metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bromidotetrakis(2-isopropyl-1Himidazole- κN^3)copper(II) bromide

Sylwia Godlewska, Joanna Socha, Katarzyna Baranowska and Anna Dołęga*

Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicz St. 80952 - PL Gdańsk, Poland Correspondence e-mail: anndoleg@pg.gda.pl

Received 26 August 2011; accepted 29 August 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.005 Å; R factor = 0.033; wR factor = 0.092; data-to-parameter ratio = 17.6.

The Cu^{II} atom in the title salt, $[CuBr(C_6H_{10}N_2)_4]Br$, is coordinated in a square-pyramidal geometry by four imidazole N atoms and one bromide anion that is located at the apex of the pyramid. The cations and the anions form a twodimensional network parallel to (001) through N-H···Br hydrogen bonds.

Related literature

For similar compounds, see: Hossaini Sadr et al. (2004); Li et al. (2007); Liu et al. (2007).

 $M_r = 664$

Experimental

Crystal data [CuBr(C₆H₁₀N₂)₄]Br Monoclinic, $P2_1/c$ a = 10.7094 (7) Å b = 19.9917 (6) Å c = 16.7885 (19) Å $\beta = 121.552 (7)^{\circ}$ V = 3063.0 (4) Å³

Data collection

Oxford Diffraction Xcalibur	11133 measured reflections
Sapphire2 diffractometer	5710 independent reflections
Absorption correction: multi-scan	4597 reflections with $I > 2\sigma(I)$
(CrysAlis PRO; Oxford	$R_{\rm int} = 0.017$
Diffraction, 2010)	
$T_{\min} = 0.628, T_{\max} = 1$	

Z = 4

Mo $K\alpha$ radiation

 $0.41 \times 0.25 \times 0.23 \text{ mm}$

 $\mu = 3.35 \text{ mm}^{-1}$

T = 120 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	324 parameters
$wR(F^2) = 0.092$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 1.86 \text{ e } \text{\AA}^{-3}$
5710 reflections	$\Delta \rho_{\rm min} = -1.04 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2 - H2A \cdots Br2$	0.88	2.48	3.358 (2)	175
$N4-H4A\cdots Br2^{i}$	0.88	2.48	3.342 (2)	167
$N6-H6D\cdots Br2^{ii}$	0.88	2.53	3.351 (2)	155
N8_H84Br2 ⁱⁱⁱ	0.88	2 49	3 362 (2)	160

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) x - 1, y, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrvsAlis PRO; data reduction: CrvsAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

SA thanks the Polish Ministry of Science and Higher Education for financial support (decision Nr 155/03/E-359/M/ 2011).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5221).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hossaini Sadr, M., Zare, D., Lewis, W., Wikaira, J., Robinson, W. T. & Ng, S. W. (2004). Acta Cryst. E60, m1324-m1326.
- Li, T. B., Hu, Y. L., Li, J. K. & He, G. F. (2007). Acta Cryst. E63, m2536.
- Liu, F.-Q., Liu, W.-L., Li, W., Li, R.-X. & Liu, G.-Y. (2007). Acta Cryst. E63, m2454.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2011). E67, m1338 [https://doi.org/10.1107/S1600536811035215] Bromidotetrakis(2-isopropyl-1*H*-imidazole-κ*N*³)copper(II) bromide Sylwia Godlewska, Joanna Socha, Katarzyna Baranowska and Anna Dołęga

S1. Comment

Title compound was synthesized as a substrate for further synthesis of mixed ligand copper complexes.

The structure of the complex ion in (I) is similar to those described earlier (Hossaini Sadr *et al.* (2004); Li *et al.* (2007); Liu *et al.* (2007)). However, Cu1—Br1 bond in (I) [2.6608 (6) Å] is significantly shorter compared to the Cu1—Br1 bond found in bromotetrakis(1*H*-imidazole- κN^3)copper(II) bromide [2.755 (1) Å] (Hossaini Sadr *et al.* (2004)). The steric hindrance introduced with the isopropyl group causes the rotation of the planes of imidazole rings and the hydrogen bond formed by Br1 in (1*H*-imidazole- κN^3)copper(II) bromide is no longer present in (I). This obviously results in the strengthening and shortening of Cu1—Br1. The two-dimensional hydrogen bonding network in (I) consists of four NH···Br hydrogen bonds formed by Br2.

The structure of (I) is shown in Fig. 1 and crystal packing diagram is presented in Fig.2.

S2. Experimental

Compound (I) was prepared by the reaction of 2-isopropylimidazole (0.496 g, 4.5 mmol) with CuBr₂ (0.223 g, 1 mmol) in methanol and slow evaporation of solvent from the reaction solution.

S3. Refinement

All C–H hydrogen atoms were refined as riding on carbon atoms with methyl C–H = 0.98 Å, methine C–H = 1 Å, aromatic C–H = 0.95 Å and U_{iso} (H)=1.2 U_{eq} (C) for aromatic and methine CH and 1.5 U_{eq} (C) for methyl groups. The final difference Fourier map had a peak/hole in the vicinity of the Br atoms.

A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms of isopropyl groups have been omitted. Hydrogen bonds indicated with dashed lines.

Figure 2

The packing of (I) along the c axis. H atoms of isopropyl groups have been omitted. Hydrogen bonds indicated with dashed lines.

Bromidotetrakis(2-isopropyl-1*H*-imidazole-*κN*³)copper(II) bromide

Crystal data

[CuBr(C₆H₁₀N₂)₄]Br $M_r = 664$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 10.7094 (7) Å b = 19.9917 (6) Å c = 16.7885 (19) Å $\beta = 121.552$ (7)° V = 3063.0 (4) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur Sapphire2
diffractometer
Graphite monochromator
Detector resolution: 8.1883 pixels mm ⁻¹
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
$T_{\min} = 0.628, \ T_{\max} = 1$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.092$	neighbouring sites
S = 1.05	H-atom parameters constrained
5710 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0602P)^2]$
324 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.86 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.04 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

F(000) = 1356

 $\theta = 2.5 - 30.0^{\circ}$

 $\mu = 3.35 \text{ mm}^{-1}$ T = 120 K

 $0.41 \times 0.25 \times 0.23 \text{ mm}$

11133 measured reflections 5710 independent reflections 4597 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$ $h = -12 \rightarrow 11$

Prism. blue

 $R_{\rm int} = 0.017$

 $k = -14 \longrightarrow 24$ $l = -18 \longrightarrow 20$

 $D_{\rm x} = 1.44 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 4456 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.31171 (3)	0.779079 (15)	0.001639 (19)	0.02020 (10)
Cu1	0.45146 (4)	0.766296 (16)	0.18655 (2)	0.01437 (10)
N1	0.6390 (3)	0.71702 (11)	0.21910 (16)	0.0171 (5)
N2	0.8002 (3)	0.64385 (13)	0.23226 (17)	0.0223 (6)

H2A	0.8388	0.6095	0.22	0.027*
N3	0.5719 (3)	0.85202 (11)	0.22788 (16)	0.0161 (5)
N4	0.7488 (3)	0.92415 (12)	0.26694 (17)	0.0215 (6)
H4A	0.8168	0.9478	0.2654	0.026*
N5	0.3114 (2)	0.81177 (11)	0.21723 (16)	0.0157 (5)
N6	0.1974 (3)	0.88848 (12)	0.24787 (17)	0.0219 (6)
H6D	0.1516	0.926	0.2444	0.026*
N7	0.3763 (3)	0.67785 (11)	0.20488 (16)	0.0176 (5)
N8	0.2343 (3)	0.60629 (12)	0.21834 (18)	0.0247 (6)
H8A	0.1554	0.5839	0.206	0.03*
C1	0.7738 (3)	0.73116 (15)	0.2985 (2)	0.0209 (7)
H1	0.7924	0.7669	0.3406	0.025*
C2	0.8743 (3)	0.68637 (15)	0.3069 (2)	0.0233 (7)
H2	0.9752	0.6847	0.3544	0.028*
C3	0.6587 (3)	0.66308 (14)	0.1806 (2)	0.0179 (6)
C4	0.5460 (3)	0.62848 (14)	0.0936 (2)	0.0194 (6)
H4	0.4525	0.6542	0.0673	0.023*
C5	0.5900 (4)	0.62837 (17)	0.0204 (2)	0.0294 (8)
H5A	0.6099	0.6743	0.0098	0.044*
H5B	0.5099	0.6097	-0.0382	0.044*
H5C	0.6782	0.6011	0.0428	0.044*
C6	0.5164 (4)	0.55681 (15)	0.1124 (2)	0.0303 (8)
H6A	0.6051	0.5298	0.1354	0.046*
H6B	0.4365	0.5373	0.0544	0.046*
H6C	0.4885	0.5576	0.1595	0.046*
C7	0.6050 (3)	0.88407 (14)	0.3097 (2)	0.0194 (6)
H7	0.5584	0.8759	0.3438	0.023*
C8	0.7131 (3)	0.92847 (15)	0.3338 (2)	0.0229 (7)
H8	0.7562	0.9571	0.3867	0.028*
C9	0.6617 (3)	0.87732 (14)	0.2031 (2)	0.0174 (6)
C10	0.6682 (3)	0.86072 (15)	0.1187 (2)	0.0220 (7)
H10	0.6014	0.8219	0.0865	0.026*
C11	0.8215 (4)	0.84085 (19)	0.1435 (3)	0.0378 (9)
H11A	0.8889	0.8783	0.1749	0.057*
H11B	0.8203	0.8294	0.0864	0.057*
H11C	0.8543	0.802	0.1853	0.057*
C12	0.6135 (4)	0.9195 (2)	0.0515 (3)	0.0472 (11)
H12A	0.5132	0.9307	0.0342	0.071*
H12B	0.6146	0.9076	-0.0048	0.071*
H12C	0.6774	0.9582	0.0817	0.071*
C13	0.2988(3)	0.79106 (15)	0.2919 (2)	0.0196 (6)
H13	0.3342	0.7499	0.3244	0.023*
C14	0.2289(3)	0.83811 (15)	0.3109 (2)	0.0231 (7)
H14	0.2059	0.8368	0.3584	0.028*
C15	0.2480 (3)	0.87125 (14)	0.1918 (2)	0.0177 (6)
C16	0.2259 (3)	0.91264 (15)	0.1117 (2)	0.0217 (7)
H16	0.2855	0.8924	0.0878	0.026*
C17	0.2765 (4)	0.98551 (15)	0.1391 (2)	0.0305 (8)

H17A	0.2169	1.0072	0.1604	0.046*
H17B	0.2651	1.0096	0.0848	0.046*
H17C	0.3797	0.9862	0.1896	0.046*
C18	0.0635 (4)	0.90979 (17)	0.0320 (2)	0.0328 (8)
H18A	0.0343	0.8631	0.0144	0.049*
H18B	0.0506	0.9345	-0.0222	0.049*
H18C	0.0024	0.93	0.0532	0.049*
C19	0.4603 (3)	0.64040 (14)	0.2861 (2)	0.0225 (7)
H19	0.5627	0.6452	0.3285	0.027*
C20	0.3729 (4)	0.59637 (16)	0.2946 (2)	0.0273 (7)
H20	0.4012	0.5648	0.3434	0.033*
C21	0.2391 (3)	0.65596 (14)	0.1655 (2)	0.0184 (6)
C22	0.1103 (3)	0.67838 (15)	0.0751 (2)	0.0223 (7)
H22	0.1356	0.7223	0.0585	0.027*
C23	0.0812 (4)	0.62825 (19)	-0.0015 (2)	0.0395 (9)
H23A	0.17	0.6229	-0.0041	0.059*
H23B	0.0013	0.6447	-0.0619	0.059*
H23C	0.0536	0.585	0.0123	0.059*
C24	-0.0242 (4)	0.68883 (19)	0.0820 (3)	0.0389 (9)
H24A	-0.054	0.646	0.0955	0.058*
H24B	-0.1044	0.7066	0.0227	0.058*
H24C	-0.0011	0.7206	0.1324	0.058*
Br2	0.96167 (4)	0.511235 (15)	0.20034 (3)	0.03505 (12)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02145 (17)	0.02243 (16)	0.01668 (16)	-0.00041 (12)	0.00995 (13)	-0.00114 (12)
Cu1	0.01376 (19)	0.01431 (18)	0.01683 (19)	-0.00066 (14)	0.00923 (16)	-0.00082 (14)
N1	0.0161 (13)	0.0162 (12)	0.0198 (13)	0.0008 (10)	0.0100 (11)	0.0018 (11)
N2	0.0202 (14)	0.0239 (13)	0.0251 (14)	0.0077 (11)	0.0134 (12)	0.0037 (11)
N3	0.0166 (13)	0.0150 (11)	0.0185 (12)	-0.0001 (10)	0.0105 (11)	-0.0006 (10)
N4	0.0186 (13)	0.0196 (13)	0.0272 (14)	-0.0056 (11)	0.0126 (12)	-0.0028 (11)
N5	0.0147 (12)	0.0163 (12)	0.0173 (12)	-0.0005 (10)	0.0092 (11)	-0.0004 (10)
N6	0.0195 (14)	0.0232 (13)	0.0267 (14)	0.0048 (11)	0.0146 (12)	-0.0015 (12)
N7	0.0159 (13)	0.0158 (12)	0.0213 (13)	-0.0006 (10)	0.0099 (11)	-0.0008 (11)
N8	0.0226 (14)	0.0224 (13)	0.0306 (15)	-0.0056 (12)	0.0150 (13)	0.0033 (12)
C1	0.0190 (16)	0.0221 (15)	0.0180 (15)	-0.0021 (13)	0.0072 (13)	0.0001 (13)
C2	0.0159 (16)	0.0271 (16)	0.0214 (15)	0.0014 (13)	0.0059 (13)	0.0038 (14)
C3	0.0191 (16)	0.0183 (14)	0.0217 (15)	0.0013 (12)	0.0144 (13)	0.0052 (13)
C4	0.0203 (16)	0.0205 (15)	0.0203 (15)	0.0027 (13)	0.0125 (13)	-0.0015 (13)
C5	0.0328 (19)	0.0355 (19)	0.0232 (17)	0.0018 (16)	0.0170 (16)	0.0001 (15)
C6	0.036 (2)	0.0236 (16)	0.0334 (18)	-0.0031 (15)	0.0194 (17)	-0.0055 (15)
C7	0.0193 (16)	0.0206 (15)	0.0193 (15)	0.0007 (13)	0.0107 (13)	-0.0015 (13)
C8	0.0195 (16)	0.0241 (16)	0.0203 (16)	-0.0013 (13)	0.0071 (14)	-0.0078 (13)
C9	0.0152 (15)	0.0146 (14)	0.0216 (15)	-0.0002 (12)	0.0091 (13)	0.0000 (12)
C10	0.0230 (16)	0.0237 (15)	0.0236 (16)	-0.0039 (13)	0.0151 (14)	-0.0014 (13)
C11	0.038 (2)	0.048 (2)	0.041 (2)	0.0064 (18)	0.0295 (18)	0.0013 (18)
C10 C11	0.0230 (16) 0.038 (2)	0.0237 (15) 0.048 (2)	0.0236 (16) 0.041 (2)	-0.0039(13) 0.0064(18)	0.0151 (14) 0.0295 (18)	-0.0014 (12) 0.0013 (18)

supporting information

C12	0.052 (3)	0.066 (3)	0.030(2)	0.022 (2)	0.027 (2)	0.018 (2)
C13	0.0194 (16)	0.0228 (15)	0.0194 (15)	0.0000 (13)	0.0121 (13)	0.0015 (13)
C14	0.0223 (16)	0.0285 (16)	0.0216 (15)	-0.0029 (14)	0.0136 (14)	-0.0033 (14)
C15	0.0129 (14)	0.0197 (15)	0.0184 (15)	-0.0025 (12)	0.0068 (13)	-0.0043 (12)
C16	0.0212 (16)	0.0219 (15)	0.0216 (15)	0.0047 (13)	0.0109 (14)	0.0013 (13)
C17	0.033 (2)	0.0225 (17)	0.0296 (18)	0.0012 (15)	0.0117 (16)	0.0066 (14)
C18	0.0311 (19)	0.0294 (17)	0.0248 (17)	0.0028 (15)	0.0056 (16)	0.0034 (15)
C19	0.0202 (16)	0.0223 (15)	0.0236 (15)	0.0034 (13)	0.0106 (14)	0.0060 (14)
C20	0.0262 (18)	0.0272 (17)	0.0256 (17)	0.0012 (14)	0.0115 (15)	0.0094 (15)
C21	0.0201 (16)	0.0158 (14)	0.0234 (15)	-0.0011 (12)	0.0141 (14)	-0.0008 (13)
C22	0.0182 (16)	0.0210 (15)	0.0267 (16)	-0.0027 (13)	0.0111 (14)	0.0018 (14)
C23	0.028 (2)	0.045 (2)	0.0281 (19)	-0.0014 (17)	0.0028 (16)	-0.0066 (17)
C24	0.0246 (19)	0.047 (2)	0.045 (2)	0.0101 (17)	0.0181 (18)	0.0131 (19)
Br2	0.0299 (2)	0.01770 (17)	0.0730 (3)	0.00417 (13)	0.0376 (2)	0.00779 (16)

Geometric parameters (Å, °)

Br1—Cu1	2.6608 (6)	С7—Н7	0.95
Cu1—N7	2.032 (2)	C8—H8	0.95
Cu1—N3	2.036 (2)	C9—C10	1.492 (4)
Cu1—N5	2.037 (2)	C10—C12	1.519 (5)
Cu1—N1	2.038 (2)	C10—C11	1.521 (4)
N1—C3	1.330 (4)	C10—H10	1
N1—C1	1.388 (4)	C11—H11A	0.98
N2—C3	1.350 (4)	C11—H11B	0.98
N2—C2	1.371 (4)	C11—H11C	0.98
N2—H2A	0.88	C12—H12A	0.98
N3—C9	1.332 (4)	C12—H12B	0.98
N3—C7	1.384 (3)	C12—H12C	0.98
N4—C9	1.360 (4)	C13—C14	1.340 (4)
N4—C8	1.364 (4)	C13—H13	0.95
N4—H4A	0.88	C14—H14	0.95
N5—C15	1.324 (4)	C15—C16	1.489 (4)
N5—C13	1.392 (4)	C16—C17	1.539 (4)
N6—C15	1.354 (4)	C16—C18	1.544 (4)
N6—C14	1.369 (4)	C16—H16	1
N6—H6D	0.88	C17—H17A	0.98
N7—C21	1.330 (4)	C17—H17B	0.98
N7—C19	1.394 (4)	C17—H17C	0.98
N8—C21	1.350 (4)	C18—H18A	0.98
N8—C20	1.375 (4)	C18—H18B	0.98
N8—H8A	0.88	C18—H18C	0.98
C1—C2	1.350 (4)	C19—C20	1.346 (4)
C1—H1	0.95	C19—H19	0.95
С2—Н2	0.95	C20—H20	0.95
C3—C4	1.490 (4)	C21—C22	1.489 (4)
C4—C5	1.529 (4)	C22—C24	1.520 (4)
C4—C6	1.536 (4)	C22—C23	1.528 (5)

C4—H4	1	C22—H22	1
C5—H5A	0.98	C23—H23A	0.98
С5—Н5В	0.98	C23—H23B	0.98
C5—H5C	0.98	С23—Н23С	0.98
С6—Н6А	0.98	C24—H24A	0.98
С6—Н6В	0.98	C24—H24B	0.98
С6—Н6С	0.98	C24—H24C	0.98
C7—C8	1.342 (4)		
N7—Cu1—N3	155.70 (9)	C9—C10—C11	112.2 (3)
N7—Cu1—N5	87.00 (9)	C12—C10—C11	110.3 (3)
N3—Cu1—N5	87.54 (9)	С9—С10—Н10	108.1
N7—Cu1—N1	87.23 (9)	C12—C10—H10	108.1
N3—Cu1—N1	87.47 (9)	C11—C10—H10	108.1
N5—Cu1—N1	154.22 (9)	C10-C11-H11A	109.5
N7—Cu1—Br1	103.58 (7)	C10-C11-H11B	109.5
N3—Cu1—Br1	100.72 (7)	H11A—C11—H11B	109.5
N5—Cu1—Br1	102.30 (7)	C10—C11—H11C	109.5
N1—Cu1—Br1	103.47 (7)	H11A—C11—H11C	109.5
C3—N1—C1	106.4 (2)	H11B—C11—H11C	109.5
C3—N1—Cu1	130.2 (2)	C10-C12-H12A	109.5
C1—N1—Cu1	122.86 (19)	C10-C12-H12B	109.5
C3—N2—C2	109.2 (2)	H12A—C12—H12B	109.5
C3—N2—H2A	125.4	C10—C12—H12C	109.5
C2—N2—H2A	125.4	H12A—C12—H12C	109.5
C9—N3—C7	106.4 (2)	H12B—C12—H12C	109.5
C9—N3—Cu1	130.20 (19)	C14—C13—N5	109.6 (3)
C7—N3—Cu1	121.06 (18)	C14—C13—H13	125.2
C9—N4—C8	108.7 (2)	N5—C13—H13	125.2
C9—N4—H4A	125.7	C13—C14—N6	106.0 (3)
C8—N4—H4A	125.7	C13—C14—H14	127
C15—N5—C13	106.4 (2)	N6-C14-H14	127
C15—N5—Cu1	129.80 (19)	N5-C15-N6	109.2 (3)
C13—N5—Cu1	121.74 (19)	N5-C15-C16	127.1 (3)
C15—N6—C14	108.9 (2)	N6-C15-C16	123.7 (3)
C15—N6—H6D	125.6	C15—C16—C17	113.0 (3)
C14—N6—H6D	125.6	C15—C16—C18	109.7 (3)
C21—N7—C19	106.8 (2)	C17—C16—C18	110.8 (3)
C21—N7—Cu1	129.27 (19)	C15—C16—H16	107.7
C19—N7—Cu1	120.74 (19)	C17—C16—H16	107.7
C21—N8—C20	108.9 (2)	C18—C16—H16	107.7
C21—N8—H8A	125.5	C16—C17—H17A	109.5
C20—N8—H8A	125.5	C16—C17—H17B	109.5
C2-C1-N1	109.7 (3)	H17A—C17—H17B	109.5
C2—C1—H1	125.2	С16—С17—Н17С	109.5
N1—C1—H1	125.2	H17A—C17—H17C	109.5
C1—C2—N2	105.5 (3)	H17B—C17—H17C	109.5
C1—C2—H2	127.3	C16—C18—H18A	109.5

N2—C2—H2	127.3	C16—C18—H18B	109.5
N1—C3—N2	109.2 (3)	H18A—C18—H18B	109.5
N1—C3—C4	126.9 (3)	C16—C18—H18C	109.5
N2—C3—C4	124.0 (3)	H18A—C18—H18C	109.5
C3—C4—C5	110.9 (3)	H18B—C18—H18C	109.5
C3—C4—C6	112.4 (3)	C20-C19-N7	109.0 (3)
C5—C4—C6	110.3 (3)	С20—С19—Н19	125.5
C3—C4—H4	107.7	N7—C19—H19	125.5
С5—С4—Н4	107.7	C19—C20—N8	106.2 (3)
С6—С4—Н4	107.7	С19—С20—Н20	126.9
C4—C5—H5A	109.5	N8—C20—H20	126.9
C4—C5—H5B	109.5	N7—C21—N8	109.1 (3)
H5A—C5—H5B	109.5	N7—C21—C22	126.9 (3)
C4—C5—H5C	109.5	N8—C21—C22	123.9 (3)
H5A—C5—H5C	109.5	C21—C22—C24	111.9 (3)
H5B—C5—H5C	109.5	C21—C22—C23	109.4 (3)
С4—С6—Н6А	109.5	C24—C22—C23	111.7 (3)
С4—С6—Н6В	109.5	C21—C22—H22	107.9
Н6А—С6—Н6В	109.5	C24—C22—H22	107.9
С4—С6—Н6С	109.5	C23—C22—H22	107.9
Н6А—С6—Н6С	109.5	С22—С23—Н23А	109.5
Н6В—С6—Н6С	109.5	С22—С23—Н23В	109.5
C8—C7—N3	109.7 (3)	H23A—C23—H23B	109.5
С8—С7—Н7	125.1	С22—С23—Н23С	109.5
N3—C7—H7	125.1	H23A—C23—H23C	109.5
C7—C8—N4	106.2 (3)	H23B—C23—H23C	109.5
С7—С8—Н8	126.9	C22—C24—H24A	109.5
N4—C8—H8	126.9	C22—C24—H24B	109.5
N3—C9—N4	108.9 (2)	H24A—C24—H24B	109.5
N3—C9—C10	127.8 (3)	C22—C24—H24C	109.5
N4—C9—C10	123.3 (3)	H24A—C24—H24C	109.5
C9—C10—C12	110.0 (3)	H24B—C24—H24C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
N2—H2A···Br2	0.88	2.48	3.358 (2)	175
N4—H4A····Br2 ⁱ	0.88	2.48	3.342 (2)	167
N6—H6D···Br2 ⁱⁱ	0.88	2.53	3.351 (2)	155
N8—H8A····Br2 ⁱⁱⁱ	0.88	2.49	3.362 (2)	169

Symmetry codes: (i) -*x*+2, *y*+1/2, -*z*+1/2; (ii) -*x*+1, *y*+1/2, -*z*+1/2; (iii) *x*-1, *y*, *z*.