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         The paper presents a method for determining the coordinates of stationary targets using 
passive sonar bearing. It identifies the requirements sonar movements must meet to keep the 
incorrect determination of coordinates to a minimum. It gives the relations, which help 
determine coordinate errors analytically. Numerical experiments are used to demonstrate the 
success of the analysis. 
 
 

INTRODUCTION 

Because passive sonars cannot determine distances, target determination can only be 
done by bearing. For stationary targets, the crossing points of the bearing lines are the target’s 
coordinates. With only a limited accuracy of the bearing, there is a degree of error in target 
coordinate determinations. How big the error is depends on the bearing accuracy of sonar 
coordinates at points where bearings are taken to identify their location versus the target. The 
article presents an algorithm for determining target location designed to minimise coordinate 
error. It is assumed that inaccurate bearing is the only source of error. Errors in sonar 
positioning were not taken into account. These are negligible given how accurate today’s 
satellite navigation systems are. 

The analysis is the first step in further exploring methods for passive sonar target 
determination. The next stages will involve cases of target steady rectilinear and curvilinear 
motion. In these more complicated cases, the stationary target hypothesis is the first and 
preliminary assumption to be verified in further tests. 



 

 

1. TARGET DETERMINATION PRINCIPLE 
We assume that the coordinates of a stationary target are x0,y0. The bearings are taken at n 

points. The sonar array’s coordinates at these points are X(n), Y(n). This is where the sonar determines 
the bearings of a stationary target marked as α(n). The sines and cosines of the bearings are equal to: 

)n(R/)]n(Yy[)]n(cos[ −=α 0 ,       (1) 

)n(R/)]n(Xx[)]n(sin[ −=α 0 ,       (2) 

where 
2

0
2

0 )]n(Yy[)]n(Xx[)n(R −+−= .      (3) 

By eliminating distance R(n) from the equations (1) and (2), after some simple transformations 
we get: 

)]n(X)]n(cos[)]n(Y)]n(sin[y)]n(sin[x)]n(cos[ α−α=α−α 00 .    (4) 

The above equation has two unknowns x0 and y0. To determine these we have to solve a system 
of two equations. By denoting: 
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which we write as: 

bxP =⋅ .          (7) 

The solution to this matrix equation is the vector x: 

bPx ⋅= −1
.         (8) 

The value of the determinant is equal to: 

2121 cssc|P| +−= ,         (9) 

hence: 

)sin(|P| 21 α−α=  .        (10) 

The system of equations (6) has one solution, if the determinant |P| is different from zero, i.e. 
when the bearings differ. So for a clear determination of the location of the target,  the sonar cannot 
move along a straight line passing through the target.  

The value of the determinant |P| changes from –1 to 1. At the extreme ends of this scale the 
bearings are perpendicular to one another. 

Where the differences between the bearings are small, the equation (6) is incorrectly 
conditioned. Conditioning can be denoted with the number u which is the quotient of the highest and 
lowest value of the singular value of sv matrix P , that is: 

minv

maxv

s
su =  .         (11) 
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The minimal value of the number u is equal to 1, when all bearings are perpendicular. Matrix P 
has this form: 
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=
11

11
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sincos

P
.        (12) 

Singular values are then equal and amount to 1, while the value of the determinant of matrix P 
is also equal to 1. For small differences between the bearings, the number u reaches very high values. 
As an example for α1=300 and α2=310 we have: 
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Singular values of the matrix are equal to svmax=1.4142 and svmin=0.0123, and the number u is 

equal to about 115. The value of the determinant of matrix P is in this case |P|= - 0.0175. 

Generally, the lower the absolute value of the determinant, the higher the number u. A  high u 
suggests that the system of equations is badly conditioned (6). As a consequence, the results of target 
coordinate determination are highly sensitive to errors in the bearings. 

To ensure the best accuracy of target location, the variances between the bearings should be 
significantly big. However this cannot be easily attained because of the ship’s maximal speed and its 
manoeuvring ability. We can leave the second factor aside temporarily and instead try to optimise the 
direction of the ship (sonar array). To that end let us assume that the ship’s maximal speed is V. Our 
task is to determine the ship’s direction (course β1), when the first bearing is α1. Let us select the 
system of coordinates so that the ship’s initial position is  X1=0 and Y1=0. After time T the ship’s 
coordinates are: 
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         (13) 

By using equations (1), (2) and (3) we get: 
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where R1 and R2 are the distances between the ship and target. 

The value of the determinant of matrix P with the elements identified above is equal to: 
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Following some elementary transformations of the above formula we get: 
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=α−β= .  (16) 

While it is possible to determine angle β1 at which the above determinant reaches its maximum, 
doing it would be superfluous because the determinant depends on two unknown target coordinates x0 
and y0. 1) If we assume that VT<<R1=(x0

2+y0
2)1/2 we can accept that the value of the denominator does 

                                                           
1) It can be proved that under the conditions the biggest variance between the bearings is when the ship’s course 
is perpendicular to the second bearing line. This criterion, however, is useless because at the first bearing point, 
the second bearing is not known. 
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not depend on the angle β1, and then we get the maximal absolute value of the determinant: 
0

11 90±α=β .         (17) 

that is when the ship’s course is perpendicular to the first bearing line. 

Equation (16) shows that the value of the determinant is then equal to: 

2R
VT|P| ±= .         (18) 

By using the above relation we can write formulas (14) as follows: 
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    (19) 

The results of numerical calculations shown in Fig. 1 confirm the above conclusions. The figure 
shows the relation between the number u (the degree of matrix P conditioning) in the function of angle 
β1 (course) under the assumption that the first bearing α1=450. The parameter is the relation VT/R1, i.e. 
the quotient of the distance covered by the ship from the first to the second bearing and the distance 
between the target and the ship as the first bearing was being taken. 

 

               
Fig.1. Relation between the degree of conditioning u and the ship’s course 

 

The graphs in Fig. 1 show that the conditioning of the system of equations (6) improves 
as the difference between the bearings becomes greater. The variance becomes greater as the 
distance to the bearing target becomes smaller and as the distance between bearing points 
covered by the ship becomes longer. In either situation it is best if the ship’s course is 
perpendicular to the first bearing line so that even relatively high deviations from the optimal 
course do not affect the degree of equation conditioning (6). 
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Once solved, the system of equations (6) will give the exact position of the stationary 
target provided that the bearings are perfectly accurate which in practice is obviously not 
possible. Because bearing accuracy is limited, target location is determined using a number of 
successive bearings which are taken as the sonar moves. The relations (18) can then be used 
for the pairs of successive bearings. The sonar will be moving perpendicularly to the current 
bearing. If sustained, this principle, however, will cause the sonar to continuously move away 
from the target. As a result, the differences between neighbouring bearings will decrease. As 
has been shown above this is known to worsen the degree of equation conditioning (6). 

After two bearings are taken, we can determine the target location and change how we 
define the sonar course. What we can do is determine a course perpendicular to the third 
bearing line which gives us a higher value of the determinant |P| and the best possible degree 
of conditioning of the system of equations (1.1.4). As we continue to follow this principle in 
further bearings, there is a systematic reduction in the distance between sonar and target. 
Consequently, this improves the degree of conditioning of the system of equations. Obviously 
for perfectly accurate bearings this procedure is not necessary at all, but may prove useful if 
the bearings have accidental errors in them. Fig. 2 shows the geometric situation for the 
modified principle of course setting. 

 
 

R4R3R2R1

X3,Y3
X4,Y4

VT 

VT

VT

y 

x

xo,yo 

-β3 

-β2 

-β1 

α4α3α2α1 

 
Fig.2. The geometric situation when the sonar is in motion 

 

The two triangles resulting from the bearings α1, α2 and α3 are identical because they 
are right triangles with two equilateral sides. Consequently, R3=R1 and α1-α2 = α2 -α3. As 
a result, formula (10) shows that the determinants of the system of equations for bearing one 
and two and two and three are equal. The degrees of conditioning u are also equal which 
means that equation conditioning is not getting worse for the next bearing. The course 
β2 perpendicular to the bearing line α3 is equal to: 
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The coordinates of the third point of bearing are described with these relations: 
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α−α+=α+=       (21) 

After the bearing is complete α3 we calculate the cosine and sinus of that bearing and 
obtain the following system of equations:  
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For a perfectly accurate bearing x02=x0  and  y02=y0, but it does not if errors occur. 

Starting from the third bearing, the following are the relations which describe the 
algorithm for determining target coordinates: 
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where n=2,3,4,5,.... 

In the first step we determine the distance Rn between target and sonar. In the second 
step we calculate the anticipated bearing αn+1, and in the third the ship’s course βn. When 
distance VT is covered, we take a target bearing and calculate the cosine cn+1 and sine sn+1 and 
bearing αn+1. We then determine the coordinates of the ship’s position at the point of the 
bearing. As the last step we solve the system of equations 6) and as a result obtain the target 
coordinates x0n and y0n. We increase the number n by one and start the procedure from step 
one. Note that the angle αn+1 determined in step two is the anticipated bearing and given the 
errors it is usually different from the measured angle αn+1 inserted in equations 4) and 5) 
and 6). 

Fig. 3 shows the sonar route determined using the above algorithm and Fig. 4 shows the 
values of the number u (the degree of matrix P conditioning) and the inverse of the 
determinant |P| for bearings taken at Fig. 3 points. As you can see, as the distance between 
sonar and target systematically decreases, the variance between the consecutive bearings 
increases improving equation conditioning (6). If the ship moves around the circle shown in 
Fig. 3, the degree of conditioning is constant and equal to about u(1). 
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Fig.3. Sonar route (points +) determined using the modified algorithm for 30 consecutive bearings 

(x0=10, y0=10, VT=3) 

 
Fig.4. Degree of conditioning u of matrix P and the inverse of the matrix determinant for 30 

consecutive bearings (x0=10, y0=10, VT=3) 

 

2. ERRORS IN DETERMINING TARGET COORDINATES  
The main cause of target estimation error in passive sonars is the poor accuracy of bearings. We 

are going to study the effects of bearing errors on target estimation using the above method. Let us 
assume that there is an error dαn in bearing αn and the distribution of error probability is equally 
distributed and ranges from αn-Dα  to αn+Dα. 2) This was introduced into algorithm (23) to 
numerically determine target coordinates for 1000 pairs of bearings. The results of the calculations for 
                                                           
2) The assumption that bearing error boundary values are constant is usually a simplification compared to the real 
conditions because sonar angular resolution deteriorates as the beam deflects from the perpendicular direction to 
the array. 
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two characteristic cases are given in Fig. 5 and Fig. 6.  
In both cases target coordinates are contained inside a quadrilateral figure. The  reason for the 

complicated shape of the figure is that the second bearing is taken at different points  depending on the 
current bearing error. The shape and size of the field defined by target coordinates with an error in 
them as shown above depend on the difference between the bearings. These in turn are the result of the 
distance covered by the sonar. You can observe a similar effect for a constant distance VT and 
changing boundary values of the bearing error Dα. 

                    
Fig.5. Target coordinates for bearing errors (VT=3, Dα=10, xo=10, y0=10,  

number of attempts - 1000) 

                    
Fig.6. Target coordinates for bearing errors. (VT=1, Dα=10, xo=10, y0=10,  

number of attempts - 1000) 
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To simplify the analysis we will assume that the figure is formed by the extreme bearing lines 
and the points at which they intersect as shown in Fig. 7. 

 

                            

 

y0 

x0

d24 

d13 
1

2

3

4

y 

x

 
Fig.7. Defining the figure containing target coordinates with bearing error 

 

We are now going to determine analytically the diagonal d13 and d24 shown in Fig. 7. To that 
end we need to find the vertex coordinates of the figure containing the calculated target coordinates. 
Using equations 4), 5) and 6) in formulas (23) or using the geometric relations, we can describe target 
coordinates with error in them as follows: 
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    (24) 

After inserting into the above equations the bearing error ±Dα we determine the 
coordinates of the vertexes and following the transformations we obtain: 

)sin(
VTDsind

nn 1
13 2

+α−α
α=       (25) 

Please note that the length of the diagonal depends on the difference between the bearings rather 
than on their values. This is understandable because the value of the bearing depends on the choice of 
coordinates which is something that cannot influence system parameters. 

The length of the second diagonal is expressed in a complex formula and one that is difficult to 
interpret. We will give a simplified formula under the assumption that the maximal bearing error Dα 
does not exceed one digit degrees. We then have: 
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The length of the diagonal increases quickly, when the bearing error is comparable to the 
differences in the bearings. In general the diagonal d24 is significantly longer than diagonal d12. If the 
maximal error in bearing is significantly lower than the differences in the bearings, length can be 
determined from this simple formula: 

)(sin
VTDsind

nn 1
224 4

+α−α
α≅ .       (27) 

The relation between the length of the diagonals is approximately equal to: 

)sin(d
d

nn 112

24 2

+α−α
≅ .        (28) 

The figures below illustrate the correctness of the assumption and the relations derived. Fig. 8 
shows the figure formed by coordinates determined from the above formulas. 

              
Fig.8. Quadrilateral containing target coordinates determined with bearing error.  

(VT=3, Dα=10, xo=10, y0=10) 

 

As anticipated the diagonals of the quadrangle differ in length. And so diagonal d13 
calculated from formula (25) is 0.4936 long. The second diagonal d24 is much longer and 
when determined from the exact geometric relations it is 4.6992 long and when calculated 
from the formula (27) it is 4.6662 long. As you can see, the differences between numerically  
and analytically determined values have no practical significance for the parameters adopted. 
The differences in diagonal length d24 become significant when the maximal bearing error Dα  
has several degrees. The direction of the diagonal d24 is close to the midperpendicular of the 
bearing triangle and the direction of the diagonal d13 is perpendicular to it. The diagonals 
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intersect practically at point x0,y0. The surface of the quadrangle shown in Fig. 8 is 1.16. If we 
assign a unit [km] to the abstract numbers, the area of the quadrangle is equal to 1.16 km2. 

With the parameters from Fig. 8, Fig. 9 shows a magnified picture of the target coordinates and 
the matching quadrilateral. The same figure shows the results of the numerical simulation based on 
1000 attempts assuming an equal distribution of bearing error probability density. 

               
Fig.9. Magnified area containing target coordinates from Fig.8 

 

The figure shows that practically all coordinates are contained in the quadrangle determined 
from the above formulas. As you can see, the distribution of coordinate probability density is not 
constant; there are more bearings in the lower part of the quadrilateral. As a result, the area’s centre of 
gravity corresponds to point x0,y0 despite the figure’s asymmetry towards diagonal d13. For multiple 
bearings, target coordinates are estimated by these coordinates: 
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         (29) 

The results of the numerical experiment are given in Fig. 9. The values determined using the 

above formulas are 0531100 .x =   and 0385100 .y = . What this proves is that mean values described 
with formulas (29) are the correct estimators of the coordinates of a stationary target. 

 

3. CONCLUSIONS 
Stationary targets as discussed in the article are a rare occurrence in hydrological practice. The 

purpose of this analysis has been mainly to identify the rules of procedure in real cases of rectilinear 
motion and other more complicated types of motion. In particular, we can look forward to promising 
results by basing the error minimisation method on sonar trajectory optimisation and studying the 
degree of conditioning of systems of equations. 
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