Combinatorics

Bounds on the vertex-edge domination number of a tree

Bornes sur le nombre de domination sommet-arête d'un arbre

Balakrishna Krishnakumari ${ }^{\text {a }}$, Yanamandram B. Venkatakrishnan ${ }^{\text {a }}$, Marcin Krzywkowski ${ }^{\text {b,c, } 1,2}$
${ }^{\text {a }}$ Department of Mathematics, SASTRA University, Tanjore, Tamil Nadu, India
${ }^{\text {b }}$ Department of Mathematics, University of Johannesburg, South Africa
${ }^{\text {c }}$ Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland

ARTICLE INFO

Article history:

Received 22 November 2013
Accepted after revision 18 March 2014
Available online 3 April 2014
Presented by the Editorial Board

Abstract

A vertex-edge dominating set of a graph G is a set D of vertices of G such that every edge of G is incident with a vertex of D or a vertex adjacent to a vertex of D. The vertexedge domination number of a graph G, denoted by $\gamma_{\mathrm{ve}}(T)$, is the minimum cardinality of a vertex-edge dominating set of G. We prove that for every tree T of order $n \geqslant 3$ with l leaves and s support vertices, we have $(n-l-s+3) / 4 \leqslant \gamma_{\mathrm{ve}}(T) \leqslant n / 3$, and we characterize the trees attaining each of the bounds.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Un ensemble sommet-arête dominant d'un graphe G est un ensemble D de sommets de G tel que chaque arête de G soit incidente à un sommet de D ou à un sommet adjacent à un sommet de D. Le nombre de domination sommet-arête d'un graphe G, noté $\gamma_{\text {ve }}(T)$, est le cardinal minimum d'un ensemble sommet-arête dominant de G. Nous prouvons que, pour chaque arbre T d'ordre $n \geqslant 3$ avec l feuilles et des sommets s de soutien, que nous avons $(n-l-s+3) / 4 \leqslant \gamma_{\mathrm{ve}}(T) \leqslant n / 3$, et nous caractérisons les arbres atteignant chacune des limites.
© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let $G=(V, E)$ be a graph. By the neighborhood of a vertex v of G we mean the set $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$. The degree of a vertex v, denoted by $d_{G}(v)$, is the cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. We say that a support vertex is strong (weak, respectively) if it is adjacent to at least two leaves (exactly one leaf, respectively). We denote by P_{n} the path on n vertices. Let T be a tree, and let v be a vertex of T. We say that v is adjacent to a path P_{n} if there is a neighbor of v, say x, such that the subtree

[^0]resulting from T by removing the edge $v x$ and which contains the vertex x as a leaf, is a path P_{n}. By a star we mean a connected graph in which exactly one vertex has degree greater than one.

A subset $D \subseteq V(G)$ is a dominating set of G if every vertex of $V(G) \backslash D$ has a neighbor in D. The domination number of G is the minimum cardinality of a dominating set of G. For a comprehensive survey of domination in graphs, see $[2,3]$.

An edge $e \in E(G)$ is vertex-edge dominated by a vertex $v \in V(G)$ if e is incident to v, or e is adjacent to an edge incident to v. A subset $D \subseteq V(G)$ is a vertex-edge dominating set, abbreviated VEDS, of G if every edge of G is vertex-edge dominated by a vertex of D. The vertex-edge domination number of G, denoted by $\gamma_{\mathrm{ve}}(G)$, is the minimum cardinality of a vertex-edge dominating set of G. A vertex-edge dominating set of G of minimum cardinality is called a $\gamma_{\mathrm{ve}}(G)$-set. Vertex-edge domination in graphs was introduced in [7], and further studied in [6].

Chellali and Haynes [1] established the following lower bound on the total domination number of a tree. For every tree T of order n with l leaves, we have $\gamma_{t}(T) \geqslant(n-l+2) / 2$. They also characterized the extremal trees. In [4] a lower bound on the total outer-independent domination number of a tree was given together with the characterization of the extremal trees. Lemańska [5] proved that the domination number of a tree is bounded below by $(n-l+2) / 3$.

We prove the following bounds on the vertex-edge domination number of a tree T of order $n \geqslant 3$ with l leaves and s support vertices, $(n-l-s+3) / 4 \leqslant \gamma_{\mathrm{ve}}(T) \leqslant n / 3$. We also characterize the trees attaining each of the bounds.

2. Results

We begin with the following straightforward observation.
Observation 1. For every connected graph G of diameter at least two, there exists a $\gamma_{\mathrm{ve}}(G)$-set that contains no leaf.
First we show that if T is a nontrivial tree of order n with l leaves and s support vertices, then $\gamma_{\mathrm{ve}}(T)$ is bounded below by $(n-l-s+3) / 4$. For the purpose of characterizing the trees attaining this bound, we introduce a family \mathcal{T} of trees $T=T_{k}$ that can be obtained as follows. Let T_{1} be a path P_{5}. If k is a positive integer, then T_{k+1} can be obtained recursively from T_{k} by one of the following operations.

- Operation \mathcal{O}_{1} : Attach a vertex by joining it to any support vertex of T_{k}.
- Operation \mathcal{O}_{2} : Attach a path P_{2} by joining one of its vertices to a vertex of T_{k}, which is not a leaf and is adjacent to a support vertex of degree two.
- Operation \mathcal{O}_{3} : Attach a path P_{4} by joining one of its leaves to a leaf of T_{k} adjacent to a weak support vertex.

We now prove that for every tree T of the family \mathcal{T} we have $\gamma_{\mathrm{ve}}(T)=(n-l-s+3) / 4$.
Lemma 2. If $T \in \mathcal{T}$, then $\gamma_{\mathrm{ve}}(T)=(n-l-s+3) / 4$.
Proof. We use the induction on the number k of operations performed to construct the tree T. If $T=T_{1}=P_{5}$, then $(n-l-s+3) / 4=(5-2-2+3) / 4=1=\gamma_{\mathrm{ve}}(T)$. Let k be a positive integer. Assume that the result is true for every tree $T^{\prime}=T_{k}$ of the family \mathcal{T} constructed by $k-1$ operations. Let n^{\prime} be the order of the tree T^{\prime}, l^{\prime} the number of its leaves, and s^{\prime} the number of support vertices. Let $T=T_{k+1}$ be a tree of the family \mathcal{T} constructed by k operations.

First assume that T is obtained from T^{\prime} by operation \mathcal{O}_{1}. We have $n=n^{\prime}+1, l=l^{\prime}+1$ and $s=s^{\prime}$. It is straightforward to see that any $\gamma_{\mathrm{ve}}\left(T^{\prime}\right)$-set is a VEDS of the tree T. Thus $\gamma_{\mathrm{ve}}(T) \leqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right)$. Obviously, $\gamma_{\mathrm{ve}}\left(T^{\prime}\right) \leqslant \gamma_{\mathrm{ve}}(T)$. This implies that $\gamma_{\mathrm{ve}}(T)=\gamma_{\mathrm{ve}}\left(T^{\prime}\right)$. We now get $\gamma_{\mathrm{ve}}(T)=\gamma_{\mathrm{ve}}\left(T^{\prime}\right)=\left(n^{\prime}-l^{\prime}-s^{\prime}+3\right) / 4=(n-1-l+1-s+3) / 4=(n-l-s+3) / 4$.

Now assume that T is obtained from T^{\prime} by operation \mathcal{O}_{2}. We have $n=n^{\prime}+2, l=l^{\prime}+1$ and $s=s^{\prime}+1$. It is straightforward to see that any $\gamma_{\mathrm{ve}}\left(T^{\prime}\right)$-set is a VEDS of the tree T. Thus $\gamma_{\mathrm{ve}}(T) \leqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right)$. This implies that $\gamma_{\mathrm{ve}}(T)=\gamma_{\mathrm{ve}}\left(T^{\prime}\right)$. We now get $\gamma_{\mathrm{ve}}(T)=\gamma_{\mathrm{ve}}\left(T^{\prime}\right)=\left(n^{\prime}-l^{\prime}-s^{\prime}+3\right) / 4=(n-2-l+1-s+1+3) / 4=(n-l-s+3) / 4$.

Now assume that T is obtained from T^{\prime} by operation \mathcal{O}_{3}. We have $n=n^{\prime}+4, l=l^{\prime}$ and $s=s^{\prime}$. We denote by x the leaf to which P_{4} is attached. Let $v_{1} v_{2} v_{3} v_{4}$ be the attached path. Let v_{1} be joined to x. Let D^{\prime} be any $\gamma_{\mathrm{ve}}\left(T^{\prime}\right)$-set. It is easy to see that $D^{\prime} \cup\left\{v_{2}\right\}$ is a VEDS of the tree T. Thus $\gamma_{\mathrm{ve}}(T) \leqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right)+1$. Now let us observe that there exists a $\gamma_{\mathrm{ve}}(T)$-set that does not contain the vertices v_{4}, v_{3}, and v_{1}. Let D be such a set. To dominate the edge $v_{3} v_{4}$, we have $v_{2} \in D$. Observe that $D \backslash\left\{v_{2}\right\}$ is a VEDS of the tree T^{\prime}. Therefore $\gamma_{\mathrm{ve}}\left(T^{\prime}\right) \leqslant \gamma_{\mathrm{ve}}(T)-1$. We now conclude that $\gamma_{\mathrm{ve}}(T)=\gamma_{\mathrm{ve}}\left(T^{\prime}\right)+1$. We get $\gamma_{\mathrm{ve}}(T)=\gamma_{\mathrm{ve}}\left(T^{\prime}\right)+1=\left(n^{\prime}-l^{\prime}-s^{\prime}+3\right) / 4+1=(n-4-l-s+7) / 4=(n-l-s+3) / 4$.

We now give a lower bound on the vertex-edge domination number of a tree together with the characterization of the extremal trees.

Theorem 3. If T is a nontrivial tree of order n with l leaves and s support vertices, then $\gamma_{\mathrm{ve}}(T) \geqslant(n-l-s+3) / 4$ with equality if and only if $T \in \mathcal{T}$.

Proof. If $\operatorname{diam}(T)=1$, then $T=P_{2}$. We have $(n-l-s+3) / 4=(2-2-2+3) / 4<1=\gamma_{\mathrm{ve}}(T)$. If $\operatorname{diam}(T)=2$, then T is a star. We have $l=n-1$ and $s=1$. Consequently, $(n-l-s+3) / 4=(n-n+1-1+3) / 4=3 / 4<1=\gamma_{\mathrm{ve}}(T)$.

Now assume that $\operatorname{diam}(T) \geqslant 3$. Thus the order n of the tree T is at least four. We obtain the result by the induction on the number n. Assume that the theorem is true for every tree T^{\prime} of order $n^{\prime}<n$ with l^{\prime} leaves and s^{\prime} support vertices.

First assume that some support vertex of T, say x, is strong. Let y be a leaf adjacent to x. Let $T^{\prime}=T-y$. We have $n^{\prime}=n-1, l^{\prime}=l-1$ and $s^{\prime}=s$. Obviously, $\gamma_{\mathrm{ve}}\left(T^{\prime}\right) \leqslant \gamma_{\mathrm{ve}}(T)$. We get $\gamma_{\mathrm{ve}}(T) \geqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right) \geqslant\left(n^{\prime}-l^{\prime}-s^{\prime}+3\right) / 4=(n-1-l+$ $1-s+3) / 4=(n-l-s+3) / 4$. If $\gamma_{\mathrm{ve}}(T)=(n-l-s+3) / 4$, then obviously $\gamma_{\mathrm{ve}}\left(T^{\prime}\right)=\left(n^{\prime}-l^{\prime}-s^{\prime}+3\right) / 4$. By the inductive hypothesis, we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{1}. Thus $T \in \mathcal{T}$. Henceforth, we can assume that every support vertex of T is weak.

We now root T at a vertex r of maximum eccentricity $\operatorname{diam}(T)$. Let t be a leaf at maximum distance from r, v be the parent of t, and u be the parent of v in the rooted tree. If $\operatorname{diam}(T) \geqslant 4$, then let w be the parent of u. If $\operatorname{diam}(T) \geqslant 5$, then let d be the parent of w. If $\operatorname{diam}(T) \geqslant 6$, then let e be the parent of d. By T_{x} we denote the subtree induced by a vertex x and its descendants in the rooted tree T.

Assume that some child of u, say x, is a leaf. Let $T^{\prime}=T-x$. We have $n^{\prime}=n-1, l^{\prime}=l-1$ and $s^{\prime}=s-1$. We get $\gamma_{\mathrm{ve}}(T) \geqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right) \geqslant\left(n^{\prime}-l^{\prime}-s^{\prime}+3\right) / 4=(n-1-l+1-s+1+3) / 4>(n-l-s+3) / 4$.

Now assume that among the children of u there is a support vertex other than v. Let $T^{\prime}=T-T_{v}$. We have $n^{\prime}=n-2$, $l^{\prime}=l-1$ and $s^{\prime}=s-1$. We get $\gamma_{\mathrm{ve}}(T) \geqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right) \geqslant\left(n^{\prime}-l^{\prime}-s^{\prime}+3\right) / 4=(n-2-l+1-s+1+3) / 4=(n-l-s+3) / 4$. If $\gamma_{\mathrm{ve}}(T)=(n-l-s+3) / 4$, then obviously $\gamma_{\mathrm{ve}}(T)=\left(n^{\prime}-l^{\prime}-s^{\prime}+3\right) / 4$. By the inductive hypothesis, we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{2}. Thus $T \in \mathcal{T}$.

Now assume that $d_{T}(u)=2$. Assume that $d_{T}(w) \geqslant 3$. First assume that some child of w, say x, is a leaf. Let $T^{\prime}=T-x$. We have $n^{\prime}=n-1, l^{\prime}=l-1$ and $s^{\prime}=s-1$. We get $\gamma_{\mathrm{ve}}(T) \geqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right) \geqslant\left(n^{\prime}-l^{\prime}-s^{\prime}+3\right) / 4=(n-1-l+1-s+1+3) / 4>$ $(n-l-s+3) / 4$.

Now assume that no child of w is a leaf. Let $T^{\prime}=T-T_{u}$. We have $n^{\prime}=n-3, l^{\prime}=l-1$ and $s^{\prime}=s-1$. Let us observe that there exists a $\gamma_{\mathrm{ve}}(T)$-set that does not contain the vertices t and v. Let D be such a set. To dominate the edge $v t$, we have $u \in D$. Let us observe that $D \backslash\{u\}$ is a VEDS of the tree T^{\prime}. Therefore $\gamma_{\mathrm{ve}}\left(T^{\prime}\right) \leqslant \gamma_{\mathrm{ve}}(T)-1$. We now get $\gamma_{\mathrm{ve}}(T) \geqslant$ $\gamma_{\mathrm{ve}}\left(T^{\prime}\right)+1 \geqslant\left(n^{\prime}-l^{\prime}-s^{\prime}+3\right) / 4+1=(n-3-l+1-s+1+7) / 4>(n-l-s+3) / 4$.

If $d_{T}(w)=1$, then $T=P_{4}$. We have $(n-l-s+3) / 4=(4-2-2+3) / 4<1=\gamma_{\mathrm{ve}}(T)$. Now assume that $d_{T}(w)=2$. First assume that $d_{T}(d) \geqslant 3$. Let $T^{\prime}=T-T_{w}$. We have $n^{\prime}=n-4, l^{\prime}=l-1$ and $s^{\prime}=s-1$. Let us observe that there exists a $\gamma_{\mathrm{ve}}(T)$-set that does not contain the vertices t, v and w. Let D be such a set. To dominate the edge $v t$, we have $u \in D$. Observe that $D \backslash\{u\}$ is a VEDS of the tree T^{\prime}. Therefore $\gamma_{\mathrm{ve}}\left(T^{\prime}\right) \leqslant \gamma_{\mathrm{ve}}(T)-1$. We now get $\gamma_{\mathrm{ve}}(T) \geqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right)+1 \geqslant$ $\left(n^{\prime}-l^{\prime}-s^{\prime}+3\right) / 4+1=(n-4-l+1-s+1+7) / 4>(n-l-s+3) / 4$.

Now assume that $d_{T}(d)=2$. First assume that some child of e is a leaf. Let $T^{\prime}=T-T_{w}$. We have $n^{\prime}=n-4, l^{\prime}=l$ and $s^{\prime}=s-1$. Similarly as in the previous possibility, we conclude that $\gamma_{\mathrm{ve}}\left(T^{\prime}\right) \leqslant \gamma_{\mathrm{ve}}(T)-1$. We get $\gamma_{\mathrm{ve}}(T) \geqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right)+1 \geqslant$ $\left(n^{\prime}-l^{\prime}-s^{\prime}+3\right) / 4+1=(n-4-l-s+1+7) / 4>(n-l-s+3) / 4$.

Now assume that no child of e is a leaf. Let $T^{\prime}=T-T_{w}$. We have $n^{\prime}=n-4, l^{\prime}=l$ and $s^{\prime}=s$. If $n^{\prime}=1$, then $T=P_{5}=$ $T_{1} \in \mathcal{T}$. Assume that $n^{\prime} \geqslant 2$. Similarly as earlier, we conclude that $\gamma_{\mathrm{ve}}\left(T^{\prime}\right) \leqslant \gamma_{\mathrm{ve}}(T)-1$. We now get $\gamma_{\mathrm{ve}}(T) \geqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right)+1 \geqslant$ $\left(n^{\prime}-l^{\prime}-s^{\prime}+3\right) / 4+1=(n-4-l-s+7) / 4=(n-l-s+3) / 4$. If $\gamma_{\mathrm{ve}}(T)=(n-l-s+3) / 4$, then obviously $\gamma_{\mathrm{ve}}\left(T^{\prime}\right)=$ $\left(n^{\prime}-l^{\prime}-s^{\prime}+3\right) / 4$. By the inductive hypothesis, we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{3}.

Next we show that if T is a tree of order $n \geqslant 3$, then $\gamma_{\mathrm{ve}}(T)$ is bounded above by $n / 3$. For the purpose of characterizing the trees attaining this bound, we introduce a family \mathcal{F} of trees $T=T_{k}$ that can be obtained as follows. Let T_{1} be a path P_{3}. If k is a positive integer, then T_{k+1} can be obtained recursively from T_{k} by attaching a path P_{3} by joining one of its leaves to a vertex of T_{k} adjacent to a path P_{2} or P_{3}.

We now prove that for every tree T of the family \mathcal{F} we have $\gamma_{\mathrm{ve}}(T)=n / 3$.
Lemma 4. If $T \in \mathcal{F}$, then $\gamma_{\mathrm{ve}}(T)=n / 3$.

Proof. We use the induction on the number k of operations performed to construct the tree T. If $T=T_{1}=P_{3}$, then $\gamma_{\mathrm{ve}}(T)=$ $1=n / 3$. Let k be a positive integer. Assume that the result is true for every tree $T^{\prime}=T_{k}$ of the family \mathcal{F} constructed by $k-1$ operations. Let n^{\prime} be the order of the tree T^{\prime}. Let $T=T_{k+1}$ be a tree of the family \mathcal{F} constructed by k operations. We have $n=n^{\prime}+3$. We denote by x the vertex to which is attached P_{3}. Let $v_{1} v_{2} v_{3}$ be the attached path. Let v_{1} be adjacent to x. Let D^{\prime} be any $\gamma_{\mathrm{ve}}\left(T^{\prime}\right)$-set. It is easy to see that $D^{\prime} \cup\left\{v_{1}\right\}$ is a VEDS of the tree T. Thus $\gamma_{\mathrm{ve}}(T) \leqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right)+1$. If x is adjacent to a path P_{2}, then let us observe that there exists a $\gamma_{\mathrm{ve}}(T)$-set that contains the vertices v_{1} and x. Let D be such a set. The set D is minimal, thus $v_{2}, v_{3} \notin D$. It is easy to observe that $D \backslash\left\{v_{1}\right\}$ is a VEDS of the tree T^{\prime}. If x is adjacent to a path P_{3} different from $v_{1} v_{2} v_{3}$, say $a b c$, then let a and x be adjacent. Let us observe that there exists a $\gamma_{\mathrm{ve}}(T)$-set that contains the vertices v_{1} and a. Let D be such a set. The set D is minimal, thus $v_{2}, v_{3} \notin D$. Let us observe that $D \backslash\left\{v_{1}\right\}$ is a VEDS of the tree T^{\prime}. We now conclude that $\gamma_{\mathrm{ve}}\left(T^{\prime}\right) \leqslant \gamma_{\mathrm{ve}}(T)-1$, and consequently, $\gamma_{\mathrm{ve}}(T)=\gamma_{\mathrm{ve}}\left(T^{\prime}\right)+1$. We get $\gamma_{\mathrm{ve}}(T)=\gamma_{\mathrm{ve}}\left(T^{\prime}\right)+1=n^{\prime} / 3+1=(n-3) / 3+1=n / 3$.

We now give an upper bound on the vertex-edge domination number of a tree together with the characterization of the extremal trees.

Theorem 5. If T is a tree of order $n \geqslant 3$, then $\gamma_{\mathrm{ve}}(T) \leqslant n / 3$ with equality if and only if $T \in \mathcal{F}$.

Proof. First assume that $\operatorname{diam}(T)=2$. Thus T is a star. If $T=P_{3}$, then $T=T_{1} \in \mathcal{F}$. If T is a star different from P_{3}, then we get $n / 3>1=\gamma_{\mathrm{ve}}(T)$.

Now assume that $\operatorname{diam}(T) \geqslant 3$. Thus the order n of the tree T is at least four. We obtain the result by the induction on the number n. Assume that the theorem is true for every tree T^{\prime} of order $n^{\prime}<n$.

First assume that some support vertex of T, say x, is strong. Let y be a leaf adjacent to x. Let $T^{\prime}=T-y$. It is straightforward to see that any $\gamma_{\mathrm{ve}}\left(T^{\prime}\right)$-set is a VEDS of the tree T. Thus $\gamma_{\mathrm{ve}}(T) \leqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right)$. We now get $\gamma_{\mathrm{ve}}(T) \leqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right) \leqslant n^{\prime} / 3<n / 3$.

We now root T at a vertex r of maximum eccentricity $\operatorname{diam}(T)$. Let t be a leaf at maximum distance from r, v be the parent of t, and u be the parent of v in the rooted tree. If $\operatorname{diam}(T) \geqslant 4$, then let w be the parent of u. By T_{x} we denote the subtree induced by a vertex x and its descendants in the rooted tree T.

Assume that some child of u, say x, is a leaf. Let $T^{\prime}=T-x$. Let D^{\prime} be a $\gamma_{\mathrm{ve}}\left(T^{\prime}\right)$-set that contains no leaf. It is easy to observe that D^{\prime} is a VEDS of the tree T. Thus $\gamma_{\mathrm{ve}}(T) \leqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right)$. We now get $\gamma_{\mathrm{ve}}(T) \leqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right) \leqslant n^{\prime} / 3<n / 3$.

Now assume that among the children of u there is a support vertex other than v. Let $T^{\prime}=T-T_{v}$. Let us observe that there exists a $\gamma_{\mathrm{ve}}\left(T^{\prime}\right)$-set that contains the vertex u. Let D^{\prime} be such a set. It is easy to see that D^{\prime} is a VEDS of the tree T. Thus $\gamma_{\text {ve }}(T) \leqslant \gamma_{\text {ve }}\left(T^{\prime}\right)$. We now get $\gamma_{\text {ve }}(T) \leqslant \gamma_{\text {ve }}\left(T^{\prime}\right) \leqslant n^{\prime} / 3<n / 3$.

Now assume that $d_{T}(u)=2$. First assume that w is adjacent to a leaf, say x. Let $T^{\prime}=T-x$. Let us observe that there exists a $\gamma_{\mathrm{ve}}\left(T^{\prime}\right)$-set that contains the vertex u. Let D^{\prime} be such a set. It is easy to see that D^{\prime} is a VEDS of the tree T. Thus $\gamma_{\text {ve }}(T) \leqslant \gamma_{\text {ve }}\left(T^{\prime}\right)$. We now get $\gamma_{\text {ve }}(T) \leqslant \gamma_{\text {ve }}\left(T^{\prime}\right) \leqslant n^{\prime} / 3<n / 3$.

Now assume that there is a child of w other than u, say x, such that the distance of w to the most distant vertex of T_{X} is two or three. It suffices to consider only the possibilities when T_{x} is a path P_{2} or P_{3}. Let $T^{\prime}=T-T_{u}$. We have $n^{\prime}=n-3$. Let D^{\prime} be any $\gamma_{\mathrm{ve}}\left(T^{\prime}\right)$-set. It is easy to observe that $D^{\prime} \cup\{u\}$ is a VEDS of the tree T. Thus $\gamma_{\mathrm{ve}}(T) \leqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right)+1$. We now get $\gamma_{\mathrm{ve}}(T) \leqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right)+1 \leqslant n^{\prime} / 3+1=n / 3$. If $\gamma_{\mathrm{ve}}(T)=n / 3$, then obviously $\gamma_{\mathrm{ve}}\left(T^{\prime}\right)=n^{\prime} / 3$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{F}$. The tree T can be obtained from T^{\prime} by attaching a path P_{3} by joining one of its leaves to the vertex u. Thus $T \in \mathcal{F}$.

Now assume that $d_{T}(w)=2$. Let $T^{\prime}=T-T_{w}$. We have $n^{\prime}=n-4$. If $n^{\prime}=1$, then $T=P_{5}$. We have $\gamma_{\mathrm{ve}}\left(P_{5}\right)=1<5 / 3$. If $n^{\prime}=2$, then $T=P_{6}$. The path P_{6} can be obtained from two paths P_{3} by joining them through leaves. Thus $T \in \mathcal{F}$. Now assume that $n^{\prime} \geqslant 3$. Let D^{\prime} be any $\gamma_{\mathrm{ve}}\left(T^{\prime}\right)$-set. Let us observe that $D^{\prime} \cup\{u\}$ is a VEDS of the tree T. Thus $\gamma_{\mathrm{ve}}(T) \leqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right)+1$. We now get $\gamma_{\mathrm{ve}}(T) \leqslant \gamma_{\mathrm{ve}}\left(T^{\prime}\right)+1 \leqslant n^{\prime} / 3+1=(n-1) / 3<n / 3$.

References

[1] M. Chellali, T. Haynes, A note on the total domination number of a tree, J. Comb. Math. Comb. Comput. 58 (2006) 189-193.
[2] T. Haynes, S. Hedetniemi, P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[3] T. Haynes, S. Hedetniemi, P. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[4] M. Krzywkowski, A lower bound on the total outer-independent domination number of a tree, C. R. Acad. Sci. Paris, Ser. I 349 (2011) 7-9.
[5] M. Lemańska, Lower bound on the domination number of a tree, Discuss. Math., Graph Theory 24 (2004) 165-169.
[6] J. Lewis, S. Hedetniemi, T. Haynes, G. Fricke, Vertex-edge domination, Util. Math. 81 (2010) 193-213.
[7] J. Peters, Theoretical and algorithmic results on domination and connectivity, PhD thesis, Clemson University, 1986.

[^0]: E-mail address: marcin.krzywkowski@gmail.com (M. Krzywkowski).
 1 Research fellow at the Department of Mathematics, University of Johannesburg, South Africa.
 2 Research partially supported by the Polish National Science Centre grant 2011/02/A/ST6/00201.

