19

the master. It might be especially well suited to processing, e.g., data from streams such as
from the network, sensors or devices such as cameras, microphones etc.

3.1. Implementations of the Master—Slave Pattern with OpenMP

The OpenMP-based implementations of the analyzed master-slave model described

in Section 3 and used for benchmarking are as follows:

1.

designated-master (Figure 1)—direct implementation of master—slave in which a
separate thread is performing the master’s tasks of input data packet generation as
well as data merging upon filling in the output buffer. The other launched threads
perform slaves’ tasks.

integrated-master (Figure 2)—modified implementation of the designated-master
code. Master’s tasks are moved to within a slave thread. Specifically, if a consumer
thread has inserted the last result into the result buffer, it merges the results into a
global shared result, clears its space and generates new data packets into the input
buffer. If the buffer was large enough to contain all input data, such implementation
would be similar to the all slave implementation shown in [19].

tasking (Figure 3)—code using the tasking construct. Within a region in which
threads operate in parallel (created with #pragma omp parallel), one of the threads
generates input data packets and launches tasks (in a loop) each of which is assigned
processing of one data packet. These are assigned to the aforementioned threads.
Upon completion of processing of all the assigned tasks, results are merged by the
one designated thread, new input data is generated and the procedure is repeated.
tasking2—this version is an evolution of tasking. It potentially allows overlapping
of generation of new data into the buffer and merging of latest results into the final
result by the thread that launched computational tasks in version tasking. The only
difference compared to the tasking version is that data generation is executed using
#pragma omp task.

dynamic-for (Figure 4)—this version is similar to the tasking one with the exception
that instead of tasks, in each iteration of the loop a function processing a given input
data packet is launched. Parallelization of the for loop is performed with #pragma
omp for with a dynamic chunk 1 size scheduling clause. Upon completion, output is
merged, new input data is generated and the procedure is repeated.

dynamic-for2 (Figure 5)—this version is an evolution of dynamic-for. It allows over-
lapping of generation of new data into the buffer and merging of latest results into the
final result through assignment of both operations to threads with various ids (such
as 0 and 4 in the listing). It should be noted that ids of these threads can be controlled
in order to make sure that these are threads running on different physical cores as
was the case for the two systems tested in the following experiments.

For test purposes, all implementations used the buffer of 512 elements which is a

multiple of the numbers of logical processors.

http://mostwiedzy.pl

A\ MOST

Electronics 2021, 10, 1188

7 of 19

1 (...)

2 omp_init_lock(&inputlock);

3 omp_init_lock(&outputlock) ;

4 // firstly generate BUFFERSIZE data chunks of input data

5 lastgeneratedcount=generate_new_input(input);

6 init_final_output(&finaloutput);

7 #pragma omp parallel private(threadnumber,i) shared(work,input,output, finaloutput
,currentinputindex , currentoutputcount, lastgeneratedcount) num_threads (
threadnum)

8 {

9 threadnumber=omp_get_thread_num () ;

10 if (threadnumber==0) { // master

11 long processedcount=0; // should finally reach CHUNKCOUNT

12 long merged=0;

13 while (processedcount<CHUNKCOUNT) {

14 omp_set_lock(&outputlock);
15 if (currentoutputcount==lastgeneratedcount) {

16 // process all available results
17 for(i=0;i<lastgeneratedcount;i++)

18 merge(&finaloutput ,&(output[i]));

19 processedcount+=lastgeneratedcount;

20 currentoutputcount=0; merged=1;

21 }

22 omp_unset_lock(&outputlock);

23 omp_set_lock(&inputlock);

24 if ((currentinputindex>=lastgeneratedcount) && (merged)) { // generate new input
data if the last results have been merged

25 if (processedcount<CHUNKGOUNT) {
26 lastgeneratedcount=generate_new_input(input);
27 currentinputindex=0; merged=0;
28 }

29 }

30 omp_unset_lock(&inputlock);

31 }

32 #pragma omp atomic write

33 work=0; // make slaves finish
34 } else { // slave

35 int processdata;

36 t_output result;

37 long myinputindex;

38 do {

39 processdata=0;
40 omp_set_lock(&inputlock);

41 myinputindex=currentinputindex;

42 if (currentinputindex<lastgeneratedcount) {
43 currentinputindex++; processdata=1;

4

45 omp_unset_lock(&inputlock);
46 if (processdata) {

47 // now process the input data chunk

48 result=process(&(input[myinputindex]));
49 // store the result in the output buffer
50 omp_set_lock(&outputlock);

51 if (currentoutputcount<BUFFERSIZE) {

52 output[currentoutputcount]=result;

53 currentoutputcount++;

54 }

55 omp_unset_lock(&outputlock);

56 |

57 #pragma omp atomic read
58 processdata=work;

59 } while (processdata);

60 }

61 }

62 print_final_output(&finaloutput);
63 (...)

Figure 1. Designated-master implementation.

http://mostwiedzy.pl

Electronics 2021, 10, 1188

8 of 19

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

(...)

omp_init_lock(&inputoutputlock);

// firstly generate BUFFERSIZE data chunks of input data
lastgeneratedcount=generate_new_input (input);
init_final_output(&finaloutput);

#pragma omp parallel private(i) shared(input,output,finaloutput, currentinputindex

,currentoutputcount ,lastgeneratedcount , processedcount) num_threads(threadnum)
{
// each thread acts as a slave
int processdata;
t_output result;
long myinputindex;
int finish;
do {
processdata=0;
finish=0;
omp_set_lock(&inputoutputlock);
if (processedcount<CHUNKCOUNT) {
myinputindex=currentinputindex;
if (currentinputindex<lastgeneratedcount) {
currentinputindex++;
processdata=1;
}
} else finish=1;
omp_unset_lock(&inputoutputlock);

if (processdata) {
// now process the input data chunk
result=process(&(input[myinputindex]));
// store the result in the output buffer
omp_set_lock(&inputoutputlock);
if (currentoutputcount<BUFFERSIZE) {
output[currentoutputcount]=result;
currentoutputcount++;
)
if (currentoutputcount==lastgeneratedcount) { // process all available results
for(i=0;i<lastgeneratedcount;i++)
merge(&finaloutput ,&(output[i]));
processedcount+=lastgeneratedcount;
currentoutputcountzO;

if (processedcount<CHUNKCOUNI) ({
lastgeneratedcount=generate_new_input(input);
currentinputindex=0;
}
}
omp_unset_lock(&inputoutputlock);
}
} while (!finish);
}
print_final_output(&finaloutput);
(...)

Figure 2. Integrated-master implementation.

Downloaded from mostwiedzy.pl

A\ MOST

Electronics 2021, 10, 1188

90f19

init_final_output(&finaloutput);
#pragma omp parallel private(i,myinputindex) shared (input,output,finaloutput,
lastgeneratedcount) num_threads (threadnum)
{
#pragma omp single
{
long processedcount=0;
do {
lastgeneratedcount=generate_new_input(input);
// now create tasks that will deal with data packets
for (myinputindex=0; myinputindex<lastgeneratedcount; myinputindex++)

#pragma omp task firstprivate (myinputindex) shared (input,output)
{
// now each task is processed independently and can store its result into
an appropriate buffer
output[myinputindex]=process (&(input[myinputindex]));
}
}
// wait for tasks
#pragma omp taskwait
// now merge results
for(i=0;i<lastgeneratedcount;i++)
merge(&finaloutput ,&(output[i]));
processedcount+=lastgeneratedcount;
} while (processedcount<CHUNKGCOUNTI) ;
}
}
print_final_output(&finaloutput);

()

Figure 3. Tasking implementation.

(.-2)
init_final_output(&finaloutput);
int work=1;
#pragma omp parallel private(i,myinputindex) shared(work,input,output, finaloutput
,lastgeneratedcount) num_threads(threadnum)
{
long processedcount=0;
int processdata=1;
do {
#pragma omp master

lastgeneratedcount=generate_new_input(input);
processedcount+=lastgeneratedcount;
// master checks if there is more data to process
if (processedcount>=CHUNKCOUNT) {
processdata=0;
#pragma omp atomic write
work=0; // make slaves finish
}
}
#pragma omp barrier
// now slaves can read the termination flag
#pragma omp atomic read
processdata=work;
#pragma omp for schedule(dynamic,1)
// now create tasks that will deal with data packets
for (myinputindex=0;myinputindex<lastgeneratedcount; myinputindex++)
{
output[myinputindex]=process (&(input[myinputindex]));

#pragma omp master

// now merge results
for(i=0;i<lastgeneratedcount;i++)
merge(&finaloutput ,&(output[i]));
}
} while (processdata);
}
print_final_output(&finaloutput);

()

Figure 4. Dynamic-for implementation.

http://mostwiedzy.pl

A\ MOST

Electronics 2021, 10, 1188

10 of 19

1

2 init_final_output(&finaloutput);

3 int work=1;

4 f#pragma omp parallel private(i, myinputindex) shared(work,input,output,finaloutput
,lastgeneratedcount) num_threads (threadnum)

5 {

6 long processedcount=0;

7 int processdata=1;

8 int mythreadid=omp_get_thread_num () ;
9 long lastgeneratedcounttemp=0;

10 if (mythreadid==0)

11 {

12 lastgeneratedcount=generate_new_input(input);

13 processedcount+=lastgeneratedcount;

14 // master checks if there is more data to process
15 if (processedcount>=CHUNKCOUNT) {

16 processdata=0;

17 #pragma omp atomic write

18 work=0; // make slaves finish

19 }

20

21 }

22 #pragma omp barrier

23 do {

24 lastgeneratedcounttemp=lastgeneratedcount;

25 #pragma omp barrier

26 // now slaves can read the termination flag

27 #pragma omp atomic read

28 processdata=work;

29 #pragma omp for schedule(dynamic,1)

30 // now create tasks that will deal with data packets
31 for (myinputindex=0;myinputindex<lastgeneratedcount; myinputindex++)
32

33 output[myinputindex]=process(&(input[myinputindex]));
34

35 if (mythreadid==0) {

36 if (processdata) { // generate new data only if this is not the last iteration
37 lastgeneratedcount=generate_new_input(input);

38 processedcount+=lastgeneratedcount;

39 // master checks if there is more data to process
40 if (processedcount>=CHUNKCOUNI) {

41 #pragma omp atomic write

42 work=0; // make slaves finish

43 }

44 }

45 }

46 else if (mythreadid==4) {

47 // now merge results
48 for(i=0;i<lastgeneratedcounttemp ;i++)
49 merge(&finaloutput ,&(output[i]));

50 }

51 } while (processdata);

52 }

53 print_final_output(&finaloutput);
54 (...)

Figure 5. Dynamic-for2 implementation.

4. Experiments
4.1. Parametrized Irreqular Testbed Applications

The following two applications are irregular in nature which results in various ex-
ecution times per data chunk and subsequently exploits the dynamic load balancing
capabilities of the tested master-slave implementations.

4.1.1. Parallel Adaptive Quadrature Numerical Integration

The first, compute-intensive, application, is numerical integration of any given function.
For benchmarking, integration of f(x) = x - sin®(x?) was run over the [0, 100] range. The
range was partitioned into 100,000 subranges which were regarded as data chunks in the
processing scheme. Each subrange was then integrated (by a slave) by using the following
adaptive quadrature [26] and recursive technique for a given range [a, b] being considered:

1. if the area of triangle (a, f(a)), (b, f(b)), (“£2, f(“42)) is smaller than
107K/ partitioning coefficient (k=18) then the sum of areas of two trapezoids

http://mostwiedzy.pl

A\ MOST

Electronics 2021, 10, 1188

11 of 19

(2,0), (752,0), (4, F(*51)), (a, f(a)) and (£2,0), (b,0), (b, £ (b)), (*3",
f(#)) is returned as a result,

2. otherwise, recursive partitioning into two subranges (4, #) and (#,b) is per-
formed and the aforementioned procedure is repeated for each of these until the

condition is met.

This way increasing the partitioning coefficient increases accuracy of computations
and consequently increases the compute to synchronization ratio. Furthermore, this appli-
cation does not require large size memory and is not memory bound.

4.1.2. Parallel Image Recognition

In contrast to the previous application, parallel image recognition was used as a
benchmark that requires much memory and frequent memory reads. Specifically, the goal
of the application is to search for at least one occurrence of a template (sized TEMPLATEX-
SIZExTEMPLATEYSIZE in pixels) within an image (sized IMAGEXSIZEXIMAGEYSIZE).

In this case, the initial image is partitioned and within each chunk, a part of the initial
image of size (TEMPLATEXSIZE + BLOCKXSIZE)x
(TEMPLATEYSIZE + BLOCKYSIZE) is searched for occurrence of the template. In the
actual implementation values of IMAGEXSIZE = IMAGEYSIZE = 20,000, BLOCKXSIZE =
BLOCKYSIZE = 20, TEMPLATEXSIZE =TEMPLATEYSIZE = 500 in pixels were used.

The image was initialized with every third row and every third column having pixels
not matching the template. This results in earlier termination of search for template, also
depending on the starting search location in the initial image which results in various
search times per chunk.

In the case of this application a compute coefficient reflects how many passes over the
initial image are performed. In actual use cases it might correspond to scanning slightly
updated images in a series (e.g., satellite images or images of location taken with a drone)
for objects. On the other hand, it allows to simulate scenarios of various relative compute
to memory access and synchronization overheads for various systems.

4.2. Testbed Environment and Methodology of Tests

Experiments were performed on two systems typical of a modern desktop and work-
station systems with specifications outlined in Table 1.

Table 1. Testbed configurations.

Testbed 1 2

CPU Intel(R) Core(TM) i7-7700 CPU 3.60 GHz 2 X Intel(R) Xeon(R) CPU E5-2620 v4 2.10
s Kaby Lake, 8 MB cache GHz Broadwell, 20 MB cache per CPU

CPUs— total number of physical/logical 4/8 16/32

processors

System memory size (RAM) [GB] 16 GB 128 GB

Operating system Ubuntu 18.04.1 LTS Ubuntu 20.04.1 LTS

Compiler /version gec version 9.3.0 (Ubuntu gec version 9.3.0 (Ubuntu
P 9.3.0-11ubuntu0 18.04.1), 9.3.0-17ubuntul 20.04),

The following combinations of tests were performed: {code implementation} x {range
of thread counts} x {affinity setting} x {partitioning coefficients: 1, 8, 32}. The range of
thread counts tested depends on the implementation and varied as follows, based on pre-
liminary tests that identified the most interesting values based on most promising execu-
tion times, where npl means the number of logical processors: for designated-master these
were npl/2, 1+ npl/2, npl and 1+ npl, for all other versions the following were tested:
npl/4, npl/2, npl and 2 - npl. Thread affinity settings were imposed with environment
variables OMP_PLACES and OMP_PROC_BIND [27,28]. Specifically, the following combinations

http://mostwiedzy.pl

A\ MOST

Electronics 2021, 10, 1188

12 of 19

were tested independently: default (no additional affinity settings) marked with default,
OMP_PROC_BIND=false which turns off thread affinity (marked in results as noprocbind),
OMP_PLACES=cores and OMP_PROC_BIND=close marked with corclose, OMP_PLACES=cores
and OMP_PROC_BIND=spread marked with corspread, OMP_PLACES=threads and OMP_PROC_
BIND=close marked with thrclose, OMP_ PLACES=sockets without setting OMP_PROC_BIND
marked with sockets which defaults to true if OMP_PLACES is set for gcc (https://gcc.
gnu.org/onlinedocs/gcc-9.3.0/libgomp /OMP_005f{PROC_005fBIND.html (accessed on
16 April 2021)). If OMP_PROC_BIND equals true then behavior is implementation defined
and thus the above concrete settings were tested.In the experiments the code was tested
with compilation flags -03 and also -03 -march=native. Best values are reported for each
configuration, an average value out of 20 runs is presented along with corresponding
standard deviation.

4.3. Results

Since all combinations of tested configurations resulted in a very large number of
execution times, we present best results as follows. For each partitioning coefficient
separately for numerical integration and compute coefficient for image recognition and for
each code implementation 3 best results with a configuration description are presented in
Tables 2 and 3 for numerical integration as well as in Tables 4 and 5 for image recognition,
along with the standard deviation computed from the results. Consequently, it is possible to
identify how code versions compare to each other and how configurations affect execution
times.

Additionally, for the coefficients, execution times and corresponding standard deviation
values are shown for various numbers of threads. These are presented in Figures 6 and 7 for
numerical integration as well as in Figures 8 and 9 for image recognition.

Table 2. Numerical integration—system 1 results.

Part . Time 1/std Time 2/std Time 3/std
Coeff Version dev/Affinity/Number of dev/Affinity/Number of dev/Affinity/Number of
) Threads Threads Threads
integrated-master 18.555/0.062/thrclose/8 18.610/0.068/ corspread /8 18.641/0.086/ corclose/8
designated-master 21.088/0.078/corspread /8 21.098/0.090/ default/8 21.106/0.096 /noprocbind /8
1 tasking 18.363/0.047 /noprocbind /16 ~ 18.416/0.094/default/16 18.595/0.071/thrclose/8
tasking?2 18.394/0.088 /noprocbind /16 ~ 18.411/0.093/default/16 18.654/0.092/thrclose/8
dynamic-for 18.389/0.079/default/16 18.428/0.105/noprocbind /16 ~ 18.554/0.073 / corclose /16
dynamic-for2 18.399/0.093/ default/16 18.416/0.101/noprocbind /16 ~ 18.572/0.073/ corclose /16
integrated-master 27.333/0.105/thrclose/8 27.341/0.106/ default/8 27.373/0.084 /noprocbind /8
designated-master 30.885/0.102/corspread /8 30.898/0.111/thrclose/8 30.956/0.130/noprocbind /8
8 tasking 26.844/0.081/default/16 26.898/0.146 /noprocbind /16~ 27.325/0.116/detault/8
tasking?2 26.865/0.131/default/16 26.901/0.161 /noprocbind /16 ~ 27.299/0.134/thrclose/8
dynamic-for 26.865/0.105/default/16 26.899/0.155/noprocbind /16 ~ 27.217/0.121/corspread /16
dynamic-for2 26.830/0.073/noprocbind /16 26.930/0.158/default/16 27.204/0.115/corclose/16
integrated-master 34.492/0.157 /thrclose/8 34.526/0.137 / corspread /8 34.555/0.202/ corclose /8
designated-master 39.005/0.149/thrclose/8 39.015/0.199/ corclose /8 39.039/0.174/default/8
32 tasking 33.816/0.151/noprocbind /16~ 33.889/0.333/default/16 34.356/0.149 /noprocbind /8

tasking?2
dynamic-for
dynamic-for2

33.828/0.174 /noprocbind /16
33.781/0.165/noprocbind /16
33.826/0.180/noprocbind /16

33.838/0.152/default/16
33.808/0.148/default/16
33.860/0.155/default/16

34.340/0.148 /thrclose/8
34.354/0.165/thrclose/16
34.260/0.127 / corclose /16

https://gcc.gnu.org/onlinedocs/gcc-9.3.0/libgomp/OMP_005fPROC_005fBIND.html
https://gcc.gnu.org/onlinedocs/gcc-9.3.0/libgomp/OMP_005fPROC_005fBIND.html
http://mostwiedzy.pl

Electronics 2021, 10, 1188

13 of 19

Table 3. Numerical integration—system 2 results.

Part Time 1/std Time 2/std Time 3/std
Coeff Version dev/Affinity/Number of dev/Affinity/Number of dev/Affinity/Number of
: Threads Threads Threads
integrated-master 9.158/0.117 / corspread /32 9.201/0.145/thrclose /32 9.214/0.217 /sockets /32
designated-master 9.585/0.149/ corclose /33 9.601/0.197 /thrclose /33 9.638/0.122/default/33
1 tasking 8.567/0.017 /default/64 8.585/0.027 /noprocbind/64 8.664/0.025/sockets /64
tasking?2 8.599/0.033/default/64 8.602/0.025/noprocbind/64 8.677/0.026/sockets /64
dynamic-for 8.584/0.025/noprocbind/64 8.584/0.032/default/64 8.649/0.024/sockets /64
dynamic-for2 8.570/0.024/default/64 8.573/0.021 /noprocbind/64 8.636/0.024/sockets /64
integrated-master 13.718/0.127 / corclose /32 13.748/0.182/corspread /32 13.770/0.111/default/32
designated-master 14.402/0.105/ corclose /33 14.447/0.529/ thrclose /32 14.481/0.677 /sockets /32
8 tasking 12.724/0.034/ default/ 64 12.727/0.040/noprocbind /64 12.776/0.038 /sockets /64
tasking?2 12.749/0.044 / default/ 64 12.771/0.035/noprocbind /64 12.796/0.044/sockets /64
dynamic-for 12.792/0.041/default/64 12.796/0.033 /noprocbind /64 12.845/0.031/sockets /64
dynamic-for2 12.731/0.031/default/64 12.753/0.040/noprocbind /64 12.811/0.047 /sockets/64
integrated-master 17.471/0.080/corspread /32~ 17.486/0.105/ corclose /32 17.551/0.152/thrclose /32
designated-master 18.359/0.839/corspread /32 18.423/0.447 /default/32 18.431/0.205/ corclose /33
32 tasking 16.116/0.051/noprocbind/64 16.120/0.055/sockets /64 16.175/0.420/ default/ 64
tasking?2 16.119/0.039/default/ 64 16.142/0.062/noprocbind/64 16.157/0.042 /sockets /64
dynamic-for 16.181/0.049/default/64 16.210/0.043 /noprocbind /64 16.228/0.046 /sockets/64
dynamic-for2 16.116/0.025/default/ 64 16.119/0.043 /noprocbind /64 16.152/0.038/sockets/64
100 T T T T
95 | part. coefficient 1 m— part. coefficient 8 part. coefficient 32
90
85 [N
80 g &
— 75 N N L L
™ o o N ° g £ E
2 70 F sy S 2 N 0~ <
> ~ < = £ o o o o o X 2 e
v 65+ o w W £ o S £ o w S5
° S Bl S vz £ 2 = £ S ©T D
T 60 kv, % % S w =z T 5 3 3
o 551 8 £ £ T 8 3 £ & B £ £ £
19) £ '8 0o © g £ o a9 = 2 9o 29
= 50 = (9] v} o 0 = 0 0 = v} v} v}
= o o o o =] o o = o o [e]
5 45t N S 5 v 8 T T @ S £ %
S 40 - = 2 S &8 =3 £ 5 3 e 2 8
5 35F © < o Pl N ¥ © N ™M n
[v] m ™ m | & © m m S ~ ©
g 30r . C . 2 R R =
S 25t s 9 S S o S poy S S pgy S
NN = ™M n | a9 O m o o
20 -~ © © n_ o ™M © [m ©
B © . N . M . ™
15 o o~ © un ~ < © m 7
10 © © m < N ™ N m i
5 - -
0

N

4 8
number of threads

Figure 6. Numerical integration—system 1 results for various numbers of threads.

Electronics 2021, 10, 1188

14 of 19

40 T T T T
38 | part. coefficient 1 n— part. coefficient 8 part. coefficient 32 -
36 - .
34 -
32 .
% 30 I\ ~ .
> 28 F £ 8 o -
3 26| T o g 2 g o 2 €]
T 241 o " 2 s & 2 E £ ¥ o 2 .
@ 22t £l 5 ¢ S 8 3T S % © o 2 E i
2 % 2 g T 35 9 S & 5 £ % GCo
£ 20r T g2 2 3 ® 8 T 3 B ¥ v 5 T
s 18t i | S s ¢ 3 T 8 3 8 £ S .
< e g 5 v © 9 O £ =2 =2g
g 1er g 3 5 el < 5 & & S 3 33 I
3 r g 9 5 8 5 o 5 8 E % GE T
Qo 12 |+ (%) © o < (U} o (9] c [} © T QO -
5 Mmoo~ o 0 N s S m ng
10 © ~) N [m ™ ~ o o2 .
. < . < < © 2
81 & S & < S S S g]
6 o ~ N © [°9) ~ < © .
N ™M o © in | © N -7
4r . < S < N © =~ o 7
2 | E M < E - EE :
0
8 16 32 64
number of threads
Figure 7. Numerical integration—system 2 results for various numbers of threads.
Table 4. Image recognition—system 1 results.
Time 1/std Time 2/std Time 3/std
Comp. Coeff. Version dev/Affinity/Number of dev/Affinity/Number of dev/Affinity/Number of
Threads Threads Threads
integrated-master 9.530/0.2104/noprocbind/8 9.561/0.173/default/8 9.578/0.183/thrclose/8
frf’:‘slf:’efl‘,ated' 10.388/0.125/ thrclose /8 10.434/0.179 /noprocbind/8 10.450/0.222/default/8
2 tasking 9.576/0.175/default/8 9.622/0.166/noprocbind/8 9.697/0.188/ corclose/8
tasking?2 12.762/0.059 /noprocbind /8 12.777/0.093/thrclose/8 12.782/0.081/default/8
dynamic-for 9.389/0.131/thrclose/8 9.392/0.156 /noprocbind /8 9.403/0.151/default/8
dynamic-for2 9.378/0.135/thrclose/8 9.395/0.165/default/8 9.446/0.176/default/16
integrated-master 18.406/0.297/noprocbind/8 18.428/0.329/corclose/8 18.492/0.352/default/8
gf;;tif;ated' 20.175/0.196 /corspread/8 ~ 20.219/0.305/default/8 20.404/0.367 /noprocbind /8
4 tasking 18.505/0.428 /noprocbind/8 18.514/0.308/thrclose/8 18.540/0.353 / default/8
tasking?2 24.935/0.154/noprocbind/8 24.940/0.150/corspread/8 24.967/0.244/thrclose/8
dynamic-for 18.332/0.264/noprocbind /8 18.332/0.475/default/8 18.405/0.442 / corspread /8
dynamic-for2 18.282/0.229/corspread /8 18.318/0.407 / thrclose /8 18.367/0.408 /default/8
integrated-master 35.995/0.678/noprocbind/8 36.096/0.726/default/8 36.282/0.612/thrclose/8
frf;;;‘%ef;ated' 39.969/0.526/default/8 40.120/0.595/corclose/8 40.163/0.623 /thrclose/8
8 tasking 36.223/0.718 /noprocbind/8 36.307/0.691/corspread/8 36.372/0.664/thrclose/8
tasking?2 49.418/0.225/default/8 49.438/0.411 /noprocbind /8 49.444/0.326/ corspread /8
dynamic-for 35.852/0.503 /default/8 36.018/0.596/corspread/16 ~ 36.129/0.597 /noprocbind /16

dynamic-for2

35.969/0.462 /thrclose/8

36.099/0.669/default/8

36.190/0.675/noprocbind /8

Electronics 2021, 10, 1188

15 0of 19

Table 5. Image recognition—system 2 results.

Time 1/std Time 2/std Time 3/std
Comp. Coeff. Version dev/Affinity/Number of dev/Affinity/Number of dev/Affinity/Number of
Threads Threads Threads
integrated-master 6.406/0.321/thrclose/32 6.880/0.918/default/32 7.002/0.738/ corclose /32
frf’:‘;%efl‘,ated' 6.283/0.311/sockets /33 6.644/0.364 /noprocbind /33 6.697/0.463/default/33
2 tasking 6.164/0.145/ corclose /64 6.223/0.181/corspread/64 6.249/0.117 /sockets /64
tasking?2 5.981/0.208/ corclose /64 5.995/0.165/corspread/64 5.997/0.067 /sockets /64
dynamic-for 5.705/0.208 / default/32 5.722/0.105/sockets /64 5.739/0.088/ corclose /32
dynamic-for2 5.682/0.072/sockets/32 5.697/0.055/noprocbind /32 5.709/0.099/ default/32
integrated-master ~ 11.583/0.564/noprocbind /32 11.661/0.218/sockets/32 11.716/0.420/ corclose /32
gfasslger;ated' 11.808/1.572/ corclose /32 11.857/1.097/sockets /33 11.878/0.803 /noprocbind /33
4 tasking 10.848/0.085/ default/32 10.889/0.128/corclose/32 10.903/0.142/sockets /32
tasking?2 10.460/0.141 /sockets /32 10.472/0.145/corspread /32 10.485/0.170/default/32
dynamic-for 10.625/0.140/ default/32 10.629/0.133/corclose/32 10.635/0.161/noprocbind /32
dynamic-for2 10.585/0.150/sockets /32 10.598/0.100/noprocbind /32 10.610/0.140/ default/32
integrated-master 20.556/0.620/noprocbind /32 20.595/0.708/corclose/32 20.738/0.861/ corspread /32
frfgs‘tge‘}ated' 20.705/0.836/default/33 20.924/4.271/sockets /32 21.224/0.987 /noprocbind /33
8 tasking 20.014/0.197 /sockets /32 20.054/0.201/corclose/32 20.076/0.235/corspread /32
tasking?2 19.120/0.305/noprocbind /32 19.152/0.187 /sockets /32 19.240/0.292/ corspread /32
dynamic-for 19.758/0.193 / default/32 19.825/0.210/ thrclose /32 19.828/0.219/corspread /32
dynamic-for2 19.816/0.229 /noprocbind /32 19.828/0.249/ default/32 19.863/0.256/ thrclose /32
100 T | | |
95 comp. coefficient 2 m— comp. coefficient 4 comp. coefficient 8 -
90 .
85 .
80 —
w 75 . 5 o o o . 5 .]
N e ~ T e T 8 ~ 2 e T &8 T
L 65 v 5 E L 8L 5 & & v g g .
o 60 E U © E 2 E s g% E © E -
2 © = c © = © 2 © = © c ©
n 55 c c > c S c c c c c > c -
9] > § DO > 2 > S > & > T >
€ 50 T ¢ 3 T > = c 8 c T 3 32 .
S s T 5 T g 3 S 3 3 3 £ 3 -
c - S 9 3 s 3 S £ 5 3
(@] 40 o — O ut sl (O] o = Neo) 9] o -
S o "3 9O a 2 a w o 3 v O a
> 35 wie o g2 2 S ¢ g S & T
S o () o o) o v o [9) o o) o
g 30] o© c] O O = O o° o c u) h
v 25 © o o ~ o N e) S o v i
© 5 o © 9~ < n N O N OXO
20 N ™ ! paiiaw © MmN 1 N .
B < S NN © s B < s B S
15 S N § © 2 & 2 © ® T
10 ® 10 N o % | ® 10 m o d i
R < . N © e <
| c: M:: M- Wi
0 m O~ N < = ™ —- ™
2 4 8

number of threads

)
[&)]

Figure 8. Image recognition—system 1 results for various numbers of threads.

Electronics 2021, 10, 1188

16 of 19

execution time/std dev [s]

40
38
36
34
32
30
28
26
24
22
20
18
16
14
12

-
ONB~O OO

I
comp. coefficient 2 —

7 sockets/tasking2

18.663/0.178 sockets/tasking?2

I I I
comp. coefficient 4 comp. coefficient 8 -

35.440/0.357 sockets/tasking?2
.052 sockets/tasking2
11.697/0.108 corspread/tasking2
21.543/0.146 corclose/tasking?2
0.072 sockets/dynamic-for2
10.460/0.141 sockets/tasking2
19.120/0.305 noprocbind/tasking2
0.208 corclose/tasking2
11.069/0.234 sockets/tasking2
19.921/0.185 sockets/tasking2

©

=
[e)]
w
N
(o]
N

number of threads

Figure 9. Image recognition—system 2 results for various numbers of threads.

4.4. Observations and Discussion
4.4.1. Performance

From the performance point of view, based on the results the following observations

can be drawn and subsequently be generalized:

1.

For numerical integration, best implementations are tasking and dynamic-for2 (or
dynamic-for for system 1) with practically very similar results. These are very closely
followed by tasking2 and dynamic-for and then by visibly slower integrated-master
and designated-master.

For image recognition best implementations for system 1 are dynamic-for2 /dynamic-
for and integrated-master with very similar results, followed by tasking, designated-
master and tasking?. For system 2, best results are shown by dynamic-for2/dynamic-
for and tasking?, followed by tasking and then by visibly slower integrated-master
and designated-master.

For system 2, we can see benefits from overlapping for dynamic-for2 over dynamic-for
for numerical integration and for both tasking? over tasking, as well as dynamic-for2
over dynamic-for for image recognition. The latter is expected as those configurations
operate on considerably larger data and memory access times constitute a larger part
of the total execution time, compared to integration.

For the compute intensive numerical integration example we see that best results
were generally obtained for oversubscription, i.e., for tasking* and dynamic-for* best
numbers of threads were 64 rather than generally 32 for system 2 and 16 rather than
8 for system 1. The former configurations apparently allow to mitigate idle time
without the accumulated cost of memory access in the case of oversubscription.

In terms of thread affinity, for the two applications best configurations were measured
for default/noprocbind for numerical integration for both systems and for thrclose/-
corspread for system 1 and sockets for system 2 for smaller compute coefficients and
default for system 1 and noprocbind for system 2 for compute coefficient 8.

For image recognition, configurations generally show visibly larger standard devia-
tion than for numerical integration, apparently due to memory access impact.

A\ MOST

Electronics 2021, 10, 1188

17 of 19

10.

We can notice that relative performance of the two systems is slightly different for the
two applications. Taking into account best configurations, for numerical integration
system 2’s times are approx. 46—48% of system 1’s times while for image recognition
system 2’s times are approx. 53—61% of system 1’s times, depending on partitioning
and compute coefficients.

We can assess gain from HyperThreading for the two applications and the two systems
(between 4 and 8 threads for system 1 and between 16 and 32 threads for system 2) as
follows: for numerical integration and system 1 it is between 24.6% and 25.3% for the
coefficients tested, for system 2 it is between 20.4% and 20.9%; for image recognition
and system 1, it is between 10.9% and 11.3% and similarly for system 2 between 10.4%
and 11.3%.

We can see that ratios of best system 2 to system 1 times for image recognition are
approx. 0.61 for coefficient 2, 0.57 for coefficient 4 and 0.53 for coefficient 8 which
means that results for system 2 for this application get relatively better compared
to system 1’s. As outlined in Table 1, system 2 has larger cache and for subsequent
passes more data can reside in the cache. This behavior can also be seen when results
for 8 threads are compared—for coefficients 2 and 4 system 1 gives shorter times but
for coefficient 8 system 2 is faster.

integrated-master is relatively better compared to the best configuration for system 1
as opposed to system 2—in this case, the master’s role can be taken by any thread,
running on one of the 2 CPUs.

The bottom line, taking into consideration the results, is that preferred configura-

tions are tasking and dynamic-for based ones, with preferring thread oversubscription
(2 threads per logical processor) for the compute intensive numerical integration and 1
thread per logical processor for memory requiring image recognition. In terms of affinity,
default/noprocbind are to be preferred for numerical integration for both systems and
thrclose/corspread for system 1 and sockets for system 2 for smaller compute coefficients
and default for system 1 and noprocbind for system 2 for compute coefficient 8.

4.4.2. Ease of Programming

Apart from the performance of the proposed implementations, ease of programming

can be assessed in terms of the following aspects:

1.

code length—the order from the shortest to the longest version of the code is as fol-
lows: tasking, dynamic-for, tasking?, integrated-master, dynamic-for2 and designated-
master,

the numbers of OpenMP directives and functions. In this case the versions can be
characterized as follows:

. designated-master—3 directives and 13 function calls;
e integrated-master—1 directive and 6 function calls;

. tasking—4 directives and 0 function calls;

. tasking2—6 directives and 0 function calls;

* dynamic-for—7 directives and 0 function calls;

¢ dynamic-for2—7 directives and 1 function call,

which makes tasking the most elegant and compact solution.

controlling synchronization—from the programmer’s point of view this seems more
problematic than the code length, specifically how many distinct thread codes’ points
need to synchronize explicitly in the code. In this case, the easiest code to manage is
tasking/tasking?2 as synchronization of independently executed tasks is performed
in a single thread. It is followed by integrated-master which synchronizes with a
lock in two places and dynamic-for/dynamic-for2 which require thread synchroniza-
tion within #pragma omp parallel, specifically using atomics and designated-master
which uses two locks, each in two places. This aspect potentially indicates how prone
to errors each of these implementations can be for a programmer.

http://mostwiedzy.pl

A\ MOST

Electronics 2021, 10, 1188 18 of 19

5. Conclusions and Future Work

Within the paper, we compared six different implementations of the master—slave
paradigm in OpenMP and tested relative performances of these solutions using a typical
desktop system with 1 multi-core CPU—Intel i7 Kaby Lake and a workstation system with
2 multi-core CPUs—Intel Xeon E5 v4 Broadwell CPUs.

Tests were performed for irregular numerical integration and irregular image recog-
nition with three various compute intensities and for various thread affinities, compiled
with the popular gcc compiler. Best results were generally obtained for OpenMP task and
dynamic for based construct implementations, either with thread oversubscription (numer-
ical integration) or without oversubscription (image recognition) for the aforementioned
applications.

Future work includes investigation of aspects such as the impact of buffer length and
false sharing on the overall performance of the model, as well as performing tests using
other compilers and libraries. Furthermore, tests with a different compiler and OpenMP
library such as using, e.g., icc -openmp would be practical and interesting for their users.
Another research direction relates to consideration of potential performance-energy aspects
of implementations in the context of CPUs used and configurations, also when using power
capping as an extension of previous works in this field [29-31]. Finally, investigation of
performance of basic OpenMP constructs for modern multi-core systems and compilers is
of interest, as an extension of previous works such as [32,33].

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Czarnul, P. Parallel Programming for Modern High Performance Computing Systems; Chapman and Hall/CRC Press/Taylor & Francis: Boca
Raton, FL, USA 2018.

2. Klemm, M.; Supinski, B.R. (Eds.) OpenMP Application Programming Interface Specification Version 5.0; OpenMP Architecture Review
Board: Chicago, IL, USA, 2019; ISBN 978-1795759885.

3. Ohberg, T.; Ernstsson, A.; Kessler, C. Hybrid CPU-GPU execution support in the skeleton programming framework SkePU. .
Supercomput. 2019, 76, 5038-5056. [CrossRef]

4. Ernstsson, A; Li, L.; Kessler, C. SkePU 2: Flexible and Type-Safe Skeleton Programming for Heterogeneous Parallel Systems. Int.
J. Parallel Program. 2018, 46, 62-80. [CrossRef]

5. Augonnet, C; Thibault, S.; Namyst, R.; Wacrenier, P.A. StarPU: a unified platform for task scheduling on heterogeneous multicore
architectures. Concurr. Comput. Pract. Exp. 2011, 23, 187-198. [CrossRef]

6. Pop, A.; Cohen, A. OpenStream: Expressiveness and data-flow compilation of OpenMP streaming programs. ACM Trans. Archit.
Code Optim. 2013, 9. [CrossRef]

7. Pop, A,; Cohen, A. A Stream-Computing Extension to OpenMP. In Proceedings of the 6th International Conference on High
Performance and Embedded Architectures and Compilers, HIPEAC “11, Crete, Greece, 24-26 January 2011; Association for
Computing Machinery: New York, NY, USA, 2011; pp. 5-14. [CrossRef]

8. Seo, S.; Amer, A ; Balaji, P; Bordage, C.; Bosilca, G.; Brooks, A.; Carns, P; Castell6, A.; Genet, D.; Herault, T.; et al. Argobots: A
Lightweight Low-Level Threading and Tasking Framework. IEEE Trans. Parallel Distrib. Syst. 2018, 29, 512-526. [CrossRef]

9. Pereira, A.D.; Ramos, L.; Gées, L. EW. PSkel: A stencil programming framework for CPU-GPU systems. Concurr. Comput. Pract.
Exp. 2015, 27, 4938-4953. [CrossRef]

10. Balart, J.; Duran, A.; Gonzalez, M.; Martorell, X.; Ayguade, E.; Labarta, J. Skeleton driven transformations for an OpenMP
compiler. In Proceedings of the 11th Workshop on Compilers for Parallel Computers (CPC 04), Chiemsee, Germany, 7-9 July
2004; pp. 123-134.

11. Bondhugula, U.; Baskaran, M.; Krishnamoorthy, S.; Ramanujam,].; Rountev, A.; Sadayappan, P. Automatic Transformations for
Communication-Minimized Parallelization and Locality Optimization in the Polyhedral Model; Compiler Construction; Hendren, L., Ed.;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 132-146.

12. Czarnul, P. Parallelization of Divide-and-Conquer Applications on Intel Xeon Phi with an OpenMP Based Framework. In
Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and
Technology—ISAT 2015—Part III; Swiatek, J.; Borzemski, L.; Grzech, A.; Wilimowska, Z., Eds.; Springer: Cham, Switzerland, 2016;
pp- 99-111.

13. Ferndndez, A.; Beltran, V.; Martorell, X.; Badia, RM.; Ayguadé, E.; Labarta,]J. Task-Based Programming with OmpSs and Its

Application. In Euro-Par 2014: Parallel Processing Workshops; Lopes, L., Zilinskas, J., Costan, A., Cascella, R.G., Kecskemeti, G.,
Jeannot, E., Cannataro, M., Ricci, L., Benkner, S., Petit, S., et al., Eds.; Springer: Cham, Switzerland, 2014; pp. 601-612.

http://doi.org/10.1007/s11227-019-02824-7
http://dx.doi.org/10.1007/s10766-017-0490-5
http://dx.doi.org/10.1002/cpe.1631
http://dx.doi.org/10.1145/2400682.2400712
http://dx.doi.org/10.1145/1944862.1944867
http://dx.doi.org/10.1109/TPDS.2017.2766062
http://dx.doi.org/10.1002/cpe.3479
http://mostwiedzy.pl

A\ MOST

Electronics 2021, 10, 1188 19 of 19

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

Vidal, R.; Casas, M.; Moret6, M.; Chasapis, D.; Ferrer, R.; Martorell, X.; Ayguadé, E.; Labarta, J.; Valero, M. Evaluating the Impact
of OpenMP 4.0 Extensions on Relevant Parallel Workloads. In OpenMP: Heterogenous Execution and Data Movements; Terboven, C.,
de Supinski, B.R., Reble, P., Chapman, B.M., Miiller, M.S., Eds.; Springer: Cham, Switzerland, 2015; pp. 60-72.

Ciesko, J.; Mateo, S.; Teruel, X.; Beltran, V.; Martorell, X.; Badia, RM.; Ayguadé, E.; Labarta, J. Task-Parallel Reductions in
OpenMP and OmpSs. In Using and Improving OpenMP for Devices, Tasks, and More; DeRose, L., de Supinski, B.R., Olivier, S.L.,
Chapman, B.M., Miiller, M.S., Eds.; Springer: Cham, Switzerland, 2014; pp. 1-15.

Bosch, J.; Vidal, M; Filgueras, A ; Alvarez, C.; Jiménez-Gonzélez, D.; Martorell, X.; Ayguadé, E. Breaking master—slave Model
between Host and FPGAs. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP '20, San Diego, CA, USA, 22-26 February 2020; Association for Computing Machinery: New York, NY,
USA, 2020; pp. 419-420. [CrossRef]

Dongarra, J.; Gates, M.; Haidar, A.; Kurzak, J.; Luszczek, P.; Wu, P,; Yamazaki, I.; Yarkhan, A.; Abalenkovs, M.; Bagherpour, N.;
et al. PLASMA: Parallel Linear Algebra Software for Multicore Using OpenMP. ACM Trans. Math. Softw. 2019, 45. [CrossRef]
Valero-Lara, P; Catalan, S.; Martorell, X.; Usui, T.; Labarta, J. SLASs: A fully automatic auto-tuned linear algebra library based on
OpenMP extensions implemented in OmpSs (LASs Library). J. Parallel Distrib. Comput. 2020, 138, 153-171. [CrossRef]
Schmider, H. Shared-Memory Programming Programming with OpenMP; Ontario HPC Summer School, Centre for Advance
Computing, Queen’s University: Kingston, ON, Canada 2018.

Hadjidoukas, P.E.; Polychronopoulos, E.D.; Papatheodorou, T.S. OpenMP for Adaptive master—slave Message Passing Applica-
tions. In High Performance Computing; Veidenbaum, A., Joe, K., Amano, H., Aiso, H., Eds.; Springer: Berlin/Heidelberg, Germany,
2003; pp. 540-551.

Liu, G.; Schmider, H.; Edgecombe, K.E. A Hybrid Double-Layer master—slave Model For Multicore-Node Clusters. J. Phys. Conf.
Ser. 2012, 385, 12011. [CrossRef]

Leopold, C.; Siif3, M. Observations on MPI-2 Support for Hybrid Master/Slave Applications in Dynamic and Heterogeneous
Environments. In Recent Advances in Parallel Virtual Machine and Message Passing Interface; Mohr, B., Triff, J.L., Worringen, J.,
Dongarra, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006.

Scogland, T.; de Supinski, B. A Case for Extending Task Dependencies. In OpenMP: Memory, Devices, and Tasks; Maruyama, N.,
de Supinski, B.R., Wahib, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 130-140.

Wang, C.K.; Chen, PS. Automatic scoping of task clauses for the OpenMP tasking model.]. Supercomput. 2015, 71, 808-823.
[CrossRef]

Wittmann, M.; Hager, G. A Proof of Concept for Optimizing Task Parallelism by Locality Queues. arXiv 2009, arXiv:0902.1884.
Czarnul, P. Programming, Tuning and Automatic Parallelization of Irregular Divide-and-Conquer Applications in DAMPVM/-
DAC. Int.]. High Perform. Comput. Appl. 2003, 17, 77-93. [CrossRef]

Eijkhout, V.; van de Geijn, R.; Chow E. Introduction to High Performance Scientific Computing; lulu.com. 2011. Available online:
http:/ /www.tacc.utexas.edu/\simeijkhout/istc/istc.html (accessed on 16 April 2021).

Eijkhout, V. Parallel Programming in MPI and OpenMP; 2016. Available online: https://pages.tacc.utexas.edu/\simeijkhout/
pese/html/index.html (accessed on 16 April 2021).

Czarnul, P; Proficz, J.; Krzywaniak, A. Energy-Aware High-Performance Computing: Survey of State-of-the-Art Tools, Techniques,
and Environments. Sci. Program. 2019, 2019, 8348791. [CrossRef]

Krzywaniak, A.; Proficz, J.; Czarnul, P. Analyzing Energy/Performance Trade-Offs with Power Capping for Parallel Applications
On Modern Multi and Many Core Processors. In Proceedings of the 2018 Federated Conference on Computer Science and
Information Systems (FedCSIS), Poznari, Poland, 9-12 September 2018; pp. 339-346.

Krzywaniak, A.; Czarnul, P; Proficz, . Extended Investigation of Performance-Energy Trade-Offs under Power Capping in
HPC Environments; 2019. In Proceedings of the High Performance Computing Systems Conference, International Workshop on
Optimization Issues in Energy Efficient HPC & Distributed Systems, Dublin, Ireland, 15-19 July 2019.

Prabhakar, A.; Getov, V.; Chapman, B. Performance Comparisons of Basic OpenMP Constructs. In High Performance Computing;
Zima, H.P, Joe, K., Sato, M., Seo, Y., Shimasaki, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 413—424.

Berrendorf, R.; Nieken, G. Performance characteristics for OpenMP constructs on different parallel computer architectures.
Concurr. Pract. Exp. 2000, 12, 1261-1273. [CrossRef]

http://dx.doi.org/10.1145/3332466.3374545
http://dx.doi.org/10.1145/3264491
http://dx.doi.org/10.1016/j.jpdc.2019.12.002
http://dx.doi.org/10.1088/1742-6596/385/1/012011
http://dx.doi.org/10.1007/s11227-014-1326-3
http://dx.doi.org/10.1177/1094342003017001007
http://www.tacc.utexas.edu/$\sim $eijkhout/istc/istc.html
https://pages.tacc.utexas.edu/$\sim $eijkhout/pcse/html/index.html
https://pages.tacc.utexas.edu/$\sim $eijkhout/pcse/html/index.html
http://dx.doi.org/10.1155/2019/8348791
http://dx.doi.org/10.1002/1096-9128(200010)12:12<1261::AID-CPE525>3.0.CO;2-5
http://mostwiedzy.pl

	Introduction
	Related Work
	OpenMP Related Frameworks and Layers for Parallelization
	Parallelization of Master–Slave with OpenMP

	Motivations, Application Model and Implementations
	Implementations of the Master–Slave Pattern with OpenMP

	Experiments
	Parametrized Irregular Testbed Applications
	Parallel Adaptive Quadrature Numerical Integration
	Parallel Image Recognition

	Testbed Environment and Methodology of Tests
	Results
	Observations and Discussion
	Performance
	Ease of Programming

	Conclusions and Future Work
	References

