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Abstract Total mercury (Hg) concentrations
were determined by CV-AAS in selected
tissues (liver, kidney, and muscle) of the Great
Cormorant and some fish species (herring, ruffe,
European smelt, tench, roach, Crucian carp, and
Prussian carp) from the Vistula Lagoon ecosystem
(Poland). Significant correlations between Hg
concentrations in the kidneys and muscle of
cormorants (U test, p < 0.05) were found; levels
of the metal were highest in the birds’ liver
and kidneys. Total Hg concentrations in the
fish decreased in the following order: roach >

Prussian carp > Crucian carp > tench > European
smelt > ruffe > herring. The biomagnification
factor of Hg for the cormorant relative to the fish
decreased in the following sequence: herring >

ruffe > European smelt > tench > Crucian carp >

roach = Prussian carp. It was significantly greater
than unity, especially for the cormorant–herring
trophic relationship. This implies that Hg is
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biomagnified in the cormorant in relation to its
prey.
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Introduction

In the natural environment, mercury (Hg) is de-
rived from both anthropogenic activities and nat-
ural sources. Up to now, anthropogenic emissions
of Hg to the environment have been increas-
ing substantially relative to natural emissions.
The most important sources of Hg pollution in
aquatic systems are atmospheric deposition, ero-
sion, urban discharges, agricultural materials, min-
ing, combustion, and industrial effluents (Wang
et al. 2004). Most Hg pollution resides in the
aquatic environment, resulting in its rapid incor-
poration into the food chain and biomagnification
in organisms.

As chemical elements are transported along
the successive levels of the food chain, their con-
centrations may rise at each higher trophic level,
an effect known as biomagnification (Gray 2002).
One of the properties of Hg is its ability to bioac-
cumulate in soil, plants, animals, and humans. The
harmfulness of this metal depends on the time of
exposure to it and its speciation; Hg vapors en-
tering organisms through their respiratory systems
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are especially dangerous. Other chemical forms
of Hg can also be ingested with food. Absorbed
Hg circulates with the blood and accumulates in
some tissues. Higher levels were recorded in the
critical organs (kidney, liver) and muscle. Fish-
eating birds, like Great Cormorant, are exposed
to Hg biomagnification mostly because of their
location at the end of the food chain (Houserová
et al. 2007; Saeki et al. 2000). The toxic effects of
Hg in birds include reduced food intake leading
to weight loss, progressive weakness in the wings
and legs leading to difficulty in flying, walking, and
standing, and an inability to coordinate muscle
movements (Kim et al. 1996; Scheuhammer and
Graham 1999). High concentrations of Hg in birds
most often affect their immune, detoxification,
and nervous systems, and cause reproductive im-
pairment (Boening 2000; Houserová et al. 2007).

The aims of this study were to assess the inter-
tissue distribution of Hg in the Great Cormorant
(Phalacrocorax carbo) and to estimate the extent
to which this metal is biomagnified in relation to
the bird’s food, i.e., fish.

Materials and methods

Study area

The Vistula Lagoon is a semienclosed, shallow,
coastal basin separated from the Gulf of Gdansk
by the Vistula Spit and connected with the Baltic
Sea via the Baltijsk Strait. The lagoon is 90.7 km
long (35.1 km in the Polish Sector), has an average
depth of 3.1 m, and has a maximum depth of
5.2 m; the depth of the dredged ship channel in
the north-eastern part of the lagoon is 11 m. The
area of the lagoon is 861 km2, 473 km2 of which lie
within the borders of the Russian Federation and
388 km2 in Poland. The Vistula Lagoon consists
of shallow, brackish water with a salinity between
0.1 and 10 psu (average, 4–5.5 psu). The hydro-
logical status of the lagoon is defined chiefly by
the inflow of fresh water from 20 rivers and water
exchange with the Baltic Sea. The main inflow is
supplied by the Russian River Pregola; the inflow
from Polish rivers comes from the Bauda, Elbląg,
Pasłęka, Nogat, and Szkarpawa (Ezhova et al.
2005; Uścinowicz and Zachowicz 1996).

The Vistula Lagoon is polluted by nutrients,
mostly the residues of various plant-protection
products and fertilizers used in agriculture.
Sewages from the mechanical–biological waste-
water treatment plants at Tolkmicko, Frombork,
Krynica Morska, and Piaski enter the lagoon on
a continuous basis. All this raises the fertility of
the lagoon—eutrophication is thus an ongoing
process. Since 1950, eutrophication has increased
dramatically; the fertility of the Lagoon was re-
cently assessed as being four to five times greater
than that of the Baltic Sea itself (Szefer 2002).
The Vistula Lagoon has, therefore, been included
in the natural environment protection program
Natura 2000 and put on the list of Baltic Sea
Protected Areas introduced by HELCOM (Szefer
2002).

Great Cormorant and f ish

The largest European colony of Great
Cormorants is located at Kąty Rybackie near
the Vistula Lagoon. The number of individuals
in the population rose continuously until 2004,
when a total of 11,500 pairs occupied the colony;
currently, the population is in regression, possibly
because of aging. Great Cormorants play an
important role in freshwater ecosystems like the
Vistula Lagoon because they are numerous and
widespread top predators and they influence
the structure and dynamics of fish communities
(Stempniewicz et al. 2003).

Great Cormorants are a relatively large birds,
weighing from 1.3 to 3.1 kg and with a wingspan
from 1.3 to 1.6 m. There is hardly any sexual di-
morphism: females are slightly smaller and lighter
than males. The feathers of mature birds are black
with white spots on the cheeks and thighs. Imma-
ture individuals are recognized by the white belly
with various numbers of dark spots (Baker 1993;
Goc 2004; Przybysz 1997). Normally, three to six
eggs are laid by the female at 2- to 3-day intervals.
The incubation period is about 3 weeks (from 23
to 31 days). Incubation as well as care of the chicks
is shared between males and females. The usual
level of breeding success is two to three chicks per
pair.

Great Cormorants are fish-eating birds without
any particular preferences in their prey species,
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mostly choosing the easiest and most numer-
ous to catch (Goc 2004; Przybysz 1997). They
hunt individually or in flocks (Przybysz 1997).
Their staple diet consists mostly of fish from the
families Cyprinidae and Percidae (Stempniewicz
and Grochowski 1997): ruffe (Gymnocephalus
cernuus), perch (Perca f luviatilis) and roach (Ru-
tilus rutilus), and more rarely tench (Tinca tinca)
and Prussian carp (Carassius gibelio); in addi-
tion, fair numbers of fish from other families
are taken, like European smelt (Osmerus eper-
lanus) and herring (Clupea harengus) (Martyniak
et al. 2003; Stempniewicz and Grochowski 1997;
Stempniewicz et al. 2003). Analysis of Great
Cormorants’ pellets in the colony (1996) showed
that ruffe was the main component of the birds’
diet. The percentage composition of the cor-
morants’ diet (Fig. 1) is as follows: ruffe, 74.6%;
European smelt, 11.6%; perch, 6%; roach, 3.7%;
herring, 1.2%; other species, <1% (Martyniak
et al. 2003). Great Cormorants eat fish species of
little industrial importance: the basic item from
the Vistula Lagoon area is the ruffe, known as
“fish weed” by fishermen.

Herring is a commercially very important
marine species that occurs in the Vistula Lagoon
seasonally, mainly in spring during its spawn-
ing season. The juveniles are zooplanktivorous.
Roach is a common, freshwater species in the
Vistula Lagoon, foraging mainly on benthic or-
ganisms like mollusks; its spawning period is from
May to June. Tench is common close to rivers;
it inhabits the littoral zone and feeds on benthic
organisms. Crucian carp and Prussian carp are
benthivorous, medium-sized fish common in the
Vistula Lagoon where they inhabit the littoral

zone. European smelt is also a common species,
feeding mainly on zooplankton, including fish lar-
vae. Ruffe is a common benthivorous species of
no commercial importance (Brylińska 1991; Psuty
2010).

The cormorants from Kąty Rybackie colony
make foraging trips to the Vistula Lagoon, to
the Gulf of Gdańsk as well as to the mouth of
the River Vistula. The availability of fish varies
seasonally. The Vistula Lagoon is the main feed-
ing area following the birds’ return from their
wintering grounds—from February to the begin-
ning of April. During this time, cormorants catch
small percid and cyprinid fish, like ruffe, roach,
and bream (Bzoma et al. 2003). At the begin-
ning of the breeding season, herring become the
major part of the birds’ diet because these fish
become easy to catch during their spawning sea-
son (Kanarek and Rolbiecki 2006). Later, as the
breeding season progresses, the other areas (Gulf
of Gdańsk) increase in importance. This is proba-
bly due to the colony’s greater food requirements
when fish resources in the Vistula Lagoon are
shrinking (Bzoma et al. 2003; Goc et al. 2003;
Stempniewicz et al. 2003).

Sampling and analytical method

The Great Cormorants were shot by hunters (by
permission of the local environment protection
authorities) in the Polish Sector of the Vistula
Lagoon during June 2006. The birds were iden-
tified as P. carbo using the method suggested by
Baker (1993). Fifty-five specimens were obtained
and then sorted by sex (24 females, 31 males)
and age (44 adults, 11 immatures). They were

Fig. 1 Percentage
composition of the diet of
Great Cormorant (P.
carbo) in the Vistula
Lagoon ecosystem in 1996
(from Martyniak et al.
2003)
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dissected in order to separate tissues and organs:
kidneys, liver, muscles, oesophagus, stomach, in-
testines, trachea, lungs, skin, cardiac muscle, and
feathers. The separate tissues and organs of the
birds and whole specimens of fish were immedi-
ately deep-frozen, freeze-dried (lyophilized), and
homogenized. The total Hg concentration was de-
termined in the fish constituting the cormorant’s
diet in order to discover the extent to which the
Hg load from the fish is passed on to the birds.
The following species of fish were caught by fyke
net in the north-western Vistula Lagoon near
the cormorant colony at Kąty Rybackie in June
2006: herring, tench, roach, European smelt, ruffe,
Crucian carp (Carassius carassius) and Prussian
carp. The fish species were identified using
Brylińska’s method (1991).

Whole specimens of fish and individual cor-
morant tissues and organs were analyzed. The
tissues and organs were lyophilized, homogenized,
and weighed (from 10 ± 0.1 to 50 ± 0.1 mg),
placed in precleaned combustion boats, and au-
tomatically inserted into the Mercury/MA-2000
analyzer system (NIC—Japan). Samples were
thermally decomposed at 800˚C under clean air
flow. The total Hg concentration was determined
by CV-AAS at 253.65 nm. Three analytical sub-
samples were prepared from each sample. Quality
control was assured by analyses of certified ref-
erence materials: DORM-2 (National Research
Council, Canada), BCR-463, and ERM-CE278
(IRMM, Belgium). The respective recoveries (a
measure of accuracy) of total Hg were 101.0%,
97.1%, and 98.6%, and the respective standard
deviations (SD; a measure of precision) were
0.09, 0.09, and 0.10%. The limit of detection was
0.12 ng. The estimated variability of Hg concen-
trations in three subsamples of particular tissues
was satisfactory, since the coefficients of varia-
tion (CVs) were 0.49–6.65%, 0.12–11.18%, 0.30–
4.68%, and 0.89–14.4% for kidney, liver, muscle,
and feathers, respectively. Since CVs were gener-
ally <10%, it was possible to use <50 mg samples.

Statistical analysis

The concentration data were processed statis-
tically using STATISTICA 8.0 for Windows
(Copyright© StatSoft, Inc. 1984–2007). Cluster

analysis was used to compare the Hg content in
particular tissues in order to estimate the total
pool of Hg in the whole bird body. To check
whether there was any statistically significant
difference in Hg concentrations between sex and
age, the data were processed using the nonpara-
metric Mann–Whitney U test (p < 0.05).

To estimate the total Hg content in birds and
to calculate the biomagnification factor (BMF),
Hg concentrations in cormorants and fish were
recalculated from dry weight (d.w.) to wet weight
(w.w.).

Estimation of the total Hg content in birds

Required data:

– wet mass of the whole bird body [in grams]
– wet mass of all the separate tissues, especially

liver, kidney and muscle [in grams]
– Hg concentration in liver [in micrograms per

gram w.w.]
– Hg concentration in kidney [in micrograms

per gram w.w.]
– Hg concentration in all the tissues analyzed [in

micrograms per gram w.w.]

The principal assumptions:

– the muscles are the main part (in terms of
weight) of a bird’s body

– the Hg concentration (in micrograms per gram
w.w.) in all the tissues except kidney and
liver is similar to that in the muscles. This
assumption is supported by cluster analysis
data (Fig. 2): cluster analysis shows that the
concentration of Hg in muscles is similar to
that in the other tissues, except kidney, liver,
and feathers. Hg concentrations in bird tis-
sues other than those analyzed in the present
study may be omitted from the calculation
of both total Hg content and BMF because
their mass contribution to the whole body of
the cormorant is insignificant. For instance,
the mass contribution of bones to the whole
body estimated in our study was ∼7% and
the content of Hg in bones reported by Nam
et al. (2005) was ∼1–2% of its total pool in the
whole bird’s body.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Environ Monit Assess (2011) 176:439–449 443

Fig. 2 Cluster analysis
data concerning the
intertissue distribution of
Hg (in micrograms per
gram w.w.) in Great
Cormorants (P. carbo)
from the Vistula Lagoon.
This shows that the Hg
concentration in muscle
tissue is similar to that in
six other tissues, except
kidney, liver, and feathers

Total Hg can be then calculated as the sum of
the total Hg in kidney, liver, feathers, and the
rest of the body. As the weights of kidney, liver,
and feathers and also the Hg concentration in
these tissues are known, the total amount of Hg
in kidney, liver, and feathers is:

MHg kidney = Mkidney × Ckidney

MHg liver = Mliver × Cliver

MHg feathers = Mfeathers × Cfeathers

where M is the wet mass of kidney/liver/feathers
[in grams], MHg is the total amount of Hg in
kidney/liver/feathers [in micrograms], and C is the
concentration of Hg in kidney/liver/feathers [in
micrograms per gram w.w.].

Assuming that the whole of the remainder of
the bird’s body has a Hg concentration similar to
that in muscle tissue, the amount of Hg in the
remainder can be calculated using the following
formula:

MHg rest = (
Mwhole body − Mkidney

− Mliver − Mfeathers
) × Cmuscle

where M is the wet mass of kidney/liver/
feathers/whole body [in grams], MHg rest is the
total amount of Hg in all tissues except kidney,
liver and feathers [in micrograms], and C is the
concentration of Hg in muscle [in micrograms per
gram w.w.].

The total amount of Hg in the whole bird’s
body can thus be calculated as follows:

MHg total = MHg kidney + MHg liver

+MHg feathers + MHg rest.

Biomagnification factor

Vistula Lagoon cormorants feed mainly on her-
ring, tench, roach, European smelt, ruffe, Crucian
carp, and Prussian carp (Martyniak et al. 2003).
The BMF was calculated on the basis of the Hg
concentrations in the liver, kidney, muscles, and
total body (calculated as above) of cormorants.
BMF is defined by Ciesielski et al. (2006):

BMF = C(predator)/C(prey)

where C(predator) is the concentration of Hg (in
micrograms per gram w.w.) in predator, C(prey) is
the concentration of Hg (in micrograms per gram
w.w.) in prey.

Results

Total Hg concentrations in cormorant tissues de-
creased in the following order: kidney > liver >
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Fig. 3 Concentrations of
total Hg (in micrograms
per gram d.w.) in muscle
tissue from male and
female Great Cormorants
(P. carbo) from the
Vistula Lagoon

muscle. Concentrations of Hg in adults varied
widely and were as follows: 30.21 ± 47.93 μg/g
d.w. in kidney, 15.51 ± 17.30 μg/g d.w. in liver,
and 2.15 ± 1.10 μg/g d.w. in muscle. In the
case of immature specimens, the respective values
were 17.58 ± 22.96, 10.96 ± 11.42, and 1.61 ±
0.82 μg/g d.w. There were statistically significant
sex-dependent variations in muscle and kidney
concentrations of Hg (U test, p < 0.05; Figs. 3
and 4).

All the fish (omnivorous) analyzed constitute
potential food for the cormorants in the Vistula
Lagoon. High levels of total Hg were found in
the whole bodies of roach and Prussian carp
(0.110 ± 0.060 μg/g w.w.); levels were lowest in
herring (0.008 ± 0.003 μg/g w.w.). Figure 5 illus-
trates the variations in Hg concentration, which
decreased in the following sequence: roach =
Prussian carp > Crucian carp > tench > European
smelt > ruffe > herring.

Fig. 4 Concentrations of
total Hg (in micrograms
per gram d.w.) in kidney
tissue from male and
female Great Cormorants
(P. carbo) from the
Vistula Lagoon
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Fig. 5 Concentration of
total Hg (in micrograms
per gram w.w.) in the
whole body of fish from
the Vistula Lagoon
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Discussion

Large Hg concentrations in liver and kidney, as
opposed to other tissues, have been reported in
fish-eating birds such as cormorants, eiders, guille-
mots, and gulls (Boening 2000; Houserová et al.
2007; Nam et al. 2005; Saeki et al. 2000). Total
Hg concentrations decreased in the following or-
der: liver > kidney > muscle (Houserová et al.
2007; Nam et al. 2005; Saeki et al. 2000). The
data obtained in the present study are compared
with those reported elsewhere (Table 1). Our
study, however, indicates Hg levels were higher
in kidney than in liver tissue. This discrepancy
may be due to the different numbers of cor-
morants used in the investigations carried out by
various authors. Houserová et al. (2005, 2007)
noted that liver Hg concentrations were higher
in adult cormorants than in immature individuals
from the Záhlinice ecosystem (Czech Republic).
Much higher mean renal Hg concentrations were
found in both adults and immatures among the
Vistula Lagoon cormorants than those reported
in the available literature (Houserová et al. 2007;
Nam et al. 2005; Saeki et al. 2000). Muscle con-
centrations, however, were similar to those (1.1–
3.4 μg/g) reported elsewhere (Houserová et al.
2007; Nam et al. 2005).

Hg concentrations in different species of the
genus Phalacrocorax vary, sometimes very sig-
nificantly. Honda et al. (1990) analyzed two spec-
imens of Japanese Cormorant (Phalacrocorax

capillatus) from the North Pacific Ocean and ob-
tained the following results: 1.03 μg/g d.w. for
muscle, 4.00 μg/g d.w. for liver, and 2,33 μg/g
d.w. for kidney. According to Henny et al. (2002),
Double-crested Cormorant (Phalacrocorax auri-
tus) from the Carson River ecosystem in Nevada
concentrated 134.80 and 69.36 μg Hg/g w.w. in
liver and kidney, respectively. Liver, muscle, and
feathers were analyzed for total Hg concentra-
tion in P. auritus nestlings from two reservoirs in
south-central New Mexico (Caldwell et al. 1999).
In Elephant Butte Reservoir, the Hg concen-
trations in liver, muscle, primary feathers, sec-
ondary feathers, and tail feathers were 0.40, 0.17,
2.42, 2.06, and 2.34 μg/g w.w., respectively. How-
ever, generally higher levels were observed in the
Caballo Reservoir in primary feathers (3.54 μg/g
w.w.), secondary feathers (4.89 μg/g w.w.), and
tail feathers (4.01 μg/g w.w.; Caldwell et al. 1999).
The mean concentration of Hg in the feathers
of six specimens of Cape Cormorant (Phalacro-
corax capensis) from Namibia in southern Africa
amounted to 251 ng/g d.w. (Burger and Gochfeld
2001).

The wide range of values obtained in our stud-
ies may be the result of the cormorants’ be-
ing exposed to pollution for different lengths of
time. The individual birds were placed in two age
classes: adults older than 2 years and sexually
immature specimens younger than 2 years. This
means that, within the adult group, there were
specimens belonging to the third year, fourth year,
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Table 1 Comparison of mean concentrations of Hg (in micrograms per gram d.w.) in the liver, kidney, and muscle of Great
Cormorant (P. carbo) in different areas

Tissue Hg SD Range Number Location

Adult/immature/pull 9 Tokyo, Japan (Saeki et al. 2000)
Liver 1.2 0.5 0.6–2.0
Kidney 0.9 0.7 0.2–2.5
Muscle 0.3 0.2 0.2–0.6

Adult/immature/pull 10 Lake Biwa, Japan (Saeki et al. 2000)
Liver 1.7 0.8 0.7–3.5
Kidney 1.5 1.0 0.5–3.7
Muscle 0.5 0.2 0.2–1.1

Adult 8 Záhlinice, Czech Republic (Houserová et al. 2007)
Liver 42.2 6.28 –
Kidney 7.2 1.0
Muscle 3.4 0.37

Immature 8 Záhlinice, Czech Republic (Houserová et al. 2007)
Liver 7.5 1.63 –
Kidney 4.1 0.49
Muscle 2.5 0.33

Adult 4 Japan (Nam et al. 2005)
Liver 12 9 –
Kidney 14 9
Muscle 1.1 0.3

Adult 44 Vistula Lagoon, Poland, This study
Liver 15.51 17.30 1.99–80.7
Kidney 30.21 47.93 1.56–296
Muscle 2.15 1.10 0.62–5.56

Immature 11 Vistula Lagoon, Poland, This study
Liver 10.96 11.42 1.4–40.3
Kidney 17.6 22.96 1.25–80.5
Muscle 1.6 0.82 0.49–3.64

etc. age classes; hence, the duration of their ex-
posure to pollution will have been very different.
In immature cormorants, the immune system
and detoxification processes are not sufficiently
developed.

Detoxification in these birds (elimination of Hg
and other elements) takes place in their internal
organs like the kidneys and liver (Boening 2000;
Gray 2002; Kim et al. 1996) as well as in the
feathers during molting (Braune 1987). In the case
of cormorants, the molting period varies greatly,
however, there is usually a partial molt from June
to December (Baker 1993). Nam et al. (2005) ob-
served that the Hg load decreases during molting

(June) since Hg is transferred to the feathers from
internal tissues via the blood. In our study, the
cormorants were shot in June, i.e., at the start
of the molting period. Hence, the main reason
for the wide variations in Hg content is that the
cormorants were at different stages of individual
development and molting. Table 2 compares the
Hg concentrations in five species of fish analyzed
in our study; the literature data refer to muscle
samples. The table shows that Hg concentrations
in the whole fish analyzed in our study are gener-
ally smaller than those in muscle tissue.

The BMF is discussed by Barwick and
Maher (2003), Ciesielski et al. (2006), Guruge
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Table 2 Comparison of mean Hg concentrations (in micrograms per gram w.w.) in fish from different areas

Fish species Hg Number Localization Reference

Herring 0.021 ± 0.009 (muscle) 20 Gulf of Bothnia Perttila et al. (1982)
(Clupea harengus) Gulf of Finland

Baltic Sea
0.086 ± 0.028 (muscle) 52 The Firth of Vistula Falandysz et al. (2000)
0.008 ± 0.003 (whole) 15 The Vistula Lagoon This study

Roach 1.66 Mouth of the Vistula Gajewska and Nabrzyski (1977)
(Rutilus rutilus) 0.72 River

0.55 (muscle)
0.13 ± 0.09 (muscle) 427 Upsala, Stockholm Sonesten (2001)

Sweden
0.058 ± 0.034 (muscle) 26 The Firth of Vistula Falandysz et al. (2000)
0.110 ± 0.064 (whole) 15 The Vistula Lagoon This study

Tench 0.26 (muscle) Nogat River Gajewska and Nabrzyski (1977)
(Tinca tinca) 0.032 ± 0.013 (muscle)a 6 Záhlinice ecosystem Houserová et al. (2007)

Czech Republic
0.039 ± 0.028 (whole) 15 The Vistula Lagoon This study

European smelt 0.066 ± 0.028 (muscle) 41 The Firth of Vistula Falandysz et al. (2000)
(Osmerus eperlanus) 0.029 ± 0.008 (whole) 15 The Vistula Lagoon This study

Ruffe (Gymnocephalus 0.066 ± 0.04 (muscle) 30 The Firth of Vistula Falandysz et al. (2000)
cernuus) 0.016 ± 0.006 (whole) 15 The Vistula Lagoon This study

aThe concentrations were recalculated from d.w. to w.w.

et al. (1996), and Slotton et al. (2004). Bio-
magnification is defined as the transfer of a
given xenobiotic compound from one organism
to another, resulting in a generally higher con-
centration in the predator than in the prey.
If BMF is higher than unity, then biomag-
nification has occurred (Gray 2002). The usual
approach is to compare the whole body of or-
ganisms from the bottom of the food chain to
some tissues from organisms at the top (Gray
2002). This, however, may yield misleading re-
sults, since some tissues (like kidney and liver

in the case of cormorants) are expected to be
richer in Hg than others (like muscles). As
homogenization and analysis of relatively large
animals may be hard or even impossible in prac-
tice, a method of calculating total Hg needs to
be applied (see the calculation of the total Hg
content in the whole cormorant body in the “Sam-
pling and analytical method” section). As can be
seen in Table 3, BMFs of Hg (relative to fish
species) decreased in the following sequence: her-
ring > ruffe > European smelt > tench > Crucian
carp > roach = Prussian carp. This means there

Table 3 BMF for trophic relation cormorant–fish of the Vistula Lagoon food web

Trophic relation Fish species

predator–prey Herring Tench Roach European Ruffe Crucian carp Prussian carp
(Clupea (Tinca (Rutilus smelt (Gymnocephalus (Carassius (Carassius
harengus) tinca) rutilus) (Osmerus cernuus) carassius) gibelio)

eperlanus)

Cormorant (muscle)–fish 80 15 5 20 40 10 5
Cormorant (kidney)–fish 870 170 60 222 420 140 60
Cormorant (liver)–fish 580 110 40 150 280 90 40
Cormorant (feathers)–fish 1,040 200 71 270 50 160 70
Cormorant (whole body)–fish 160 30 10 40 80 25 10

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


448 Environ Monit Assess (2011) 176:439–449

is considerable biomagnification of Hg in the cor-
morant relative to its fish prey, especially in the
cormorant–herring trophic relationship. It should
be emphasized that biomagnification in the study
area was well reflected by the high BMF for the
cormorant–ruffe trophic relation (the ruffe is a
major item in the cormorant diet) and to a lesser
extent by the cormorant–roach and cormorant–
Prussian carp relations (the Prussian carp is not
a common prey).

Conclusions

It was found that Hg concentrations were greater
in kidney, liver, and feathers. The BMF esti-
mated for Hg relative to diffrent fish species
was significantly greater than unity, especially for
the cormorant–herring trophic relationship. This
means that there is biomagnification of Hg in cor-
morants relative to their prey. The data obtained
are helpful for a better understanding of the ac-
cumulation processes of Hg in selected tissues of
cormorants in the Vistula Lagoon ecosystem.
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Brylińska, M. (1991). Ryby słodkowodne Polski.
Warszawa: PWN.

Burger, J., & Gochfeld, M. (2001). Metal levels in feathers
of cormorants, flamingos and gulls from the coast of
Namibia in Southern Africa. Environmental Monitor-
ing and Assessment, 69, 195–203.

Bzoma, S., Goc, M., Brylski, T., Stempniewicz, L., &
Iliszko, L. (2003). Seasonal changes and intra-colony
differentiation in the exploitation of two feeding
groups by Great Cormorants Phalacrocorax carbo
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