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Abstract: The paper investigates various implementations of a master–slave paradigm using the
popular OpenMP API and relative performance of the former using modern multi-core workstation
CPUs. It is assumed that a master partitions available input into a batch of predefined number of
data chunks which are then processed in parallel by a set of slaves and the procedure is repeated
until all input data has been processed. The paper experimentally assesses performance of six
implementations using OpenMP locks, the tasking construct, dynamically partitioned for loop,
without and with overlapping merging results and data generation, using the gcc compiler. Two
distinct parallel applications are tested, each using the six aforementioned implementations, on
two systems representing desktop and worstation environments: one with Intel i7-7700 3.60 GHz
Kaby Lake CPU and eight logical processors and the other with two Intel Xeon E5-2620 v4 2.10 GHz
Broadwell CPUs and 32 logical processors. From the application point of view, irregular adaptive
quadrature numerical integration, as well as finding a region of interest within an irregular image
is tested. Various compute intensities are investigated through setting various computing accuracy
per subrange and number of image passes, respectively. Results allow programmers to assess which
solution and configuration settings such as the numbers of threads and thread affinities shall be
preferred.

Keywords: master–slave; parallel programming; OpenMP; thread affinity

1. Introduction

In today’s parallel programming, a variety of general purpose Application Program-
ming Interfaces (APIs) are widely used, such as OpenMP, OpenCL for shared memory
systems including CPUs and GPUs, CUDA, OpenCL, OpenACC for GPUs, MPI for cluster
systems or combinations of these APIs such as: MPI+OpenMP+CUDA, MPI+OpenCL [1],
etc. On the other hand, these APIs allow to implement a variety of parallel applications
falling into the following main paradigms: master–slave, geometric single program multi-
ple data, pipelining, divide-and-conquer.

At the same time, multi-core CPUs have become widespread and present in all com-
puter systems, both desktop and server type systems. For this reason, optimization of
implementations of such paradigms on such hardware is of key importance nowadays,
especially as such implementations can serve as templates for coding specific domain appli-
cations. Consequently, within this paper we investigate various implementations of one of
such popular programming patterns—master–slave, implemented with one of the leading
APIs for programming parallel applications for shared memory systems—OpenMP [2].

2. Related Work

Works related to the research addressed in this paper can be associated with one of
the following areas, described in more detail in subsequent subsections:

1. frameworks related to or using OpenMP that target programming abstractions even
easier to use or at a higher level than OpenMP itself;
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2. parallelization of master–slave and producer–consumer in OpenMP including details
of analyzed models and proposed implementations.

2.1. OpenMP Related Frameworks and Layers for Parallelization

SkePU is a C++ framework targeted at using heterogeneous systems with multi-core
CPUs and accelerators. In terms of processing structures, SkePU incorporates several
skeletons such as Map, Reduce, MapReduce, MapOverlap, Scan and Call. SkePU supports
back-ends such as: sequential CPU, OpenMP, CUDA and OpenCL. Work [3] describes a
back-end for SkePU version 2 [4] that allows to schedule workload on CPU+GPU systems.
Better performance than the previous SkePU implementation is demonstrated. The original
version of hybrid execution in SkePU 1 ran StarPU [5] as a back-end. The latter allows
to encompass input data with codelets that can be programmed with C/C++, OpenCL
and CUDA. Eager, priority and random along with caching policies are available for
scheduling. Workload can be partitioned among CPUs and accelerators either automatically
or manually with a given ratio. Details of how particular skeletons are assigned in shown
in [3]. In terms of modeling, autotuning is possible using a linear performance formulation
and its speed-ups were shown versus CPU and accelerator implementations.

OpenStream is an extension of OpenMP [6,7] enabling to express highly dynamic
control and data flows between dependent and nested tasks. Additional input and output
clauses for the task construct are proposed with many examples presenting expressiveness
of the approach. There is a trade-off between expressiveness of streaming annotations and
overhead which is studied versus Cilk using an example of recursive Fibonacci implemen-
tations and obtaining granularity threshold above which task’s overheads are amortized.
Additional clauses peek and tick allow reading data from a stream without advancing the
stream as well as advancing the read index in streams. Speed-ups of the proposed OpenMP
streaming solution over sequential LAPACK are demonstrated [6] for Cholesky factoriza-
tion of various sizes (up to superlinear 27.4 for 4096 × 4096 matrix size and 256 numbers of
blocks per matrix, due to caching effects) as well as SparseLU (19.5 for block size 64 × 64
and 22 for block size 128 × 128 for 4096+ numbers of blocks). A Gauss–Seidel algorithm
using the proposed solution, hand coded, achieved the speed-ups of 8.7 for 8k × 8k matrix
and 256 × 256 tile size. Tests were conducted on a dual-socket AMD Opteron Magny-Cours
6164HE machine with 2 × 12 cores running at 1.7 GHz and 16 GB of RAM.

Argobots [8] is a lightweight threading layer that can be used for efficient processing
and coupling high-level programming abstractions to low-level implementations. Specifi-
cally, the paper shows that the solution outperforms state-of-the-art generic lightweight
threading libraries such as MassiveThreads and Qthreads. Additionally, integrating Ar-
gobots with MPI and OpenMP is presented with better performance of the latter for an
application with nested parallelism than competing solutions. For the former configuration,
better opportunities regarding reduction of synchronization and latency are shown for
Argobots compared to Pthreads. Similarly, better performance of Argobots vs Pthreads is
discussed for I/O operations.

PSkel [9], as a framework, targets parallelization of stencil computations, in a CPU+GPU
environment. As its name suggests, it uses parallel skeletons and can use NVIDIA
CUDA, Intel TBB and OpenMP as back-ends. Authors presented speed-ups of the hybrid
CPU+GPU version up to up to 76% and 28%, versus CPU-only and GPU-only codes.

Paper [10] deals with introduction of another source layer between a program with
OpenMP constructs and actual compilation. This approach translates OpenMP constructs
into an intermediate layer (NthLib is used) and the authors are advocating future flexibility
and ease of introduction of changes into the implementation in the intermediate layer.

Optimization of OpenMP code can be performed at a lower level of abstraction, even
targeting specific constructs. For example, in paper [11] authors present a way for automatic
transformation of code for optimization of arbitrarily-nested loop sequences with affine
dependencies. An Integer Linear Programming (ILP) formulation is used for finding good
tiling hyperplanes. The goal is optimization of locality and communication-minimized
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coarse-grained parallelization. Authors presented notable speed-ups over state-of-the-art
research and native compilers ranging from 1.6x up to over 10x, depending on the version
and benchmark. Altogether, significant gains were shown for all of the following codes:
1-d Jacobi, 2-d FDTD, 3-d Gauss-Seidel, LU decomposition and Matrix Vec Transpose.

In paper [12], the author presented a framework for automatic parallelization of
divide-and-conquer processing with OpenMP. The programmer needs to provide code
for key functions associated with the paradigm, i.e., data partitioning, computations
and result integration. Actual mapping of computations onto threads is handled by the
underlying runtime layer. The paper presents performance results for an application of
parallel adaptive quadrature integration with an irregular and imbalanced corresponding
processing tree. Obtained speed-ups using an Intel Xeon Phi system reach around 90
for parallelization of an irregular adaptive integration code which was compared to a
benchmark without thread management at various levels of the divide-and-conquer tree
which resulted in maximum speed-ups of 98.

OmpSs [13] (https://pm.bsc.es/ompss (accessed on 16 April 2021)) extends OpenMP
with new directives to support asynchronous parallelism and heterogeneity (like GPUs,
FPGAs). A target construct is available for heterogeneity implementation, data dependen-
cies can be defined between various tasks of the program. Functions can also be annotated
with the task construct. While OpenMP and OmpSs are similar, some differences exist
(https://pm.bsc.es/ftp/ompss/doc/user-guide/faq-openmp-vs-ompss.html (accessed
on 16 April 2021)). Specifically, in OmpSs, that uses #pragma omp directives, one creates
work using #pragma omp task or #pragma omp for and the program already starts with
a team of threads out of which one executes the main function. #pragma omp parallel
is ignored. For the for loop, a compiler creates a task which will create internally sev-
eral more tasks out of which each implements some part of the iteration space of the
corresponding parallel loop. OmpSs has been an OpenMP forerunner for some of the
features [14,15]. Recent paper [16] presents an architecture and a solution that extends the
OmpSs@FPGA environment with the possibility for the tasks offloaded to FPGA to create
and synchronize nested tasks without the need to involve the host. OmpSs-2, following
its specification (https://pm.bsc.es/ftp/ompss-2/doc/spec (accessed on 16 April 2021)),
extends the tasking model of OmpSs/OpenMP so that both task nesting and fine-grained
dependencies across different nesting levels are supported. It uses #pragma oss constructs.
Important features include, in particular: nested dependency domain connection, early
release of dependencies, weak dependencies, native offload API task Pause/Resume API. It
should be noted that the latest OpenMP standard also allows tasking as well as offloading
to external devices such as Intel Xeon Phi or GPUs [2].

Paper [17] presents PLASMA—the Parallel Linear Algebra Software for Multicore
Architectures—a version which is an OpenMP task based implementation adopting a tile-
based approach to storage, along with algorithms that operate on tiles and use OpenMP for
dynamic scheduling based on tasks with dependencies and priorities. Detailed assessment
of the software performance is presented in the paper using three platforms with 2 × Intel
Xeon CPU E5-2650 v3 CPUs at 2.3 GHz, Intel Xeon Phi 7250 and 2 × IBM POWER8 CPUs at
3.5 GHz, respectively, using gcc compared to MKL (for Intel) and ESSL (for IBM). PLASMA
resulted in better performance for algorithms suited for its tile type approach such as LDLT

factorization as well as QR factorization in the case of tall and skinny matrices.
In [18] authors presented parts of the first prototype of sLaSs library with auto tunable

implementations of operations for linear algebra. They used OmpSs with its task based
programming model and features such as weak dependencies and regions with the final
clause. They benchmarked their solution using a supercomputer featuring nodes with
2 sockets with Intel Xeon Platinum 8160 CPUs, with 24 cores and 48 logical processors.
Results are shown for TRSM for th original LASs, sLaSs and PLASMA, MKL and ATLAS, for
NPGETRF for LASs, sLaSs and MKL and for NPGESV for LASs and sLaSs demonstrating
improvement of the proposed solution of about 18% compared to LASs.
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2.2. Parallelization of Master–Slave with OpenMP

master–slave can be thought of as a paradigm to enable parallelization of processing
among independently working slaves that receive input data chunks from the master and
return results to the master.

OpenMP by itself offers ways of implementing the master–slave paradigm, in particu-
lar using:

1. #pragma omp parallel along with #pragma omp master directives or
#pragma omp parallel with distinguishing master and slave codes based on thread ids.

2. #pragma omp parallel with threads fetching tasks in a critical section, a counter can
be used to iterate over available tasks. In [19], it is called an all slave model.

3. Tasking with the #pragma omp task directive.
4. Assignment of work through dynamic scheduling of independent iterations of a

for loop.

In [19], the author presented virtually identical and almost perfectly linear speed-up
of the all slave model and the (dynamic,1) loop distribution for the Mandelbrot application
on 8 processors. In our case, we provide extended analysis of more implementations and
many more CPU cores.

In work [20], authors proposed a way to extend OpenMP for master–slave programs
that can be executed on top of a cluster of multiprocessors. A source-to-source translator
translates programs that use an extended version of OpenMP into versions with calls
to their runtime library. OpenMP’s API is proposed to be extended with #pragma domp
parallel taskq for initialization of a work queue and #pragma domp task for starting
tasks as well as #pragma domp function for specification of MPI description for the ar-
guments of a function. The authors presented performance results for applications such
as computing Fibonacci numbers as well as embarrassingly parallel examples such as
generation of Gaussian random deviates and Synthetic Matrix Addition showing very
good scalability with configurations up to 4 × 2 and 8 × 1 (processes × threads). More
interesting in the context of this paper were results for MAND which is a master–slave
application that computes the Mandelbrot set for a 2-d image of size 512 × 512 pixels.
Speed-up on an SMP machine for the best 1 × 4 configuration (4 CPUs) amounted to 3.72
while on a cluster of machines (8 CPUs) was 6.4, with a task stealing mechanism.

OpenMP will typically be used for parallelization within cluster nodes and integrated
with MPI at a higher level for parallelization of master–slave computations among cluster
nodes [1,21]. Such a technique should yield better performance in a cluster with multi-
core CPUs than an MPI only approach in which several processes are used as slaves as
opposed to threads within a process communicating with MPI. Furthermore, overlapping
communication and computations can be used for earlier sending out data packets by the
master for hiding slave idle times. Such a hybrid MPI/OpenMP scheme has been further
extended in terms of dynamic behavior and malleability (ability to adapt to a changing
number of processors) in [22]. Specifically, the authors have implemented a solution and
investigated MPI’s support in terms of needed features for an extended and dynamic
master/slave scheme. A specific implementation was used which is called WaterGAP that
computes current and future water availability worldwide. It partitions the tested global
region in basins of various sizes which are forwarded to slaves for independent (fro other
slaves) processing. Speed-up is limited by processing of the slave that takes the maximum
of slaves’ times. In order to deal with load imbalance, dynamic arrival of slaves has been
adopted. The master assigns the tasks by size, from the largest task. Good allocation results
in large basins being allocated to a process with many (powerful) processors, smaller basins
to a process with fewer (weaker) processors. If a more powerful (in the aforementioned
sense) slave arrives, the system can reassign a large basin. Furthermore, slave processes
can dynamically split into either processes or threads for parallelization. The authors have
concluded that MPI-2 provides needed support for these features apart from a scenario of
sudden withdrawal of slaves in the context of proper finalization of an MPI application.
No numerical results have been presented though.
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In the case of OpenMP, implementations of master–slave and the producer–consumer
pattern might share some elements. A buffer could be (but does not have to be) used for
passing data between the master and slaves and is naturally used in producer–consumer
implementations. In master–slave, the master would typically manage several data chunks
ready to be distributed among slaves while in producer–consumer producer or producers
will typically add one data chunk at a time to a buffer. Furthermore, in the producer–
consumer pattern consumers do not return results to the producer(s). In the producer–
consumer model we typically consider one or more producers and one or more consumers
of data chunks. Data chunk production and consuming rates/speeds might differ, in which
case a limited capacity buffer is used into which producer(s) inserts() data and consumer(s)
fetches() data from for processing.

Book [1] contains three implementations of the master–slave paradigm in OpenMP.
These include the designated-master, integrated-master and tasking, also considered in this
work. Research presented in this paper extends directly those OpenMP implementations.
Specifically, the paper extends the implementations with the dynamic-for version, as
well as versions overlapping merging and data generation—tasking2 and dynamic-for2.
Additionally, tests within this paper are run for a variety of thread affinity configurations,
for various compute intensities as well as on four multi-core CPU models, of modern
generations, including Kaby Lake, Coffee Lake, Broadwell and Skylake.

There have been several works focused on optimization of tasking in OpenMP that,
as previously mentioned, can be used for implementation of master–slave. Specifically,
in paper [23], authors proposed extensions of the tasking and related constructs with
dependencies produce and consume which creates a multi-producer multi-consumer queue
that is associated with a list item. Such a queue can be reused if it already exists. The life
time of such a queue is linked to the life time of a parallel region that encompasses the
construct. Such a construct can then be used for implementation of the master–slave model
as well. In paper [24], the authors proposed an automatic correction algorithm meant for
the OpenMP tasking model. It automatically generates correct task clauses and inserts
appropriate task synchronization to maintain data dependence relationships. Authors of
paper [25] show that when using OpenMP’s tasks for stencil type of computations, when
tasks are generated with #pragma omp task for a block of a 3D space, significant gains in
performance are possible by adding block objects to locality queues from which a given
thread executing a task dequeues blocks using an optimized policy.

3. Motivations, Application Model and Implementations

It should be emphasized that since the master–slave processing paradigm is wide-
spread and at the same time multi-core CPUs are present in practically all desktops and
workstations/cluster nodes thus it is important to investigate various implementations and
determine preferred settings for such scenarios. At the same time, the processor families
tested in this work are in fact representatives of the new generations CPUs in their respec-
tive CPU lines. The contribution of this work is experimental assessment of performance
of proposed master–slave codes using OpenMP directives and library calls, compiled with
gcc and -fopenmp flag for representative desktop and workstation systems with multicore
CPUs listed in Table 1.

The model analyzed in this paper distinguishes the following conceptual steps, that
are repeated:

1. Master generates a predefined number of data chunks from a data source if there is
still data to be fetched from the data source.

2. Data chunks are distributed among slaves for parallel processing.
3. Results of individually processed data chunks are provided to the master for integra-

tion into a global result.

It should be noted that this model, assuming that the buffer size is smaller than the
size of total input data, differs from a model in which all input data is generated at once by
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the master. It might be especially well suited to processing, e.g., data from streams such as
from the network, sensors or devices such as cameras, microphones etc.

3.1. Implementations of the Master–Slave Pattern with OpenMP

The OpenMP-based implementations of the analyzed master–slave model described
in Section 3 and used for benchmarking are as follows:

1. designated-master (Figure 1)—direct implementation of master–slave in which a
separate thread is performing the master’s tasks of input data packet generation as
well as data merging upon filling in the output buffer. The other launched threads
perform slaves’ tasks.

2. integrated-master (Figure 2)—modified implementation of the designated-master
code. Master’s tasks are moved to within a slave thread. Specifically, if a consumer
thread has inserted the last result into the result buffer, it merges the results into a
global shared result, clears its space and generates new data packets into the input
buffer. If the buffer was large enough to contain all input data, such implementation
would be similar to the all slave implementation shown in [19].

3. tasking (Figure 3)—code using the tasking construct. Within a region in which
threads operate in parallel (created with #pragma omp parallel), one of the threads
generates input data packets and launches tasks (in a loop) each of which is assigned
processing of one data packet. These are assigned to the aforementioned threads.
Upon completion of processing of all the assigned tasks, results are merged by the
one designated thread, new input data is generated and the procedure is repeated.

4. tasking2—this version is an evolution of tasking. It potentially allows overlapping
of generation of new data into the buffer and merging of latest results into the final
result by the thread that launched computational tasks in version tasking. The only
difference compared to the tasking version is that data generation is executed using
#pragma omp task.

5. dynamic-for (Figure 4)—this version is similar to the tasking one with the exception
that instead of tasks, in each iteration of the loop a function processing a given input
data packet is launched. Parallelization of the for loop is performed with #pragma
omp for with a dynamic chunk 1 size scheduling clause. Upon completion, output is
merged, new input data is generated and the procedure is repeated.

6. dynamic-for2 (Figure 5)—this version is an evolution of dynamic-for. It allows over-
lapping of generation of new data into the buffer and merging of latest results into the
final result through assignment of both operations to threads with various ids (such
as 0 and 4 in the listing). It should be noted that ids of these threads can be controlled
in order to make sure that these are threads running on different physical cores as
was the case for the two systems tested in the following experiments.

For test purposes, all implementations used the buffer of 512 elements which is a
multiple of the numbers of logical processors.
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1 ( . . . )
2 omp_init_lock (& input lock ) ;
3 omp_init_lock (& outputlock ) ;
4 / / f i r s t l y g e n e r a t e BUFFERSIZE d a t a chunks o f i n p u t d a t a
5 las tgenera tedcount=generate_new_input ( input ) ;
6 i n i t _ f i n a l _ o u t p u t (& f i n a l o u t p u t ) ;
7 #pragma omp p a r a l l e l p r i v a t e ( threadnumber , i ) shared ( work , input , output , f ina loutput

, current inputindex , currentoutputcount , l as tgenera tedcount ) num_threads (
threadnum )

8 {
9 threadnumber=omp_get_thread_num ( ) ;

10 i f ( threadnumber ==0) { / / m a s t e r
11 long processedcount =0; / / s h o u l d f i n a l l y r e a c h CHUNKCOUNT
12 long merged =0;
13 while ( processedcount <CHUNKCOUNT) {
14 omp_set_lock(& outputlock ) ;
15 i f ( currentoutputcount==las tgenera tedcount ) {
16 / / p r o c e s s a l l a v a i l a b l e r e s u l t s
17 for ( i =0 ; i < las tgenera tedcount ; i ++)
18 merge(& f ina loutput ,&( output [ i ] ) ) ;
19 processedcount+=las tgenera tedcount ;
20 currentoutputcount =0; merged =1;
21 }
22 omp_unset_lock(& outputlock ) ;
23 omp_set_lock(& input lock ) ;
24 i f ( ( current inputindex >=las tgenera tedcount ) && ( merged ) ) { / / g e n e r a t e new i n p u t

d a t a i f t h e l a s t r e s u l t s have been merged
25 i f ( processedcount <CHUNKCOUNT) {
26 las tgenera tedcount=generate_new_input ( input ) ;
27 current input index =0; merged =0;
28 }
29 }
30 omp_unset_lock(& input lock ) ;
31 }
32 #pragma omp atomic wri te
33 work=0; / / make s l a v e s f i n i s h
34 } e lse { / / s l a v e
35 i n t processdata ;
36 t_output r e s u l t ;
37 long myinputindex ;
38 do {
39 processdata =0;
40 omp_set_lock(& input lock ) ;
41 myinputindex=current input index ;
42 i f ( current inputindex <las tgenera tedcount ) {
43 current input index ++; processdata =1;
44 }
45 omp_unset_lock(& input lock ) ;
46 i f ( processdata ) {
47 / / now p r o c e s s t h e i n p u t d a t a chunk
48 r e s u l t =process (&( input [ myinputindex ] ) ) ;
49 / / s t o r e t h e r e s u l t in t h e o u t p ut b u f f e r
50 omp_set_lock(& outputlock ) ;
51 i f ( currentoutputcount <BUFFERSIZE ) {
52 output [ currentoutputcount ]= r e s u l t ;
53 currentoutputcount ++;
54 }
55 omp_unset_lock(& outputlock ) ;
56 }
57 #pragma omp atomic read
58 processdata=work ;
59 } while ( processdata ) ;
60 }
61 }
62 p r i n t _ f i n a l _ o u t p u t (& f i n a l o u t p u t ) ;
63 ( . . . )

Figure 1. designated-master implementationFigure 1. Designated-master implementation.
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1 ( . . . )
2 omp_init_lock (& inputoutputlock ) ;
3 / / f i r s t l y g e n e r a t e BUFFERSIZE d a t a chunks o f i n p u t d a t a
4 las tgenera tedcount=generate_new_input ( input ) ;
5 i n i t _ f i n a l _ o u t p u t (& f i n a l o u t p u t ) ;
6 #pragma omp p a r a l l e l p r i v a t e ( i ) shared ( input , output , f ina loutput , current inputindex

, currentoutputcount , las tgeneratedcount , processedcount ) num_threads ( threadnum )
7 {
8 / / e a c h t h r e a d a c t s a s a s l a v e
9 i n t processdata ;

10 t_output r e s u l t ;
11 long myinputindex ;
12 i n t f i n i s h ;
13 do {
14 processdata =0;
15 f i n i s h =0;
16 omp_set_lock(& inputoutputlock ) ;
17 i f ( processedcount <CHUNKCOUNT) {
18 myinputindex=current input index ;
19 i f ( current inputindex <las tgenera tedcount ) {
20 current input index ++;
21 processdata =1;
22 }
23 } e lse f i n i s h =1;
24 omp_unset_lock(& inputoutputlock ) ;
25
26 i f ( processdata ) {
27 / / now p r o c e s s t h e i n p u t d a t a chunk
28 r e s u l t =process (&( input [ myinputindex ] ) ) ;
29 / / s t o r e t h e r e s u l t in t h e o u t p u t b u f f e r
30 omp_set_lock(& inputoutputlock ) ;
31 i f ( currentoutputcount <BUFFERSIZE ) {
32 output [ currentoutputcount ]= r e s u l t ;
33 currentoutputcount ++;
34 }
35 i f ( currentoutputcount==las tgenera tedcount ) { / / p r o c e s s a l l a v a i l a b l e r e s u l t s
36 for ( i =0 ; i < las tgenera tedcount ; i ++)
37 merge(& f ina loutput ,&( output [ i ] ) ) ;
38 processedcount+=las tgenera tedcount ;
39 currentoutputcount =0;
40
41 i f ( processedcount <CHUNKCOUNT) {
42 las tgenera tedcount=generate_new_input ( input ) ;
43 current input index =0;
44 }
45 }
46 omp_unset_lock(& inputoutputlock ) ;
47 }
48 } while ( ! f i n i s h ) ;
49 }
50 p r i n t _ f i n a l _ o u t p u t (& f i n a l o u t p u t ) ;
51 ( . . . )

Figure 2. integrated-master implementationFigure 2. Integrated-master implementation.
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1 ( . . . )
2 i n i t _ f i n a l _ o u t p u t (& f i n a l o u t p u t ) ;
3 #pragma omp p a r a l l e l p r i v a t e ( i , myinputindex ) shared ( input , output , f ina loutput ,

l as tgenera tedcount ) num_threads ( threadnum )
4 {
5 #pragma omp s i n g l e
6 {
7 long processedcount =0;
8 do {
9 las tgenera tedcount=generate_new_input ( input ) ;

10 / / now c r e a t e t a s k s t h a t w i l l d e a l wi th d a t a p a c k e t s
11 for ( myinputindex =0; myinputindex<las tgenera tedcount ; myinputindex ++)
12 {
13 #pragma omp task f i r s t p r i v a t e ( myinputindex ) shared ( input , output )
14 {
15 / / now e a c h t a s k i s p r o c e s s e d i n d e p e n d e n t l y and can s t o r e i t s r e s u l t i n t o

an a p p r o p r i a t e b u f f e r
16 output [ myinputindex ]= process (&( input [ myinputindex ] ) ) ;
17 }
18 }
19 / / wa i t f o r t a s k s
20 #pragma omp taskwai t
21 / / now merge r e s u l t s
22 for ( i =0 ; i < las tgenera tedcount ; i ++)
23 merge(& f ina loutput ,&( output [ i ] ) ) ;
24 processedcount+=las tgenera tedcount ;
25 } while ( processedcount <CHUNKCOUNT) ;
26 }
27 }
28 p r i n t _ f i n a l _ o u t p u t (& f i n a l o u t p u t ) ;
29 ( . . . )

Figure 3. tasking implementationFigure 3. Tasking implementation.Electronics 2021, 1, 0 10 of 21

1 ( . . . )
2 i n i t _ f i n a l _ o u t p u t (& f i n a l o u t p u t ) ;
3 i n t work=1;
4 #pragma omp p a r a l l e l p r i v a t e ( i , myinputindex ) shared ( work , input , output , f ina loutput

, l as tgenera tedcount ) num_threads ( threadnum )
5 {
6 long processedcount =0;
7 i n t processdata =1;
8 do {
9 #pragma omp master

10 {
11 las tgenera tedcount=generate_new_input ( input ) ;
12 processedcount+=las tgenera tedcount ;
13 / / ma s t e r c h e c k s i f t h e r e i s more d a t a t o p r o c e s s
14 i f ( processedcount >=CHUNKCOUNT) {
15 processdata =0;
16 #pragma omp atomic wri te
17 work=0; / / make s l a v e s f i n i s h
18 }
19 }
20 #pragma omp b a r r i e r
21 / / now s l a v e s can r e a d t h e t e r m i n a t i o n f l a g
22 #pragma omp atomic read
23 processdata=work ;
24 #pragma omp for schedule ( dynamic , 1 )
25 / / now c r e a t e t a s k s t h a t w i l l d e a l wi th d a t a p a c k e t s
26 for ( myinputindex =0; myinputindex<las tgenera tedcount ; myinputindex ++)
27 {
28 output [ myinputindex ]= process (&( input [ myinputindex ] ) ) ;
29 }
30 #pragma omp master
31 {
32 / / now merge r e s u l t s
33 for ( i =0 ; i < las tgenera tedcount ; i ++)
34 merge(& f ina loutput ,&( output [ i ] ) ) ;
35 }
36 } while ( processdata ) ;
37 }
38 p r i n t _ f i n a l _ o u t p u t (& f i n a l o u t p u t ) ;
39 ( . . . )

Figure 4. dynamic-for implementationFigure 4. Dynamic-for implementation.
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1 ( . . . )
2 i n i t _ f i n a l _ o u t p u t (& f i n a l o u t p u t ) ;
3 i n t work =1;
4 #pragma omp p a r a l l e l p r i v a t e ( i , myinputindex ) shared ( work , input , output , f ina loutput

, l as tgenera tedcount ) num_threads ( threadnum )
5 {
6 long processedcount =0;
7 i n t processdata =1;
8 i n t mythreadid=omp_get_thread_num ( ) ;
9 long lastgeneratedcounttemp =0;

10 i f ( mythreadid ==0)
11 {
12 las tgenera tedcount=generate_new_input ( input ) ;
13 processedcount+=las tgenera tedcount ;
14 / / ma s t e r c h e c k s i f t h e r e i s more d a t a t o p r o c e s s
15 i f ( processedcount >=CHUNKCOUNT) {
16 processdata =0;
17 #pragma omp atomic wri te
18 work =0; / / make s l a v e s f i n i s h
19 }
20
21 }
22 #pragma omp b a r r i e r
23 do {
24 lastgeneratedcounttemp=las tgenera tedcount ;
25 #pragma omp b a r r i e r
26 / / now s l a v e s can r e a d t h e t e r m i n a t i o n f l a g
27 #pragma omp atomic read
28 processdata=work ;
29 #pragma omp for schedule ( dynamic , 1 )
30 / / now c r e a t e t a s k s t h a t w i l l d e a l wi th d a t a p a c k e t s
31 for ( myinputindex =0; myinputindex<las tgenera tedcount ; myinputindex ++)
32 {
33 output [ myinputindex ]= process (&( input [ myinputindex ] ) ) ;
34 }
35 i f ( mythreadid ==0) {
36 i f ( processdata ) { / / g e n e r a t e new d a t a on ly i f t h i s i s not t h e l a s t i t e r a t i o n
37 las tgenera tedcount=generate_new_input ( input ) ;
38 processedcount+=las tgenera tedcount ;
39 / / ma s t e r c h e c k s i f t h e r e i s more d a t a t o p r o c e s s
40 i f ( processedcount >=CHUNKCOUNT) {
41 #pragma omp atomic wri te
42 work =0; / / make s l a v e s f i n i s h
43 }
44 }
45 }
46 e lse i f ( mythreadid ==4) {
47 / / now merge r e s u l t s
48 for ( i =0 ; i <lastgeneratedcounttemp ; i ++)
49 merge(& f ina loutput ,&( output [ i ] ) ) ;
50 }
51 } while ( processdata ) ;
52 }
53 p r i n t _ f i n a l _ o u t p u t (& f i n a l o u t p u t ) ;
54 ( . . . )

Figure 5. dynamic-for2 implementation

4. Experiments
4.1. Parametrized irregular testbed applications

The following two applications are irregular in nature which results in various ex-
ecution times per data chunk and subsequently exploits the dynamic load balancing
capabilities of the tested master-slave implementations.

4.1.1. Parallel adaptive quadrature numerical integration

The first, compute-intensive, application, is numerical integration of any given func-
tion. For benchmarking, integration of f (x) = x · sin2(x2) was run over the [0,100] range.
The range was partitioned into 100000 subranges which were regarded as data chunks

Figure 5. Dynamic-for2 implementation.

4. Experiments
4.1. Parametrized Irregular Testbed Applications

The following two applications are irregular in nature which results in various ex-
ecution times per data chunk and subsequently exploits the dynamic load balancing
capabilities of the tested master–slave implementations.

4.1.1. Parallel Adaptive Quadrature Numerical Integration

The first, compute-intensive, application, is numerical integration of any given function.
For benchmarking, integration of f (x) = x · sin2(x2) was run over the [0, 100] range. The
range was partitioned into 100,000 subranges which were regarded as data chunks in the
processing scheme. Each subrange was then integrated (by a slave) by using the following
adaptive quadrature [26] and recursive technique for a given range [a, b] being considered:

1. if the area of triangle (a, f (a)), (b, f (b)), ( a+b
2 , f ( a+b

2 )) is smaller than
10−k/partitioning coefficient (k=18) then the sum of areas of two trapezoids
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(a, 0), ( a+b
2 , 0), ( a+b

2 , f ( a+b
2 )), (a, f (a)) and ( a+b

2 , 0), (b, 0), (b, f (b)), ( a+b
2 ,

f ( a+b
2 )) is returned as a result,

2. otherwise, recursive partitioning into two subranges (a, a+b
2 ) and ( a+b

2 , b) is per-
formed and the aforementioned procedure is repeated for each of these until the
condition is met.

This way increasing the partitioning coefficient increases accuracy of computations
and consequently increases the compute to synchronization ratio. Furthermore, this appli-
cation does not require large size memory and is not memory bound.

4.1.2. Parallel Image Recognition

In contrast to the previous application, parallel image recognition was used as a
benchmark that requires much memory and frequent memory reads. Specifically, the goal
of the application is to search for at least one occurrence of a template (sized TEMPLATEX-
SIZExTEMPLATEYSIZE in pixels) within an image (sized IMAGEXSIZExIMAGEYSIZE).

In this case, the initial image is partitioned and within each chunk, a part of the initial
image of size (TEMPLATEXSIZE + BLOCKXSIZE)x
(TEMPLATEYSIZE + BLOCKYSIZE) is searched for occurrence of the template. In the
actual implementation values of IMAGEXSIZE = IMAGEYSIZE = 20,000, BLOCKXSIZE =
BLOCKYSIZE = 20, TEMPLATEXSIZE =TEMPLATEYSIZE = 500 in pixels were used.

The image was initialized with every third row and every third column having pixels
not matching the template. This results in earlier termination of search for template, also
depending on the starting search location in the initial image which results in various
search times per chunk.

In the case of this application a compute coefficient reflects how many passes over the
initial image are performed. In actual use cases it might correspond to scanning slightly
updated images in a series (e.g., satellite images or images of location taken with a drone)
for objects. On the other hand, it allows to simulate scenarios of various relative compute
to memory access and synchronization overheads for various systems.

4.2. Testbed Environment and Methodology of Tests

Experiments were performed on two systems typical of a modern desktop and work-
station systems with specifications outlined in Table 1.

Table 1. Testbed configurations.

Testbed 1 2

CPUs Intel(R) Core(TM) i7-7700 CPU 3.60 GHz
Kaby Lake, 8 MB cache

2 × Intel(R) Xeon(R) CPU E5-2620 v4 2.10
GHz Broadwell, 20 MB cache per CPU

CPUs— total number of physical/logical
processors 4/8 16/32

System memory size (RAM) [GB] 16 GB 128 GB

Operating system Ubuntu 18.04.1 LTS Ubuntu 20.04.1 LTS

Compiler/version gcc version 9.3.0 (Ubuntu
9.3.0-11ubuntu0 18.04.1),

gcc version 9.3.0 (Ubuntu
9.3.0-17ubuntu1 20.04),

The following combinations of tests were performed: {code implementation} × {range
of thread counts} × {affinity setting} × {partitioning coefficients: 1, 8, 32}. The range of
thread counts tested depends on the implementation and varied as follows, based on pre-
liminary tests that identified the most interesting values based on most promising execu-
tion times, where npl means the number of logical processors: for designated-master these
were npl/2, 1 + npl/2, npl and 1 + npl, for all other versions the following were tested:
npl/4, npl/2, npl and 2 · npl. Thread affinity settings were imposed with environment
variables OMP_PLACES and OMP_PROC_BIND [27,28]. Specifically, the following combinations
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were tested independently: default (no additional affinity settings) marked with default,
OMP_PROC_BIND=false which turns off thread affinity (marked in results as noprocbind),
OMP_PLACES=cores and OMP_PROC_BIND=close marked with corclose, OMP_PLACES=cores
and OMP_PROC_BIND=spread marked with corspread, OMP_PLACES=threads and OMP_PROC_
BIND=close marked with thrclose, OMP_ PLACES=sockets without setting OMP_PROC_BIND
marked with sockets which defaults to true if OMP_PLACES is set for gcc (https://gcc.
gnu.org/onlinedocs/gcc-9.3.0/libgomp/OMP_005fPROC_005fBIND.html (accessed on
16 April 2021)). If OMP_PROC_BIND equals true then behavior is implementation defined
and thus the above concrete settings were tested.In the experiments the code was tested
with compilation flags -O3 and also -O3 -march=native. Best values are reported for each
configuration, an average value out of 20 runs is presented along with corresponding
standard deviation.

4.3. Results

Since all combinations of tested configurations resulted in a very large number of
execution times, we present best results as follows. For each partitioning coefficient
separately for numerical integration and compute coefficient for image recognition and for
each code implementation 3 best results with a configuration description are presented in
Tables 2 and 3 for numerical integration as well as in Tables 4 and 5 for image recognition,
along with the standard deviation computed from the results. Consequently, it is possible to
identify how code versions compare to each other and how configurations affect execution
times.

Additionally, for the coefficients, execution times and corresponding standard deviation
values are shown for various numbers of threads. These are presented in Figures 6 and 7 for
numerical integration as well as in Figures 8 and 9 for image recognition.

Table 2. Numerical integration—system 1 results.

Part.
Coeff. Version

Time 1/std
dev/Affinity/Number of
Threads

Time 2/std
dev/Affinity/Number of
Threads

Time 3/std
dev/Affinity/Number of
Threads

1

integrated-master 18.555/0.062/thrclose/8 18.610/0.068/corspread/8 18.641/0.086/corclose/8
designated-master 21.088/0.078/corspread/8 21.098/0.090/default/8 21.106/0.096/noprocbind/8
tasking 18.363/0.047/noprocbind/16 18.416/0.094/default/16 18.595/0.071/thrclose/8
tasking2 18.394/0.088/noprocbind/16 18.411/0.093/default/16 18.654/0.092/thrclose/8
dynamic-for 18.389/0.079/default/16 18.428/0.105/noprocbind/16 18.554/0.073/corclose/16
dynamic-for2 18.399/0.093/default/16 18.416/0.101/noprocbind/16 18.572/0.073/corclose/16

8

integrated-master 27.333/0.105/thrclose/8 27.341/0.106/default/8 27.373/0.084/noprocbind/8
designated-master 30.885/0.102/corspread/8 30.898/0.111/thrclose/8 30.956/0.130/noprocbind/8
tasking 26.844/0.081/default/16 26.898/0.146/noprocbind/16 27.325/0.116/default/8
tasking2 26.865/0.131/default/16 26.901/0.161/noprocbind/16 27.299/0.134/thrclose/8
dynamic-for 26.865/0.105/default/16 26.899/0.155/noprocbind/16 27.217/0.121/corspread/16
dynamic-for2 26.830/0.073/noprocbind/16 26.930/0.158/default/16 27.204/0.115/corclose/16

32

integrated-master 34.492/0.157/thrclose/8 34.526/0.137/corspread/8 34.555/0.202/corclose/8
designated-master 39.005/0.149/thrclose/8 39.015/0.199/corclose/8 39.039/0.174/default/8
tasking 33.816/0.151/noprocbind/16 33.889/0.333/default/16 34.356/0.149/noprocbind/8
tasking2 33.828/0.174/noprocbind/16 33.838/0.152/default/16 34.340/0.148/thrclose/8
dynamic-for 33.781/0.165/noprocbind/16 33.808/0.148/default/16 34.354/0.165/thrclose/16
dynamic-for2 33.826/0.180/noprocbind/16 33.860/0.155/default/16 34.260/0.127/corclose/16
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Table 3. Numerical integration—system 2 results.

Part.
Coeff. Version

Time 1/std
dev/Affinity/Number of
Threads

Time 2/std
dev/Affinity/Number of
Threads

Time 3/std
dev/Affinity/Number of
Threads

1

integrated-master 9.158/0.117/corspread/32 9.201/0.145/thrclose/32 9.214/0.217/sockets/32
designated-master 9.585/0.149/corclose/33 9.601/0.197/thrclose/33 9.638/0.122/default/33
tasking 8.567/0.017/default/64 8.585/0.027/noprocbind/64 8.664/0.025/sockets/64
tasking2 8.599/0.033/default/64 8.602/0.025/noprocbind/64 8.677/0.026/sockets/64
dynamic-for 8.584/0.025/noprocbind/64 8.584/0.032/default/64 8.649/0.024/sockets/64
dynamic-for2 8.570/0.024/default/64 8.573/0.021/noprocbind/64 8.636/0.024/sockets/64

8

integrated-master 13.718/0.127/corclose/32 13.748/0.182/corspread/32 13.770/0.111/default/32
designated-master 14.402/0.105/corclose/33 14.447/0.529/thrclose/32 14.481/0.677/sockets/32
tasking 12.724/0.034/default/64 12.727/0.040/noprocbind/64 12.776/0.038/sockets/64
tasking2 12.749/0.044/default/64 12.771/0.035/noprocbind/64 12.796/0.044/sockets/64
dynamic-for 12.792/0.041/default/64 12.796/0.033/noprocbind/64 12.845/0.031/sockets/64
dynamic-for2 12.731/0.031/default/64 12.753/0.040/noprocbind/64 12.811/0.047/sockets/64

32

integrated-master 17.471/0.080/corspread/32 17.486/0.105/corclose/32 17.551/0.152/thrclose/32
designated-master 18.359/0.839/corspread/32 18.423/0.447/default/32 18.431/0.205/corclose/33
tasking 16.116/0.051/noprocbind/64 16.120/0.055/sockets/64 16.175/0.420/default/64
tasking2 16.119/0.039/default/64 16.142/0.062/noprocbind/64 16.157/0.042/sockets/64
dynamic-for 16.181/0.049/default/64 16.210/0.043/noprocbind/64 16.228/0.046/sockets/64
dynamic-for2 16.116/0.025/default/64 16.119/0.043/noprocbind/64 16.152/0.038/sockets/64
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Table 3: Numerical integration – system 2 results

Part.
coeff.

Version Time 1 / std dev / affinity /
number of threads

Time 2 / std dev / affinity /
number of threads

Time 3 / std dev / affinity /
number of threads

1

integrated-
master

9.158/0.117/corspread/32 9.201/0.145/thrclose/32 9.214/0.217/sockets/32

designated-
master

9.585/0.149/corclose/33 9.601/0.197/thrclose/33 9.638/0.122/default/33

tasking 8.567/0.017/default/64 8.585/0.027/noprocbind/64 8.664/0.025/sockets/64
tasking2 8.599/0.033/default/64 8.602/0.025/noprocbind/64 8.677/0.026/sockets/64
dynamic-for 8.584/0.025/noprocbind/64 8.584/0.032/default/64 8.649/0.024/sockets/64
dynamic-for2 8.570/0.024/default/64 8.573/0.021/noprocbind/64 8.636/0.024/sockets/64

8

integrated-
master

13.718/0.127/corclose/32 13.748/0.182/corspread/32 13.770/0.111/default/32

designated-
master

14.402/0.105/corclose/33 14.447/0.529/thrclose/32 14.481/0.677/sockets/32

tasking 12.724/0.034/default/64 12.727/0.040/noprocbind/64 12.776/0.038/sockets/64
tasking2 12.749/0.044/default/64 12.771/0.035/noprocbind/64 12.796/0.044/sockets/64
dynamic-for 12.792/0.041/default/64 12.796/0.033/noprocbind/64 12.845/0.031/sockets/64
dynamic-for2 12.731/0.031/default/64 12.753/0.040/noprocbind/64 12.811/0.047/sockets/64

32

integrated-
master

17.471/0.080/corspread/32 17.486/0.105/corclose/32 17.551/0.152/thrclose/32

designated-
master

18.359/0.839/corspread/32 18.423/0.447/default/32 18.431/0.205/corclose/33

tasking 16.116/0.051/noprocbind/64 16.120/0.055/sockets/64 16.175/0.420/default/64
tasking2 16.119/0.039/default/64 16.142/0.062/noprocbind/64 16.157/0.042/sockets/64
dynamic-for 16.181/0.049/default/64 16.210/0.043/noprocbind/64 16.228/0.046/sockets/64
dynamic-for2 16.116/0.025/default/64 16.119/0.043/noprocbind/64 16.152/0.038/sockets/64
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Figure 6. Numerical integration – system 1 results for various numbers of threads

4.4. Observations and discussion376

4.4.1. Performance377

From the performance point of view, based on the results the following observations378

can be drawn and subsequently be generalized:379

1. For numerical integration, best implementations are tasking and dynamic-for2380

(or dynamic-for for system 1) with practically very similar results. These are381

very closely followed by tasking2 and dynamic-for and then by visibly slower382

integrated-master and designated-master.383

2. For image recognition best implementations for system 1 are dynamic-for2/dynamic-384

for and integrated-master with very similar results, followed by tasking, designated-385

master and tasking2. For system 2 best results are shown by dynamic-for2/dynamic-386

for and tasking2, followed by tasking and then by visibly slower integrated-master387

and designated-master.388

Figure 6. Numerical integration—system 1 results for various numbers of threads.
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Figure 7. Numerical integration – system 2 results for various numbers of threads

Table 4: Image recognition – system 1 results

Comp.
coeff.

Version Time 1 / std dev / affinity /
number of threads

Time 2 / std dev / affinity /
number of threads

Time 3 / std dev / affinity /
number of threads

2

integrated-
master

9.530/0.2104/noprocbind/8 9.561/0.173/default/8 9.578/0.183/thrclose/8

designated-
master

10.388/0.125/thrclose/8 10.434/0.179/noprocbind/8 10.450/0.222/default/8

tasking 9.576/0.175/default/8 9.622/0.166/noprocbind/8 9.697/0.188/corclose/8
tasking2 12.762/0.059/noprocbind/8 12.777/0.093/thrclose/8 12.782/0.081/default/8
dynamic-for 9.389/0.131/thrclose/8 9.392/0.156/noprocbind/8 9.403/0.151/default/8
dynamic-for2 9.378/0.135/thrclose/8 9.395/0.165/default/8 9.446/0.176/default/16

4

integrated-
master

18.406/0.297/noprocbind/8 18.428/0.329/corclose/8 18.492/0.352/default/8

designated-
master

20.175/0.196/corspread/8 20.219/0.305/default/8 20.404/0.367/noprocbind/8

tasking 18.505/0.428/noprocbind/8 18.514/0.308/thrclose/8 18.540/0.353/default/8
tasking2 24.935/0.154/noprocbind/8 24.940/0.150/corspread/8 24.967/0.244/thrclose/8
dynamic-for 18.332/0.264/noprocbind/8 18.332/0.475/default/8 18.405/0.442/corspread/8
dynamic-for2 18.282/0.229/corspread/8 18.318/0.407/thrclose/8 18.367/0.408/default/8

8

integrated-
master

35.995/0.678/noprocbind/8 36.096/0.726/default/8 36.282/0.612/thrclose/8

designated-
master

39.969/0.526/default/8 40.120/0.595/corclose/8 40.163/0.623/thrclose/8

tasking 36.223/0.718/noprocbind/8 36.307/0.691/corspread/8 36.372/0.664/thrclose/8
tasking2 49.418/0.225/default/8 49.438/0.411/noprocbind/8 49.444/0.326/corspread/8
dynamic-for 35.852/0.503/default/8 36.018/0.596/corspread/16 36.129/0.597/noprocbind/16
dynamic-for2 35.969/0.462/thrclose/8 36.099/0.669/default/8 36.190/0.675/noprocbind/8

3. For system 2 we can see benefits from overlapping for dynamic-for2 over dynamic-389

for for numerical integration and for both tasking2 over tasking as well as dynamic-390

for2 over dynamic-for for image recognition. The latter is expected as those config-391

urations operate on considerably larger data and memory access times constitute a392

larger part of the total execution time, compared to integration.393

4. For the compute intensive numerical integration example we see that best results394

were generally obtained for oversubscription i.e. for tasking* and dynamic-for* best395

numbers of threads were 64 rather than generally 32 for system 2 and 16 rather than396

8 for system 1. The former configurations apparently allow to mitigate idle time397

without the accumulated cost of memory access in the case of oversubscription.398

5. In terms of thread affinity, for the two applications best configurations were mea-399

sured for default/noprocbind for numerical integration for both systems and for400

thrclose/corspread for system 1 and sockets for system 2 for smaller compute401
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Table 4. Image recognition—system 1 results.

Comp. Coeff. Version
Time 1/std
dev/Affinity/Number of
Threads

Time 2/std
dev/Affinity/Number of
Threads

Time 3/std
dev/Affinity/Number of
Threads

2

integrated-master 9.530/0.2104/noprocbind/8 9.561/0.173/default/8 9.578/0.183/thrclose/8
designated-
master 10.388/0.125/thrclose/8 10.434/0.179/noprocbind/8 10.450/0.222/default/8
tasking 9.576/0.175/default/8 9.622/0.166/noprocbind/8 9.697/0.188/corclose/8
tasking2 12.762/0.059/noprocbind/8 12.777/0.093/thrclose/8 12.782/0.081/default/8
dynamic-for 9.389/0.131/thrclose/8 9.392/0.156/noprocbind/8 9.403/0.151/default/8
dynamic-for2 9.378/0.135/thrclose/8 9.395/0.165/default/8 9.446/0.176/default/16

4

integrated-master 18.406/0.297/noprocbind/8 18.428/0.329/corclose/8 18.492/0.352/default/8
designated-
master 20.175/0.196/corspread/8 20.219/0.305/default/8 20.404/0.367/noprocbind/8
tasking 18.505/0.428/noprocbind/8 18.514/0.308/thrclose/8 18.540/0.353/default/8
tasking2 24.935/0.154/noprocbind/8 24.940/0.150/corspread/8 24.967/0.244/thrclose/8
dynamic-for 18.332/0.264/noprocbind/8 18.332/0.475/default/8 18.405/0.442/corspread/8
dynamic-for2 18.282/0.229/corspread/8 18.318/0.407/thrclose/8 18.367/0.408/default/8

8

integrated-master 35.995/0.678/noprocbind/8 36.096/0.726/default/8 36.282/0.612/thrclose/8
designated-
master 39.969/0.526/default/8 40.120/0.595/corclose/8 40.163/0.623/thrclose/8
tasking 36.223/0.718/noprocbind/8 36.307/0.691/corspread/8 36.372/0.664/thrclose/8
tasking2 49.418/0.225/default/8 49.438/0.411/noprocbind/8 49.444/0.326/corspread/8
dynamic-for 35.852/0.503/default/8 36.018/0.596/corspread/16 36.129/0.597/noprocbind/16
dynamic-for2 35.969/0.462/thrclose/8 36.099/0.669/default/8 36.190/0.675/noprocbind/8
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Table 5. Image recognition—system 2 results.

Comp. Coeff. Version
Time 1/std
dev/Affinity/Number of
Threads

Time 2/std
dev/Affinity/Number of
Threads

Time 3/std
dev/Affinity/Number of
Threads

2

integrated-master 6.406/0.321/thrclose/32 6.880/0.918/default/32 7.002/0.738/corclose/32
designated-
master 6.283/0.311/sockets/33 6.644/0.364/noprocbind/33 6.697/0.463/default/33
tasking 6.164/0.145/corclose/64 6.223/0.181/corspread/64 6.249/0.117/sockets/64
tasking2 5.981/0.208/corclose/64 5.995/0.165/corspread/64 5.997/0.067/sockets/64
dynamic-for 5.705/0.208/default/32 5.722/0.105/sockets/64 5.739/0.088/corclose/32
dynamic-for2 5.682/0.072/sockets/32 5.697/0.055/noprocbind/32 5.709/0.099/default/32

4

integrated-master 11.583/0.564/noprocbind/32 11.661/0.218/sockets/32 11.716/0.420/corclose/32
designated-
master 11.808/1.572/corclose/32 11.857/1.097/sockets/33 11.878/0.803/noprocbind/33
tasking 10.848/0.085/default/32 10.889/0.128/corclose/32 10.903/0.142/sockets/32
tasking2 10.460/0.141/sockets/32 10.472/0.145/corspread/32 10.485/0.170/default/32
dynamic-for 10.625/0.140/default/32 10.629/0.133/corclose/32 10.635/0.161/noprocbind/32
dynamic-for2 10.585/0.150/sockets/32 10.598/0.100/noprocbind/32 10.610/0.140/default/32

8

integrated-master 20.556/0.620/noprocbind/32 20.595/0.708/corclose/32 20.738/0.861/corspread/32
designated-
master 20.705/0.836/default/33 20.924/4.271/sockets/32 21.224/0.987/noprocbind/33
tasking 20.014/0.197/sockets/32 20.054/0.201/corclose/32 20.076/0.235/corspread/32
tasking2 19.120/0.305/noprocbind/32 19.152/0.187/sockets/32 19.240/0.292/corspread/32
dynamic-for 19.758/0.193/default/32 19.825/0.210/thrclose/32 19.828/0.219/corspread/32
dynamic-for2 19.816/0.229/noprocbind/32 19.828/0.249/default/32 19.863/0.256/thrclose/32
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Figure 8. Image recognition – system 1 results for various numbers of threads

coefficients and default for system 1 and noprocbind for system 2 for compute402

coefficient 8.403

6. For image recognition, configurations generally show visibly larger standard devi-404

ation than for numerical integration, apparently due to memory access impact.405

7. We can notice that relative performance of the two systems is slightly different406

for the two applications. Taking into account best configurations, for numerical407

integration system 2’s times are approx. 46-48% of system 1’s times while for image408

recognition system 2’s times are approx. 53-61% of system 1’s times, depending on409

partitioning and compute coefficients.410

8. We can assess gain from HyperThreading for the two applications and the two411

systems (between 4 and 8 threads for system 1 and between 16 and 32 threads for412

system 2) as follows: for numerical integration and system 1 it is between 24.6%413

and 25.3% for the coefficients tested, for system 2 it is between 20.4% and 20.9%;414

Figure 8. Image recognition—system 1 results for various numbers of threads.
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Figure 9. Image recognition – system 2 results for various numbers of threads

for image recognition and system 1 it is between 10.9% and 11.3% and similarly for415

system 2 between 10.4% and 11.3%.416

9. We can see that ratios of best system 2 to system 1 times for image recognition are417

approx. 0.61 for coefficient 2, 0.57 for coefficient 4 and 0.53 for coefficient 8 which418

means that results for system 2 for this application get relatively better compared419

to system 1’s. As outlined in Table 1 system 2 has larger cache and for subsequent420

passes more data can reside in the cache. This behavior can also be seen when421

results for 8 threads are compared – for coefficients 2 and 4 system 1 gives shorter422

times but for coefficient 8 system 2 is faster.423

10. integrated-master is relatively better compared to the best configuration for system424

1 as opposed to system 2 – in this case, the master’s role can be taken by any thread,425

running on one of the 2 CPUs.426

The bottom line, taking into consideration the results, is that preferred configura-427

tions are tasking and dynamic-for based ones, with preferring thread oversubscription428

(2 threads per logical processor) for the compute intensive numerical integration and 1429

thread per logical processor for memory requiring image recognition. In terms of affinity,430

default/noprocbind are to be preferred for numerical integration for both systems and431

thrclose/corspread for system 1 and sockets for system 2 for smaller compute coefficients432

and default for system 1 and noprocbind for system 2 for compute coefficient 8.433

4.4.2. Ease of programming434

Apart from the performance of the proposed implementations, ease of programming435

can be assessed in terms of the following aspects:436

code length – the order from the shortest to the longest version of the code is as follows:437

tasking, dynamic-for, tasking2, integrated-master, dynamic-for2 and designated-438

master,439

the numbers of OpenMP directives and functions. In this case the versions can be440

characterized as follows:441

designated-master – 3 directives and 13 function calls,442

integrated-master – 1 directive and 6 function calls,443

tasking – 4 directives and 0 function calls,444

Figure 9. Image recognition—system 2 results for various numbers of threads.

4.4. Observations and Discussion
4.4.1. Performance

From the performance point of view, based on the results the following observations
can be drawn and subsequently be generalized:

1. For numerical integration, best implementations are tasking and dynamic-for2 (or
dynamic-for for system 1) with practically very similar results. These are very closely
followed by tasking2 and dynamic-for and then by visibly slower integrated-master
and designated-master.

2. For image recognition best implementations for system 1 are dynamic-for2/dynamic-
for and integrated-master with very similar results, followed by tasking, designated-
master and tasking2. For system 2, best results are shown by dynamic-for2/dynamic-
for and tasking2, followed by tasking and then by visibly slower integrated-master
and designated-master.

3. For system 2, we can see benefits from overlapping for dynamic-for2 over dynamic-for
for numerical integration and for both tasking2 over tasking, as well as dynamic-for2
over dynamic-for for image recognition. The latter is expected as those configurations
operate on considerably larger data and memory access times constitute a larger part
of the total execution time, compared to integration.

4. For the compute intensive numerical integration example we see that best results
were generally obtained for oversubscription, i.e., for tasking* and dynamic-for* best
numbers of threads were 64 rather than generally 32 for system 2 and 16 rather than
8 for system 1. The former configurations apparently allow to mitigate idle time
without the accumulated cost of memory access in the case of oversubscription.

5. In terms of thread affinity, for the two applications best configurations were measured
for default/noprocbind for numerical integration for both systems and for thrclose/-
corspread for system 1 and sockets for system 2 for smaller compute coefficients and
default for system 1 and noprocbind for system 2 for compute coefficient 8.

6. For image recognition, configurations generally show visibly larger standard devia-
tion than for numerical integration, apparently due to memory access impact.
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7. We can notice that relative performance of the two systems is slightly different for the
two applications. Taking into account best configurations, for numerical integration
system 2’s times are approx. 46–48% of system 1’s times while for image recognition
system 2’s times are approx. 53–61% of system 1’s times, depending on partitioning
and compute coefficients.

8. We can assess gain from HyperThreading for the two applications and the two systems
(between 4 and 8 threads for system 1 and between 16 and 32 threads for system 2) as
follows: for numerical integration and system 1 it is between 24.6% and 25.3% for the
coefficients tested, for system 2 it is between 20.4% and 20.9%; for image recognition
and system 1, it is between 10.9% and 11.3% and similarly for system 2 between 10.4%
and 11.3%.

9. We can see that ratios of best system 2 to system 1 times for image recognition are
approx. 0.61 for coefficient 2, 0.57 for coefficient 4 and 0.53 for coefficient 8 which
means that results for system 2 for this application get relatively better compared
to system 1’s. As outlined in Table 1, system 2 has larger cache and for subsequent
passes more data can reside in the cache. This behavior can also be seen when results
for 8 threads are compared—for coefficients 2 and 4 system 1 gives shorter times but
for coefficient 8 system 2 is faster.

10. integrated-master is relatively better compared to the best configuration for system 1
as opposed to system 2—in this case, the master’s role can be taken by any thread,
running on one of the 2 CPUs.

The bottom line, taking into consideration the results, is that preferred configura-
tions are tasking and dynamic-for based ones, with preferring thread oversubscription
(2 threads per logical processor) for the compute intensive numerical integration and 1
thread per logical processor for memory requiring image recognition. In terms of affinity,
default/noprocbind are to be preferred for numerical integration for both systems and
thrclose/corspread for system 1 and sockets for system 2 for smaller compute coefficients
and default for system 1 and noprocbind for system 2 for compute coefficient 8.

4.4.2. Ease of Programming

Apart from the performance of the proposed implementations, ease of programming
can be assessed in terms of the following aspects:

1. code length—the order from the shortest to the longest version of the code is as fol-
lows: tasking, dynamic-for, tasking2, integrated-master, dynamic-for2 and designated-
master,

2. the numbers of OpenMP directives and functions. In this case the versions can be
characterized as follows:

• designated-master—3 directives and 13 function calls;
• integrated-master—1 directive and 6 function calls;
• tasking—4 directives and 0 function calls;
• tasking2—6 directives and 0 function calls;
• dynamic-for—7 directives and 0 function calls;
• dynamic-for2—7 directives and 1 function call,

which makes tasking the most elegant and compact solution.
3. controlling synchronization—from the programmer’s point of view this seems more

problematic than the code length, specifically how many distinct thread codes’ points
need to synchronize explicitly in the code. In this case, the easiest code to manage is
tasking/tasking2 as synchronization of independently executed tasks is performed
in a single thread. It is followed by integrated-master which synchronizes with a
lock in two places and dynamic-for/dynamic-for2 which require thread synchroniza-
tion within #pragma omp parallel, specifically using atomics and designated-master
which uses two locks, each in two places. This aspect potentially indicates how prone
to errors each of these implementations can be for a programmer.
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5. Conclusions and Future Work

Within the paper, we compared six different implementations of the master–slave
paradigm in OpenMP and tested relative performances of these solutions using a typical
desktop system with 1 multi-core CPU—Intel i7 Kaby Lake and a workstation system with
2 multi-core CPUs—Intel Xeon E5 v4 Broadwell CPUs.

Tests were performed for irregular numerical integration and irregular image recog-
nition with three various compute intensities and for various thread affinities, compiled
with the popular gcc compiler. Best results were generally obtained for OpenMP task and
dynamic for based construct implementations, either with thread oversubscription (numer-
ical integration) or without oversubscription (image recognition) for the aforementioned
applications.

Future work includes investigation of aspects such as the impact of buffer length and
false sharing on the overall performance of the model, as well as performing tests using
other compilers and libraries. Furthermore, tests with a different compiler and OpenMP
library such as using, e.g., icc -openmp would be practical and interesting for their users.
Another research direction relates to consideration of potential performance-energy aspects
of implementations in the context of CPUs used and configurations, also when using power
capping as an extension of previous works in this field [29–31]. Finally, investigation of
performance of basic OpenMP constructs for modern multi-core systems and compilers is
of interest, as an extension of previous works such as [32,33].
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