
Benchmarking overlapping communication and

computations with multiple streams for modern

GPUs

Pawel Czarnul

Faculty of Electronics, Telecommunications and Informatics

Gdansk University of Technology

Narutowicza 11/12, 80-233 Poland

Email: pczarnul@eti.pg.edu.pl

Abstract—The paper presents benchmarking a multi-stream
application processing a set of input data arrays. Tests have
been performed and execution times measured for various
numbers of streams and various compute intensities measured
as the ratio of kernel compute time and data transfer time.
As such, the application and benchmarking is representative of
frequently used operations such as vector weighted sum, matrix
multiplication etc. The paper shows benefits of using multiple
data streams for various compute intensities compared to one
stream, benchmarked for 4 GPUs: professional NVIDIA Tesla
V100, Tesla K20m, desktop GTX 1060 and mobile GeForce
940MX. Additionally, relative performances are shown for vari-
ous numbers of kernel computations for these GPUs.

I. INTRODUCTION

G
ENERAL purpose programming on GPUs (GPGPU) has

become an effective approach to parallelization of many

real world problems such as simulation of phenomena in 2D,

3D spaces, numerical computations, image and video process-

ing etc. Nowadays, NVIDIA CUDA, OpenCL and OpenACC

are the three dominant APIs for GPUs. Typically, several

techniques are used for optimization of such programs [1].

These include, described in CUDA terms: optimization of

memory referencing – global memory coalescing, proper

shared memory accesses with consideration of memory banks,

minimization of thread divergence, overlapping host to device

communication, kernel execution and device to host com-

munication, data prefetching from global memory to shared

memory using registers, loop unrolling [2], [3]. Such changes

can improve execution times significantly, at least several times

and are of high importance consequently. This paper analyzes

the impact of communication between the host and the device,

kernel execution and device to host communication using

various numbers of streams [4], for 4 various GPU models,

compared to a single stream implementation for an application

that can be regarded as a template useful for processing of sets

of input data packets such as operations on vectors or matrices

that are building blocks for many applications.

II. RELATED WORK

CUDA application and system models, numerous examples

and typical aforementioned optimizations are discussed in the

literature [2], [3], also from the point of view of power/perfor-

mance efficiency of different optimizations [5]. The particular

problem addressed in this work can be applied to any GPU

application that processes a sequence of independent input

data sets for which communication and computations can

be overlapped, for example a sequence of matrix multiplica-

tions, block-based matrix multiplication, computing similari-

ties among a large number of multidimensional vectors [6] etc.

Furthermore, results from this study can also be incorporated

into frameworks that can automatically parallelize computa-

tions performed in batches. This is the case, for instance, for

KernelHive [7] that can schedule computations and manage

input and output data and run kernels on compute devices such

as GPUs and CPUs. In this case the proposed technique allows

overlapping communication and computations. Furthermore,

the results for various compute intensities can be embedded

into GPU processing models, also incorporating overlapping

communication and computations, in modeling and simulation

systems such as MERPSYS [8].

The matter considered in this work was found important

before in the context of analysis of the optimal number

of streams for best execution time in terms of the number

of iterations of a loop within a kernel [9]. Analysis and a

model were proposed for older cards with CUDA compute

capabilities 1.x and 2.x. Practical tests, benchmarking were

performed for older GPUs such as GeForce GTX 280 and

GTX 480. Finally, an analytical formula was proposed to find

the best number of streams. Compared to those results, we

focus on current generation cards by benchmarking outcomes

experimentally, plot results as relative gains compared to a

single stream for various compute intensities showing minima

and compare performances of 4 modern GPUs of various types

– professional, desktop and mobile and not just desktop series

cards.

Using multiple streams can speed up computations on a

GPU or GPUs for several applications. For instance, in [10]

it was shown how a multithreaded application using multiple

streams increases the frame rate performance up to 78 frames

per second compared to 36 for a single stream implementa-

tion for the application of real-time ultrasound elastography

Communication Papers of the Federated Conference on

Computer Science and Information Systems pp. 105–110

DOI: 10.15439/2018F17

ISSN 2300-5963 ACSIS, Vol. 17

c©2018, PTI 105



suitable for diagnosis and treatment of cancer.

The authors of [11] investigated and modeled processing

on a GPU using streams in the context of implementing a

push based DBMS called G-SDMS. They focused especially

on runtime resource scheduling using streams. Tests and veri-

fication of scheduling algorithms were performed on NVIDIA

GTX680 and Tesla K40.

The authors of [12] showed how using multiple CUDA

streams with multiple OpenMP threads allows to improve

current state-of-the-art communication performance in an en-

vironment with multiple GPUs for a representative 3D stencil

example. Tests were performed on Tesla K20, GTX590 and

Tesla C2050.

In [13], the authors have presented a HCLOOC library

which enables to write data-parallel kernels for accelerators

including GPUs and overlapping host-accelerator data transfer

with kernel execution.

III. MODEL AND APPROACH

The application model considered in this work assumes

a sequence of independent operations performed on various

input data chunks. Specifically, each operation takes two data

chunks as input and produces one data chunk as its output.

This is depicted in Figure 1. Such a model, with such data

sizes, corresponds to frequently performed operations such

as vector weighted addition, matrix multiplication, blending

images etc. that only differ in the ratio of computations to

(host-to-device and device-to-host) communication times. In

this paper, this ratio is varied in order to assess benefits of

using more than 1 stream (2 and 4 tested) for various GPUs,

from professional through desktop up to mobile chips. More

streams allow overlapping communication and computations

and consequently minimization of application execution time.

Results allow to assess benefits of using multi-stream code

versions for a given type of card and compute intensity of the

analyzed application.

IV. EXPERIMENTS

A. Testbed environments

Within this work, we evaluate the proposed approach for

4 different, modern GPUs that differ in the target market

segments:

• server data center oriented Tesla V100 and K20m,

• desktop GeForce GTX 1060,

• mobile GeForce 940MX

as well as CUDA compute capabilities:

• 7.0 – Tesla V100,

• 6.1 – GeForce GTX 1060,

• 5.0 – GeForce 940MX,

• 3.5 – Tesla K20m.

This means that the tests can be considered as representative

both in terms of GPU types and compute capabilities. Specific

parameters of the GPUs are listed in Table I.

B. Tests and results

For each of the GPUs, tests were performed for various

compute intensities and various numbers of streams: 1, 2 and

4. Additionally, two ways of issue orders were tested for 2

and 4 streams:

• order A – n × { host to device copy, kernel launch, device

to host copy },

• order B – n × host to device copy, n × kernel launch, n

× device to host copy.

Compute intensity is defined as the ratio of kernel compute

time for each data packet divided by each data packet size,

measured for 1 stream. We should note that such an application

and various compute intensities are representative of many real

applications because:

1) There are many applications that take input data of

size 2n and produce output of size n. Typical exam-

ples include matrix multiplication and vector addition,

used in numerous codes. Notable applications using

such operations nowadays include, for example, machine

learning [14], weather pattern analsis [15], shortest path

problem etc. [16].

2) Various compute intensities correspond to various oper-

ations such as: higher for matrix multiplication, lower

for addition of vectors etc.

Figures 2 through 9 present comparison of execution times

obtained for various compute intensities for all the GPUs

tested, expressed both in terms of actual execution times as

well as relative times compared to 1 stream versions.

From the latter we can easily see distinct features that

impact potential uses of these results for actual applications:

• Except the 940MX, there is about 20-30% gain in using

2, 4 streams compared to 1 stream for small compute

intensities (<1).

• There is an increase of gain from using 2, 4 streams up

to around 50%, except the 940MX for which the gain

reaches around 35%.

• Gain from using 2, 4 streams diminishes as the compute

intensity grows.

• There is a gain from using 4 streams compared to 2

streams for compute intensities up to around 2-4. The

average gains are as follows for particular GPUs:

– Tesla K20m – 4.9%,

– GTX 1060 – 3.5%,

– GeForce 940MX – 3.3%,

– Tesla V100 – 4.5%.

Minima observed are due to the fact that too low and too

high compute intensities do not allow considerable overlapping

of communication and computations.

In terms of comparisons of isssue orders, Tables II and

III present differences between the aforementioned B and A

orders in percentages, out of minimums out of 5 runs for each

configuration. It can be seen that differences for all the GPU

tested do not exceed 1.4% which means that are negligible.

Configurations with the same number of computations in the
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D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Figure 1. Streams

Table I
GPUS – SPECIFICATIONS

GPU Tesla V100 Tesla K20m GTX 1060 GeForce 940MX (GDDR5)

Architecture name Volta Kepler Pascal Maxwell

CUDA compute capability 7.0 3.5 6.1 5.0

CUDA cores 5120 2496 1280 512

clock [MHz] 1455 706 1708 861

memory size [GB] 16 5 6 4

memory bus width [bits] 4096 320 192 64

memory bandwidth [GB/s] 900 208 192 40.1

power [W] 300 225 120 23
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Figure 2. Execution times on Tesla V100
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Figure 3. Relative execution times on Tesla V100

kernel (called relative computation count, not to be confused

with the assumed definition of compute intensity) were com-

pared against each other for all the GPUs tested.

Furthermore, we have compared relative performance per

data size of the GPUs, proportional to the inverse of applica-

tion execution time, for the same relative computation counts.

Performances were scaled against the smallest configuration

on the slowest GPU out of the tested ones – GeForce 940MX.

Results are shown in Figure 10. It can be seen that perfor-

mances reach their maximum for certain computation counts

and stay such for larger computation counts. Relative order of

the GPUs is, from the fastest: V100, GTX 1060, Tesla K20m

and 940MX. It should be noted that relative performances

may depend on the kernel code, which in this case computes

a weighted sum of two input vectors, with the number of

computations that can be defined for testing various compute

intensities.
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Figure 4. Execution times on Tesla K20m
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Figure 5. Relative execution times on Tesla K20m
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Figure 6. Execution times on GTX 1060
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Figure 7. Relative execution times on GTX 1060
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Figure 8. Execution times on GF 940MX
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Figure 9. Relative execution times on GF 940MX

V. SUMMARY AND FUTURE WORK

In the paper, we have compared execution times of an appli-

cation processing multiple data chunks on a GPU, in several

versions that differ in the number of CUDA streams used.

As expected using 2 and 4 streams brings benefits compared

to 1 stream. A non-trivial maximum of gains out of using

multiple streams has been shown in terms of various compute

intensities for 4 GPUs tested including the latest professional

NVIDIA V100, desktop GTX 1060, professional Tesla K20m

and mobile GeForce 940MX. It has been shown that gain

from using 4 streams compared to 2 streams is visible up to

compute intensities of around 2-4. Additionally, performances
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Table II
B VS A ISSUE ORDER DIFFERENCE [%] – 2 STREAMS

relative compu-
tation count

Tesla V100 Tesla K20m GTX 1060 GeForce 940MX

1.00 0.00 0.06 0.00 -0.04

2.00 -0.45 0.06 0.00 0.00

4.00 -0.11 0.13 -0.24 0.01

8.00 -0.34 0.37 -0.11 -0.35

16.00 -0.22 0.36 0.09 0.00

32.00 0.00 0.25 0.00 -0.01

64.00 0.11 0.12 -0.05 0.00

128.00 -0.10 0.05 -0.23 0.03

256.00 -0.07 0.04 -0.02 0.17

512.00 0.40 0.00 -0.04 0.12

1024.00 -0.22 0.01 -0.01 0.76

2048.00 0.14 0.01 0.00 0.56

Table III
B VS A ISSUE ORDER DIFFERENCE [%] – 4 STREAMS

relative compu-

tation count

Tesla V100 Tesla K20m GTX 1060 GeForce 940MX

1.00 0.00 -0.07 0.12 -0.06

2.00 0.00 -0.06 -0.12 -0.04

4.00 -0.12 -0.06 -0.12 -0.05

8.00 -0.23 -0.06 0.36 -0.13

16.00 0.12 0.49 -0.56 -1.39

32.00 0.23 0.22 0.33 -1.14

64.00 0.11 0.12 -0.14 -0.60

128.00 -0.11 0.05 -0.22 -0.15

256.00 -0.58 0.03 0.04 0.42

512.00 0.47 0.02 0.52 0.28

1024.00 -0.11 0.00 -0.52 0.29

2048.00 0.12 0.00 -0.04 0.73

of the cards were compared showing both relative values as

well as how performance per data size grows for each card

for growing numbers of computations in the GPU kernel.

Tesla V100 outperforms the other cards significantly reaching

its top performance for higher relative computation count.

It is interesting to see that the current desktop series GTX

1060 outperforms visibly a few years old professional series

Tesla K20m. The mobile GPU cannot match the other cards

in performance but its performance grows for larger relative

computation counts compared to Tesla K20m and GTX 1060.

In the future, the author plans to extend the set of ex-

periments in terms of the following: testing various kernel

codes on various devices and how these impact the ratio

of computations to communication, testing particular kernels

operating on data types of various precision as this impacts the

ratio of computations to communication and finally focusing

on performance/real power consumption for the tested GPUs.
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