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© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This paper discusses the boundary value problem
(Dq

T x)(t) = f (t, x(t)) ≡ (Fx)(t), t ∈ J0 = [0, T ), T > 0,
0 = g(x̄(0), x̄(T )),

(1)

where f ∈ C(J ×R, R), J = [0, T ], g ∈ C(R×R, R), x̄(0) = (T − t)1−qx(t)|t=0 , x̄(T ) = (T − t)1−qx(t)|t=T and Dq
T x denotes

the right-handed Riemann–Liouville fractional derivative of xwith q ∈ (0, 1) defined by

(Dq
T x)(t) = −

1
Γ (1 − q)

d
dt

 T

t
(s − t)−qx(s)ds, t ∈ J0,

and if q = 1, then D1
T x(t) = −x′(t), see [1].

Let us introduce the right-sided fractional integral IqT of order q > 0 by
IqT x

(t) =

1
Γ (q)

 T

t
(s − t)q−1x(s)ds, t ∈ J0,

see [1].
Function x is a solution of problem (1) if:

(i) x ∈ C(J0, R), (T − t)1−qu ∈ C(J, R) and its fractional integral I1−q
T x is continuously on J0,

(ii) x satisfies problem (1).

Recently, much attention has been paid to study fractional differential problemswith fractional derivativesDqx, using the
monotone iterativemethod, see for example, [1–11]. In this paper,we study fractional differential problemswith derivatives
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Dq
T x of order q ∈ (0, 1]. Aswe see later,wewill discuss fractional differential equationswith initial conditions at the endpoint

of interval J . Therefore, we have to introduce the space C1−q by

C1−q(J, R) = {u ∈ C([0, T ), R) : (T − t)1−qu ∈ C(J, R)}, q ∈ (0, 1)
and C0(J, R) = C(J, R) if q = 1.Our first result concerns the existence of a unique solution of nonlinear fractional differential
equations with initial condition at the point T , see Theorem 1. Theorem 2 gives the unique solution of linear fractional
differential problems in terms of theMittag-Leffler function. In Section 4, we discuss problem (1) giving sufficient conditions
which guarantee that problem (1) has extremal solutions, Theorem 3. Two examples illustrate the results.

2. Nonlinear fractional differential equations

Let us consider the following problem

(Dq
T x)(t) = (Fx)(t), t ∈ J0, x̄(T ) = k. (2)

For u ∈ C1−q(J, R), we define a weighted norm:

∥u∥∗ = max
[0,T ]

(T − t)1−qeλ(t−T )
|x(t)|

with a corresponding fixed positive constant λ.

Theorem 1. Let q ∈ (0, 1), f ∈ C(J × R, R). In addition, we assume that:
H1: there exists a nonnegative constant K such that

|f (t, u1) − f (t, v1)| ≤ K |v1 − u1|.

Then problem (2) has a unique solution.
Proof. Using Lemma 2.6 [1], it is easy to show that problem (2) is equivalent to the following integral equation:

x(t) = k(T − t)q−1
+

1
Γ (q)

 T

t
(s − t)q−1Fx(s)ds. (3)

Wewrite Eq. (3) in the form u = Au, where A is defined by the right-hand-side of (3). Now,we have to show that operator
A has a fixed point. To do it we shall show that A is a contraction map.

Let us choose constants m, r such that 1 < m < 1
1−q and r =

m
m−1 . Now, we use the norm ∥ · ∥∗ with a positive λ such

that:

λ
1
r >

K
Γ (q)

T q−1+ 1
m


Γ 2(m(q − 1) + 1)

Γ (2[m(q − 1) + 1])

 1
m

1
r

 1
r

≡ ρ. (4)

Note that

B(t) =

 T

t
(s − t)m(q−1)(T − s)m(q−1)ds =

Γ 2(m(q − 1) + 1)
Γ (2[m(q − 1) + 1])

(T − t)2m(q−1)+1,

D(t) =

 T

t
e−λrsds <

1
λr

e−λrt .

Then using the Hőlder inequality for integrals T

t
|a(s)||b(s)|ds ≤

 T

t
|a(s)|mds

 1
m
 T

t
|b(s)|rds

 1
r

,

and assumption H1, for x, y ∈ C1−q(J, R) we obtain

∥Ax − Ay∥∗ ≤
1

Γ (q)
max
t∈J

(T − t)1−qeλ(t−T )

 T

t
(s − t)q−1

|(Fx)(s) − (Fy)(s)|ds

≤
K

Γ (q)
∥x − y∥∗ max

t∈J
(T − t)1−qeλt

 T

t
(s − t)q−1(T − s)q−1e−λsds

≤
K

Γ (q)
∥x − y∥∗ max

t∈J
(T − t)1−qeλt

[B(t)]
1
m [D(t)]

1
r

≤
K

Γ (q)


Γ 2(m(q − 1) + 1)

Γ (2[m(q − 1) + 1])

 1
m 1

(λr)
1
r
∥x − y∥∗ max

t∈J
(T − t)q−1+ 1

m ≤
ρ

λ
1
r
∥x − y∥∗.

This and condition (4) prove that problem (2) has a unique solution, by the Banach fixed point theorem. This ends the
proof. �
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Remark 1. If q = 1, then (D1
T x)(t) = −x′(t), and operator A has the form

(Ax)(t) = k +

 T

t
(Fx)(s)ds.

In this case, ∥x∥∗ = maxt∈J eλ(t−T )
|x(t)|, so choosing λ > K , we can show that operator A has a unique fixed point.

3. Linear fractional differential equations

Let us consider the linear fractional differential problem

(Dq
T x)(t) = λx(t) + σ(t), t ∈ J0, x̄(T ) = k, (5)

where λ is a real number and σ ∈ C1−q(J, T ).

Theorem 2. Let q ∈ (0, 1], λ ∈ R, σ ∈ C1−q(J, R). Then problem (5) has a unique solution given by formula

x(t) = kΓ (q)(T − t)q−1Eq,q(λ(T − t)q) +

 T

t
(s − t)q−1Eq,q(λ(s − t)q)σ (s)ds, (6)

where Eq,q(ζ ) =


∞

r=0
ζ r

Γ (q(r+1)) is the Mittag-Leffler function.

Proof. Indeed, problem (5) is equivalent in the space C1−q(J, R) to the following fractional integral equation

x(t) = x0(t) +
λ

Γ (q)

 T

t
(s − t)q−1x(s)ds +

1
Γ (q)

 T

t
(s − t)q−1σ(s)ds, t ∈ J0, (7)

or

x(t) = x0(t) + λ(IqT x)(t) + (IqTσ)(t),

where

x0(t) =
k̄

Γ (q)
(T − t)q−1, k̄ = kΓ (q).

We apply the method of successive approximations to find the solution of problem (7), so for n = 0, 1, . . . , we have

xn+1(t) = x0(t) + λ(IqT xn)(t) + (IqTσ)(t).

Hence,

x1(t) = x0(t) + λ(IqT x0)(t) + (IqTσ)(t)

= x0(t) +
λk̄

Γ 2(q)

 T

t
(s − t)q−1(T − s)q−1ds +

1
Γ (q)

 T

t
(s − t)q−1σ(s)ds

=
k̄

Γ (q)
(T − t)1−q

+
λk̄

Γ (2q)
(T − t)2q−1

+
1

Γ (q)

 T

t
(s − t)q−1σ(s)ds,

using the formula T

t
(s − t)rq−1(T − s)mq−1ds =

Γ (rq)Γ (mq)
Γ ((r + m)q)

(T − t)(r+m)q−1, r,m ∈ N = {1, 2, . . .}.

Using this x1, we find the next approximation x2 as

x2(t) = x0(t) + λ(IqT x1)(t) + (IqTσ)(t)
= x0(t) + λ(IqT [x0 + λIqT x0 + IqTσ ])(t) + (IqTσ)(t)
= x0(t) + λ(IqT x0)(t) + λ2(I2qT x0)(t) + λ(I2qT σ)(t) + (IqTσ)(t)

= x0(t) +
λk̄

Γ (2q)
(T − t)2q−1

+
λ2k̄

Γ (3q)
(T − t)3q−1

+
1

Γ (q)

 T

t
(s − t)q−1σ(s)ds

+
λ

Γ (2q)

 T

t
(s − t)2q−1σ(s)ds

= k̄(T − t)q−1


1
Γ (q)

+
λ

Γ (2q)
(T − t)q +

λ2

Γ (3q)
(T − t)2q


+

 T

t
(s − t)q−1


1

Γ (q)
+

λ

Γ (2q)
(s − t)q


σ(s)ds,
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by the property

(IαT I
β

T f )(t) = (Iα+β

T f )(t), α, β > 0.

Thus, in general, we get by induction xn as follows

xn(t) = k̄(T − t)q−1
n

r=0

λr

Γ (q(r + 1))
(T − t)rq +

 T

t
(s − t)q−1


n−1
r=0

λr

Γ (q(r + 1))
(s − t)rq


σ(s)ds, n = 0, 1, . . . ,

where


−1
0 = 0. Taking the limit as n → ∞, we obtain the solution x in terms of Mittag-Leffler’s function given by

formula (6). �

Remark 2. Let q = 1. Then problem (5) takes the form

−x′(t) = λx(t) + σ(t), t ∈ J0, x(T ) = k.

Since E1,1(t) = et , then, in view of (6), the solution of this problem is given by

x(t) = keλ(T−t)
+

 T

t
eλ(s−t)σ(s)ds

= eλ(T−t)

k +

 T

t
e−λ(T−s)σ(s)ds


, t ∈ J.

Example 1. For q ∈ (0, 1], let us consider the following problem(Dq
T x)(t) = x(t) + (T − t)2−q


Γ (3)

Γ (3 − q)
− (T − t)q


, t ∈ J0 = [0, T ),

x̄(T ) = 0.
(8)

Comparing this problem with (5) we see that

λ = 1, σ (t) = (T − t)2−q


Γ (3)
Γ (3 − q)

− (T − t)q


, k = 0.

In view of Theorem 2, problem (8) has a unique solution given by

x(t) =

 T

t
(s − t)q−1Eq,q((s − t)q)σ (s)ds,

so

x(t) =

 T

t
(s − t)q−1

∞
n=0

(s − t)qn

Γ ((n + 1)q)
(T − s)2−q


Γ (3)

Γ (3 − q)
− (T − s)q


ds

=
Γ (3)

Γ (3 − q)

∞
n=0

1
Γ ((n + 1)q)

 T

t
(s − t)q(n+1)−1(T − s)2−qds

−

∞
n=0

1
Γ ((n + 1)q)

 T

t
(s − t)q(n+1)−1(T − s)2ds

=
Γ (3)

Γ (3 − q)

∞
n=1

1
Γ ((n + 1)q)

(T − t)qn+2 Γ ((n + 1)q)Γ (3 − q)
Γ (qn + 3)

−

∞
n=0

1
Γ ((n + 1)q)

(T − t)q(n+1)+2 Γ ((n + 1)q)Γ (3)
Γ (q(n + 1) + 3)

= Γ (3)Eq,3((T − t)q)(T − t)2 − (T − t)2

Eq,3((T − t)q) −

1
Γ (3)


Γ (3)

= (T − t)2,

where Eq,r is the Mittag-Leffler function defined by

Eq,r(z) =

∞
n=0

zn

Γ (qn + r)
.

It proves that x(t) = (T − t)2 is the unique solution of problem (8).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


18 T. Jankowski / Applied Mathematics Letters 28 (2014) 14–19

4. Extremal solutions to problem (1)

Let us introduce the following definition.
We say that u ∈ C1−q(J, R) is a lower solution of problem (1) if

(Dq
Tu)(t) ≤ (Fu)(t), t ∈ J, g(u(0), u(T )) ≥ 0,

and it is an upper solution of (1) if the above inequalities are reversed.
Now, we give a result for fractional differential inequalities.

Lemma 1. Let q ∈ (0, 1], M ∈ R. Assume that p ∈ C1−q(J, R) satisfies problem
(Dq

Tp)(t) ≤ −Mp(t), t ∈ J0,
p̄(T ) ≤ 0.

Then p(t) ≤ 0, t ∈ J.

Proof. Let (Dq
Tp)(t) = −Mp(t) + σ(t), t ∈ J0, p̄(T ) = c , where σ(t) ≤ 0, c ≤ 0. Then, in view of formula (6), we have

p(t) ≤ 0, t ∈ J . This ends the proof. �

The next result concerns the case when problem (1) has extremal solutions.

Theorem 3. Assume that q ∈ (0, 1], f ∈ C(J × R, R), g ∈ C(R × R, R). Let y0, z0 ∈ C1−q(J, R) be lower and upper solutions
of (1), respectively and y0(t) ≤ z0(t), t ∈ J . In addition, we assume that
H3: there exists a constant M such that

f (t, u1) − f (t, v1) ≤ M[v1 − u1]

if y0(t) ≤ u1 ≤ v1 ≤ z0(t),
H4: there exists a constant ν > 0 such that

g(v, u) − g(v0, u0) ≤ ν(u0 − u)

if ȳ0(T ) ≤ u ≤ u0 ≤ z̄0(T ), ȳ0(0) ≤ v ≤ v0 ≤ z̄0(0).
Then problem (1) has extremal solutions in the sector

[y0, z0]∗ = {w ∈ C1−q(J, R) : y0(t) ≤ w(t) ≤ z0(t), t ∈ J}.

Proof. For n = 0, 1, . . . , let us define

(Dq
Tyn+1)(t) = (Fyn)(t) − M[yn+1(t) − yn(t)], t ∈ J0,

0 = g(ȳn(0), ȳn(T )) − ν[ȳn+1(T ) − ȳn(T )],

(Dq
T zn+1)(t) = (Fzn)(t) − M[zn+1(t) − zn(t)], t ∈ J0,

0 = g(z̄n(0), z̄n(T )) − ν[z̄n+1(T ) − z̄n(T )].

In view of Theorem 1, functions y1, z1 are well defined. First, we show that

z0(t) ≤ z1(t) ≤ y1(t) ≤ y0(t), t ∈ J. (9)

Put p = y0 − y1. This and the assumption that y0 is a lower solution of problem (1) yield

(Dq
Tp)(t) ≤ (Fy0)(t) − (Fy0)(t) + M[y1(t) − y0(t)] = −Mp(t),

0 = g(ȳ0(0), ȳ0(T )) − ν[ȳ1(T ) − ȳ0(T )] ≥ νp̄(T ).

Hence, y0(t) ≤ y1(t), t ∈ J , by Lemma 1. By a similar way, we can show that z1(t) ≤ z0(t), t ∈ J . Now, we put p = y1 − z1.
Hence, in view of assumptions H4,H3 we have

0 = g(ȳ0(0), ȳ0(T )) − g(z̄0(0), z̄0(T )) − ν[ȳ1(T ) − ȳ0(T ) − z̄1(T ) + z̄0(T )] ≤ −νp̄(T ),

(Dq
Tp)(t) = (Fy0)(t) − (Fz0)(t) − M[y1(t) − y0(t) − z1(t) + z0(t)] ≤ −Mp(t).

This and Lemma 1 prove that y1(t) ≤ z1(t), t ∈ J , so relation (9) holds.
In the next step, we show that y1, z1 are lower and upper solutions of problem (1), respectively. Note that

(Dq
Ty1)(t) = (Fy0)(t) − (Fy1)(t) + (Fy1)(t) − M[y1(t) − y0(t)]

≤ M[y1(t) − y0(t)] − M[y1(t) − y0(t)] + (Fy1)(t) = (Fy1)(t),

0 = g(ȳ0(0), ȳ0(T )) − g(ȳ1(0), ȳ1(T )) + g(ȳ1(0), ȳ1(T )) − ν[ȳ1(T ) − ȳ0(T )]
≤ ν[ȳ1(T ) − ȳ0(T )] + g(ȳ1(0), ȳ1(T )) − ν[ȳ1(T ) − ȳ0(T )] = g(ȳ1(0), ȳ1(T ))

by assumptions H3,H4. This proves that y1 is a lower solution of problem (1). Similarly, we can show that z1 is an upper
solution of (1).
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Using the mathematical induction, we can show that

y0(t) ≤ y1(t) ≤ · · · ≤ yn(t) ≤ yn+1(t) ≤ zn+1(t) ≤ zn(t) ≤ · · · ≤ z1(t) ≤ z0(t)

for t ∈ J and n = 1, 2, . . . . Employing standard arguments we see that the sequences {yn, zn} converge to their limit
functions y, z, respectively. Indeed, y and z are solutions of problem (1) and y0(t) ≤ y(t) ≤ z(t) ≤ z0(t) on J .

To show that y, z are the minimum and maximum solutions of (1) we have to prove that if u ∈ [y0, z0]∗ is any solu-
tion of (1), then y(t) ≤ u(t) ≤ z(t) on J . To do this, we assume that ym(t) ≤ u(t) ≤ zm(t), t ∈ J for some m. Let p =

ym+1 − u, P = u − zm+1. Then, in view of assumptions H3,H4, we can prove that:

(Dq
Tp)(t) = (Fym)(t) − (Fu)(t) − M[ym+1(t) − ym(t)] ≤ −Mp(t),

(Dq
TP)(t) = (Fu)(t) − (Fzm)(t) + M[zm+1(t) − zm(t)] ≤ −MP(t),

0 = g(ȳm(0), ȳm(T )) − ν[ȳm+1(T ) − ȳm(T )] − g(ū(0), ū(T )) ≤ −νp(T ),

0 = g(ū(0), ū(T )) − g(z̄m(0), z̄m(T )) + ν[z̄m+1(T ) − z̄m(T )] ≤ −νP(T ).

This and Lemma 1 show ym+1(t) ≤ u(t) ≤ zm+1(t), t ∈ J , so by induction, yn(t) ≤ u(t) ≤ zn(t) on J for all n. Taking the
limit as n → ∞, we conclude y(t) ≤ u(t) ≤ z(t), t ∈ J . �

Example 2. Consider the following problem(Dq
1x)(t) =

(1 − t)−q

Γ (1 − q)
+ A[1 − t − x(t)]3 ≡ (Fx)(t), t ∈ J0 = [0, 1),

0 = x̄(1)[1 − x̄(0)] ≡ g(x̄(0), x̄(1)),
(10)

where q ∈ (0, 1), A > 0, t ∈ J = [0, 1].
Let y0(t) = 0, z0(t) = 2 − t, t ∈ J . Then ȳ0(0) = ȳ0(1) = 0, z̄0(0) = 2, z̄0(1) = 0. Indeed, y0 is a lower solution of

(10). Moreover,

(Fz0)(t) =
(1 − t)−q

Γ (1 − q)
− A ≤

(1 − t)−q

Γ (1 − q)
+

(1 − t)1−q

Γ (2 − q)
= (Dq

1z0)(t), g(z̄0(0), z̄0(1)) = 0.

Note thatM = 3A, ν = 1. Obviously, z0 is an upper solution of problem (10).
By Theorem 3, problem (10) has extremal solutions in the region [y0, z0]∗.
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