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Abstract

We consider two-parameter bifurcation of equilibrium states of an elas-
tic rod on a deformable foundation. Our main theorem shows that bifur-
cation occurs if and only if the linearization of our problem has nontrivial
solutions. In fact our proof, based on the concept of the Brouwer degree,
gives more, namely that from each bifurcation point there branches off a
continuum of solutions.
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1 Introduction
Bifurcation theory is one of the most powerful tools in studying deformations of
elastic beams, plates and shells. Numerous works have been devoted to the study
of bifurcation in elasticity theory (see for instance [8], [12] and the references
therein).

A familiar example from beam theory is the problem of stability of an
isotropic elastic rod lying on a deformable foundation which is being compressed
by forces at the ends (see Fig. 1). For small forces the rod maintains its shape,
however, as the forces increase they reach a first critical value beyond which the
rod may buckle.

In this work, we consider mixed boundary conditions which are as follows.
The beam is free at the left end, and so it may move as in figure 2 below.
However, we require the shear force at the left end to vanish. At the right end,
we assume the beam to be simply supported.

As we will show later, equilibrium forms of the rod under these boundary
conditions satisfy the boundary value problem

x(4) + αx
′′

+ βx− f(x, x
′
, . . . , x(4)) = 0, in [−r, r],

x
′
(−r) = x

′′′
(−r) = 0,

x(r) = x
′′
(r) = 0,

(1)

where α is a parameter of the compressive force, β is a parameter of the elastic
foundation, and f is a nonlinear term which we define in (9) below. It follows
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Figure 1: An elastic beam on an elastic foundation

from the definition of f that for small forces the only solution of (1) is the trivial
one, i.e. x0(s) = 0, s ∈ [−r, r], which corresponds to the straight rod in our
bifurcation model.

However, as the forces increase the rod may buckle and it is desirable to
know for which positive parameter values (α, β) this might happen.

In order to answer this question, we associate with (1) the linear boundary
value problem 

x(4) + αx
′′

+ βx = 0, in [−r, r],
x

′
(−r) = x

′′′
(−r) = 0,

x(r) = x
′′
(r) = 0

(2)

and we denote by N(α, β) its space of solutions.
The main theorem of this paper shows that a necessary and sufficient con-

dition for bifurcation, and so for the possibility of a buckling of the rod, is that
dim N(α, β) 6= 0.

Let us point out that a similar model was investigated by A. Borisovich,
Yu. Morozov and Cz. Szymczak in [7], where the authors assumed that the
rod is simply supported at both ends. They proved the existence of simple
bifurcation points (meaning that dim N(α, β) = 1) by applying a variational
version of the Crandall-Rabinowitz theorem (compare Thm. 3.4 below). Later,
in [6], A. Borisovich and J. Dymkowska showed a corresponding result under
our boundary conditions, however, to the best of our knowledge the existence
of multiple bifurcation points in the solution set of (1) is new. Note that here
we prove even more, namely the existence of multiple branching points.
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Figure 2: A buckling of an elastic beam

Finally, let us mention that other models for buckling are described for
example in [1–5,9, 12].

Our paper is composed of three sections. In Section 2 we derive the equation
of equilibrium forms of the rod and state our main theorem. Section 3 is devoted
to the proof of this result.
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2 Mathematical model
In this section we derive the equation (1) of equilibrium forms of the rod by a
variational approach along the lines of [6]. The following formulas for E1 and
E3 are as in [6], but as a result of conversations with J.E. Sienkiewicz and Cz.
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Szymczak, the formula for E2 has been improved. The authors of [6] assumed
that the rod under the action of the compressing force became longer, and so
their assumption does not agree with experiments. Our refinement leads to a
different nonlinear term in the equation (1), however the system (2), obtained
by linearizing (1), is not changed.

Due to the fact that the work of A. Borisovich and J. Dymkowska contains
a mistake, and moreover, it appeared only in Polish and in a limited number of
copies, we do not restrict the discussion to explain the improvement, but for the
convenience of the reader we provide a detailed exposition of the mathematical
model.

The total potential energy Et of the system composed of the rod and the
foundation is equal to:

Et = E1 − E2 + E3,

where

• E1 is the energy of the compressed rod,

• E2 is the work of the compressing force,

• E3 is the energy of the Winkler foundation (i.e. of the springs).

The energy E1 is given by

E1(x) = EI

r∫
−r

κ2(s)
2

ds,

where

κ(s) =
x′′(s)

(1 + x′(s)2)
3
2

is the curvature of the rod at a point s ∈ [−r, r], E is Young’s modulus and I is
the moment of inertia of the cross section of the rod. The second energy E2 is
defined as

E2(x, λ) = λ

r∫
−r

(
1−

√
1− x′(s)2

)
ds,

where

r∫
−r

(
1−

√
1− x′(s)2

)
ds

is the horizontal displacement of the left end of the rod and λ > 0 is the value
of the compressing force. Finally, the energy E3 is defined by

E3(x, µ, ν) =

r∫
−r

U(x(s), µ, ν)ds,
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where

U(x, µ, ν) =
1
2
µx2 − 1

4
νx4 + o(x4)

is determined experimentally, and µ > 0 and ν > 0 are parameters of the elastic
foundation.

Expanding (1 + x)−3 and
√

1 + x as Maclaurin series, we get

1
(1 + x)3

= 1− 3x + 6x2 − 10x3 + o(x3) (3)

and

√
1 + x = 1 +

x

2
− x2

8
+

x3

16
+ o(x3), (4)

respectively. If we omit the terms of order higher than 4, we obtain

E1(x) ≈ EI

∫ r

−r

(
1
2
x′′(s)2 − 3

2
x′(s)2x′′(s)2

)
ds

and

E2(x, λ) ≈ λ

∫ r

−r

(
1
2
x′(s)2 +

1
8
x′(s)4

)
ds.

Hence the approximative formula for the total potential energy has the form

Et(x, λ, µ, ν) ≈EI

∫ r

−r

(
1
2
x′′(s)2 − 3

2
x′(s)2x′′(s)2

)
ds

− λ

∫ r

−r

(
1
2
x′(s)2 +

1
8
x′(s)4

)
ds

+
∫ r

−r

(
1
2
µx(s)2 − 1

4
νx(s)4

)
ds.

(5)

We now define

X = {x ∈ C4[−r, r] : x′(−r) = x′′′(−r) = 0, x(r) = x′′(r) = 0}

which is a Banach space with respect to the standard norm

‖x‖X =
4∑

k=0

max
s∈[−r,r]

|x(k)(s)|.

Note that the boundary conditions in the definition of X describe the behaviour
of the rod at its ends (see Fig. 2).

Setting

α =
λ

EI
, β =

µ

EI
, γ =

ν

EI
.

and dividing the formula (5) by 2rEI, we obtain a functional E : X × R3
+ → R

defined by
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E(x, α, β, γ) =
1
4r

∫ r

−r

(
x′′(s)2 − 3x′(s)2x′′(s)2

)
ds

− 1
4r

∫ r

−r

(
αx′(s)2 +

α

4
x′(s)4

)
ds

+
1
4r

∫ r

−r

(
βx(s)2 − γ

2
x(s)4

)
ds.

(6)

In what follows we refer to E as the energy functional, and we note for later
reference that its derivative with respect to the space variable x is

E′
x(x, α, β, γ)h =

1
2r

∫ r

−r

(
βx(s)− γx(s)3

)
h(s)ds

− 1
2r

∫ r

−r

(
αx′(s) +

α

2
x′(s)3 + 3x′(s)x′′(s)2

)
h′(s)ds

+
1
2r

∫ r

−r

(
x′′(s)− 3x′(s)2x′′(s)

)
h′′(s)ds

(7)

for all x, h ∈ X and α, β, γ ∈ R+. Let us now denote by Y the space C[−r, r]
with the standard norm

‖y‖Y = max
s∈[−r,r]

|y(s)|,

and let us consider the map F : X × R3
+ → Y defined by

F (x, α, β, γ) =x(4) + αx′′ + βx

− γx3 − 3x′′3 − 12x′x′′x′′′

− 3x′2
(
x(4) − α

2
x′′

)
.

(8)

If we set

f(x, x′, . . . , x(4)) = γx3 + 3x′′3 + 12x′x′′x′′′ + 3x′2
(
x(4) − α

2
x′′

)
(9)

for each x ∈ X, then the operator equation

F (x, α, β, γ) = 0 (10)

is equivalent to our previously introduced boundary value problem (1). Clearly,
the trivial function x0 ≡ 0 satisfies the equation (10) for all values of parameters
α, β and γ. We call the set Γ ⊂ X × R3

+ given by

Γ = {(0, α, β, γ) : α, β, γ ∈ R+}
the trivial family of solutions of the equation (10). Naturally, a solution of (10)
is said to be nontrivial if it does not belong to Γ.

An interesting phenomenon is when there is a ”branching” of the equation
(10) in correspondence with some value of the multiparameter (α, β, γ). This is
the object of bifurcation theory.
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Definition 2.1 A point (0, α0, β0, γ0) ∈ Γ is called a bifurcation point of (10)
if in every neighbourhood of it in X ×R3

+ there is a nontrivial solution of (10),
in other words, (0, α0, β0, γ0) belongs to the closure in X × R3

+ of the set of
nontrivial solutions of the equation (10).
In particular, a bifurcation point (0, α0, β0, γ0) ∈ Γ of the equation (10) is said
to be a branching point if there is a continuum (namely a closed connected set)
of nontrivial solutions of (10) which contains (0, α0, β0, γ0).

Integrating by parts in (7), we have

E′
x(x, α, β, γ)h =

1
2r

∫ r

−r

(
x(4)(s) + αx′′(s) + βx(s)

)
h(s)ds

− 1
2r

∫ r

−r

(
γx(s)3 + 3x′′(s)3 + 12x′(s)x′′(s)x′′′(s)

)
h(s)ds

− 1
2r

∫ r

−r

3x′(s)2
(
x(4)(s)− α

2
x′′(s)

)
h(s)ds.

(11)

If we denote by 〈·, ·〉 the standard inner product in L2(−r, r), i.e.

〈g, h〉 =
1
2r

∫ r

−r

g(s)h(s)ds, g, h ∈ L2(−r, r),

then

E′
x(x, α, β, γ)h = 〈F (x, α, β, γ), h〉 (12)

for all x, h ∈ X and α, β, γ ∈ R+. Therefore, we call F the variational gradient
of E, and we see from (12) that solutions of (10) are critical points of (6).

Differentiating the map F with respect to the space variable x at x0 ≡ 0 we
get

F ′
x(0, α, β, γ)h = h(4) + αh′′ + βh (13)

for every h ∈ X and α, β, γ ∈ R+, and so

N(α, β) = kerF ′
x(0, α, β, γ).

We can now state the main result of this paper.

Theorem 2.1 A point (0, α0, β0, γ0) ∈ Γ is a branching point of the equation
(10) if and only if dim N(α0, β0) 6= 0.

2

Our theorem extends Theorem 5.3.2 of [6], which states that dim N(α0, β0) 6=
0 is a necessary condition for bifurcation in the solution set of the equation (10)
at a point (0, α0, β0, γ0).

It is worth pointing out that the theorem shows that the parameter γ has
no influence on the occurrence of bifurcation.
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3 Proof of Theorem 2.1
In order to prove Theorem 2.1, we first discuss some properties of the nonlinear
map F .

Proposition 3.1 For all values of parameters α, β, γ ∈ R+ the linear operator
F ′

x(0, α, β, γ) : X → Y is Fredholm of index zero.

Proof. The linear operator A : C4[−r, r] → Y , Ah = h(4) is surjective and its
kernel consists of all polynomials of degree at most 3. Hence A is Fredholm of
index 4. As X has codimension 4 in C4[−r, r], the restriction of A to X is Fred-
holm of index 0 (cf. [10, Lemma XI.3.1]). Since the embeddings of C2[−r, r] and
C4[−r, r] into C[−r, r] are compact, it follows that F ′

x(0, α, β, γ) is a compact
perturbation of the restriction of A to X and so a Fredholm operator of index
zero.

2

The following proposition is an immediate consequence of the equality (12).

Proposition 3.2 For all α, β, γ ∈ R+ the map F ′
x(0, α, β, γ) : X → Y is self-

adjoint with respect to the inner product 〈·, ·〉, i.e.

〈F ′
x(0, α, β, γ)h, g〉 = 〈h, F ′

x(0, α, β, γ)g〉

for all h, g ∈ X.

2

We now denote by Z the set of all points (α, β) ∈ R2
+ satisfying the inequality

4β ≤ α2. Let us consider in Z the family of rays lm for m ∈ N given by

β = −cmα− c2
m,

where

cm = −
(π

r

)2
(

2m− 1
4

)2

. (14)

Theorem 3.3 ( [6]) For (α, β) ∈ R2
+ one of the following three cases hold:

(i) If the point (α, β) does not belong to any ray lm, then

dim N(α, β) = 0

and the linear boundary value problem (2) possesses only the trivial solu-
tion.

(ii) If the point (α, β) belongs to one and only one ray lm, then

dim N(α, β) = 1

and N(α, β) is generated by

em(s) = 2 cos
√
−cm(s + r).
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(iii) If the point (α, β) belongs to the intersection of two rays lm1 and lm2 then

dim N(α, β) = 2

and the two linearly independent functions

em1(s) = 2 cos
√
−cm1(s + r)

and
em2(s) = 2 cos

√
−cm2(s + r)

are a basis of N(α, β).

2

It follows from the implicit function theorem and Proposition 3.1 that there
is no bifurcation at points (0, α0, β0, γ0) ∈ Γ if dim N(α0, β0) = 0. Hence
Theorem 3.3 shows that bifurcation can only occur at multiparameters (α, β, γ)
where (α, β) ∈ lm for some m.

Now, the rest of the proof of Theorem 2.1 splits into two cases, where we
distinguish between simple and multiple branching points, i.e. whether the di-
mension of N(α, β) is 1 or greater.

Case 1.: Simple branching points.

In [6], A. Borisovich and J. Dymkowska proved the existence of bifurcation at
a point (0, α0, β0, γ0) ∈ Γ in the case dim N(α0, β0) = 1 by applying the key
function method due to Sapronov (see [13]).

For the convenience of the reader we present our own proof that is based on
a variational version of the Crandall-Rabinowitz theorem on simple bifurcation
points from [11], thus making our exposition self-contained.

It will cause no confusion if we use the same letters X, Y,Γ, F and E in the
abstract result as in our issue.

Theorem 3.4 (see [11]) Let X and Y be real Banach spaces that are contin-
uously embedded in a real Hilbert space H with inner product 〈·, ·〉.

Suppose that a Cr-smooth map F : X×R → Y and a Cr+1-smooth functional
E : X × R → R satisfy the conditions below:

(C1) F (0, p) = 0 for all p ∈ R,

(C2) dim kerF ′
x(0, p0) = 1,

(C3) codim im F ′
x(0, p0) = 1,

(C4) E′
x(x, p)h = 〈F (x, p), h〉 for all x, h ∈ X and p ∈ R,

(C5) E′′′
xxp(0, p0)(e, e, 1) 6= 0, where e ∈ X is such that F ′

x(0, p0)e = 0, 〈e, e〉 = 1.

Then the set of solutions of the equation

F (x, p) = 0

in a small neighbourhood of (0, p0) is composed of two curves: Γ and Λ, inter-
secting only at (0, p0), where Γ is the trivial branch
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Γ = {(0, p) ∈ X × R : p ∈ R},

and Λ is a Cr+1-smooth curve that can be parametrized for some δ > 0 as

Λ = {(x(t), p(t)) : t ∈ (−δ, δ)},

where x(0) = 0, p(0) = p0 and x′(0) = e.

2

Combining (12) with Proposition 3.1, the proof of Theorem 2.1 in the first
case will be completed by showing that at least one of the partial derivatives
E′′′

xxα(0, α0, β0, γ0)(em, em, 1) or E′′′
xxβ(0, α0, β0, γ0)(em, em, 1) is not trivial, whe-

re em is the function introduced in Theorem 3.3.
An easy computation shows that

E′′′
xxα(0, α0, β0, γ0)(em, em, 1) = −〈e′m, e′m〉 = cm < 0 (15)

and

E′′′
xxβ(0, α0, β0, γ0)(em, em, 1) = 〈em, em〉 = 1 > 0. (16)

By Theorem 3.4, (0, α0, β0, γ0) is a branching point of the equation (10) both
with respect to the parameter of compressive force α and with respect to the
parameter of the elastic foundation β. Moreover, the solution set of (10) in
a small neighbourhood of (0, α0, β0, γ0) contains the trivial family Γ and two
C∞-smooth curves Λ1, Λ2 of the form

Λ1 = {(x1(t), α(t)) : |t| < δ1} ⊂ X × R+ × {(β0, γ0)},

where x1(0) = 0, α(0) = α0, x′1(0) = em, and

Λ2 = {(x2(t), β(t)) : |t| < δ2} ⊂ X × R+ × {(α0, γ0)},

where x2(0) = 0, β(0) = β0, x′2(0) = em. Hence (0, α0, β0, γ0) is a branching
point.

Case 2.: Multiple branching points.

We now turn to multiple branching points.
Here the method based on the Crandall-Rabinowitz theorem does not work

anymore. In order to prove the existence of branching points also in this case,
we will make a finite-dimensional reduction of Lyapunov-Schmidt type.

Let α0, β0, γ0 ∈ R+ be such that

dim N(α0, β0) = 2,

and let em1 and em2 be the corresponding functions in Theorem 3.3. Since

(α0, β0) ∈ {(α, β) ∈ R2
+ : dim N(α, β) = 1},

we see that (0, α0, β0, γ0) is a bifurcation point, and we shall now show that it
is a branching point. We define a map G : X × R2 × R+ × R+ → Y by
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G(x, ξ, α, β) = F (x, α, β, γ0) +
2∑

i=1

(ξi − 〈x, emi
〉) emi

,

where x ∈ X, ξ = (ξ1, ξ2) ∈ R2 and α, β ∈ R+.
It is easily seen that

G′
x(0, 0, α0, β0)h = F ′

x(0, α0, β0, γ0)−
2∑

i=1

〈h, emi〉 emi ,

where h ∈ X, is an isomorphism of X onto Y .
By the implicit function theorem there exist open subsets U ⊂ X and S ⊂

R2 × R+ × R+ such that 0 ∈ U , (0, α0, β0) ∈ S, and the set

{(x, ξ, α, β) ∈ U × S : G(x, ξ, α, β) = 0}

is the graph of a smooth function x̃ : S → U satisfying x̃(0, α0, β0) = 0. More-
over, since G(0, 0, α, β) = 0 for all α, β ∈ R+, it follows that x̃(0, α, β) = 0 for
all (0, α, β) ∈ S.

We now introduce a function ϕ = (ϕ1, ϕ2) : S → R2 by

ϕi(ξ, α, β) = ξi − 〈x̃(ξ, α, β), emi〉 , i = 1, 2, (17)

and we note that ϕ is smooth and ϕ(0, α, β) = 0 for all (0, α, β) ∈ S.

Theorem 3.5 (see [11]) The point (0, α0, β0, γ0) ∈ X × R3
+ is a bifurcation

point (a branching point) of (10) if and only if the point (0, α0, β0) ∈ R2×R+×
R+ is a bifurcation point (a branching point) of the equation

ϕ(ξ, α, β) = 0. (18)

2

The rest of the argument is based on the concept of topological degree due
to Brouwer. To be more precise, we will apply a theorem of Krasnosielski, which
we recall for the convenience of the reader.

Theorem 3.6 (see [11]) If (0, λ0, β0) ∈ S is not a bifurcation point of equa-
tion (18) then there exist open sets V1 ⊂ R2 and V2 ⊂ R+ × R+ satisfying:

(i) (0, α0, β0) ∈ V1 × V2 ⊂ S.

(ii) For each open subset V ⊂ V1 such that 0 ∈ V and for all (α, β), (α̃, β̃) ∈ V2

the mappings ϕ(·, α, β) and ϕ(·, α̃, β̃) have no zeros on the boundary of V
and

deg(ϕ(·, α, β), V, 0) = deg(ϕ(·, α̃, β̃), V, 0). (19)

2

Here and subsequently, deg (ϕ(·, α, β), V, 0) stands for the Brouwer degree of
the map ϕ(·, α, β) on the set V with respect to 0.

We do not want to recapitulate degree theory here, however, let us point out
the important fact that in our case for each (α, β) ∈ V2 there is a neighbourhood
V ⊂ V1 of 0 such that
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deg (ϕ(·, α, β), V, 0) = sgn det[ϕ′ξ(0, α, β)].

We now proceed to show that (0, α0, β0) ∈ R2 × R+ × R+ is a branching
point of (18). It is well-known from bifurcation theory and degree theory that
it is sufficient to prove that the equality (19) does not hold.

Differentiating

G(x̃(ξ, α, β), ξ, α, β) = 0

with respect to ξ we get

F ′
x(x̃(ξ, α, β), α, β, γ0)

2∑
j=1

∂x̃

∂ξj
(ξ, α, β)tj +

2∑
j=1

tjemj

−
2∑

i=1

2∑
j=1

〈
∂x̃

∂ξj
(ξ, α, β)tj , emi

〉
emi

= 0,

for all t = (t1, t2) ∈ R2. Hence

F ′
x(0, α, β, γ0)

2∑
j=1

∂x̃

∂ξj
(0, α, β)tj +

2∑
j=1

tjemj

−
2∑

i=1

2∑
j=1

〈
∂x̃

∂ξj
(0, α, β)tj , emi

〉
emi

= 0,

(20)

and combining (20) and (8) we have

d4

ds4

2∑
j=1

∂x̃

∂ξj
(0, α, β)tj + α

d2

ds2

2∑
j=1

∂x̃

∂ξj
(0, α, β)tj + β

2∑
j=1

∂x̃

∂ξj
(0, α, β)tj

+
2∑

j=1

tjemj
−

2∑
i=1

2∑
j=1

〈
∂x̃

∂ξj
(0, α, β)tj , emi

〉
emi

= 0.

(21)

If we now substitute into t = (t1, t2) the vectors (1, 0) and (0, 1) subsequently,
we obtain

d4

ds4

∂x̃

∂ξj
(0, α, β) + α

d2

ds2

∂x̃

∂ξj
(0, α, β) + β

∂x̃

∂ξj
(0, α, β)

+ emj
−

2∑
i=1

〈
∂x̃

∂ξj
(0, α, β), emi

〉
emi

= 0
(22)

for j = 1, 2. Therefore
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〈
d4

ds4

∂x̃

∂ξj
(0, α, β), emk

〉
+

〈
α

d2

ds2

∂x̃

∂ξj
(0, α, β), emk

〉
+

〈
β

∂x̃

∂ξj
(0, α, β), emk

〉
+

〈
emj , emk

〉
−

〈
∂x̃

∂ξj
(0, α, β), emk

〉
= 0

for j = 1, 2 and k = 1, 2. Applying Proposition 3.2 we see that〈
∂x̃

∂ξj
(0, α, β), e(4)

mk
+ αe′′mk

+ βemk
− emk

〉
= −

〈
emj , emk

〉
(23)

for j = 1, 2 and k = 1, 2. Since e′′mk
= cmk

emk
and e

(4)
mk = c2

mk
emk

for k = 1, 2,
we obtain 〈

∂x̃

∂ξj
(0, α, β), emk

〉
=

{
− 1

c2
mk

+αcmk
+β−1 if j = k

0 if j 6= k
,

by (23). Now (17) yields

∂ϕk

∂ξj
(0, α, β) =

{
c2

mk
+αcmk

+β

c2
mk

+αcmk
+β−1 if j = k

0 if j 6= k

and so

[ϕ′ξ(0, α, β)] =

 c2
m1

+αcm1+β

c2
m1

+αcm1+β−1 0

0
c2

m2
+αcm2+β

c2
m2

+αcm2+β−1

 . (24)

Furthermore, it follows from Theorem 3.3 that

β0 = −cm1α0 − c2
m1

and β0 = −cm2α0 − c2
m2

,

and so

c2
m1

= −cm1α0 − β0 and c2
m2

= −cm2α0 − β0.

Hence (24) now becomes

[ϕ′ξ(0, α, β)] =

 (α−α0)cm1+β−β0

(α−α0)c2
m1

+β−β0−1 0

0 (α−α0)cm2+β−β0

(α−α0)c2
m2

+β−β0−1

 ,

and in consequence,

det[ϕ′ξ(0, α, β)] =
(α− α0)cm1 + β − β0

(α− α0)c2
m1

+ β − β0 − 1
· (α− α0)cm2 + β − β0

(α− α0)c2
m2

+ β − β0 − 1
. (25)

Our aim is now to determine the sign of (25) at points in a small neighbour-
hood of (0, α0, β0).

We first note that there exists ε > 0 such that the denominator of (25) is
positive for every (α, β) ∈ (α0 − ε, α0 + ε)× (β0 − ε, β0 + ε).

Let n(α, β) denote the numerator of (25), i.e.
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n(α, β) = ((α− α0)cm1 + β − β0) · ((α− α0)cm2 + β − β0) .

For α 6= α0 we have

n(α, β) = (α− α0)
2

(
cm1 +

β − β0

α− α0

) (
cm2 +

β − β0

α− α0

)
.

We can assume without loss of generality that m1 < m2. Then cm1 > cm2 by
(14), and we can check at once that

sign det[ϕ′ξ(0, α, β)] =

{
1 if β−β0

α−α0
∈ (−∞,−cm1) ∪ (−cm2 ,∞)

−1 if β−β0
α−α0

∈ (−cm1 ,−cm2)
.

Now let us suppose, contrary to our claim, that (0, α0, β0) is not a bifurcation
point of the equation (18). Let V1 ⊂ R2 and V2 ⊂ R+ ×R+ be the open sets as
in Theorem 3.6. Clearly, there are (α, β) and (α̃, β̃) in V2 ∩ (α0 − ε, α0 + ε) ×
(β0 − ε, β0 + ε) such that

β − β0

α− α0
∈ (−∞,−cm1) ∪ (−cm2 ,∞)

and

β̃ − β0

α̃− α0
∈ (−cm1 ,−cm2).

We now take a neighbourhood V ⊂ V1 of 0 such that the Brouwer degrees of
ϕ(·, α, β) and ϕ(·, α̃, β̃) on V with respect to 0 are the same as the signs of
det[ϕ′ξ(0, α, β)] and det[ϕ′ξ(0, α̃, β̃)] respectively. We get

deg(ϕ(·, α, β), V, 0) = sgn det[ϕ′ξ(0, α, β)] = 1

and

deg(ϕ(·, α̃, β̃), V, 0) = sgn det[ϕ′ξ(0, α̃, β̃)] = −1,

which contradicts the equality (19). Hence (0, α0, β0, γ0) is a branching point
of the equation (10).
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