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a b s t r a c t

We will be concerned with the problem of deformation of the lateral surface of a
column that rotates with constant speed around its axis of symmetry. The column
is filled by a gas and our goal is to investigate the deformation of the lateral surface
depending on the pressure of the gas.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In recent years, the study of mathematical models that arise in the context of concrete applications has
attracted a lot of attention and yielded new methods and tools for investigating different classes of nonlinear
ODEs and PDEs. Of particular interest are models that arise in continuum (nonlinear) mechanics of elastic
bodies and are subject to different external influences and loads. Let us mention here the well-known von
Karman model for the study of buckling of plates and shells. These equations have attracted a lot of interest
in the literature (see [1–6]).

There is a broad variety of problems arising in elastic mechanics that can be handled by bifurcation theory.
In the present paper we will discuss one of them. Namely, we will study the problem of deformation of the
lateral surface of a rotating gas column. We assume that the undeformed column is a cylinder of height H

nd radius R, where 2R is much greater than H and the lateral surface of the column is made of a flexible
einforced material. This means that the shape of the lateral surface of the column is determined by its
ransverse section. The column rotates with constant speed around its axis of symmetry. The interior of the
olumn is filled by a gas under pressure which is trapped inside the column. Namely, the column is placed
etween two parallel planes that obstruct the outflow of gas (see Fig. 1).
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Fig. 1. A model of a rotating gas column.

Equilibrium forms of the gas column are described in polar coordinates by 2π-periodic even Cm+2-smooth
positive functions r(θ), θ ∈ [0, 2π], m ∈ N ∪ {0}, satisfying the equation:

r(θ)√
r2(θ) + r′2(θ)

− r′′(θ)r2(θ) − r′2(θ)r(θ)
(r2(θ) + r′2(θ))3/2 − ω2mr(θ) + p = 0,

here ω is the rotation speed of the gas column, m is the mass of the gas column, and p is the pressure of gas
nside the column. r(θ) describes the transverse section of the cylinder. The derivation of this equation goes
ack to a lecture by our colleague prof. Andrei Borisovich, who passed away in 2008, given at our university
n 2005. We rewrite the mathematical model as an operator equation and, by using a bifurcation argument,
e prove that there exist smooth solutions of the problem which are not radially symmetric. In the last

wo decades many authors have studied different free boundary problems via bifurcation methods (see for
nstance [2,7–10]). A lot of important examples, both from a mathematical and an applicable point of view,
ave appeared in [11]. They come for example from biology, medicine, mechanics or chemistry.

The paper is organized as follows. In Section 2 we derive the equation of equilibrium forms of the gas
olumn following A. Borisovich, and we state the main theorem. Section 3 contains the proof of this result.

We hope that our manuscript will be useful not only for mathematicians working in differential equations
ut also appeal to physicists and engineers interested in nonlinear mechanics. The developed techniques go
eyond this particular model and are applicable to a broad variety of nonlinear models in mechanics that
ave similar properties.

. Mathematical model

Let Cm
e (2π), m ∈ N ∪ {0}, be the Banach space of 2π-periodic even Cm-smooth functions r(θ) with the

standard norm

∥r∥m =
m∑

k=0
max

θ∈[0,2π]
|r(k)(θ)|, (1)

where r(k)(θ) denotes the kth derivative of r(θ) for k = 1, 2, . . . , m and r(0)(θ) = r(θ).
The total energy of the gas column, denoted by Et, is defined to be

Et = E1 − E2 + E3,

where

• E1 stands for the potential energy,
• E2 is the kinetic energy,

• E3 denotes the energy of gas.

2
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The energy E1 is given by

E1(r) = α

∫ 2π

0

√
r2(θ) + r′2(θ)dθ, (2)

here α > 0 is an elasticity coefficient of the flexible material, r ∈ Cm+2
e (2π) describes the boundary of the

ross section of the gas column and therefore r(θ) > 0 for each θ ∈ [0, 2π]. There is no loss of generality in
ssuming that α = 1. The energy E2 is defined by

E2(r) =
∫ 2π

0

ω2m

2 r2(θ)dθ, (3)

here ω > 0 is the rotation speed of the gas column and m > 0 is the mass of the gas column. Finally, the
nergy E3 is defined as

E3(r, p) =
∫ 2π

0
pr(θ)dθ, (4)

where p > 0 is the pressure of gas. Hence the formula for the total energy has the form

Et(r, p) =
∫ 2π

0

(√
r2(θ) + r′2(θ) − ω2m

2 r2(θ) + pr(θ)
)

dθ. (5)

ividing (5) by 2π, we obtain a functional E given by

E(r, p) = 1
2π

∫ 2π

0

(√
r2(θ) + r′2(θ) − ω2m

2 r2(θ) + pr(θ)
)

dθ. (6)

n what follows we refer to E as the energy functional. It is easy to check that

E′
r(r, p)h = 1

2π

∫ 2π

0

(
r(θ)√

r2(θ) + r′2(θ)
− r′′(θ)r2(θ) − r′2(θ)r(θ)

(r2(θ) + r′2(θ))3/2

)
h(θ)dθ

− 1
2π

∫ 2π

0

(
ω2mr(θ) − p

)
h(θ)dθ

or each p ∈ R+, r, h ∈ Cm+2
e (2π) and r(θ) > 0 for θ ∈ [0, 2π]. Consequently, critical points of the functional

(i.e. equilibrium forms of the gas column) are 2π-periodic even Cm+2-smooth positive solutions of the
second order differential equation

r(θ)√
r2(θ) + r′2(θ)

− r′′(θ)r2(θ) − r′2(θ)r(θ)
(r2(θ) + r′2(θ))3/2 − ω2mr(θ) + p = 0. (7)

ubstituting r(θ) ≡ const into (7), we get an algebraic equation with a solution given by

Rp = 1 + p

mω2 , (8)

hich means that the cross section of the gas column is a circle of radius Rp. To sum up, for all m, ω ∈ R+

here exists a family of radially symmetric solutions of Eq. (7) given by

Γ = {(Rp, p) : p ∈ R+}, (9)

where R is defined by (8).
p

3
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3. Bifurcation problem

We now want to find all values of parameter p for which the radially symmetric solution Rp loses its
stability. For this purpose we will study bifurcation from the set of radial solutions with respect to p.

Definition 3.1. We call (Rp, p) ∈ Γ a bifurcation point of Eq. (7) with respect to the set Γ if there exists
branch of non-radially symmetric solutions (r(t), p(t)) of (7), depending on |t| < ε, with r(0) = Rp and

(0) = p.

Our theorem reads as follows.

heorem 3.1. Let pk = k2

4 − 1, k ≥ 4, k ∈ 2N. Then there exists a set of non-radially symmetric solutions
(r(t), p(t)) of Eq. (7), depending on |t| < ε, with

r(t)(θ) = Rp(t) + t ·
√

2 cos
(

kθ

2

)
+ o(|t|)

and r(0) = Rpk
, p(0) = pk. Hence (Rpk

, pk) ∈ Γ is a bifurcation point of (7).

Set
X = Cm+2

e (2π) and Y = Cm
e (2π) (m ∈ N ∪ {0}).

Fix p0 ∈ R+. Consider the point (Rp0 , p0) ∈ Γ . Let Xδ(0) and (R+)δ(p0) denote the balls in X and R+,
respectively, of radius δ around 0 and p0. For ϱ ∈ Xδ(0) and p ∈ (R+)δ(p0) we define

r(θ) = Rp + ϱ(θ), (10)

where θ ∈ [0, 2π] and Rp is given by (8). Substituting (10) into (6), we get the energy functional
Ê : Xδ(0) × (R+)δ(p0) → R given by

Ê(ϱ, p) = 1
2π

∫ 2π

0

(√
(Rp + ϱ)2 + ϱ′2 − mω2

2 (Rp + ϱ)2 + p(Rp + ϱ)
)

dθ. (11)

t is a simple matter to check that

Ê′
ϱ(ϱ, p)h = 1

2π

∫ 2π

0

(Rp + ϱ)√
(Rp + ϱ)2 + ϱ′2

hdθ

− 1
2π

∫ 2π

0

ϱ′′(Rp + ϱ)2 − ϱ′2(Rp + ϱ)

((Rp + ϱ)2 + ϱ′2)
3
2

hdθ (12)

− 1
2π

∫ 2π

0

(
mω2(Rp + ϱ) − p

)
hdθ.

et F̂ : Xδ(0) × (R+)δ(p0) → Y be given by

F̂ (ϱ, p) = (Rp + ϱ)√
(Rp + ϱ)2 + ϱ′2

− ϱ′′(Rp + ϱ)2 − ϱ′2(Rp + ϱ)

((Rp + ϱ)2 + ϱ′2)
3
2

− mω2(Rp + ϱ) + p.

Let us denote by ⟨·, ·⟩ the standard inner product in L2(2π), i.e.

⟨g, h⟩ = 1
2π

∫ 2π

0
g(θ)h(θ)dθ, g, h ∈ L2(2π).
4
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Proposition 3.2. The map F̂ is a variational gradient of the functional Ê with respect to the inner product
n L2(2π), i.e.

Ê′
ϱ(ϱ, p)h =

⟨
F̂ (ϱ, p), h

⟩
or all ϱ ∈ Xδ(0), h ∈ X and p ∈ R+.

We are interested in finding critical points of the energy functional Ê : Xδ(0) × (R+)δ(p0) → R subject
to constraints:

1
2π

∫ 2π

0
ϱ(θ) cos(θ)dθ = 0 (13)

nd
1

2π

∫ 2π

0
ϱ(θ)dθ = 0. (14)

or this purpose, we apply the method of Lagrange multipliers. Let us remark that the condition (13)
ogether with the evenest of ϱ(θ) excludes a displacement of the axis of symmetry of the cylinder. The
ondition (14) gives a loss of radial symmetry, i.e. it excludes ϱ(θ) = const. Finally, these conditions exclude
(θ) = cos(θ).

Define
ε(ϱ, λ1, λ2, p) = Ê(ϱ, p) + λ1

2π

∫ 2π

0
ϱ(θ) cos(θ)dθ + λ2

2π

∫ 2π

0
ϱ(θ)dθ ,

where ϱ ∈ Xδ(0), p ∈ (R+)δ(p0) and λ1, λ2 ∈ R are Lagrange multipliers.
Set x = (ϱ, λ1, λ2). We have

ε′
x(x, p)(h, h1, h2) = ε′

ϱ(x, p)h + ε′
λ1(x, p)h1 + ε′

λ2(x, p)h2 (15)

or all h ∈ Xδ(0) and h1, h2 ∈ R. An easy computation shows that

ε′
ϱ(ϱ, λ1, λ2, p)h = 1

2π

∫ 2π

0

(Rp + ϱ)√
(Rp + ϱ)2 + ϱ′2

hdθ

− 1
2π

∫ 2π

0

ϱ′′(Rp + ϱ)2 − ϱ′2(Rp + ϱ)

((Rp + ϱ)2 + ϱ′2)
3
2

hdθ (16)

− 1
2π

∫ 2π

0

(
mω2(Rp + ϱ) − p

)
hdθ

+ λ1

2π

∫ 2π

0
h cos(θ)dθ + λ2

2π

∫ 2π

0
hdθ,

ε′
λ1(ϱ, λ1, λ2, p)h1 = h1

2π

∫ 2π

0
ϱ(θ) cos(θ)dθ

and
ε′

λ2(ϱ, λ1, λ2, p)h2 = h2

2π

∫ 2π

0
ϱ(θ)dθ.

Let F : Xδ(0) × R2 × (R+)δ(p0) → Y × R2 be given by

F(x, p) =
(

F̃ (ϱ, λ1, λ2, p), 1
2π

∫ 2π

0
ϱ(θ) cos(θ)dθ,

1
2π

∫ 2π

0
ϱ(θ)dθ

)
, (17)

here
F̃ (ϱ, λ1, λ2, p) = F̂ (ϱ, p) + λ1 cos(θ) + λ2

and x = (ϱ, λ1, λ2).
5
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Lemma 3.3. For each p ∈ (R+)δ(p0), F(·, p) : Xδ(0) × R2 → Y × R2 is a variational gradient of
(·, p) : Xδ(0) × R2 → R with respect to the scalar product in the Hilbert space L2(2π) × R2, i.e. for all
= (ϱ, λ1, λ2) ∈ Xδ(0) × R2, h ∈ X and h1, h2 ∈ R,

ε′
x(x, p)(h, h1, h2) = ⟨F(x, p), (h, h1, h2)⟩ .

Let us now consider the equation
F(x, p) = 0. (18)

q. (18) possesses a trivial family of solutions

Γ̂ = {(0, p) ∈ X × R2 × R+ : p ∈ (R+)δ(p0)}.

Let us recall that (0, p0) ∈ Γ̂ is a bifurcation point of (18) if there exists a branch of nontrivial solutions
(x(t), p(t)) of (18), parametrized by |t| < ϵ, such that x(0) = 0, p(0) = p0.

Let us remark that we have reduced the problem of bifurcation from the set of radial solutions of (7) at
(Rp0 , p0) to the problem of bifurcation from trivial solutions of (18) at (0, p0). The task is now to prove the
theorem below.

Theorem 3.4. Let pk = k2

4 − 1 for k ≥ 4, k ∈ 2N. Then there is a smooth curve of nontrivial solutions
(x(t), p(t)) of (18), parametrized by |t| < ϵ, with

x(t)(θ) = (ϱ(t)(θ), λ1(t), λ2(t))

nd x(0) = (0, 0, 0), p(0) = pk, where

ϱ(t)(θ) = t ·
√

2 cos
(

kθ

2

)
+ o(|t|)

nd ϱ(0) = 0. Hence (0, pk) ∈ Γ̂ is a bifurcation point of Eq. (18).

3.1. Proof of Theorem 3.4

Our proof is based on the Crandall–Rabinowitz theorem on simple bifurcation points (see [12]). More
precisely, we will apply a gradient (variational) version of the Crandall–Rabinowitz theorem due to A.Yu.
Borisovich (see [1,3,13]). For the convenience of the reader we state this theorem. It will cause no confusion
if we use the same letters in the abstract result as in our issue.

Theorem 3.5. Assume that H is a Hilbert space with a scalar product (·, ·)H . Let X and Y be Banach spaces
continuously embedded in H. Suppose that a Cr-operator F : Xδ(0) × Rδ(τ0) → Y and a Cr+1-functional

: Xδ(0) × Rδ(τ0) → R, where r ≥ 2, satisfy the following conditions:

1. F (0, τ) = 0 for τ ∈ Rδ(τ0),
2. dim ker F ′

x(0, τ0) = 1, F ′
x(0, τ0)e = 0, (e, e)H = 1,

3. codim im F ′
x(0, τ0) = 1,

4. E′
x(x, τ)h = (F (x, τ), h)H for (x, τ) ∈ Xδ(0) × Rδ(τ0) and h ∈ X,

5. E′′′
xxτ (0, τ0)(e, e, 1) ̸= 0.

Then (0, τ0) is a bifurcation point of the equation

F (x, τ) = 0.
6
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In fact, the solution set of this equation in a certain neighborhood of (0, τ0) consists of the curve Γ1 =
(0, τ) : τ ∈ Rδ(τ0)} and a Cr−2-curve Γ2, intersecting only at (0, τ0). Moreover, if r ≥ 3, the curve Γ2
an be parametrized by a variable t, |t| ≤ ε, as

Γ2 = {(x(t), τ(t)) : t ∈ Rε(0)},

here x(0) = 0, τ(0) = τ0 and x′(0) = e.

The operator F is easily seen to be C∞-smooth. What is more, we check at once that

F ′
x(0, p)(h, h1, h2) =

(
F̃ ′

x(0, p)(h, h1, h2), 1
2π

∫ 2π

0
h(θ) cos(θ)dθ,

1
2π

∫ 2π

0
h(θ)dθ

)
,

here
F̃ ′

x(0, p)(h, h1, h2) = F̂ ′
ϱ(0, p)h + h1 cos(θ) + h2

and
F̂ ′

ϱ(0, p)h = − 1
Rp

h′′ − ω2mh

or p ∈ (R+)δ(p0) and h ∈ X, h1, h2 ∈ R.
Our goal now is to prove that F satisfies the assumptions of Theorem 3.5 for p0 = pk = k2

4 − 1, k ≥ 4,
k ∈ 2N.

Lemma 3.6. For each p ∈ (R+)δ(p0), F ′
x(0, p) : X × R2 → Y × R2 is a Fredholm map of index zero.

Proof. Fix p ∈ (R+)δ(p0). The map

F ′
x(0, p) : X × R2 → Y × R2

may be written as the sum

F ′
x(0, p)(h, h1, h2) = A(h, h1, h2) + B(h, h1, h2),

here A : X × R2 → Y × R2 and B : X × R2 → Y × R2 are defined as follows:

A(h, h1, h2) =
(

− 1
Rp

h′′, 0, 0
)

nd
B(h, h1, h2) =

(
−ω2mh + h1 cos(θ) + h2,

1
2π

∫ 2π

0
h(θ) cos(θ)dθ,

1
2π

∫ 2π

0
h(θ)dθ

)
.

o finish the proof it suffices to show that A is a Fredholm map of index 0, and B is completely continuous.
It is easily seen that A is a linear continuous map with

ker A =
{

(C, h1, h2) ∈ X × R2 : C, h1, h2 ∈ R
}

,

and so dim ker A = 3. Moreover, we can see that

Y × R2 = (Y1 ⊕ Y2) × R2,

here
Y2 ≈ imA =

{
(y, 0, 0) ∈ Y × R2 :

∫ 2π

0
y(θ)dθ = 0

}
,

nd Y ×R2 = ker A. Therefore codim imA = dim ker A = 3, which implies A is a Fredholm map of index 0.
1

7

http://mostwiedzy.pl


J. Janczewska and A. Zgorzelska Nonlinear Analysis: Real World Applications 62 (2021) 103386

s

S
n

S

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Now let us consider the map B. It is easy to check that B is linear and continuous. We prove that
B is completely continuous. Let {(hn, hn1, hn2)}∞

n=1 ⊂ X × R2 be a bounded sequence. We show that
{B(hn, hn1, hn2)}∞

n=1 ⊂ Y × R2 is relatively compact.
Let B = (B1, B2, B3) and {B1(hn, hn1, hn2)}∞

n=1 ⊂ Y .
It is sufficient to show that {B1(hn, hn1, hn2)}∞

n=1 is a sequence of uniformly bounded and equicontinuous
functions. By assumption there is M > 0 such that for all n ∈ N,

∥hn∥X ≤ M, |hn1| ≤ M, |hn2| ≤ M.

Therefore
∥B1(hn, hn1, hn2)∥Y ≤ ω2m∥hn∥Y + |hn1|∥ cos(·)∥Y + |hn2| ≤ (ω2m + 2)M.

Let θ1, θ2 ∈ [0, 2π] and n ∈ N. We have

| − ω2mhn(θ1) + hn1 cos(θ1) + hn2 − (−ω2mhn(θ2) + hn1 cos(θ2) + hn2)|
≤ ω2m|hn(θ1) − hn(θ2)| + |hn1 ∥ cos(θ1) − cos(θ2)|
≤ ω2m|h′

n(ξn
1,2) ∥ θ1 − θ2| + M |θ1 − θ2| ≤ (ω2m + 1)M |θ1 − θ2|.

As B2 : X × R2 → R and B3 : X × R2 → R transform bounded sets in X × R2 into bounded sets in R,
{B(hn, hn1, hn2)} is relatively compact, which completes the proof. □

In order to find critical values of bifurcation parameter we have to solve the equation

F ′
x(0, p)(h, h1, h2) = 0. (19)

This equation is equivalent to the following system of three equations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 1
Rp

h′′(θ) − ω2mh(θ) + h1 cos(θ) + h2 = 0,

1
2π

∫ 2π

0
h(θ) cos(θ)dθ = 0,

1
2π

∫ 2π

0
h(θ)dθ = 0,

(20)

where h ∈ X, h1, h2 ∈ R are unknowns. The evenest of h(θ) and the second and third equations of the
ystem (20) exclude h(θ) = const, h(θ) = cos(θ). Therefore

h(θ) =
∞∑

n=2
an cos (nθ). (21)

ubstituting (21) to the first equation of the system (20) and using linear independence of functions cos(nθ),
∈ N ∪ {0}, we conclude that h1 = 0, h2 = 0 and

− 1
Rp

h′′(θ) − ω2mh(θ) = 0.

Solving the latter we obtain

h(θ) = C cos(θ
√

p + 1), C ∈ R,
√

p + 1 ∈ N. (22)

ubstituting (22) to the second and third equation of (20) we get

p = pk = k2
− 1, k ≥ 4, k ∈ 2N,
4
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and hence
h(θ) = C cos

(
kθ

2

)
.

et ek(θ) =
(√

2 cos
(

kθ
2
)

, 0, 0
)

∈ X × R2. Then ⟨ek, ek⟩ = 1. By the above,

ker F ′
x(0, pk) =

{(
C cos

(
kθ

2

)
, 0, 0

)
: C ∈ R

}
= {Cek : C ∈ R} ,

and so
dim ker F ′

x(0, pk) = 1. (23)

rom Lemma 3.6 we conclude that
codim im F ′

x(0, pk) = 1. (24)

o finish the proof of Theorem 3.4 it is sufficient to show the lemma below.

emma 3.7. The functional ε : Xδ(0) × R2 × (R+)δ(pk) → R, k ≥ 4, k ∈ 2N, satisfies the condition

ε′′′
xxp(0, pk)ekek ̸= 0.

roof. By Lemma 3.3 we get

ε′
x(x, p)(h, h1, h2) = ⟨F(x, p), (h, h1, h2)⟩ ,

ence
ε′′

xx(x, p)(h, h1, h2)(g, g1, g2) = ⟨F ′
x(x, p)(h, h1, h2), (g, g1, g2)⟩ ,

nd so
ε′′′

xxp(x, p)(h, h1, h2)(g, g1, g2) =
⟨
F ′′

xp(x, p)(h, h1, h2), (g, g1, g2)
⟩

,

here x = (ϱ, λ1, λ2) ∈ Xδ(0) × R2, (h, h1, h2), (g, g1, g2) ∈ X × R2 and p ∈ (R+)δ(pk). Differentiating
′
x(0, p)(h, h1, h2) with respect to p we get

F ′′
xp(0, p)(h, h1, h2) =

(
mω2

(1 + p)2 h′′, 0, 0
)

,

inally, substituting (h, h1, h2) = (g, g1, g2) = ek and p = pk to the above, we have

ε′′′
xxp(0, 0, pk)ekek =

⟨
F ′′

xp(0, pk)ek, ek

⟩
= 1

2π

∫ 2π

0
−8mω2

k2 cos2
(

kθ

2

)
dθ

= −4mω2

k2 ̸= 0,

hich completes the proof of Lemma 3.7. □
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