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Preclinical research of biomedical optoelectronic devices is often performed with the use of blood
phantoms — a simplified physical model of blood. The aim of this study is the comparison
and distinction between blood phantoms as well as whole human blood measurements. We
show how the use of such phantoms may influence the incorrect interpretation of measured signal.
On the other hand, we highlight how the use of blood phantoms enables to investigate the
phenomena that otherwise are almost impossible to be noticed.
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1. Introduction

Novel optical measurement'™ and imaging’™
methods for biomedicine require preclinical optimi-
zation and calibration. Such calibration is per-
formed on standardized phantoms — simplified
physical models of tissues.'’'? Especially, phan-

toms simulating optical properties of skin'*'°

are
used for testing noninvasive optical devices. Simi-
larly, blood monitoring'®!'” devices have to be cali-
brated with the use of blood-equivalent phantoms

as well. Typically, a physical blood phantom is

*Corresponding author.

obtained by suspension of red blood cells (RBCs)
into the isotonic saline solution. The use of phan-
toms allows to improve repeatability of measure-
ment results, because phantoms are more stable
over time. Moreover, using phantoms instead of
human blood is much cheaper and more convenient.
For these reasons, blood phantoms are commonly
used in biomedical research as a simplified physical
model of human blood. However, it is important
to investigate how application of physical blood
phantom instead of human blood, can influence
on measurements results. This study presents the
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comparison and differentiation between blood-
equivalent phantoms and whole human blood
measurements. We show how the use of such
phantoms influences the measured signal and
leads to its incorrect interpretation. On the other
hand, we highlight how the use of blood phantoms
enables us to investigate the phenomena that are
otherwise obscured by other blood components,
thus almost impossible to notice. We use two com-
plementary methods: low-coherence interferome-
try'®'9 and absorption spectroscopy?’** to detect
the differences in properties of the sample. The
measurements were performed on whole blood,
blood plasma as well as a blood-equivalent phantom
(see Sec. 2.1.3).

2. DMaterials and Methods
2.1.

In order to detect differences between blood-equiv-
alent phantoms and whole blood, we have measured
whole human blood?” as well as each of its main
constituents: red blood cells and blood plasma.
Blood plasma mostly consists of water (approxi-
mately 90%), proteins (about 7%) and small quan-
tities of salt and minerals.?”-*°

Investigated samples

2.1.1. Whole human blood

Blood samples were obtained from healthy volun-
teers and therefore our measurement range of the
haematocrit (HCT) was limited to the values of
about 30% to 50%. A set of 2mL blood samples
with various HCT levels was provided by the
Gdansk Blood Donor Center, which also performed
reference measurement of the haematological para-
meters in each blood sample using the standard
procedure. Both measurements were performed up
to 6h from the blood donation to ensure correct
and consistent results.

2.1.2.

Blood plasma was obtained with regard to blood
plasma preparation protocols by centrifugation of
the whole blood sample at high speed for 15 min.
There are three distinct layers resulting from
centrifugation: plasma, white blood cells and RBCs
(from top to bottom) from which the plasma is
selected.

Blood plasma

2.1.3.

The blood phantom is obtained through the sus-
pension of RBCs into the isotonic saline solution.!!
The RBCs are obtained by multiple centrifugation
of whole blood sample, which divides the blood into
separate components, that is: plasma and RBCs.
The supernatant plasma is removed from the sam-
ple and discarded. Subsequently, the remaining
RBCs are washed with isotonic saline solution.
Thus, plasma is completely removed and exchanged
for saline.

Blood phantom

2.2.

An experimental setup was designed and built ac-
cordingly to the layout shown in Fig. 1. It consists
of a low-coherence interferometer (Fig. 1 top part of
image), an optical absorption spectrometer (Fig. 1
middle part of image) and a Raman spectrometer
setup (Fig. 1 bottom part of image).

Experimental setup

2.2.1.

In low-coherence interferometer (shown in
Fig. 2), we applied three interchangeable super-
luminescent diodes (SLED) with Gaussian spectral
density (by Superlum Ltd., Ireland) type: S-930-
B-I-10 (central wavelength A = 935 nm, bandwidth
AAFVVHI\'I =70 nm), Sl300-G—I—20 ()\ = 1290 nm,
AAFVVHI\"I = 50 nm), and S-1550-G-I-20 ()\ =
1550 nm, Adpway = 45 nm) as a broadband source.
An Ando AQ6319 optical spectrum analyzer with
resolution bandwidth set to 1 nm was used in the

Low-coherence interferometry
27,28
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Fig. 1. The layout of experimental setup: low-coherence in-

terferometer (top part of image), optical absorption spectrom-
eter (middle part of image), Raman spectrometer (bottom part
of image).
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Fig. 2. Low-coherence interferometer laboratory setup.
detection setup. All interconnections, as well as the
coupler, were made from single-mode commercially
available, telecommunications fiber SMF-28. The
Fabry—Perot interferometer was formed by the
uncoated end surface of the single-mode fiber and
the silver mirror. In order to precisely control the
position of the optical fiber, the micromechanical
custom-made system was utilized. The Fabry—Perot
cavity had the length of 200 um, visibility of the
measured signal fringes reached the value up to
0.95.

2.2.2.

The absorption spectra were recorded on a custom
made laboratory setup in a transmission mode.
The absorption spectroscopy measurement system
(Fig. 3) comprises of the commercial miniature
CCD-based VIS-NIR (~400-900 nm) spectrometer
(USB4000, Ocean Optics Inc., USA), a tungsten
light source, delivery and collection fibers, and a
sample holder with vertical geometry (Fig. 3).
Samples were introduced into a 0.1 mm thick
rectangular quartz capillary to reduce the optical
path length, thus allowing for measurements of
whole, undiluted blood samples. This was crucial
because very high absorbance of blood, in the region
of the Soret and @ bands, rendered them unusable
due to noise, in the case of very high HCT% levels.
Therefore, the heavily-distorted spectra were usu-
ally truncated to the usable NIR region. The spectra

Absorption spectroscopy

Blood equivalent phantom vs whole human blood

were later pre-processed with common de-noising
algorithms such as Savitzky—Golay and fast Fourier
transform filtering.?” The spectra were also nor-
malized with a Standard Normal Variate normali-
zation algorithm. The integration time was 200 ms
with over 20 averages for blood and RBC samples.

2.2.3.

Raman spectroscopy setup for measurements of
blood samples and related materials utilizes 830 nm
excitation wavelength to reduce influence of fluo-
rescence and other optical background signals. It
is based on pre-commercial Raman spectrometer
Ramstas developed by the VI'T — Technical Re-
search Center of Finland. Laser beam is transmitted
through the fiber to the probe, filtered and focused
on the sample. Power on the sample was 100 mW,
which reduces the risk of thermal damage of the
sample. Collected scattered radiation is filtered to
remove laser wavelength and transmitted to spec-
trograph and TE-cooled CCD array (250K). Sig-
nals are collected in Stokes range from 200 to
2000 cm . Spectral resolution of the setup is about
8cm~!. Averaging and instrument background
correction were applied during spectra acquisition
(time of single acquisition was 2s., i.e., after 150 to
300 averages).

Raman spectroscopy

2.3. Measurement procedure

The subsequent experimental process was con-
ducted carefully, all of the relevant laboratory
procedures were followed, especially the procedure
related to controlling the temperature of liquid
samples. For each sample under investigation, the
measurement signals from each setup were recorded
for further analysis. Spectral characteristics of op-
tical parameters, such as the complex refractive
index, dispersion of refractive index, absorption and

Fig. 3. Absorption spectroscopy laboratory setup (LS — broadband light source, OP — optical probe, SP — spectrometer, K1 —

collimator, S1, S2 — slits, DG — diffraction grating).
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Fig. 4. Raman spectroscopy laboratory setup. L1-L3 — len-
ses, F1 — laser line filter, F2 — longpass filter, ATS — axial
transmissive spectrograph.

Raman spectra were investigated by means of op-
tical and Raman spectroscopy, and by low-coher-
ence interferometric measurements carried out for
multiple excitation wavelengths.

3. Results
3.1.

More than 100 measurements of blood plasma and
saline, with the use of low-coherence interferometry
setup, were conducted. Representative registered
spectra for the central wavelength of 1550 nm are
presented in Fig. 5.

Spectral separation for plasma and saline were
obtained from registered spectra. Then, dispersion
of refractive indices of these two substances were
calculated (see Fig.6) using previously developed
and validated procedures.’’*! The reference mea-
surement (empty Fabry—Perot cavity) was used
for verification of working conditions of the mea-
surement setup.

Analysis of obtained results allowed us to confirm
the unequivocal relationship between the measured

Low-coherence interferometry
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Fig. 5. Representative registered spectra for the central wavelength of 1550 nm: (a) reference measurement; (b) saline; (c) plasma.
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Fig. 6. Dispersion characteristics of saline and plasma.

signal from low-coherence interferometer and the
refractive index of samples shown in Fig. 6.
Calculated strong negative r-Pearson correla-
tions (r = —0.9987 for plasma and r = —0.9944 for
saline) confirm the precision of measured refractive
indices of blood plasma as well as saline solution.
It can be concluded that the refractive index of
plasma is greater than that of saline by about 0.002
at 930nm and this difference increases with the
wavelength, up to about 0.003 at 1550 nm.

Absorbance [a.u.]

Wavelength [nm]
(a)

Blood equivalent phantom vs whole human blood

3.2. Absorption spectroscopy

Absorption spectra of whole human blood are
dominated by characteristic haemoglobin absorp-
tion bands, the Soret band at 420 nm and a double
Q-band in the 500 — 600nm range.’?** The
remaining parts of the spectra are rather flat and
slightly inclined. Due to high absorption causing
low signal-to-noise ratio for wavelengths near Soret
band, we focus our analysis on longer wavelengths.
In order to perform absorption spectroscopy mea-
surements, we have prepared a range of phantoms
with various HCT levels, as presented in Fig. 6(a).

It can be seen that although the haemoglobin
absorption bands remain unaffected, the baseline
slope of washed erythrocytes is more inclined than
that of the whole blood (Fig. 7(a)). This effect
is caused by the change in the scattering of the
sample which influences the overall attenuation of
light. The higher scattering is caused by higher re-
fractive index mismatch®! between the RBCs** 7
and the medium surrounding them, caused by ex-
change of plasma with saline, of the refractive index
value 1.330 and 1.328 at 930 nm, respectively (see
Fig. 7). This effect is also increased by higher con-
centration of RBCs. A phantom created with 50%
HCT, the same as the blood sample, shows only
slightest difference in comparison with a whole

2
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Fig. 7. Comparison of absorption spectra of blood constituents: (a) Comparison of washed erythrocytes (blood phantom) with
various HCT levels; the inset presents the change in the slope of absorbance in 580 — 620 nm range on normalized spectra. (b)
Comparison of absorbance of whole blood and phantom at HCT of about 50% in both cases. (c¢) Comparison of absorbance of saline

and plasma.
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Comparison of Raman spectra of blood plasma and

blood sample, when considering 500 — 700 nm
wavelength range. Yet, it can be seen, especially at
the edges of that range, that the slope is slightly
more inclined in the case of a phantom. The relation
between these values is not straightforward, since
the absorbance and scattering both contribute to
the total absorbance of the sample, thus, they are
intertwined in the case of transmission spectrometer
setup. Other parameters of RBCs such as the total
amount of haemoglobin, its content in erythrocyte,
erythrocyte size distribution, etc. come into effect as
well. On the other hand, the composition of plasma,
is an ensemble of a multitude of chemical sub-
stances, mainly proteins, along with platelets and
white blood cells. Comparison of saline solution
with plasma (Fig. 6(c)) shows that saline has no
influence on the spectra, while plasma exhibits
broad absorption band between 400 and 500 nm,
which corresponds to the presence of proteins and
other blood cells.

3.3.

We have used Raman spectroscopy to compare the
chemical composition of plasma and saline. Spec-
trum of the plasma is strongly distorted by optical
background and the number of the bands that
can be clearly detected is limited. Thus, data were
processed by smoothing FFT-filtering and optical
background removal.*® Result of the data proces-
sing (Fig. 8) shows that the acquired spectral profile
of plasma is very similar to those presented in the
literature,*** with prominent bands related mostly
to the presence of proteins. Spectrum of saline is, as

Raman spectroscopy

expected, void of identifiable features, and the
detected signal is on similar levels as the back-
ground and noise interference. Thus, we can confirm
the composition of saline (water, salt) and prove
that there are no detectable impurities present in
the spectrum of saline.

4. Discussion

We used complementary optical methods: low-co-
herence interferometry, absorption spectroscopy,
and Raman spectroscopy to investigate the differ-
ences in, both physical and chemical, composition of
the samples. The measurements were performed on
whole blood, blood plasma, as well as blood-equiv-
alent phantoms prepared as a suspension of washed
erythrocytes in saline. The low coherence measure-
ments provide insight into the change of refractive
index caused solely by the plasma and saline. We
observed small yet important differences in refrac-
tive indices of about 0.002 at 930 nm that increased
with the wavelength. In case of blood absorption,
only a phantom with standard physiological con-
centration of 50% HCT was comparable to the
whole blood, although not precisely. However, ex-
change of plasma with saline causes clearly visible
changes in the scattering-influenced slope in blood
spectra, especially when considering smaller HCT
levels, in which the volume of plasma has greater
influence. Raman spectroscopy explains the differ-
ence in refractive index between plasma and saline
by confirming the presence of proteins and other
constituents of plasma which increase the refractive
index. We have shown that blood-equivalent phan-
tom cannot be considered as a full representation of
blood. Therefore, application of such phantoms
cannot be used as a calibration standard for optical
biomedical devices.

The investigation covered a full range of blood
parameters from healthy person as well as abnor-
malities in the blood composition. Therefore, we
ensure that our conclusions are valid for wide range
of variability in investigated samples. Presented
results may find application in testing various
optical detection methods in biology and medicine,
such as other spectroscopic''™** as well as low-co-
herence methods.*"*7

In the case of not chemically-specific methods,
the phantoms have certain viability as a first-trial
physical model, as they are easier to handle and
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their parameters can be easily modified (ex. diluted
to decrease HCT%). However, in the case of
chemically-specific methods, such as fluorescence or
Raman spectroscopy, those phantoms present an
over-simplified case. Most of blood sample vari-
ability is due to the changes in chemical composi-
tion of plasma, which is specific for each patient.
Thus, the phantoms in which the plasma is ex-
changed for saline, are void of huge information
(or noise) component. This in turn would cause a
great reduction in sample variability, enabling to
build calibration models easily, but is completely
useless for a real-case application, where the indi-
vidual variability is a major challenge.*®

In the case of fluorescence, the blood spectra are
dominated by haemoglobin fluorescence from the
RBCs. The blood-equivalent phantoms should be a
viable model in this case for exploring the auto-
fluorescence and photobleaching effects,*’ yet only
to the extent when the fluorescence from chemical
compounds in plasma can be neglected. In other
cases, such phantoms are also unrealistic over-sim-
plified models which fall short for real-application
cases.

Investigation on pulse light response from
absorbing and scattering materials (such as solid
tissues and blood) could be a good application
for discussed phantoms. This would be beneficial
especially in the case of noninvasive measurement
techniques, and aid in the development of fiber-
optical probes and other light collection
equipment.”’

The use of presented blood phantoms is a wide-
spread practice in current biophotonics research.
However, recent findings show the possible solution
to the problem, and propose methods which do not
require previous calibration,”’ thus removing the
need for phantoms of any kind altogether. Yet, until
such methods are fully developed, the use of phan-
toms still remains commonplace.
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