BLOCK GRAPHS WITH LARGE PAIRED DOMINATION MULTISUBDIVISION NUMBER

Christina M. Mynhardt
Department of Mathematics and Statistics
University of Victoria
Victoria BC, Canada
e-mail: kieka@uvic.ca
AND
Joanna Raczek
Faculty of Applied Physics and Mathematics
Gdańsk University of Technology ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
e-mail: joanna.raczek@pg.edu.pl

Abstract

The paired domination multisubdivision number of a nonempty graph G, denoted by $\operatorname{msd}_{\mathrm{pr}}(G)$, is the smallest positive integer k such that there exists an edge which must be subdivided k times to increase the paired domination number of G. It is known that $\operatorname{msd}_{\mathrm{pr}}(G) \leq 4$ for all graphs G. We characterize block graphs with $\operatorname{msd}_{\mathrm{pr}}(G)=4$.

Keywords: paired domination, domination subdivision number, domination multisubdivision number, block graph.
2010 Mathematics Subject Classification: 05C69.

1. Introduction

The study of changes that occur in domination-related parameters of a graph when its edges are subdivided ${ }^{1}$ was initiated in [11]. If π is a domination-type parameter of G, the smallest number of edges that must be subdivided, where each edge of G can be subdivided at most once, in order to increase π is called

[^0]the π-subdivision number, denoted by $\operatorname{sd}_{\pi}(G)$. Subdivision numbers have been studied for the domination number [6, 11], as well as for connected [4], double [1], Roman [10], total [7, 9] and paired domination numbers [5].

Instead of subdividing multiple edges once each, one may wish to subdivide a single edge multiple times. The smallest number of times that a single edge of G must be subdivided to increase π is called the π-multisubdivision number, denoted by $\operatorname{msd}_{\pi}(G)$. Domination and paired domination multisubdivision numbers were studied in [3] and [2], respectively. In particular, it was shown in [2] that the paired domination multisubdivision number $\operatorname{msd}_{\mathrm{pr}}(G)$ of any graph G is at most four. For brevity we refer to a graph G with $\operatorname{msd}_{\mathrm{pr}}(G)=4$ as an msd-4 graph. Msd-4 trees were characterized in [2].

We discuss methods of combining msd-4 graphs to yield new msd-4 graphs and use our results, combined with results from [2], to characterize msd-4 block graphs. Definitions and previous results are given in Section 2. We state the characterization of msd-4 block graphs in Section 3, but defer its proof to Section 6 to allow us to prove a number of results used in the proof; results that apply to general msd-4 graphs are given in Section 4, while results specific to block graphs can be found in Section 5 .

2. Definitions and Previous Results

We refer the reader to [8] for domination parameters not defined here. A set S of vertices of a graph $G=(V, E)$ without isolated vertices is a paired dominating set of G if every vertex of G is adjacent to a vertex in S, and the subgraph $G[S]$ of G induced by S has a perfect matching. If $u, v \in S$ and there exists a perfect matching M of $G[S]$ such that $u v \in M$, we say that u and v are paired in S. The smallest cardinality of a paired dominating set of G is the paired domination number of G, denoted by $\gamma_{\mathrm{pr}}(G)$. If S is a paired dominating set of G such that $|S|=\gamma_{\mathrm{pr}}(G)$, we call S a $\gamma_{\mathrm{pr}}(G)$-set, or simply a γ_{pr}-set if the graph is clear from the context. If u is a vertex of G such that $G-u$ has no isolated vertices and $\gamma_{\mathrm{pr}}(G-u)<\gamma_{\mathrm{pr}}(G)$ (in which case $\gamma_{\mathrm{pr}}(G-u)=\gamma_{\mathrm{pr}}(G)-2$), we say that u is a $\gamma_{\mathrm{pr}}(G)$-critical vertex, or simply a γ_{pr}-critical vertex, and define $\operatorname{Cr}(G)=\left\{u \in V(G): u\right.$ is a γ_{pr}-critical vertex $\}$.

A neighbour of a vertex $u \in V(G)$ is a vertex adjacent to u. The (open) neighbourhood $N(u)$ of a vertex u is the set of all vertices adjacent to u, and its closed neighbourhood is $N[u]=N(u) \cup\{u\}$. For a set $S \subseteq V(G)$, the (open) neighbourhood of S is $N(S)=\bigcup_{u \in S} N(u)$, and its closed neighbourhood is $N[S]=$ $N(S) \cup S$. For a vertex $u \in S$, the private neighbourhood of u with respect to S is the set $\operatorname{PN}(u, S)=N[u] \backslash N[S \backslash\{u\}]$. It is possible that $u \in \operatorname{PN}(u, S)$, but if S is a paired dominating set, then u is adjacent to the vertex it is paired with,
so $u \notin \mathrm{PN}(u, S)$ in this case.
An edge $u v$ of a graph G is subdivided if it is replaced by a path (u, x, v), where x is a new vertex, and multisubdivided if it is replaced by a path $\left(u, x_{1}, \ldots, x_{k}, v\right)$, $k \geq 2$, where x_{1}, \ldots, x_{k} are new vertices; we also say that $u v$ is subdivided k times. Let $G_{u v, k}$ denote the graph obtained from G by subdividing the edge $u v k$ times. The paired domination multisubdivision number $\operatorname{msd}_{\mathrm{pr}}(G)$ of a graph G without isolated vertices is the smallest positive integer k such that there exists an edge $u v$ which must be subdivided k times for $\gamma_{\mathrm{pr}}\left(G_{u v, k}\right)$ to exceed $\gamma_{\mathrm{pr}}(G)$. As mentioned above, $\operatorname{msd}_{\mathrm{pr}}(G) \leq 4$ for all graphs. The three graphs in Figure 1 are all msd-4 graphs; the red vertices form γ_{pr}-sets.

Figure 1. (a) The spider $S(2,2,6)$ (b) the corona $K_{3} \circ K_{1}$ (c) a flared corona $K_{4} \circ{ }^{* 2} K_{1}$.
A leaf of a graph is a vertex of degree one, and its neighbour is called a stem. The following properties of msd-4 graphs were proved in [2].

Theorem 1 [2]. Let G be an msd-4 graph. Then
(i) each edge of G belongs to a matching of a minimum paired dominating set of G;
(ii) any leaf of G is a γ_{pr}-critical vertex;
(iii) each stem is adjacent to exactly one leaf.

The complete bipartite graph $K_{1, k}, k \geq 2$, is called a star. Let $K_{1, k}$ have partite sets $\{u\}$ and $\left\{v_{1}, \ldots, v_{k}\right\}$. The spider $S\left(\ell_{1}, \ldots, \ell_{k}\right), \ell_{i} \geq 1, k \geq 2$, is a tree obtained from $K_{1, k}$ by subdividing the edge $u v_{i} \ell_{i}-1$ times, $i=1, \ldots, k$. Note that $S(2,2) \cong P_{5}$. See Figure 1(a) for $S(2,2,6)$. The characterization of msd- 4 trees in [2] immediately gives the following result.

Proposition 2 [2]. The spider $T=S(2, \ldots, 2)$ satisfies $\operatorname{msd}_{\mathrm{pr}}(T)=4$, and $\mathrm{Cr}(T)$ consists of the leaves of T.

The corona $G \circ K_{1}$ of a graph G is the graph obtained by joining each vertex of G to a new leaf; $K_{3} \circ K_{1}$ is illustrated in Figure 1(b). A flared corona $G \circ{ }^{* t} K_{1}$ of G is a graph obtained by joining each vertex of G, except one vertex w, to a new leaf, while w is joined to a single vertex of each of $t \geq 1$ copies of K_{2}. The flared corona $K_{4} \circ^{* 2} K_{1}$ is depicted in Figure 1(c). The following facts can be verified easily and are stated without proof.

Remark 3.

(i) A corona $K_{n} \circ K_{1}, n \geq 2$, is an msd- 4 graph if and only if n is odd.
(ii) A flared corona $K_{n} \circ^{* t} K_{1}, n \geq 2$, is an msd- 4 graph if and only if n is even.
(iii) A vertex of $K_{2 n+1} \circ K_{1}$ or $K_{2 n} \circ^{* t} K_{1}$ is γ_{pr}-critical if and only if it is a leaf (see Theorem 1).

A block of a graph is a maximal connected subgraph with no cut-vertex, and a block graph is a graph, each of whose blocks is a complete graph. Thus, trees are block graphs since each block of a nontrivial tree is a K_{2}. Evidently, coronas and flared coronas are also block graphs. To characterize msd-4 block graphs, we use spiders $S(2, \ldots, 2)$, coronas $K_{2 n+1} \circ K_{1}$ and flared coronas $K_{2 n} \circ{ }^{* t} K_{1}$, combining them by identifying vertices and edges in a prescribed way.

We begin by describing two operations, collectively known as \oplus-operations, for joining disjoint graphs; since the operations can be performed on any graphs, we state them in their most general form. (The operations are well known but we need to define our notation.)
$G_{1} \oplus^{u_{1} u_{2}} G_{2}$: Let G_{1} and G_{2} be vertex disjoint graphs and $u_{i} \in V\left(G_{i}\right)$ for $i \in\{1,2\}$. We denote the graph obtained from G_{1} and G_{2} by identifying u_{1} and u_{2} into one vertex $u=u_{1}=u_{2}$ by $G_{1} \oplus_{u}^{u_{1} u_{2}} G_{2}$ (or by $G_{1} \oplus^{u_{1} u_{2}} G_{2}$ if the label u is unimportant).
$G_{1} \oplus^{e_{1} e_{2}} G_{2}$: Let G_{1} and G_{2} be vertex disjoint graphs and $e_{i}=u_{i} v_{i} \in E\left(G_{i}\right)$. We denote the graph obtained from G_{1} and G_{2} by identifying u_{1} and u_{2} into one vertex $u=u_{1}=u_{2}, v_{1}$ and v_{2} into one vertex $v=v_{1}=v_{2}$, and e_{1} and e_{2} into one edge $e=u v$ by $G_{1} \oplus_{e}^{e_{1} e_{2}} G_{2}$ (or by $G_{1} \oplus^{e_{1} e_{2}} G_{2}$ if the label e is unimportant).

The graph $G_{1} \oplus_{e}^{e_{1} e_{2}} G_{2}$, where $G_{1}=S(2,2,6), G_{2}=K_{3} \circ K_{1}$, and $e_{i}=u_{i} v_{i}$ for $i=1,2$, is illustrated in Figure 2. Note that u_{i} is $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-critical for $i=1,2$, and $u_{1}=u_{2}$ is γ_{pr}-critical in $G_{1} \oplus_{e}^{e_{1} e_{2}} G_{2}$. The spider $S(2,2,6)$, in turn, is obtained as $H_{1} \oplus^{u_{1} u_{2}} H_{2}$, where $H_{1}=S(2,2,2), H_{2}=P_{5}=S(2,2)$, and u_{i} is a leaf of H_{i}, $i=1,2$.

Figure 2. The graph $S(2,2,6) \oplus^{u_{1} v_{1} u_{2} v_{2}} K_{3} \circ K_{1}$.

3. Characterization of msd-4 Block Graphs

We now state our main result - the characterization of msd-4 block graphs. The proof is deferred to Section 6 .

Let \mathcal{U} be the collection of all spiders $S(2, \ldots, 2)$, coronas $K_{2 n+1} \circ K_{1}$ and flared coronas $K_{2 n} \circ^{* t} K_{1}, n \geq 1$. Define \mathcal{B} to be the family of all block graphs G that can be obtained as a graph $G_{j}, j \geq 1$, from a sequence G_{1}, \ldots, G_{j} of graphs, where $H_{1}=G_{1} \in \mathcal{U}$, and, if $j>1, G_{i+1}$ can be constructed recursively from G_{i} by

- adding a graph $H_{i+1} \in \mathcal{U}$,
- choosing vertices $u_{1} \in \operatorname{Cr}\left(G_{i}\right), u_{2} \in \operatorname{Cr}\left(H_{i+1}\right)$, and if necessary, $v_{1} \in N\left(u_{1}\right)$, $v_{2} \in N\left(u_{2}\right)$,
- performing the operation $G_{i} \oplus^{u_{1} u_{2}} H_{i+1}$ or $G_{i} \oplus^{u_{1} v_{1} u_{2} v_{2}} H_{i+1}$.

Theorem 4. Let G be a connected block graph. Then G is an msd-4 graph if and only if $G \in \mathcal{B}$. Moreover, if G is an msd-4 graph constructed from the graphs $H_{1}, \ldots, H_{j} \in \mathcal{U}$, then $\operatorname{Cr}(G)=\bigcup_{i=1}^{j} \operatorname{Cr}\left(H_{i}\right)$.

The second statement of Theorem 4 implies that any γ_{pr}-critical vertex v of an msd- 4 block graph remains γ_{pr}-critical after the \oplus-operations have been performed any number of times, whether v was identified with another vertex or not. The following corollary of Theorem 4 was proved in [2].

Corollary 5. A tree T is an msd-4 graph if and only if $T \in \mathcal{B}$, that is, if and only if T can be constructed as described, using only spiders $S(2, \ldots, 2)$.

4. General Results

In this section we discuss ways of constructing larger msd-4 graphs from smaller ones. We first prove a useful lemma.

Lemma 6. Let G be a graph with $\operatorname{msd}_{\mathrm{pr}}(G)=4$. For any edge uv of G, subdivide $u v$ by replacing it with the path $\left(u, x_{1}, x_{2}, x_{3}, v\right)$. If D is any $\gamma_{\mathrm{pr}}\left(G_{u v, 3}\right)$-set, then $D \cap\left\{u, x_{1}, x_{2}, x_{3}, v\right\}=$
(i) $\left\{x_{1}, x_{2}\right\}$ or $\left\{x_{2}, x_{3}\right\}$, or
(ii) $\left\{u, x_{1}, v\right\}$ or $\left\{u, x_{3}, v\right\}$.

If the first part of (i) holds, then u is γ_{pr}-critical, and if the second part of (i) holds, then v is γ_{pr}-critical.

Proof. Let $X=\left\{x_{1}, x_{2}, x_{3}\right\}$. To dominate $x_{2}, X \cap D \neq \emptyset$. We consider three cases.

Case 1. $X \cap D=X$. Without loss of generality assume that x_{1} is paired with $u \in D$, and x_{2} and x_{3} are paired. Then $v \notin D$, otherwise $D \backslash\left\{x_{2}, x_{3}\right\}$ is also a paired dominating set of $G_{u v, 3}$, contradicting the minimality of D. But now $D^{\prime}=(D \backslash X) \cup\{v\}$ is a paired dominating set of G, which is impossible because $\operatorname{msd}_{\mathrm{pr}}(G)=4$.

Case 2. $|X \cap D|=2$. If $X \cap D=\left\{x_{1}, x_{3}\right\}$, then $\{u, v\} \subseteq D$ with u paired with x_{1}, and v with x_{3}. However, then $D \backslash\left\{x_{1}, x_{3}\right\}$ is a paired dominating set of G, contradicting $\operatorname{msd}_{\mathrm{pr}}(G)=4$. Suppose $X \cap D=\left\{x_{1}, x_{2}\right\}$. Then x_{1} and x_{2} are paired in D. If $\{u, v\} \cap D \neq \emptyset$, then $D \backslash\left\{x_{1}, x_{2}\right\}$ is a paired dominating set of G, which is a contradiction. Hence $D \cap\left\{u, x_{1}, x_{2}, x_{3}, v\right\}=\left\{x_{1}, x_{2}\right\}$. Now $D \backslash\left\{x_{1}, x_{2}\right\}$ is a paired dominating set of $G-u$, so $\gamma_{\mathrm{pr}}(G-u)<\gamma_{\mathrm{pr}}\left(G_{u v, 3}\right)=\gamma_{\mathrm{pr}}(G)$. We conclude that u is γ_{pr}-critical. Arguing similarly if $X \cap D=\left\{x_{2}, x_{3}\right\}$, we conclude that (i) and the last part of the statement of the lemma hold.

Case 3. $|X \cap D|=1$. Then $x_{2} \notin D$. If $x_{1} \in D$, then x_{1} is paired with $u \in D$, while $v \in D$ to dominate x_{3}. Consequently, $D \cap\left\{u, x_{1}, x_{2}, x_{3}, v\right\}=\left\{u, x_{1}, v\right\}$. Similarly, if $x_{3} \in D$, then $D \cap\left\{u, x_{1}, x_{2}, x_{3}, v\right\}=\left\{u, x_{3}, v\right\}$.

Our first result regarding the construction of msd-4 graphs from smaller graphs shows that subdividing any edge of an msd-4 graph four times produces another msd-4 graph. Repeatedly subdividing edges of an msd-4 graph thus yields, for example, msd-4 graphs of arbitrary large girth. In fact, we prove a stronger result: subdividing any edge of any graph G without isolated vertices four times produces a graph that has the same multisubdivision number as G.

Proposition 7. For any graph G and any edge e of $G, \operatorname{msd}_{\mathrm{pr}}\left(G_{e, 4}\right)=\operatorname{msd}_{\mathrm{pr}}(G)$.

Proof. Say $\operatorname{msd}_{\mathrm{pr}}(G)=t \leq 4$ and $e=u v$ has been subdivided by replacing it with the path $\left(u, x_{1}, x_{2}, x_{3}, x_{4}, v\right)$. Then $\gamma_{\mathrm{pr}}\left(G_{e, 4}\right)=\gamma_{\mathrm{pr}}(G)+2$ and there exists an edge e^{\prime} of G such that $\gamma_{\mathrm{pr}}\left(G_{e^{\prime}, t}\right)=\gamma_{\mathrm{pr}}(G)+2$. If $e \neq e^{\prime}$, then subdividing $e \in E\left(G_{e^{\prime}, t}\right)$ four times yields the graph $\left(G_{e^{\prime}, t}\right)_{e, 4}$. Since $\operatorname{msd}_{\mathrm{pr}}\left(G_{e^{\prime}, t}\right) \leq 4$, $\gamma_{\mathrm{pr}}\left(\left(G_{e^{\prime}, t}\right)_{e, 4}\right)=\gamma_{\mathrm{pr}}\left(G_{e^{\prime}, t}\right)+2=\gamma_{\mathrm{pr}}(G)+4$. But $\left(G_{e^{\prime}, t}\right)_{e, 4}=\left(G_{e, 4}\right)_{e^{\prime}, t}$, hence $\gamma_{\mathrm{pr}}\left(\left(G_{e, 4}\right)_{e^{\prime}, t}\right)=\gamma_{\mathrm{pr}}(G)+4=\gamma_{\mathrm{pr}}\left(G_{e, 4}\right)+2$. If $e=e^{\prime}$, say $u v$ has been subdivided, in G, by replacing it with $\left(u, x_{1}, \ldots, x_{t}, v\right)$. Subdividing (without loss of generality) the edge $x_{t} v$ four times by replacing it with $\left(x_{t}, x_{t+1}, \ldots, x_{t+4}, v\right)$, we obtain the graph $\left(G_{e, t}\right)_{x_{t} v, 4}=\left(G_{e, 4}\right)_{x_{4} v, t}$ with $\gamma_{\mathrm{pr}}\left(\left(G_{e, 4}\right)_{x_{4} v, t}\right)=\gamma_{\mathrm{pr}}\left(G_{e, 4}\right)+2$. It follows that $\operatorname{msd}_{\mathrm{pr}}\left(G_{e, 4}\right) \leq t$.

We show that $\operatorname{msd}_{\mathrm{pr}}\left(G_{e, 4}\right) \geq t$. If $t=1$, this is obvious, hence assume $t \geq 2$. Consider any $e^{\prime} \in E(G)$. Suppose first that $e^{\prime} \neq e$. Since $\operatorname{msd}_{\mathrm{pr}}(G)=t$, $\gamma_{\mathrm{pr}}\left(G_{e^{\prime}, t-1}\right)=\gamma_{\mathrm{pr}}(G)$. If D^{\prime} is any $\gamma_{\mathrm{pr}}\left(G_{e^{\prime}, t-1}\right)$-set, then $D=D^{\prime} \cup\left\{x_{1}, x_{4}\right\}$ (if u and v are paired in D^{\prime}) or $D=D^{\prime} \cup\left\{x_{2}, x_{3}\right\}$ (otherwise) is a paired dominating set of $\left(G_{e, 4}\right)_{e^{\prime}, t-1}$ of cardinality $|D|=\gamma_{\mathrm{pr}}\left(G_{e^{\prime}, t-1}\right)+2=\gamma_{\mathrm{pr}}(G)+2=\gamma_{\mathrm{pr}}\left(G_{e, 4}\right)$.

Assume $e^{\prime}=e$. Without loss of generality subdivide the edge $x_{4} v$ of $G_{e, 4} t-1$ times by replacing it with the path $\left(x_{4}, \ldots, x_{3+t}, v\right)$ and denote the resulting graph $\left(G_{e, 4}\right)_{x_{4} v, t-1}$ by $G_{e, 3+t}$ for simplicity. Also consider the graph $G_{e, t-1}$ obtained from G by subdividing $e=u v$ by replacing it with ($u, x_{1}, \ldots, x_{t-1}, v$). Since $\operatorname{msd}_{\mathrm{pr}}(G)=t, \gamma_{\mathrm{pr}}\left(G_{e, t-1}\right)=\gamma_{\mathrm{pr}}(G)$. Let S^{\prime} be any $\gamma_{\mathrm{pr}}\left(G_{e, t-1}\right)$-set. We consider three cases. In each case we construct a paired dominating set S of $G_{e, 3+t}$ such that $|S|=\left|S^{\prime}\right|+2=\gamma_{\mathrm{pr}}\left(G_{e, 4}\right)$; this shows that $\operatorname{msd}_{\mathrm{pr}}\left(G_{e, 4}\right) \geq t$.

Case 1. $t=2$. If $x_{1} \notin S^{\prime}$, then without loss of generality $u \in S^{\prime}$ to dominate x_{1}, and $S^{\prime} \backslash\{u\}$ dominates v. Let $S=S^{\prime} \cup\left\{x_{3}, x_{4}\right\}$. If $x_{1} \in S^{\prime}$, then again without loss of generality x_{1} is paired with u. Let $S=S^{\prime} \cup\left\{x_{4}, x_{5}\right\}$.

Case 2. $t=3$. If $S^{\prime} \cap\left\{x_{1}, x_{2}\right\}=\emptyset$, then u dominates x_{1} while v dominates x_{2}; let $S=S^{\prime} \cup\left\{x_{3}, x_{4}\right\}$ (so v dominates x_{6}). If (without loss of generality) $S^{\prime} \cap\left\{x_{1}, x_{2}\right\}=\left\{x_{1}\right\}$, then u and x_{1} are paired, and $S^{\prime} \backslash\left\{u, x_{1}\right\}$ dominates v. Let $S=S^{\prime} \cup\left\{x_{4}, x_{5}\right\}$. If $\left\{x_{1}, x_{2}\right\} \subseteq S^{\prime}$, then x_{1} and x_{2} are paired (otherwise $S^{\prime} \backslash\left\{x_{1}, x_{2}\right\}$ is a paired dominating set of G, which is not the case). Let $S=$ $S^{\prime} \cup\left\{x_{5}, x_{6}\right\}$.

Case 3. $t=4$. By Lemma 6 , without loss of generality $S^{\prime} \cap\left\{u, x_{1}, x_{2}, x_{3}, v\right\}=$ $\left\{x_{1}, x_{2}\right\}$ or $\left\{u, x_{1}, v\right\}$. In the former case, let $S=S^{\prime} \cup\left\{x_{5}, x_{6}\right\}$, and in the latter case, let $S=S^{\prime} \cup\left\{x_{4}, x_{5}\right\}$.

In all cases, S is a paired dominating set of $G_{e, 3+t}$ of cardinality $\gamma_{\mathrm{pr}}(G)+2=$ $\gamma_{\mathrm{pr}}\left(G_{e, 4}\right)$, and $\operatorname{msd}_{\mathrm{pr}}\left(G_{e, 4}\right) \geq t$. It follows that $\operatorname{msd}_{\mathrm{pr}}\left(G_{e, 4}\right)=t$, as required.

We next prove results pertaining to the \oplus-operations defined above that hold for general msd-4 graphs, not only block graphs. We show that the \oplus-operations can be used to construct new connected msd-4 graphs from smaller ones.

Our next result shows that performing the operation $G_{1} \oplus_{1}^{u_{1} u_{2}} G_{2}$ on msd-4 graphs G_{1} and G_{2} with γ_{pr}-critical vertices u_{1} and u_{2}, respectively, results in an msd-4 graph in which each $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-critical vertex is $\gamma_{\mathrm{pr}}(G)$-critical.

Proposition 8. Let G_{1} and G_{2} be disjoint msd-4 graphs with $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-critical vertices $u_{i}, i=1,2$. Then for the graph $G=G_{1} \oplus_{u}^{u_{1} u_{2}} G_{2}, \gamma_{\mathrm{pr}}(G)=\gamma_{\mathrm{pr}}\left(G_{1}\right)+$ $\gamma_{\mathrm{pr}}\left(G_{2}\right)-2$, any $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-critical vertex (including u) is $\gamma_{\mathrm{pr}}(G)$-critical and

$$
\operatorname{msd}_{\mathrm{pr}}(G)=4
$$

Proof. Since $u_{i} \in V\left(G_{i}\right)$ is $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-critical, $\gamma_{\mathrm{pr}}\left(G_{1}-u_{1}\right)+\gamma_{\mathrm{pr}}\left(G_{2}-u_{2}\right)=$ $\gamma_{\mathrm{pr}}\left(G_{1}\right)+\gamma_{\mathrm{pr}}\left(G_{2}\right)-4$, and at most two more vertices are needed to pairwise dominate G. Therefore $\gamma_{\mathrm{pr}}(G) \leq \gamma_{\mathrm{pr}}\left(G_{1}\right)+\gamma_{\mathrm{pr}}\left(G_{2}\right)-2$.

Suppose there exists a paired dominating set S of G such that $|S|<\gamma_{\mathrm{pr}}\left(G_{1}\right)+$ $\gamma_{\mathrm{pr}}\left(G_{2}\right)-2$ and let $S_{i}=S \cap V\left(G_{i}\right)$. First suppose that $u \notin S$. Assume without loss of generality that S_{1} dominates u. Then S_{1} is a paired dominating set of G_{1} and S_{2} is a paired dominating set of $G_{2}-u_{2}$. Hence $\left|S_{1}\right| \geq \gamma_{\mathrm{pr}}\left(G_{1}\right)$ and $\left|S_{2}\right| \geq \gamma_{\mathrm{pr}}\left(G_{2}\right)-2$. But then $|S|=\left|S_{1}\right|+\left|S_{2}\right| \geq \gamma_{\mathrm{pr}}\left(G_{1}\right)+\gamma_{\mathrm{pr}}\left(G_{2}\right)-2$, which is not the case. Therefore we may assume that $u \in S$ (in this case $u_{i} \in S_{i}, i=1,2$) and $\left|S_{1}\right|+\left|S_{2}\right|=|S|+1$. Without loss of generality, u is paired with $v \in V\left(G_{1}\right)$, hence S_{1} is a paired dominating set of G_{1}. Therefore $\left|S_{1}\right| \geq \gamma_{\mathrm{pr}}\left(G_{1}\right)$ so that $\left|S_{2}\right| \leq \gamma_{\mathrm{pr}}\left(G_{2}\right)-3$. If $N_{G_{2}}\left(u_{2}\right) \subseteq S_{2}$, then $S_{2} \backslash\left\{u_{2}\right\}$ is a paired dominating set of G_{2}, and if there exists $w \in N_{G_{2}}\left(u_{2}\right) \backslash S_{2}$, then $S_{2} \cup\{w\}$ is a paired dominating set of G_{2}. This is impossible because $\left|S_{2} \cup\{w\}\right| \leq \gamma_{\mathrm{pr}}\left(G_{2}\right)-2$. Hence

$$
\gamma_{\mathrm{pr}}(G)=\gamma_{\mathrm{pr}}\left(G_{1}\right)+\gamma_{\mathrm{pr}}\left(G_{2}\right)-2 .
$$

If w_{i} is $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-critical, then, for $j \neq i$, the union of any $\gamma_{\mathrm{pr}}\left(G_{i}-w_{i}\right)$-set and any $\gamma_{\mathrm{pr}}\left(G_{j}-u_{j}\right)$-set is a paired dominating set of $G-w_{i}$ (this holds for $w_{i}=u_{i}=u$ also), so

$$
\gamma_{\mathrm{pr}}\left(G-w_{i}\right) \leq \gamma_{\mathrm{pr}}\left(G_{i}-w_{i}\right)+\gamma_{\mathrm{pr}}\left(G_{j}-u_{j}\right)=\gamma_{\mathrm{pr}}\left(G_{1}\right)+\gamma_{\mathrm{pr}}\left(G_{2}\right)-4<\gamma_{\mathrm{pr}}(G) .
$$

Therefore w_{i} is $\gamma_{\mathrm{pr}}(G)$-critical.
Without loss of generality consider $e \in E\left(G_{1}\right)$ and subdivide e three times. Then, since $\operatorname{msd}_{\mathrm{pr}}\left(G_{1}\right)=4$ and u_{2} is $\gamma_{\mathrm{pr}}\left(G_{2}\right)$-critical, we obtain

$$
\gamma_{\mathrm{pr}}\left(G_{e, 3}\right) \leq \gamma_{\mathrm{pr}}\left(G_{1_{e, 3}}\right)+\gamma_{\mathrm{pr}}\left(G_{2}-u_{2}\right)=\gamma_{\mathrm{pr}}\left(G_{1}\right)+\gamma_{\mathrm{pr}}\left(G_{2}\right)-2=\gamma_{\mathrm{pr}}(G)
$$

Therefore $\operatorname{msd}_{\mathrm{pr}}(G)=4$.
We show next that performing the operation $G_{1} \oplus^{e_{1} e_{2}} G_{2}$ on msd-4 graphs $G_{i}, i=1,2$, with edges $e_{i}=x_{i} y_{i}$, where x_{i} is a $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-critical vertex, results in an msd-4 graph in which each $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-critical vertex is $\gamma_{\mathrm{pr}}(G)$-critical.

Proposition 9. Let $G_{i}, i=1,2$, be disjoint msd-4 graphs with $e_{i}=x_{i} y_{i} \in E\left(G_{i}\right)$, where $x_{i} \in \operatorname{Cr}\left(G_{i}\right)$. Then for the graph $G=G_{1} \oplus^{e_{1} e_{2}} G_{2}, \gamma_{\mathrm{pr}}(G)=\gamma_{\mathrm{pr}}\left(G_{1}\right)+$ $\gamma_{\mathrm{pr}}\left(G_{2}\right)-2$, any $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-critical vertex (including $\left.x=x_{1}=x_{2}\right)$ is $\gamma_{\mathrm{pr}}(G)$-critical and $\operatorname{msd}_{\mathrm{pr}}(G)=4$.

Proof. By Theorem 1, there exists a $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-set in which x_{i} and y_{i} are matched. Therefore

$$
\begin{equation*}
\gamma_{\mathrm{pr}}(G) \leq \gamma_{\mathrm{pr}}\left(G_{1}\right)+\gamma_{\mathrm{pr}}\left(G_{2}\right)-2 . \tag{1}
\end{equation*}
$$

On the other hand, it suffices to add two vertices to a $\gamma_{\mathrm{pr}}(G)$-set when splitting it into paired dominating sets of G_{1} and G_{2}. Hence we have equality in (1). As in the proof of Proposition 8, any $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-critical vertex is $\gamma_{\mathrm{pr}}(G)$-critical.

Let $e \in E(G)$ be any edge. If $e \in E\left(G_{1}\right) \backslash\left\{e_{1}\right\}$, then

$$
\gamma_{\mathrm{pr}}\left(G_{e, 3}\right) \leq \gamma_{\mathrm{pr}}\left(G_{1_{e, 3}}\right)+\gamma_{\mathrm{pr}}\left(G_{2}-x_{2}\right)=\gamma_{\mathrm{pr}}\left(G_{1}\right)+\gamma_{\mathrm{pr}}\left(G_{2}\right)-2=\gamma_{\mathrm{pr}}(G)
$$

The case when $e \in E\left(G_{2}\right) \backslash\left\{e_{2}\right\}$ is analogous. Thus assume $e=x y$ and subdivide e by replacing it with the path (x, u, v, w, y). Let S be any $\gamma_{\mathrm{pr}}(G-x)$-set. As shown above, $|S|=\gamma_{\mathrm{pr}}(G)-2$. Now $S \cup\{u, v\}$ is a paired dominating set of $G_{e, 3}$ of cardinality $\gamma_{\mathrm{pr}}(G)$. It follows that G is an msd-4 graph.

We now describe a type of "reverse" operation, called a split operation, for each of the \oplus-operations.
$G \ominus u$. Let G be a connected graph with a cut-vertex u. Denote the components of $G-u$ by $F_{1}, F_{2}, \ldots, F_{k}$. For each i, let G_{i} be the graph obtained from F_{i} by adding a new vertex u_{i}, joining u_{i} to $v_{i} \in V\left(F_{i}\right)$ if and only if $u v_{i} \in E(G)$. Denote the disjoint union $G_{1}+\cdots+G_{k}$ by $G \ominus u$.
$G \ominus x y$. Let G be a connected graph containing a vertex-cut $\{x, y\}$, where $x y \in$ $E(G)$. Denote the components of $G-\{x, y\}$ by $F_{1}, F_{2}, \ldots, F_{k}$. For each i, let G_{i} be the graph obtained from F_{i} by adding the edge $x_{i} y_{i}$, joining $x_{i}\left(y_{i}\right.$, respectively) to $v_{i} \in V\left(F_{i}\right)$ if and only if $x v_{i} \in E(G)\left(y v_{i} \in E(G)\right.$, respectively $)$. Denote the disjoint union $G_{1}+\cdots+G_{k}$ by $G \ominus x y$.

The next proposition shows that if an msd-4 graph G is split at a γ_{pr}-critical cut-vertex u, the components of $G \ominus u$ are msd-4 graphs having the copies of u as γ_{pr}-critical vertices.

Proposition 10. Let G be an msd-4 graph with a $\gamma_{\text {pr }}$-critical cut-vertex u. Denote the components of $G \ominus u$ by G_{1}, \ldots, G_{k}. Then for each $i=1, \ldots, k, u_{i}$ is a $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-critical vertex and $\operatorname{msd}_{\mathrm{pr}}\left(G_{i}\right)=4$.

Proof. Since u is $\gamma_{\mathrm{pr}}(G)$-critical and $G-u$ is the disjoint union of $G_{i}-u_{i}$, $i=1, \ldots, k$,

$$
\gamma_{\mathrm{pr}}(G)-2=\gamma_{\mathrm{pr}}(G-u)=\sum_{i=1}^{k} \gamma_{\mathrm{pr}}\left(G_{i}-u_{i}\right)
$$

Suppose $\gamma_{\mathrm{pr}}\left(G_{1}-u_{1}\right) \geq \gamma_{\mathrm{pr}}\left(G_{1}\right)$. Let R_{1} be a $\gamma_{\mathrm{pr}}\left(G_{1}\right)$-set and, for $i \geq 2$, let R_{i} be a $\gamma_{\mathrm{pr}}\left(G_{i}-u_{i}\right)$-set. Since R_{1} dominates $u_{1}, R=\bigcup_{i=1}^{k} R_{i}$ is a paired dominating set of G. But then

$$
\gamma_{\mathrm{pr}}(G) \leq|R| \leq \gamma_{\mathrm{pr}}\left(G_{1}\right)+\sum_{i=2}^{k} \gamma_{\mathrm{pr}}\left(G_{i}-u_{i}\right) \leq \sum_{i=1}^{k} \gamma_{\mathrm{pr}}\left(G_{i}-u_{i}\right)=\gamma_{\mathrm{pr}}(G)-2
$$

which is impossible. Thus u_{1} is $\gamma_{\mathrm{pr}}\left(G_{1}\right)$-critical. The same argument works for each $i \in\{2, \ldots, k\}$.

Consider an arbitrary edge $e \in E\left(G_{1}\right)$ and subdivide e three times. Then

$$
\begin{equation*}
\gamma_{\mathrm{pr}}\left(G_{e, 3}\right) \leq \gamma_{\mathrm{pr}}\left(G_{1_{e, 3}}\right)+\sum_{i=2}^{k} \gamma_{\mathrm{pr}}\left(G_{i}-u_{i}\right) \tag{2}
\end{equation*}
$$

We show that equality holds in (2). Let S be any $\gamma_{\mathrm{pr}}\left(G_{e, 3}\right)$-set and define $S_{1}=$ $S \cap V\left(G_{1_{e, 3}}\right)$ and $S_{i}=S \cap V\left(G_{i}\right)$ for $i=2, \ldots, k$ (if $u \in S$, then $u_{i} \in S_{i}$ for each i). First suppose that $u \notin S$. If S_{1} dominates u, then S_{1} is a paired dominating set of $G_{1_{e, 3}}$ and $S_{i}, i \geq 2$, is a paired dominating set of $G_{i}-u_{i}$. Hence $\left|S_{1}\right| \geq \gamma_{\mathrm{pr}}\left(G_{1_{e, 3}}\right)$ and $\left|S_{i}\right| \geq \gamma_{\mathrm{pr}}\left(G_{i}-u_{i}\right)$, so that $\gamma_{\mathrm{pr}}\left(G_{e, 3}\right)=|S|=$ $\sum_{i=1}^{k}\left|S_{i}\right| \geq \gamma_{\mathrm{pr}}\left(G_{1_{e, 3}}\right)+\sum_{i=2}^{k} \gamma_{\mathrm{pr}}\left(G_{i}-u_{i}\right)$ as required. On the other hand, if S_{1} does not dominate u, then S_{j} is a paired dominating set of G_{j} for some $j \geq 2$, so that $\left|S_{j}\right| \geq \gamma_{\mathrm{pr}}\left(G_{j}\right)=\gamma_{\mathrm{pr}}\left(G_{j}-u_{j}\right)+2$ (since u_{j} is $\gamma_{\mathrm{pr}}\left(G_{j}\right)$-critical). Let S_{j}^{\prime} be a $\gamma_{\mathrm{pr}}\left(G_{j}-u_{j}\right)$-set, $S_{1}^{\prime}=S_{1} \cup\left\{u, u^{\prime}\right\}$ for some $u^{\prime} \in N_{G_{1}}(u)$, and $S^{\prime}=\left(S \backslash S_{1} \backslash S_{j}\right) \cup S_{1}^{\prime} \cup S_{j}^{\prime}$. Then $\left|S^{\prime}\right|=|S|, S_{1}^{\prime}$ is a paired dominating set of $G_{1_{e, 3}}$ and the result follows as before.

Now suppose that $u \in S$. Then $\left|S_{1}\right|+\sum_{i=2}^{k}\left|S_{i}\right|=|S|+k-1$ and u is paired with a vertex in exactly one of the graphs $G_{1_{e, 3}}$ or $G_{i}, i \geq 2$. For each of the $k-1$ other graphs, either $S_{i} \cup\left\{w_{i}\right\}$, for some neighbour $w_{i} \notin S_{i}$ of u_{i}, or $S_{i} \backslash\left\{u_{i}\right\}$ (if all neighbours of u_{i} in G_{i} belong to S_{i}) is a paired dominating set. Hence

$$
\gamma_{\mathrm{pr}}\left(G_{1_{e, 3}}\right)+\sum_{i=2}^{k} \gamma_{\mathrm{pr}}\left(G_{i}\right) \leq|S|+2(k-1)
$$

Since u_{i} is $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-critical for each $i=2,3 \ldots, k, \gamma_{\mathrm{pr}}\left(G_{i}-u_{i}\right)=\gamma_{\mathrm{pr}}\left(G_{i}\right)-2$. This gives

$$
\gamma_{\mathrm{pr}}\left(G_{1_{e, 3}}\right)+\sum_{i=2}^{k} \gamma_{\mathrm{pr}}\left(G_{i}-u_{i}\right) \leq|S|=\gamma_{\mathrm{pr}}\left(G_{e, 3}\right)
$$

Therefore we have equality (2). Now

$$
\begin{aligned}
\gamma_{\mathrm{pr}}\left(G_{1_{e, 3}}\right) & =\gamma_{\mathrm{pr}}\left(G_{e, 3}\right)-\sum_{i=2}^{k} \gamma_{\mathrm{pr}}\left(G_{i}-u_{i}\right)=\gamma_{\mathrm{pr}}(G)-\sum_{i=2}^{k} \gamma_{\mathrm{pr}}\left(G_{i}-u_{i}\right) \\
& =\gamma_{\mathrm{pr}}\left(G_{1}\right)+\sum_{i=2}^{k} \gamma_{\mathrm{pr}}\left(G_{i}-u_{i}\right)-\sum_{i=2}^{k} \gamma_{\mathrm{pr}}\left(G_{i}-u_{i}\right)=\gamma_{\mathrm{pr}}\left(G_{1}\right) .
\end{aligned}
$$

Hence, for any edge $e \in E\left(G_{1}\right), \gamma_{\mathrm{pr}}\left(G_{1 e, 3}\right)=\gamma_{\mathrm{pr}}(G)$. Thus $\operatorname{msd}_{\mathrm{pr}}\left(G_{1}\right)=4$. Similar reasoning may be applied to G_{i} for $i \in\{2,3, \ldots, k\}$.

5. Msd-4 Block Graphs

The last three results we need for the proof of Theorem 4 concern block graphs. In the first result we prove that every non-leaf vertex of an msd-4 block graph is a cut-vertex.

Theorem 11. Let G be a graph containing a block $B \cong K_{n}$, where $n \geq 3$, such that some vertex of B is not adjacent to any vertex of $G-B$. Then

$$
\operatorname{msd}_{\mathrm{pr}}(G)<4
$$

Proof. Suppose the hypothesis of the theorem holds but $\operatorname{msd}_{\mathrm{pr}}(G)=4$. Let $V(B)=\left\{v_{0}, \ldots, v_{n-1}\right\}$ and say $u=v_{0}$ is not adjacent to any vertex of $G-B$. Subdivide the edge $u v_{2}$ by replacing it with the path ($u, x_{3}, x_{2}, x_{1}, v_{2}$) (see Figure 3). Denote $X=\left\{x_{1}, x_{2}, x_{3}\right\}$ and let D be a γ_{pr}-set of $G_{u v_{2}, 3}$. By Lemma 6 we only have to consider the cases $D \cap\left\{u, x_{1}, x_{2}, x_{3}, v_{2}\right\} \in\left\{\left\{u, x_{1}, v_{2}\right\},\left\{u, x_{3}, v_{2}\right\}\right.$, $\left.\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{3}\right\}\right\}$.

Figure 3. The block B with the edge $u v_{2}$ subdivided with vertices x_{1}, x_{2}, x_{3}.

Case 1. $|X \cap D|=1$. If $D \cap\left\{u, x_{1}, x_{2}, x_{3}, v_{2}\right\}=\left\{u, x_{1}, v_{2}\right\}$, then x_{1} and v_{2} are paired in D, while u is paired with v_{i} for some $i \neq 0,2$. However, then $D \backslash\left\{x_{1}, u\right\}$, with v_{2} and v_{i} paired, is a smaller paired dominating set of G. If $D \cap\left\{u, x_{1}, x_{2}, x_{3}, v_{2}\right\}=\left\{u, x_{3}, v_{2}\right\}$, then $D \backslash\left\{x_{3}, u\right\}$ is a smaller paired dominating set of G. In either case $\operatorname{msd}_{\mathrm{pr}}(G)<4$, contrary to our assumption.

Case 2. $|X \cap D|=2$. If $D \cap\left\{u, x_{1}, x_{2}, x_{3}, v_{2}\right\}=\left\{x_{1}, x_{2}\right\}$, then x_{1} and x_{2} are paired in D. To pairwise dominate $u, v_{i} \in D$ for some $i \neq 0,2$. But then $D \backslash\left\{x_{1}, x_{2}\right\}$ is a paired dominating set of G (with v_{i} paired as in D) and $\operatorname{msd}_{\mathrm{pr}}(G)<4$, contrary to our assumption. Hence assume $D \cap\left\{u, x_{1}, x_{2}, x_{3}, v_{2}\right\}=$ $\left\{x_{2}, x_{3}\right\}$. Then x_{2} and x_{3} are matched in D. If $v_{i} \in D$ for some i, then $D \backslash\left\{x_{2}, x_{3}\right\}$ is a paired dominating set of G (again with v_{i} paired as in D), a contradiction.

We therefore assume henceforth that
(i) D contains x_{2} and x_{3}, but neither x_{1} nor any v_{0}, \ldots, v_{n-1}.

By Lemma 6, u is γ_{pr}-critical, that is,
(ii) $\gamma_{\mathrm{pr}}(G-u)=\gamma_{\mathrm{pr}}(G)-2$.

For each $i=1, \ldots, n-1$, let G_{i} be the component of $G-E(B)$ that contains v_{i}. Since B is a block of G, the subgraphs G_{i} are distinct and pairwise vertexdisjoint. Let $D_{i}=D \cap V\left(G_{i}\right)$. Then $\left|\bigcup_{i=1}^{n-1} D_{i}\right|=\left|D \backslash\left\{x_{2}, x_{3}\right\}\right|=\gamma_{\mathrm{pr}}(G)-2$. By (i), each D_{i} is a $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-set that does not contain v_{i}.

We next show that
(iii) no $\gamma_{\mathrm{pr}}(G)$-set contains $u=v_{0}$ and at least two $v_{i}, i \geq 1$.

Suppose there exists such a set Z; assume without loss of generality that $\left\{u, v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq Z, k \geq 2$. Necessarily, u is paired with some $v_{i}, i=1, \ldots, k$, in Z. Assume (again without loss of generality) u is paired with v_{1}. Let $Z_{1}=$ $Z \cap V\left(G_{1}\right) \backslash\left\{v_{1}\right\}$ and, for $i \geq 2$, let $Z_{i}=Z \cap V\left(G_{i}\right)$. Then $\bigcup_{i=1}^{n-1} Z_{i} \subseteq V(G-u)$ and $\left|\bigcup_{i=1}^{n-1} Z_{i}\right|=|Z|-2=\gamma_{\mathrm{pr}}(G-u)<\gamma_{\mathrm{pr}}(G)$, by (ii). Since v_{1} and u are paired, $G_{1}\left[Z_{1}\right]$ contains a perfect matching, as does $G\left[\bigcup_{i=2}^{n-1} Z_{i}\right]$. Since v_{1} is not adjacent to any vertex of $G_{i}-v_{i}, i \geq 2$, and v_{2} dominates B in $G, \bigcup_{i=2}^{n-1} Z_{i}$ is a paired dominating set of $G-G_{1}$.

Suppose $\left|Z_{1}\right|<\left|D_{1}\right|$. Since both Z_{1} and D_{1} have even cardinality, $\left|Z_{1}\right| \leq$ $\left|D_{1}\right|-2$. Then Z_{1} does not dominate $G_{1}-v_{1}$, otherwise $\bigcup_{i=1}^{n-1} Z_{i}$ is a paired dominating set of G of cardinality less than $\gamma_{\mathrm{pr}}(G)$, which is impossible. Since $Z_{1} \cup\left\{v_{1}\right\}$ dominates G_{1}, there exists a vertex $w \in N_{G_{1}}\left(v_{1}\right)$ that is undominated by Z_{1}. Then $W_{1}=Z_{1} \cup\left\{w, v_{1}\right\}$ is a paired dominating set of G_{1} of cardinality at most $\left|D_{1}\right|$ that contains v_{1}. But now $W_{1} \cup D_{2} \cup D_{3} \cup \cdots \cup D_{n-1}$ is a paired dominating set of G of cardinality at most $\left|D \backslash\left\{x_{2}, x_{3}\right\}\right|=\gamma_{\mathrm{pr}}(G)-2$, which is impossible. We conclude that $\left|Z_{1}\right|=\left|D_{1}\right|$.

Let $Z^{\prime}=D_{1} \cup\left(\bigcup_{i=2}^{n-1} Z_{i}\right)$. Since $\bigcup_{i=2}^{n-1} Z_{i}$ is a paired dominating set of $G-$ G_{1} and D_{1} is a paired dominating set of G_{1}, Z^{\prime} is a paired dominating set of G.

Moreover,

$$
\left|Z^{\prime}\right|=\left|\bigcup_{i=2}^{n-1} Z_{i}\right|+\left|D_{1}\right|=\left|\bigcup_{i=1}^{n-1} Z_{i}\right|=|Z|-2=\gamma_{\mathrm{pr}}(G-u)<\gamma_{\mathrm{pr}}(G),
$$

which is impossible. This concludes the proof of (iii).
Subdivide the edge $v_{1} v_{2}$ with vertices y_{1}, y_{2}, y_{3}, where y_{1} is adjacent to v_{1} and y_{3} is adjacent to v_{2} (see Figure 4). Denote $Y=\left\{y_{1}, y_{2}, y_{3}\right\}$ and let Q be a γ_{pr}-set of $G_{v_{1} v_{2}, 3}$. Without loss of generality, by Lemma 6 we only have to consider the cases $Q \cap\left\{v_{1}, v_{2}, y_{1}, y_{2}, y_{3}\right\} \in\left\{\left\{y_{1}, y_{2}\right\},\left\{v_{1}, v_{2}, y_{1}\right\}\right\}$.

Figure 4. The block B with the edge $v_{1} v_{2}$ subdivided with vertices y_{1}, y_{2}, y_{3}.
Case 3a. $Q \cap\left\{v_{1}, v_{2}, y_{1}, y_{2}, y_{3}\right\}=\left\{y_{1}, y_{2}\right\}$. Then these two vertices are paired in Q. To pairwise dominate $u, v_{i} \in Q$ for some i. It follows that $Q \backslash\left\{y_{1}, y_{2}\right\}$ is a paired dominating set of G, so $\operatorname{msd}_{\mathrm{pr}}(G)<4$, contrary to our assumption.

Case 3b. $Q \cap\left\{v_{1}, v_{2}, y_{1}, y_{2}, y_{3}\right\}=\left\{v_{1}, v_{2}, y_{1}\right\}$. Then y_{1} is paired with v_{1}. If $u \notin Q$, then $Q^{\prime}=\left(Q \backslash\left\{y_{1}\right\}\right) \cup\{u\}$ is a paired dominating set of G containing u, v_{1}, v_{2}. By (iii), Q^{\prime} is not a γ_{pr}-set of G, from which it follows that $\gamma_{\mathrm{pr}}(G)<|Q|$ and $\operatorname{msd}_{\mathrm{pr}}(G)<4$. Assume therefore that $u \in Q$. Then u is paired in Q with v_{i} for some $i>1$. Now $Q^{\prime \prime}=Q \backslash\left\{y_{1}, u\right\}$ is a paired dominating set of G in which v_{1} and v_{i} are paired. In both cases we again have a contradiction and the proof is complete.

The graph in Figure 5 shows that the statement of Theorem 11 is false if the complete subgraph B is not a block of G.

The next result in this section shows that msd-4 block graphs have many γ_{pr}-critical vertices.

G
Figure 5. A graph G with $\operatorname{msd}_{\mathrm{pr}}(G)=4$ and a subgraph K_{3} that is not a block of G.

Theorem 12. If G is a block graph with $\operatorname{msd}_{\mathrm{pr}}(G)=4$, then for any edge $u v \in$ $E(G)$,

$$
\left(N_{G}[u] \cup N_{G}[v]\right) \cap \operatorname{Cr}(G) \neq \emptyset .
$$

Proof. Suppose there exists an edge $u v \in E(G)$ such that $\left(N_{G}[u] \cup N_{G}[v]\right) \cap$ $\operatorname{Cr}(G)=\emptyset$. By Theorem 1, no vertex in $N_{G}[u] \cup N_{G}[v]$ is a leaf. We subdivide the edge $u v$ by replacing it with the path ($u, x_{1}, x_{2}, x_{3}, v$) to obtain the graph $G_{u v, 3}$. By Lemma 6 , for any γ_{pr}-set S of $G_{u v, 3}, S \cap\left\{u, v, x_{1}, x_{2}, x_{3}\right\} \in\left\{\left\{u, v, x_{1}\right\}\right.$, $\left.\left\{u, v, x_{3}\right\}\right\}$. Without loss of generality assume there exists such a set S such that $S \cap\left\{u, v, x_{1}, x_{2}, x_{3}\right\}=\left\{u, v, x_{1}\right\}$, and among all such sets S, let D be one for which $\mathrm{PN}(u, D)$ is as small as possible. Then x_{1} and u are paired in D.

Say v is paired with v^{\prime} and let B be the block of G that contains $u v$. If $v^{\prime} \in V(G) \backslash V(B)$, let G_{v} be the subgraph of $G-E(B)$ that contains v, and if $v^{\prime} \in$ $V(B)$, let G_{v} be the subgraph of $G-\left(E(B)-\left\{v v^{\prime}\right\}\right)$ that contains v. In either case, $v^{\prime} \in V\left(G_{v}\right)$. Let $D_{v}=D \cap V\left(G_{v}\right)$ and $D^{\prime}=D \backslash\left\{x_{1}, u\right\}$. Then $G\left[D^{\prime}\right]$ has a perfect matching and D_{v} is a paired dominating set of G_{v} containing v and v^{\prime}. In fact, D_{v} is a $\gamma_{\mathrm{pr}}\left(G_{v}\right)$-set, for if not, let $D^{\prime \prime}$ be a smaller paired dominating set of G_{v}. Consider $N_{G}(u) \backslash V(B)$. If $B \cong K_{2}$, then $N_{G}(u) \backslash V(B)=N_{G}(u) \backslash\{v\}$ is nonempty because u is not a leaf, and if $B \cong K_{n}$ for $n \geq 3$, then $N_{G}(u) \backslash V(B)$ is nonempty by Theorem 11. If $N_{G}(u) \backslash V(B) \subseteq D$, then D^{\prime} is a paired dominating set of G, and if there exists $w \in N_{G}(u) \backslash V(B) \backslash D$, then $\left(D \backslash\left\{x_{1}\right\} \backslash D_{v}\right) \cup D^{\prime \prime} \cup\{w\}$ is a smaller paired dominating set of G than D. In both cases we have a contradiction to $\operatorname{msd}_{\mathrm{pr}}(G)=4$.

Since $\operatorname{msd}_{\mathrm{pr}}(G)=4,\left|D^{\prime}\right|=\gamma_{\mathrm{pr}}\left(G_{u v, 3}\right)-2=\gamma_{\mathrm{pr}}(G)-2$. Consequently, D^{\prime} does not dominate G. Since $v \in D^{\prime}$ dominates B in G, there exist vertices $w_{1}, \ldots, w_{k} \in N_{G}(u) \backslash N_{G}[v] \subseteq N_{G}(u) \backslash B$ that are undominated by D^{\prime}, that is,
$\left\{w_{1}, \ldots, w_{k}\right\}=\operatorname{PN}(u, D)$. For $i=1, \ldots, k$, let G_{i} be the component of $G-u$ that contains w_{i}. Possibly, $G_{i}=G_{j}$ for $i \neq j$; this happens exactly when $w_{i} w_{j} \in E(G)$, and then w_{i} and w_{j} also belong to the same (complete) block of G_{i}. Since no w_{i} is adjacent to v or $v^{\prime}, V\left(G_{i}\right) \cap V\left(G_{v}\right)=\emptyset$ for each i. Define $D_{i}=D \cap V\left(G_{i}\right)$. Then $G_{i}\left[D_{i}\right]$ has a perfect matching, but does not dominate w_{i}. If it is nevertheless true that $\gamma_{\mathrm{pr}}\left(G_{i}\right)=\left|D_{i}\right|$ for some i, let Q_{i} be a $\gamma_{\mathrm{pr}}\left(G_{i}\right)$ set. Then $D^{*}=\left(D \backslash D_{i}\right) \cup Q_{i}$ is a $\gamma_{\mathrm{pr}}\left(G_{u v, 3}\right)$-set such that $\operatorname{PN}\left(u, D^{*}\right) \subseteq \operatorname{PN}(u, D) \backslash\left\{w_{i}\right\}$, contrary to the choice of D. Therefore $\gamma_{\mathrm{pr}}\left(G_{i}\right) \geq\left|D_{i}\right|+2$ for each i.

Since each stem belongs to all paired dominating sets, no w_{i} is a stem, and by our initial assumption, no w_{i} is a leaf. Subdivide the edge $u w_{1}$ by replacing it with the path $\left(u, y_{1}, y_{2}, y_{3}, w_{1}\right)$. Consider a $\gamma_{\mathrm{pr}}\left(G_{u w_{1}, 3}\right)$-set S. Since $u, w_{1} \notin \operatorname{Cr}(G)$, Lemma 6 states that $S \cap\left\{u, y_{1}, y_{2}, y_{3}, w_{1} \in\left\{\left\{u, y_{1}, w_{1}\right\},\left\{u, y_{3}, w_{1}\right\}\right\}\right.$.

- In the former case, y_{1} is paired with u and $S_{1}=S \cap V\left(G_{1}\right)$ is a paired dominating set of G_{1}; hence $\left|S_{1}\right| \geq \gamma_{\mathrm{pr}}\left(G_{1}\right) \geq\left|D_{1}\right|+2$. Since w_{1} is adjacent to all $w_{i} \in V\left(G_{1}\right)$, $D_{1} \cup\left\{w_{1}\right\}$ dominates G_{1} (but not pairwise). Now $S^{\prime}=\left(S \backslash S_{1}\right) \cup D_{1} \cup\left\{w_{1}, y_{3}\right\}$ is a paired dominating set of $G_{u w_{1}, 3}$ such that $\left|S^{\prime}\right| \leq|S|$, hence S^{\prime} is a $\gamma_{\mathrm{pr}}\left(G_{u w_{1}, 3}\right)$-set. Moreover, $S^{\prime} \cap\left\{u, y_{1}, y_{2}, y_{3}, w_{1}\right\}=\left\{u, y_{1}, y_{3}, w_{1}\right\}$, contrary to Lemma 6 .
- In the latter case, y_{3} is paired with w_{1}. Then $S_{2}=\left(S \cap V\left(G_{1}\right)\right) \cup\left\{y_{3}\right\}$ is a paired dominating set of the graph obtained from G_{1} by joining y_{3} to w_{1}. If all neighbours of w_{1} in G_{1} belong to S_{2}, then $S_{2} \backslash\left\{w_{1}, y_{3}\right\}$ is a paired dominating set of G_{1}. But then $S^{\prime \prime}=S \backslash\left\{w_{1}, y_{3}\right\}$ is a paired dominating set of G such that $\left|S^{\prime \prime}\right|<|S|$, contradicting $\operatorname{msd}_{\mathrm{pr}}(G)=4$. Assume some neighbour z of w_{1} in G_{1} does not belong to S_{2}. Then $S_{3}=\left(S_{2} \backslash\left\{y_{3}\right\}\right) \cup\{z\}$ is a paired dominating set of G_{1}, so that $\left|S_{2}\right|=\left|S_{3}\right| \geq\left|D_{1}\right|+2$. Since $u \in S$ and $\left\{w_{1}, \ldots, w_{k}\right\} \subseteq N(u)$, $S^{*}=\left(S \backslash S_{2}\right) \cup D_{1}$ is a paired dominating set of G such that $\left|S^{*}\right|<|S|$, again a contradiction.
This completes the proof of the theorem.
Although the graph G in Figure 5 satisfies $\operatorname{msd}_{\mathrm{pr}}(G)=4$ without being a block graph, Theorem 12 holds for G as well.

Our final result in this section concerns the reverse operation $G \ominus x y$ for certain msd-4 block graphs.

Proposition 13. Let G be a connected msd-4 block graph such that the only $\gamma_{\mathrm{pr}}(G)$-critical vertices are leaves. Let x be a leaf adjacent to the stem y, where $\{x, y\}$ is a vertex-cut, and denote the components of $G \ominus x y$ by G_{1}, \ldots, G_{k}. Then for each $i=1, \ldots, k, G_{i}$ is an msd-4 graph and $x_{i} \in \operatorname{Cr}\left(G_{i}\right)$.

Proof. If G_{i} is an msd-4 graph, it will follow from Theorem 1(ii) that $x_{i} \in$ $\operatorname{Cr}\left(G_{i}\right)$. However, we need the fact that x_{i} is $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-critical to show that $\operatorname{msd}_{\mathrm{pr}}\left(G_{i}\right)=4$, hence this is what we prove first.

Since G is a block graph, $N_{G_{i}-x_{i}}\left(y_{i}\right)$ induces a clique for each $i=1, \ldots, k$. Since x is a leaf, y belongs to every paired dominating set of G, and by Theorem 1(ii), $x \in \operatorname{Cr}(G)$. Hence y belongs to no $\gamma_{\mathrm{pr}}(G-x)$-set (for such a set would dominate x and thus G, contradicting $x \in \operatorname{Cr}(G)$).

Let D be a $\gamma_{\mathrm{pr}}(G-x)$ set such that $|D \cap N(y)|$ is maximum and let $D_{i}=D \cap$ $V\left(G_{i}\right), i=1, \ldots, k$. Since $x \in \operatorname{Cr}(G)$ and $y \notin D,|D|=\sum_{i=1}^{k}\left|D_{i}\right|=\gamma_{\mathrm{pr}}(G)-2$. Also, D_{i} is a paired dominating set of $G_{i}-\left\{x_{i}, y_{i}\right\}$ for each i, and a paired dominating set of $G_{i}-x_{i}$ for at least one i. We show that, in fact,
(A) D_{i} is a paired dominating set of $G_{i}-x_{i}$ for each i.

First suppose $\left|N_{G_{i}-x_{i}}\left(y_{i}\right)\right| \geq 2$; say $z_{1}, z_{2} \in N_{G_{i}-x_{i}}\left(y_{i}\right)$. Since $N_{G_{i}-x_{i}}\left(y_{i}\right)$ induces a clique, $z_{1} z_{2} \in E(G)$. By Theorem 12, $\left(N_{G}\left[z_{1}\right] \cup N_{G}\left[z_{2}\right]\right) \cap \operatorname{Cr}(G) \neq \emptyset$. Since $N_{G}\left[z_{i}\right]=N_{G_{i}-x_{i}}\left[z_{i}\right]$ and z_{i} is not a leaf (and thus, by the hypothesis, not $\gamma_{\mathrm{pr}}(G)$-critical), z_{1} or z_{2} is adjacent to a $\gamma_{\mathrm{pr}}(G)$-critical vertex, i.e., a leaf. Say z_{1} is adjacent to a leaf z^{\prime}. Then z_{1} belongs to any paired dominating set of any subgraph of G containing both z_{1} and z^{\prime}, so $z_{1} \in D$. Therefore D_{i} dominates y_{i} and (A) holds.

Assume therefore that $\left|N_{G_{i}-x_{i}}\left(y_{i}\right)\right|=1$, say $N_{G_{i}-x_{i}}\left(y_{i}\right)=\{z\}$. If $z \in D$, we are done, hence assume $z \notin D$. By Theorem 1(iii), z is not a leaf, hence there exists a vertex $z^{\prime} \in N_{G_{i}-x_{i}}(z) \backslash\left\{y_{i}\right\}$. By Theorem 1(i), G has a γ_{pr}-set X such that $z z^{\prime}$ belongs to a matching of $G[X]$. Now $y \in X$, but y is not paired with any vertex of $G_{i}-x_{i}$, since $N_{G_{i}-x_{i}}\left(y_{i}\right)=\{z\}$. Therefore $X_{i}=(X \backslash\{x, y\}) \cap V\left(G_{i}\right)$ is a paired dominating set of $G_{i}-x_{i}$. Moreover, $\left|X_{i}\right| \leq\left|D_{i}\right|$, otherwise $\left(X-X_{i}\right) \cup D_{i}$ is a smaller paired dominating set of G, which is impossible. However, now $D^{\prime}=\left(D \backslash D_{i}\right) \cup X_{i}$ is a paired dominating set of $G-x$, hence a $\gamma_{\mathrm{pr}}(G-x)$-set, containing more neighbours of y than D, contrary to the choice of D. Hence (A) holds in this case as well.

Therefore $\gamma_{\mathrm{pr}}\left(G_{i}-x_{i}\right) \leq\left|D_{i}\right|$ for each i, so that

$$
\begin{equation*}
\sum_{i=1}^{k} \gamma_{\mathrm{pr}}\left(G_{i}-x_{i}\right) \leq \sum_{i=1}^{k}\left|D_{i}\right|=|D|=\gamma_{\mathrm{pr}}(G-x) \tag{3}
\end{equation*}
$$

Suppose there exists a $\gamma_{\mathrm{pr}}\left(G_{i}-x_{i}\right)$-set Y_{i} containing y_{i}. Since no D_{j} contains $y_{j}, D^{\prime}=\left(D \backslash D_{i}\right) \cup Y_{i}$ is a paired dominating set of $G-x$ such that $\left|D^{\prime}\right| \leq$ $|D|=\gamma_{\mathrm{pr}}(G)-2$ and D^{\prime} dominates x. Then D^{\prime} is a paired dominating set of G, which is impossible. Therefore no $\gamma_{\mathrm{pr}}\left(G_{i}-x_{i}\right)$-set contains y_{i}. Similarly, if $\gamma_{\mathrm{pr}}\left(G_{i}-x_{i}\right)<\left|D_{i}\right|$ for some i and Z_{i} is a $\gamma_{\mathrm{pr}}\left(G_{i}-x_{i}\right)$-set, then $D^{\prime \prime}=\left(D \backslash D_{i}\right) \cup Z_{i}$ is a paired dominating set of $G-x$ such that $\left|D^{\prime \prime}\right|<|D|$, which is also impossible. From these two facts we deduce that D_{i} is a $\gamma_{\mathrm{pr}}\left(G_{i}-x_{i}\right)$-set, equality holds in (3) and $\gamma_{\mathrm{pr}}\left(G_{i}\right)=\gamma_{\mathrm{pr}}\left(G_{i}-x_{i}\right)+2$, that is, x_{i} is $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-critical for each i.

We show that $\operatorname{msd}_{\mathrm{pr}}\left(G_{1}\right)=4$; it will follow similarly that $\operatorname{msd}_{\mathrm{pr}}\left(G_{i}\right)=4$ for each i. Since D_{1} is a $\gamma_{\mathrm{pr}}\left(G_{1}-x_{1}\right)$-set, it is easy to see that we can pairwise
dominate $G_{1_{x y, 3}}$ by $\left|D_{1}\right|+2=\gamma_{\mathrm{pr}}\left(G_{1}\right)$ vertices. Hence consider any edge $e \in$ $E\left(G_{1}-x_{1}\right)$ and the graphs $G_{e, 3}$ and $G_{1_{e, 3}}$. Since combining any $\gamma_{\mathrm{pr}}\left(G_{1_{e, 3}}\right)$-set with the sets $D_{j}, j=2, \ldots, k$, produces a paired dominating set of $G_{e, 3}$,

$$
\begin{equation*}
\gamma_{\mathrm{pr}}\left(G_{e, 3}\right) \leq \gamma_{\mathrm{pr}}\left(G_{e_{e, 3}}\right)+\sum_{i=2}^{k} \gamma_{\mathrm{pr}}\left(G_{i}-x_{i}\right) . \tag{4}
\end{equation*}
$$

We show that equality holds in (4). For convenience of notation, define $H_{1}=G_{1_{e, 3}}$ and $H_{i}=G_{i}, i \geq 2$. Let S be a $\gamma_{\mathrm{pr}}\left(G_{e, 3}\right)$-set and define $S_{i}=S \cap V\left(H_{i}\right)$ for $i=1, \ldots, k$ (since $y \in S, y_{i} \in S_{i}$ for each i, and if $x \in S$, then $x_{i} \in S_{i}$ for each i). We consider two cases, depending on whether $x \in S$ or not.

Case 1. $x \notin S$. Then $\sum_{i=1}^{k}\left|S_{i}\right|=|S|+k-1$. Note that y is paired with $w \in V\left(H_{i}\right) \backslash\left\{x_{i}, y_{i}\right\}$ for exactly one i. Then S_{i} is a paired dominating set of H_{i}. For $j \neq i, S_{j} \cup\left\{x_{j}\right\}$ is a paired dominating set of H_{j}. Therefore $\gamma_{\mathrm{pr}}\left(H_{i}\right) \leq\left|S_{i}\right|$ and $\gamma_{\mathrm{pr}}\left(H_{j}\right) \leq\left|S_{j}\right|+1$ for $j \neq i$. For $\ell \geq 2, x_{\ell}$ is $\gamma_{\mathrm{pr}}\left(H_{\ell}\right)$-critical, hence $\gamma_{\mathrm{pr}}\left(H_{\ell}-x_{\ell}\right) \leq \gamma_{\mathrm{pr}}\left(H_{\ell}\right)-2$. Therefore
$\gamma_{\mathrm{pr}}\left(G_{1_{e, 3}}\right)+\sum_{i=2}^{k} \gamma_{\mathrm{pr}}\left(G_{i}-x_{i}\right) \leq \sum_{i=1}^{k}\left|S_{i}\right|-2(k-1)+(k-1)=\sum_{i=1}^{k}\left|S_{i}\right|-(k-1)=|S|$ and equality holds in (4).

Case 2. $\{x, y\} \subseteq S$. Then x and y are paired in $S,\left\{x_{i}, y_{i}\right\} \subseteq S_{i}$ for each i, and S_{i} is a paired dominating set of H_{i}. Also, $\sum_{i=2}^{k}\left|S_{i}\right|=|S|+2(k-1)-\left|S_{1}\right|$. Since x_{i} is $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-critical,

$$
\gamma_{\mathrm{pr}}\left(G_{1_{e, 3}}\right)+\sum_{i=2}^{k} \gamma_{\mathrm{pr}}\left(G_{i}-x_{i}\right) \leq\left|S_{1}\right|+\sum_{i=2}^{k}\left|S_{i}\right|-2(k-1)=|S|=\gamma_{\mathrm{pr}}\left(G_{e, 3}\right),
$$

giving equality in (4).
It now follows as in the proof of Proposition 10 that $\operatorname{msd}\left(G_{1}\right)=4$. Similarly, $\operatorname{msd}\left(G_{i}\right)=4$ for $i \geq 2$.

6. Proof of Theorem 4

We are now ready to prove our main theorem, the characterization of msd-4 block graphs. We restate the theorem here for convenience.

Theorem 4 (again). Let G be a connected block graph. Then G is an msd-4 graph if and only if $G \in \mathcal{B}$. Moreover, if G is an msd-4 graph constructed from the graphs $H_{1}, \ldots, H_{j} \in \mathcal{U}$, then $\operatorname{Cr}(G)=\bigcup_{i=1}^{j} \operatorname{Cr}\left(H_{i}\right)$.

Proof. If $G \in \mathcal{B}$, it follows immediately from Propositions 8 and 9 that G is an msd-4 graph and $\operatorname{Cr}(G)=\bigcup_{i=1}^{j} \operatorname{Cr}\left(H_{i}\right)$.

For the converse, let G be an msd- 4 block graph. If G is a tree, the result follows from Corollary 5 , hence we assume that $B \cong K_{n}, n \geq 3$, is a block of G. By (the contrapositive of) Theorem 11, each vertex of B is a cut-vertex, so $\operatorname{deg}(v) \geq n$ for each $v \in V(B)$. Since each non-leaf vertex of a K_{2}-block is a cut-vertex, we deduce that each vertex of G is either a leaf or a cut-vertex.

Suppose $v \in V(B)$ is $\gamma_{\text {pr}}$-critical. Applying Proposition 10 to v we obtain an msd-4 graph G_{1} with $v_{1}=v$ and $N_{G_{1}}\left[v_{1}\right]=B$, which contradicts Theorem 11. Thus every $\gamma_{\mathrm{pr}}(G)$-critical vertex belongs only to K_{2}-blocks.

We say that a vertex u is a type- A vertex if it is a $\gamma_{\mathrm{pr}}(G)$-critical cut-vertex, and an edge $u v$ is a type- A edge if u is a leaf (hence $\gamma_{\mathrm{pr}}(G)$-critical) and $G-$ $\{u, v\}$ is disconnected. Denote the number of type-A elements (vertices and edges together) of G by $a(G)$. First we show that
(B) if $a(G)=0$, then $G \in \mathcal{U}$.

Suppose $a(G)=0$. Then every $\gamma_{\mathrm{pr}}(G)$-critical vertex is a leaf. Say $V(B)=$ $\left\{v_{1}, \ldots, v_{n}\right\}$. Since no vertex of B is $\gamma_{\mathrm{pr}}(G)$-critical, Theorem 12 implies that v_{1} or v_{n} is adjacent to a $\gamma_{\mathrm{pr}}(G)$-critical vertex. Without loss of generality we assume that $v_{1} u_{1} \in E(G), u_{1} \notin V(B)$, and u_{1} is $\gamma_{\mathrm{pr}}(G)$-critical. Similarly, without loss of generality, v_{i} is adjacent to a $\gamma_{\mathrm{pr}}(G)$-critical vertex $u_{i} \notin V(B)$ for $i=2, \ldots, n-1$. Since $a(G)=0$ and each vertex of G is either a leaf or a cut-vertex, $\operatorname{deg}_{G}\left(u_{i}\right)=1$ for each $i=1, \ldots, n-1$ and $G-\left\{v_{i}, u_{i}\right\}$ is connected. Thus, v_{i} belongs to only the two blocks B and $v_{i} u_{i}$, so $\operatorname{deg}_{G}\left(v_{i}\right)=n$ for each $i=1, \ldots, n-1$.

Since v_{n} is a cut-vertex, $N\left(v_{n}\right) \backslash V(B) \neq \emptyset$. If v_{n} is adjacent to a $\gamma_{\mathrm{pr}}(G)$ critical vertex, say u_{n}, then, arguing as above, $\operatorname{deg}\left(u_{n}\right)=1, \operatorname{deg}\left(v_{n}\right)=n$ and $G=K_{n} \circ K_{1}$. By Remark $3(\mathrm{i}), n$ is odd, hence G belongs to the family $\mathcal{U} \subseteq \mathcal{B}$. If no vertex in $N\left(v_{n}\right) \backslash V(B)$ is critical, let $N\left(v_{n}\right) \backslash V(B)=\left\{w_{1}, \ldots, w_{t}\right\}$ for $t \geq 1$. By Theorem 12, each w_{i} is adjacent to a critical vertex $w_{i}^{\prime} \neq v_{n}$, and since $a(G)=0$, w_{i}^{\prime} is a leaf. We show that
(C) $\left\{w_{1}, \ldots, w_{t}\right\}$ is an independent set of G.

Suppose (without loss of generality) that $w_{1} w_{2} \in E(G)$ and consider $G_{w_{1} w_{2}, 3}$. Let $w_{1}, x_{1}, x_{2}, x_{3}, w_{2}$ be the $w_{1}-w_{2}$ path in $G_{w_{1} w_{2}, 3}$ and let D be a $\gamma_{\mathrm{pr}}\left(G_{w_{1} w_{2}, 3}\right)$ set. Since w_{1}^{\prime} and w_{2}^{\prime} are leaves, $w_{1}, w_{2} \in D$. To dominate $x_{2},\left\{x_{1}, x_{2}, x_{3}\right\} \cap D \neq \emptyset$. If $\left|\left\{x_{1}, x_{2}, x_{3}\right\} \cap D\right|=2$, then $D \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$ is a paired dominating set (with w_{1} and w_{2} paired) of G of smaller cardinality than D, contrary to $\operatorname{msd}(G)=4$. Hence assume without loss of generality that $\left\{x_{1}, x_{2}, x_{3}\right\} \cap D=\left\{x_{1}\right\}$, so w_{1} and x_{1} are paired (and $w_{1}^{\prime} \notin D$), while w_{2} is paired with either w_{2}^{\prime} or v_{n}. However, each vertex in $N_{G}\left(v_{n}\right)$ is adjacent to a leaf and belongs to D, thus $D \backslash\left\{v_{n}\right\}$ dominates G. Therefore, either $D \backslash\left\{x_{1}, w_{2}^{\prime}\right\}$ or $D \backslash\left\{x_{1}, v_{n}\right\}$ is a paired dominating set of G in which w_{1} and w_{2} are paired, contrary to $\operatorname{msd}(G)=4$. It follows that (C) holds.

Since G is a block graph, w_{i} and w_{j} belong to different components of $G-v_{n}$ for all $i \neq j$.

Consequently, if there exists a vertex $z \notin\left\{v_{n}, w_{i}^{\prime}\right\}$ adjacent to w_{i}, then z and v_{n} belong to different components of $G-\left\{w_{i}, w_{i}^{\prime}\right\}$. But now $w_{i} w_{i}^{\prime}$ is a type-A edge, which is not the case as $a(G)=0$. Hence $\operatorname{deg}\left(w_{i}\right)=2$ and $G \cong K_{n} \circ^{* t} K_{1}$. Since $\operatorname{msd}(G)=4, n$ is even, by Remark 3(ii). Therefore $G \in \mathcal{U} \subseteq \mathcal{B}$. Thus (B) holds.

Now suppose $a(G) \geq 1$. If G has a type-A critical cut-vertex u, perform the operation $G \ominus u$; each resulting graph is an msd-4 graph by Proposition 10, and clearly a block graph. Moreover, the copies of u in each graph are $\gamma_{\mathrm{pr}}{ }^{-}$ critical. Repeat this process until no resulting msd-4 block graph has a type-A critical cut-vertex. Let G_{1}, \ldots, G_{k} be the resulting graphs. Then each critical vertex of each G_{i} is a leaf. If any G_{i} has a type-A critical edge $u v$, where u is a leaf, perform the operation $G \ominus u v$. Each resulting graph is an msd-4 block graph by Proposition 13. Repeat this process until all resulting graphs H_{j} satisfy $a\left(H_{j}\right)=0$. If H_{j} is a tree, then $H_{j} \cong S(2, \ldots, 2) \in \mathcal{U}$ by Corollary 5 , otherwise $H_{j} \in \mathcal{U}$ by (B). Now G can be reconstructed by performing the \oplus-operations on the H_{j}, hence $G \in \mathcal{B}$, as required.

7. Open Problems

We conclude with a short list of open problems for future consideration.
Question 1. Does Theorem 12 hold for all msd-4 graphs?
Define another \oplus-operation as follows.
$\oplus_{u, Q}^{u_{1} Q_{1}, u_{2} Q_{2}}$: Let G_{1} and G_{2} be vertex disjoint graphs containing (not necessarily maximal) cliques Q_{1} and Q_{2} of equal size, and vertices $u_{i} \in V\left(Q_{i}\right)$ for $i \in\{1,2\}$. We denote a graph obtained from G_{1} and G_{2} by identifying Q_{1} and Q_{2} into one clique Q, and u_{1} and u_{2} into one vertex $u=u_{1}=u_{2}$, by $G_{1} \oplus_{u, Q}^{u_{1} Q_{1}, u_{2} Q_{2}} G_{2}$ (or by $G_{1} \oplus^{u_{1} Q_{1}, u_{2} Q_{2}} G_{2}$ if u and Q are unimportant).

Note that if the cliques Q_{i} have order at least three, then identifying the vertices of $Q_{i}-u_{i}$ in different ways may yield different graphs. Both operations $\oplus_{u}^{u_{1} u_{2}}$ and $\oplus_{e}^{e_{1} e_{2}}$ are special cases of $\oplus_{u, Q}^{u_{1} Q_{1}, u_{2} Q_{2}}$.
Question 2. Let G_{1} and G_{2} be disjoint msd-4 graphs containing cliques Q_{1} and Q_{2} of equal size and $\gamma_{\mathrm{pr}}\left(G_{i}\right)$-critical vertices $u_{i} \in V\left(Q_{i}\right), i=1$, 2. Is it true that for any graph $G=G_{1} \oplus_{u, Q}^{u_{1} Q_{1}, u_{2} Q_{2}} G_{2}$, u is $\gamma_{\mathrm{pr}}(G)$-critical and $\operatorname{msd}_{\mathrm{pr}}(G)=4$?

If G_{1} and G_{2} are copies of the msd-4 graph in Figure 5, with $u_{i}=u$, which is γ_{pr}-critical, and Q_{i} is the triangle containing u, then both graphs obtainable as $G_{1} \oplus_{u, Q}^{u_{1} Q_{1}, u_{2} Q_{2}} G_{2}$ are msd-4 graphs having u as critical vertex.

Question 3. Let G be a graph with $\operatorname{msd}_{\mathrm{pr}}(G)=4$. What is the largest number of edges of G that can be subdivided three times before the paired domination number increases? If this number can be arbitrarily high, what is its ratio to the number of edges of G ?

Acknowledgement

The authors are grateful to the referees of the first version of this paper for pointing out errors in our work.

References

[1] M. Atapour, A. Khodkar and S.M. Sheikholeslami, Characterization of double domination subdivision number of trees, Discrete Appl. Math. 155 (2007) 1700-1707. doi:10.1016/j.dam.2007.03.007
[2] M. Dettlaff and J. Raczek, Paired domination multisubdivision numbers of graphs, submitted.
[3] M. Dettlaff, J. Raczek and J. Topp, Domination subdivision and domination multisubdivision numbers of graphs, Discuss. Math. Graph. Theory 39 (2019) 829-839. doi:10.7151/dmgt. 2103
[4] O. Favaron, H. Karami and S.M. Sheikholeslami, Connected domination subdivision numbers of graphs, Util. Math. $\mathbf{7 7}$ (2008) 101-111.
[5] O. Favaron, H. Karami and S.M. Sheikholeslami, Paired-domination subdivision numbers of graphs, Graphs Combin. 25 (2009) 503-512. doi:10.1007/s00373-005-0871-1
[6] T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, J. Knisely and L.C. van der Merwe, Domination subdivision numbers, Discuss. Math. Graph Theory 21 (2001) 239-253. doi:10.7151/dmgt. 1147
[7] T.W. Haynes, M.A. Henning and L.S. Hopkins, Total domination subdivision numbers of graphs, Discuss. Math. Graph Theory 24 (2004) 457-467. doi:10.7151/dmgt. 1244
[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., New York, 1998).
[9] T.W. Haynes, S.T. Hedetniemi and L.C. van der Merwe, Total domination subdivision numbers, J. Combin. Math. Combin. Comput. 44 (2003) 115-128.
[10] A. Khodkar, B.P. Mobaraky and S.M. Sheikholeslami, Upper bounds for the Roman domination subdivision number of a graph, AKCE Int. J. Graphs Comb. 5 (2008) 7-14.
[11] S. Velammal, Studies in Graph Theory: Covering, Independence, Domination and Related Topics, Ph.D. Thesis (Manonmaniam Sundaranar University, Tirunelveli, 1997).

[^0]: ${ }^{1}$ See Section 2 for definitions of terms used in this section.

