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Buried object characterization 
by data‑driven surrogates 
and regression‑enabled hyperbolic 
signature extraction
Reyhan Yurt 1,2, Hamid Torpi 2, Ahmet Kizilay 2, Slawomir Koziel 3,4, 
Anna Pietrenko‑Dabrowska 4 & Peyman Mahouti 2,5*

This work addresses artificial-intelligence-based buried object characterization using FDTD-based 
electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. 
In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical 
parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil 
medium simultaneously and independently of each other. The proposed methodology capitalizes 
on a fast and accurate data-driven surrogate model developed for object characterization in terms 
of its vertical and lateral position, and the size. The surrogate is constructed in a computationally 
efficient manner as compared to methodologies using 2D B-scan image. This is achieved by operating 
at the level of hyperbolic signatures extracted from the B-scan data through linear regression, 
which effectively reduces the dimensionality and the size of data. The proposed methodology 
relies on reducing of 2D B-scan image to 1D data including variation of reflected electric fields’ 
amplitudes with respect to the scanning aperture. The input of the surrogate model is the extracted 
hyperbolic signature obtained through linear regression executed on the background subtracted 
B-scan profiles. The hyperbolic signatures encode information about the geophysical parameters of 
the buried object, including depth, lateral position, and radius, all of which can be extracted using 
proposed methodology. Parametric estimation of the object radius and the estimation of the location 
parameters simultaneously is a challenging problem. Applying the application of processing steps on 
B-scan profiles incurs high computational costs, which is a limitation of the current methodologies. 
The metamodel itself is rendered using a novel deep-learning-based modified multilayer perceptron 
(M2LP) framework. The presented object characterization technique is favourably benchmarked 
against the state-of-the-art regression techniques, including Multilayer Perceptron (MLP), Support 
Vector Regression Machine (SVRM), and Convolutional Neural Network (CNN). The verification results 
demonstrate the average mean absolute error of 10 mm, and the average relative error of 8 percent, 
both corroborating the relevance of the proposed M2LP framework. In addition, the presented 
methodology provides a well-structured relation between the geophysical parameters of object 
and the extracted hyperbolic signatures. For the sake of supplementary verification under realistic 
scenarios, it is also applied for scenarios involving noisy data. The environmental and internal noise of 
the GPR system and their effect is analyzed as well. Furthermore, the proposed surrogate modeling 
approach is validated using measurement data, which is indicative of suitability of the approach to 
handle physical measurements as data sources.

Ground Penetrating Radar (GPR) has been widely used for underground investigations as a remote sensing 
tool that is based on electromagnetic wave theory1–3. In a rudimentary GPR system, time or frequency signals 
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are transmitted and received via antennas that move along a path such as a synthetic aperture above the ground 
surface, and scan the underground. According to the requirements of the application, the antennas of different 
sizes, structures and frequency bands are employed such as a conventional monostatic C-Band horn antenna4, a 
transceiver X-Band cylindrical horn antenna5, a helical airborne GPR antenna with 480 MHz center frequency6. 
The movement of antenna systems along the scanning axis, the reflected received signal at one point renders the 
A-scan (1-D signal) data. During the scanning process, the collected A-scans are merged into B-scan images7 
(2-D data). In the literature, most of the studies are based on investigating scattered fields from the buried object 
by using B-scan images, especially hyperbolic signatures and hyperbolic patterns8–15. A buried cylindrical target 
such as a rebar, a pipeline, and a wire (energy, optical, or signal cable) is subject to a hyperbolic regression in the 
B-scan8. A recognition of hyperbolic signature’s (pattern) geometrical features is the most common approach 
to detection, localization, and estimation of the object size using both analytical, numerical, and artificial intel-
ligence (AI) methods16–22.

The identification and characterization of buried object requires some pre-processing operations to analyze 
only the reflected signals due to the object. One of them is correlation-based whitening algorithm23 applied on 
the scattering parameters to discriminate between reflections from air–soil boundary reflections and those associ-
ated with the buried object of from the buried object with different material types. In addition, the investigation 
of hyperbolic signatures derived from the B-scan data requires pre-processing operations. The most common 
operations include background subtraction and elimination of the air-ground surface echo; these are preferred to 
enable object recognition, and identification of the object-related properties such as localization and estimation 
of object size, material type, or shape7–9,11,12,14–19,22,24,25. In one of the studies8, following pre-processing, hyperbola 
extraction via Single Shot Multibox Detector (SSD)8 deep learning framework has been used to detect the objects 
and their localization. In an another study, to investigate of the hyperbola, a column-connection clustering (C3) 
algorithm11 has been proposed to determine the regions of interest. Subsequently, the neural network (NN) 
model has been used to classify C3 outputs for hyperbola identification. Also, an orthogonal-distance fitting 
algorithm11 has been applied to an identified hyperbola. A removal of subsurface reflection from the extracted 
hyperbola in the B-scan images (in the form of the amplitude and time vector) has been used to create inputs in 
a cascaded NN for characterization of the buried object12 with the help of the Hilbert transform (HT) to obtain 
enveloped signals. Another approach has been proposed for identification of a buried object and to obtain the 
reflected A-scans by using combined MD (Metal Detector) and GPR sensor26. The response features extracted 
from the peaks and their locations within the subsequent 1D time-varying amplitude signals by means of prin-
ciple component analysis (PCA), are employed to classify the material type into three groups by using k-nearest 
neighbor supervised learning classification algorithm26. Other Artificial Intelligence (AI) algorithms have been 
successfully used for buried target recognition in GPR images include Deep Learning (DL), especially Convolu-
tional Neural Network (CNN) frameworks14–16,18,19,21. 3D GPR data generated along longitudinal and cross axes is 
analyzed in CNN and LSTM (Long Short-Term Memory) units combined into a framework of a cascaded struc-
ture for the detection of buried explosive objects and discrimination targets or non-target alarms15. In a study 
of object detection16, CNN is used together with Long Short Term Memory (LSTM) network for the detection 
of a cylindrical object. In addition, nine different diameters of objects are classified in the extracted hyperbola 
regions within B-scan images16 generated using the gprMax toolbox27,28. The customized deep learning network 
as CNN framework is applied with SVM classifier instead of softmax layer24, and this structure is proposed for 
classification of B-scans generated by using gprMax simulation tool27,28 in terms of soil type, material type and 
object shape. Another approach is permittivity mapping of the subsurface structures for lining detection29,30 
using customized CNN, and deep neural network frameworks. Using these tools, inversion of dielectric images 
can be obtained from the B-scan data. A similar approach has been applied to obtain permittivity inversion of 
geo-structures of buried targets by using deep neural network architectures31.

Detection is not the only problem considered in the context of buried object characterization. Some studies 
focused on investigating properties such as material type, material shape classification, localization, medium 
dielectric features, and object size estimation12,22,32 via AI surrogate models including cascading networks. In22, 
B-scan images generated by means of gprMax electromagnetic simulator toolbox27,28 have been pre-processed, 
and the images (along with the results of material type classification via Support Vector Machine (SVM), hyper-
bola curvature, and the object depth) have been used as inputs to obtain an estimation of object size using 
Gaussian Process Regression (GaPR)22. In another study32, a framework incorporating a Random Forest (RF) 
routine and NN regression model has been used to predict the object radius, depth, and the water content of 
the subsurface, based on the compressed reflected signal. The procedure is an exemplary study on the cascaded 
networks, with the regression parameters such as depth and water content being independent of each other, and 
the radius being dependent on the remaining parameters32. A-scan data samples have been employed as inputs 
for buried object characterization to obtain practical processing and reduction of the necessary computational 
resources for generating 2000 training samples32,33.

This work proposes a novel methodology for buried object characterization in a computationally-efficient 
approach via use of data-driven surrogate modelling. The ground reflections are removed, and background sub-
traction operations are executed so that B-scan image processing can be carried out. The surrogate is constructed 
at the level of hyperbolic patterns extracted using linear regression34,35 The latter results in dimensionality reduc-
tion of the parameter space36 and enables efficient analysis of GPR data using neural network models. Further, 
2-D B-scan data is reduced to 1-D data consisting of electric field amplitude values along the scanning axis, so 
that an advantage is obtained with regard to computational cost of the proposed surrogate modeling approach. 
The estimated hyperbolic patterns contain information about the geophysical properties of the buried object, 
including its lateral position, depth, and radius. The underlying surrogate modelling technique involves deep-
learning-based modified Multilayer Perceptron (M2LP) framework. Its architecture, in terms of deep-learning-
based layers, is similar to a regression model employed to represent scattering parameters of a capacitively-fed 
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antenna37. There are two fundamental contributions of this work. The first one is the employment of linear 
regression techniques for extracting hyperbolic signatures from the B-scan data, which are associated with 
the geophysical parameters of the buried object, and allow for dimensionality reduction of the dataset being 
handled in the process. The second is a novel deep- learning-based M2LP framework, which enables signifi-
cant improvement of the computational efficiency of surrogate model rendition, thereby expediting the object 
characterization process.

The remaining part of the paper is arranged as follows. The next section formulates the buried object charac-
terization task. It also provides a brief explanation of the GPR model, and the arrangement of the training sam-
ples. The subsequent section elaborates on a regression-based hyperbolic pattern extraction from the B-scans, as 
well as deep-learning-based modified MLP (M2LP) framework developed to perform characterization of depth, 
lateral position, and radius of the detected object. The following part extends our approach to handle noisy data-
sets, whereas the follow-up section also extends it to measurement data sets. The last section concludes the paper.

Materials and method
This section formulates the buried object characterization task, as well as discusses the computational model of 
the ground penetrating radar (GPR) utilized in this context. Further, it provides detailed information about the 
data structures obtained from the GPR model and processed by the proposed object characterization algorithm.

Problem formulation.  The problem at hand is to estimate characteristic parameters of a buried cylindri-
cal object, specifically its depth D, lateral position P, and radius R. The meaning of these parameters has been 
explained in Fig. 1. The object itself is assumed to be made of perfect electrical conductor (PEC).

The estimation of the object parameters is realized here using fast surrogate model established using pre-
processed data obtained from the GPR model to be discussed later. Data pre-processing allows for a considerable 
reduction of the dataset complexity, including a reduction of its dimensionality, thereby facilitating the modeling 
process. The latter is carried out using a dedicated M2LP framework elaborated on below.

Configuration of GPR model.  In this work, the data used for object identification is obtained from the 
computational model representing the ground penetrating radar (GPR) together with the associated environ-
ment (a soil section containing the object buried therein). The GPR model is evaluated using the electromagnetic 
simulation software gprMax that involved Finite Difference Time Domain (FDTD) solver27,28. The geometrical 
configuration of the model has been presented in Fig. 2. As mentioned earlier, the object is represented as perfect 
electric conductor (PEC) in the form of a wire, pipe, or rebar. The travelling time td of the wave transmitted by 
the antenna can be computed as

where d is the object depth, εr is the relative permittivity of the subsurface, and c is the speed of light in the free 
space. Note that the wave propagation time is monotonically dependent on the depth but also the subsurface 
permittivity.

The GPR model is configured as follows:

•	 The subsurface domain is defined as dry soil of relative permittivity 3 and conductivity 0.001 S/m;
•	 Subsurface domain dimensions are 0.4 m (lateral) and 0.6 m (vertical);
•	 The cubic cell size for the spatial discretization of the simulation environment is 1 mm;
•	 The boundary conditions are defined to be Perfectly Matched Layers (PML) with the thickness of ten cells 

(at all domain faces);
•	 The transmitter and receiver antennas (marked at T and R in Fig. 2, respectively), are placed 75 mm (almost 

0.66λ9,22,24, λ being a guided wavelength) apart from each other and close to the ground surface (the distance 
is set to 2 mm24);

•	 The radius R of the buried object is assumed to be within the range 10 mm ≤ R ≤ 40 mm.

The GPR model is used to generate so-called A-scans1–3,8,10, which are waveforms of the electric field strength 
recorded by the receiver antenna over the 7.5 ns window. The antennas are moved for each trace (A-scan) at 
the along axis (scanning path) as shown in Fig. 2. The source signal w(t) is set to be a normalized first-order 
derivative of a Gaussian waveform with a center frequency fc = 1.5 GHz. We have (the unit of time t are seconds)

(1)td =
√
εr2d

c

Soil
R

D

P
PEC object

Figure 1.   Buried object characterization problem: graphical illustration and definition of terms. Variables 
R, D, and P stand for the object radius, its depth, and lateral positions, respectively, all to be identified in the 
characterization process. 
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Figure 3a shows exemplary A-scans obtained for a specific scenario. In addition, –3 dB level interval of the 
used waveform is approximately 1.1 to 2.7 GHz, and the approximate frequency bandwidth is 1.6 GHz, which 
is provided at the same time via the inverse of the pulse width gave bandwidth for the impulse radar system1,2. 
According to time window (T = 7.5 ns) of the one-point scanning process, frequency bin spacing (Δf) at the 
bandwidth (fBW) is approximately as 133.4 MHz (1/T), the frequency step number, N is calculated 120 by using 
fBW/Δf. The range resolution1,2,10 is also found as 54 mm by using the Fourier theory, which explains the relation 
between range resolution with velocity of the waveform in the soil medium as directly proportional to the range 
resolution and with frequency bandwidth as inversely proportional to the range resolution10. The maximum 
penetration depth1,2,10 for this configuration of the model is calculated as 0.649 m by using dielectric features of 
the subsurface, the value of frequency bin spacing, and the number of frequency steps. The maximum depth for 
object detection is related to the features of the excitation waveform and dielectric features of the surface. For 
example, in very lossy subsurface media, the amplitude of the signal is attenuated in a shorter time interval, so 
scanning operations may be limited to the shorter depth. When the objects are deeply buried, some techniques 
can be used such as “dewow” filtering1,2,13, band-pass filtering2,38 and time-dependent gain function in other 
words time-varying gain processing1,2,38.

While the excitation signal is propagating in a dielectric medium, its amplitude decreases depending on 
the dielectric features of the environment and the propagating path. With the defined parameters, attenuation 
coefficient2 is calculated as 0.1088 Np/m. In addition, the environment with the buried object in the center of 
antennas for lateral position and depths defined at intervals of 40 mm is simulated, and time-varying amplitudes 
are obtained. For these simulations, a cylindrical PEC object with the radius of 10 mm is used, which is buried 
at defined geometrical positions. In a particular simulation, the scenario is defined as 238 mm lateral position, 
200 mm depth and 10 mm radius. Moreover, as mentioned for GPR model configuration, the antenna system 
is placed at a distance of 75 mm, and approximate value of 0.66 λ9,22,24 (wavelength of guided electromagnetic 
wave) and very close to ground upper surface. In other words, their distance from the ground is 2 mm24. Also, 
it differs from the conventional radar system due to the short target range and lossy propagation medium for 
electromagnetic waves2. In the proposed model, if there is no buried object in the subsurface, the transmitted 
field (of the incident field) from the air-ground boundary propagates until the maximum depth of defined surface 
domain, and when transmitted electromagnetic wave arrives the bottom of the subsurface domain, the amplitude 
will be zero due to the PML boundary conditions. For this reason, the soil attenuation and the propagation loss, 
due to the propagation in the dielectric subsurface medium, was demonstrated with the varying amplitudes of 
the reflected electric fields from the buried object at different depths. In Fig. 4a, a Hilbert transformed version 
of the received signal in the air without subsurface medium and reflected signal from air-boundary ground are 
represented. This representation is obtained from the Hilbert transform of the signals to utilize the enveloped 
form of the reflected electric fields. However, background subtracted raw signals are used in the modeling 
approach and transforming the enveloped form of the signals are used for the explanation of relation between 
the depth and amplitude change due to soil attenuation.

(2)w(t) = −2π fc
√
e

(

t −
1

fc

)

e
−2π2f 2c

(

t− 1
fc

)2

Figure 2.   Configuration of the GPR model for generating training and testing data used by the proposed 
surrogate-assisted buried object characterization framework. T and R stand for the transmitter and receiver 
antenna, respectively. As mentioned earlier, the parameters to be estimated are the lateral position P, depth D, 
and object radius R.
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After the reflection from the upper ground surface, the transmitted part of the excitation signal propagates in 
the soil environment (subsurface domain), and it attenuates along the propagation path due to the soil dielectric 
features. In Fig. 4b, sample A-scans corresponding to the mentioned scenarios have been demonstrated to explain 
the relation between the depth and the magnitude of reflected electric field from the buried object. The principle 
of decreasing the amplitude of the reflected field as a function of increasing the depth at which the object is buried 
is used in this work to reduce dimensionality of data through linear regression, more specifically, by extracting 
the hyperbolic signature. This is the effect of soil attenuation on the amplitude of the reflected signals. In addi-
tion, the amplitude change of the reflected electric field due to the soil attenuation has been demonstrated in 
Fig. 4c by using buried object at different depths, reflection from air-ground boundary and direct wave in the 
air as well. The variation of amplitudes of the received signals caused by the buried object is explained by using 
the maximum (peak) amplitude of the enveloped signals. In addition, in Fig. 4d the ratio between incident and 
reflected electric fields coming from the buried object at different depths has been shown along with the varying 
amplitudes of the fields, which indicate the losses.

Data structure: B‑scan arrangement.  The A-scans are parameterized using a lateral position of the T/R 
antenna system; k = 30 positions are considered altogether, as indicated in Fig. 3. At the same time, each A-scan 
is sampled at Nt = 3181 time steps. This data is aggregated into raw B-scans, in the form of an Nt × k matrix that 
contains the magnitude of the received electric fields strengths in V/m. Thus, the raw B-scan is represented as 
E = [Eij], with i = 1, …, 3181, and j = 1, …, 30 and E = Etarget + Eclutter, Etarget includes reflections from the object and 
Eclutter includes background reflection7,25. The background subtraction operation is applied to reconstruct 2D 
data (B-scan) as pre-processed B-scan that consists of just reflections from the target25. The initial pre-processing 
is then executed to reduce the data in the time domain by selecting only one out of ten time samples. This leads to 
compressed B-scans of the size 319 × 30. The process of constructing the B-scans has been illustrated in Fig. 3b.

The problem to be solved is to estimate characteristic parameters of a buried cylindrical object, particularly 
its depth D, lateral position P, and radius R by using computationally-efficient surrogate modeling approach. 
According to these characteristic parameters, scenarios are constituted and simulated to obtain B-scans. The 
pre-processing operation is applied to the collected B-scan data to eliminate the effects of background environ-
ment with the effects of other clutters commonly observed in data samples. It is important to elaborate on the 
structure of the A- and B-scans, as these are critical from the point of view of object characterization. Each 
A-scan presents two sets of ripples that correspond to the ground and air reflection (the first ripple) and the 
target reflection (the second ripple). The geophysical parameters of the object but also subsurface permittivity 
determine both the strength of the reflected field and its time allocation. Further, lateral relocation of the T/R 
antennas at the along axis leads to creation of a specific pattern of the reflected fields, referred to as hyperbolic 

Figure 3.   Signals obtained from the GPR model: (a) exemplary samples of raw A-scan signals from the test 
object set at D = 177 mm, P = 175 mm, and R = 19 mm; (b) B-scan image construction for the same test object.
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signature (hyperbolic feature)4,8,12,18,31,39. The latter will be exploited in the proposed identification procedure as 
described in next section.

Linear‑regression‑assisted surrogate modeling for buried object characterization.  This sub-
section outlines a linear regression technique employed to identify hyperbolic signatures of the B-scan data, 
as well as a novel deep-learning-based approach, Modified Multilayer Perceptron (M2LP) framework used to 
carry out buried object characterization. The following sub-sections provide the details of both techniques. The 
programming environment is Matlab.

Hyperbolic signature extraction by linear regression.  When the transmitting and receiving antenna 
system is moved along the scanning path, a specific pattern is produced as a result reflection from the bur-
ied object4,8,12,18,31,39. It is referred to as a hyperbolic signature, and encodes information about the significant 
characteristic parameters of the buried object. In this work, the hyperbolic signature is extracted using linear 
regression34,35.

The analytical form of the underlying regression model is a second-order polynomial, which provides a 
sufficient number of degrees of freedom to represent the object-related information in an adequate manner. 
The specific data encoded therein is amplitude of the reflected electric field versus the lateral position along the 
scanning path. A fundamental advantage of this sort of representation is simplification of the data structures 
being processed by the object characterization framework, both in terms of its sheer amount and dimensionality.

The hyperbolic signature extraction algorithm works as follows. In the first step, the amplitude maxima of 
each A-scan data acquired along the scanning path are identified for the entire wave travelling time period. The 
first maximum is the result of reflections from air and the ground upper surface for all A-scan signals, whereas 
the second maximum emerges from the target reflection. After eliminating the soil effect by applying background 
subtraction7–9,11,12,14–19,22,24,25, the estimated hyperbolic signature is created by gathering the pairs of second-
highest maxima and the corresponding lateral locations. This data contains information about the buried object 
position (lateral position P, depth D), but also its radius R. In particular, when radius of the object is increased 
for at the same depth, the electric field amplitude is also increased. Also, the effects of reflection are observed 
for a larger number of consecutive A-scan signals around the position where the object is buried, as compared 
to the object featuring a smaller radius. In other words, the width of hyperbolic pattern increases.

Figure 4.   Reflected Signals from air-ground boundary and the objects in different depths with their enveloped 
forms: (a) the received direct wave in the air and reflection from the air-ground boundary; (b) sample scenarios 
of the A-scan to obtain soil attenuation along the penetration path with the object set at D = 40 mm, 80 mm 
200 mm, 520 mm, 560 mm, 570 mm, and P = 238 mm as well as R = 10 mm; (c) amplitude change of the 
reflected signals versus the depth due to soil attenuation; (d) amplitude ratio between the incident signal and the 
reflected signals versus the depth.
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In general form of relation between travelling time and the distance8,18,20,40 is given in Eq. (1) indicating 
two-way travel time. In detail, two-way travel time of the transmitting and receiving signals can be expressed by 
adding two different times. The reason is that the distance between the antennas and the object center are dif-
ferent from each other. The absolute distance to the object center depends on the distance between the antenna, 
horizontal and vertical distances between the antennas the object center, but also the object radius. In particular, 
the antennas are placed on close to the ground surface in the considered model, so that vertical distances of 
antennas to the object center are neglected.

The specific pattern is constructed from reflections by using the arrival times of the first reflections from the 
buried object surface for each A-scan in the scanning path. Figure 5 shows the geometrical parameters associated 
with the hyperbolic pattern and its construction from the first reflections due to the buried cylindrical object 
according to the two-way travel time of the wave are demonstrated. The A-scan index is marked as k and ranges 
from 1 to 30. Mathematical modeling of the hyperbolic pattern and the times of the first reflections from the 
object surface is explained with the geometrical configuration and parameters8,9,18,20,40 of the data acquisition 
model. The distance dt from the object center to the transmitter antenna, and dr to the receiver antenna, as well 
as the distance from the transmitter antenna to the starting point at the scanning axis x for each A-scan is defined 
by calculating the hypotenuse

where da is the distance between the antennas (75 mm), P gives the lateral position of the center of object to the 
starting point, whereas D is the vertical distance between the center of the object and the upper ground surface. 
The required time t of two-way travelling wave for each A-scan of the first reflection is defined by

where εr is the relative permittivity of soil medium and c is the light velocity in air. The hyperbolic signature is the 
merged form of reflected electric fields at time tk for each A-scan as hyperbolic line and this data is described by

The assumed analytical form of the function representing the aforementioned pattern is a second-order 
polynomial of the form

(3)dtk =
(

(xk − P)2 + D2
)1/2

(4)drk =
(

(xk − da − P)2 + D2
)1/2

(5)tk =
√
εr

(

dtk + drk
)

− 2R

c

(6)HP(k) =
[

E1(t1) E2(t2) E3(t3) · · · · · · Ek−1

(

tk−1

)

Ek(tk)
]

(7)y(x) = ax2 + bx + c

Figure 5.   The parameters associated with the hyperbolic pattern constructed by the required time of the first 
reflections from the buried cylindrical object.
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where x is the lateral position (here, understood as the index of the A-scan), and y is the electric field strength 
corresponding to the second-highest maximum of the respective A-scan. The model is extracted based on the 
pairs {xk,yk}, k = 1, …, N, with N = 30. The least square regression problem is defined as

which can be written as

or, in a matrix form

where y = [y1 … yN]T, and

The least-square solution to (11) is given as

Figure 6 shows the examples of B-scan data along with their extracted hyperbolic patterns. Herein, a hyper-
bolic signature extraction is carried out using linear regression with the analytical form of the signature being a 
second-order polynomial. This methodology is also expressed via using linear regression function as activation 
function of the hyperbolic line HP(k) which is given by

Deep‑learning‑based modified multilayer perceptron (M2LP) for buried object characteriza‑
tion.  This sub-section introduces the proposed deep-learning-based modified multilayer perceptron (M2LP) 
model for buried object characterization. The flowchart of the modeling process as well as inputs and outputs of 
the phases of the proposed modeling approach for buried object characterization has been presented in Fig. 7.

The proposed framework belongs to a class of MLP networks as it contains fully connected layers. However, 
it also contains additional layers, normally employed in deep learning frameworks, including a batch normaliza-
tion layer, Rectified Linear Unit (ReLU) as an activation function. Furthermore, the model is trained using the 
Adam algorithm41.

In contrast to the Convolutional Neural Network (CNN)-based regression models, the convolution and pool-
ing layers are not included. In particular, data filtering leads to unused features remain in the data, also pieces of 
data losses as the hyperbolic patterns processed in our framework contain the attributes that already carry the 
knowledge about the characteristic parameters of the buried object. These can be used directly without further 
pre-processing.

The main architecture of the proposed framework has been shown in Fig. 8. It contains of a number of fully 
connected (FC) layers37, which operate similarly to feedforward neural networks. Moreover, each FC layer except 
the last one is followed by the batch normalization (BN)42 layer, incorporated to eliminate vanishing gradient 
issues. Further, the activation function employed here is ReLU, which is different from the sigmoid, logsig or 
tanh used in the traditional neural networks. The last FC layer consists of three neurons, which corresponding 
to characteristic parameters of the buried object to be estimated. The final layer is a regression layer producing 
the model outputs.

In the FC layer, neurons realize linear combinations of the input vector entries and adds bias, which is fol-
lowed by executing the activation function (here, ReLU). The analytical form of ReLU is

As mentioned earlier, the weights within the network are updated using the Adam41 algorithm, which is a 
variation of the back propagation method. Batch normalization42 technique is also utilized to standardize the 
layer inputs. It also stabilizes the learning process and dramatically reduces the number of epochs required to 

(8)yk = ax2k + bxk + c fork = 1, ...,N

(9)min
[a,b,c]

�

�

�

�

�

�

�

�

�









y1

.

.

.

yN









−











ax21 + bx1 + c

.

.

.

ax2N + bxN + c











�

�

�

�

�

�

�

�

�

(10)min
[a,b,c]

�

�

�

�

�

�

y − X





a

b

c





�

�

�

�

�

�

(11)X =







x21 x1 1

.

.

.
. . .

.

.

.

x2N xN 1







(12)





a

b

c



 =
�

XTX
�−1

XTy

(13)yk = φ(HP(k))

(14)ReLU(x) =
{

x
0

x ≥ 0

otherwise



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5717  | https://doi.org/10.1038/s41598-023-32925-6

www.nature.com/scientificreports/

train the model. Herein, it is used with the batch size of one-tenth of the total number of the training data samples 
(e.g., 50 for the 500-sample set). The maximum epoch number is 1000, and the data is shuffled in each epoch. 
Figure 9 illustrates the training progress by providing the loss values versus the iteration number.

Design of experiments.  For demonstration and verification purposes, the proposed surrogate model has 
been constructed using the training data sets of different sizes, as explained in Table 1. Each sample corresponds 
to a different scenario concerning the buried object location (lateral position P and depth D), as well as its radius 
R. Both the training and testing datasets are allocated using Latin Hypercube Sampling (LHS)43.

Benchmarking.  In this section, the proposed surrogate modelling approach is compared to the state-of-
the-art techniques utilized for buried object characterization. The benchmark methods include CNN14,15,31,39, 
MLP3,11,13, and SVRM44. Also, two of the benchmark cases are analyzed using the M2LP framework operating on 
different data sets generated by PCA. These methods and cases are briefly explained below.

CNN (Convolutional Neural Network) is a version of deep learning model8,14,15,18,31. The convolutional layer, 
which is one of the main components of the network, has the ability to automatically extract the data features 
owing to the convolution filter in the layer. In CNN, several blocks are utilized together, such as a convolution 
layer (filter), a batch normalization layer, a pooling layer, the activation function, and a fully connected (FC) 
layer, all involved in the hidden layer. The architecture and the hyper-parameter configuration of the CNN used 
here is as follows: three convolution layers followed by the batch normalization layer, activation function as ReLU 
(Rectified Linear Unit) layer, as well as the two pooling layers included after the last convolution layer, as well 
as a fully connected layer with three neurons to represent the system outputs. Other user-defined parameters, 
such as the size and the number of the convolution filter (32, 64, 128) and pooling layer are assigned according 
to literature recommendations15. In addition, it should be mentioned that—in the cited works—the input data is 
two-dimensional, consequently, the filters of the CNN layers are of the corresponding dimensionality, whereas 
the filters consisted of the CNN model used for benchmarking in this work are one-dimensional. The CNN 
model is trained using the Adam algorithm and a batch size of 50. The learning rate has been set to 10–3 until 
maximum epoch number reached to 1000.

Another benchmarking technique is MLP3,11–13,45. The model utilized here features the following hyper-
parameter configuration: two hidden layers with 32 and 64 hidden neurons, respectively; log-sigmoid activation 
functions, training by the Levenberg–Marquardt algorithm until the maximum epoch number reaches 1000.

The last benchmark model is Support Vector Regression Machine (SVRM), which belongs to the class of 
supervised statistical learning techniques9,13,44,46. Herein, SVRM has been applied using Bayesian optimization 

Figure 6.   Raw and pre-processed B-scan data with their extracted hyperbolic patterns for selected samples 
concerning the following two test scenarios. The first scenario corresponds to D = 276 mm, P = 172 mm, 
and R = 33 mm: (a) raw B-scan image, (b) B-scan image with removed background reflections, (c) extracted 
hyperbolic pattern. The second scenario corresponds to D = 233 mm, P = 83 mm, and R = 34 mm: (d) raw B-scan 
image, (e) B-scan image with removed background reflections, (f) extracted hyperbolic pattern.
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for hyper-parameter adjustment. One of the important components SVRM is a kernel function. Here, it is 
selected as a Gaussian function to realize nonlinear mapping between the hyperbolic patterns and characteristic 
parameters of the buried object.

Table 4 gathers the performance metrics as well as the training time of the proposed and the benchmark meth-
ods. The breakdown of the modelling error for specific characteristic parameters of object (P, D, R) can be found 
in Table 5, whereas Table 6 provides prediction performance in concern with comparison of true and predicted 

Figure 7.   Modeling framework: (a) inputs and outputs of the phases in linear regression assisted surrogate 
modeling, (b) flowchart of the proposed data driven surrogate model for buried object characterization.
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geophysical parameters for selected scenarios. It can be observed that the predictive power of the proposed 
approach significantly better than for the benchmark methods. Both in terms of MAE and RME, the accuracy 
of our framework is about twice as good as the best benchmark technique (CNN), and about three times better 
than the accuracy of the remaining methods (MLP and SVRM). Figure 12 provides examples of specific sce-
narios and corresponding object parameter prediction for the proposed approach and the benchmark methods.

Two of the benchmark cases include different data sets generated using PCA26,47,48. The first one consists of 
features extracted using PCA similar as in study26 for the purpose of dimensionality reduction of the B-scan. It 

Figure 8.   Architecture of the proposed M2LP framework.

Figure 9.   The training history of the proposed M2LP model in terms of RMSE (Root Mean Square Error) 
versus iteration number.

Table 1.   The arrangement of the training/testing data for the considered GPR problem.

Data sets Total sample of scenarios

Training data set 1 (DS1) 100

Training data set 2 (DS2) 200

Training data set 3 (DS3) 300

Training data set 4 (DS4) 500

Training data set 5 (DS5) 800

Testing data set 50

The dimensions of the B-scans : 319 × 30D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5717  | https://doi.org/10.1038/s41598-023-32925-6

www.nature.com/scientificreports/

is mentioned that B-scan data has the size of 319 × 30 (319 time steps and 30 A-scans). After applying PCA to 
raw B-scan, the array of principal components is obtained as the size of 30 × 29. Its rows are the A-scans and the 
columns are the components. The principal component array is transformed to 1D feature vector and its size for 
each B-scan 1 × 870. In addition, the vertical and horizontal coordinates of the mean and variance magnitudes 
are extracted from the peak amplitudes and depth indices array. As a result, the input vector is prepared to have 
the size of 1 × 874 for the proposed M2LP framework. The second benchmark case is specialized on clutter 
reduction by using PCA47,48, where only the reflections coming from the buried object are obtained and linear 
regression technique is employed to identify hyperbolic signatures of the B-scan data. After that, the proposed 
deep-learning-based approach, M2LP framework is used to carry out buried object characterization. In Fig. 10, 
for a sample test scenario the principal components as an image (in 2D data form), and a B-scan image pre-
processed (clutter reduced) using PCA are demonstrated. In addition, the last benchmark case including a study 
of characterization of geophysical parameters with A-scan analysis49. The performance results of that study which 
is computationally efficient surrogate modeling via a novel deep learning-based framework that focuses on the 
object characterization in terms of its geophysical parameters with A-scan analysis49 and by using raw data (with-
out any background subtraction operations) are added. These benchmark cases only have approximate training 
and testing time durations, so this data is not considered in the comparative study. In Table 7, performance 
metrics of the proposed and the benchmarking cases, in the form of the average values and standard deviations 
of MAE and RME over ten independent runs have been represented.

Experimental results and discussion
The predictive power of the surrogate model (both the proposed one and the benchmark) is quantified using the 
Mean Absolute Error (MAE) and the Relative Mean Error (RME) defined as

where N is the number of testing samples, whereas Ti and Pi are the target and model-predicted values, respec-
tively, for the ith sample.

Table 2 shows the MAE and RME for all considered data sets and each characteristic parameter of the object, 
as well as the average error levels. It can be observed that the accuracy of the proposed framework is satisfactory 
for practical purposes already with the 500-sample set (DS4), for which the average MAE error falls below ten 
percent. Consequently, benchmarking of the model will be conducted using this particular dataset.

Figures 11, 12 illustrates some of the geometrical configurations in terms of alignment between surrogate-
predicted and target parameters of the object. Table 3 provides numerical data, i.e., the target and surrogate-
predicted object parameters for selected scenarios. As it can be observed, visual agreement between the actual 
and predicted object size and location is excellent (Tables 4, 5, 6, 7).

The results indicate that linear regression assisted hyperbolic signature approach with the proposed deep-
learning-based M2LP framework features smaller error as compared to other cases including different data 
sets with the proposed framework and different method (A-scan analysis) with TFRM framework49. It can be 
observed that, in a qualitative sense, according to the presented results the proposed methodology is superior to 
the benchmark cases. As mentioned in the section on configuration of the GPR model, the scanning subsurface 
dimensions are 400 mm × 600 mm, and the maximum radius of the object is assumed to be 40 mm. The minimum 
distance between the object and the upper and bottom surface of the soil is defined as 60 mm. With respect to 
this comment, the effect of reducing the distance to the ground surface is analyzed by adding of a small group 
of scenarios (20 samples) that correspond to the object-to-surface distance of 20 mm and 30 mm. The depth 

(15)MAE =
1

N
×

N
∑

i=1

|Ti − Pi|

(16)RME =
1

N
×

N
∑

i=1

|Ti − Pi|
|Ti|

Figure 10.   A sample test scenario corresponding to D = 276 mm, P = 172 mm, and R = 33 mm: (a) extracted 
principle component features by using PCA; (b) pre-processed (clutter reduced) B-scan image by using PCA.
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characteristic parameter is defined as the distance between the ground surface and the center of the object, so 
the depth value changes according to the radius value of the object in the scenario. The generated B-scan data 
for this analysis also can be expressed as E = [Eij], with i = 1, …, 319, and j = 1, …, 30 and E = Etarget + Eclutter, Etarget 
includes reflections from the buried object which is so close to the ground surface and Eclutter includes back-
ground reflections7,25. The proposed methodology is followed for the new data set to analyze the effects of the 
object distance to the ground surface. Firstly, the pre-processing is executed by selecting only one out of ten time 
samples of the data in the time domain. This leads to compressed B-scans of the size 319 × 30. Another phase is 
applied as the background subtraction operation. The next step is hyperbolic extraction from the pre-processed 
2D data. Further, 2-D B-scan data is reduced to 1-D data consisting of electric field amplitude values along the 
scanning axis. Finally, the proposed M2LP framework is used for buried object characterization and the results 
are demonstrated in Table 8.

Data‑driven surrogate modeling under realistic scenarios including noisy data.  This section 
addresses object characterization assuming more realistic scenarios, namely, noisy data. For demonstration pur-
poses, new data sets were created by adding random noise to the A-scan samples from the DS4 dataset. This is to 
emulate the environmental and internal noise of the data gathering system in GPR the model, and to evaluate its 
effects on the proposed modeling methodology. The selected scenarios from the testing data have been shown 
in Fig. 13.

The literature offers different approaches to noise incorporation18,29,30,39. The background noise of real data 
has been integrated with the buried object reflections (B-scans) of synthetic data18,29. In a study39, a noisy data set 

Table 2.   Prediction performance of considered characteristic parameters for the proposed M2LP framework.

Data set Characteristic MAE [mm] RME [%] Average MAE [mm]

DS1 (100 samples)

Depth 43.9 13.3

27.5Lateral position 30.7 22.2

Radius 7.8 39.4

DS2 (200 samples)

Depth 41.3 11.8

25.1Lateral position 27.4 16.8

Radius 6.5 26.2

DS3 (300 samples)

Depth 22.6 6.4

13.5Lateral position 14.1 9.8

Radius 3.7 15.8

DS4 (500 samples)

Depth 14.2 4.4

9.6Lateral position 11.8 7.3

Radius 2.6 10.8

DS5 (800 samples)

Depth 11.6 3.7

7.6Lateral position 9.0 6.4

Radius 2.1 8.7

Figure 11.   Prediction of geophysical parameters of the object, obtained using the proposed surrogate model 
(built based on the DS4 dataset). The target and surrogate-predicted object marked using the dark- and light-
grey shade, respectively: (a) D = 249 mm, P = 254 mm, R = 38 mm, (b) D = 348 mm, P = 227 mm, R = 27 mm, (c) 
D = 125 mm, P = 69 mm, R = 40 mm, (d) D = 227 mm, P = 270 mm, R = 23 mm.
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has been generated by adding randomly replaced black and white pixels on B-scans. This allows for investigating 
different noise levels in synthetic data generated using the gprMax simulation tool to predict diameter of the 
target on the extracted hyperbola from the pre-processed B-scans39. In this work, the supplementary noisy data 
sets were created with different signal-to-noise (SNR) levels of 20 dB and 30 dB, by adding the white Gaussian 
noise30 to the data set including 500 samples (dataset DS4). This enables emulating conditions that are closer to 
the realistic situation or on-site applications.

For this investigation, the proposed M2LP framework has been compared with all benchmark models (CNN, 
MLP, SVRM). The results are presented in Table 9. Table 10 provides a comparison of model-predicted versus 
actual characteristic parameters for selected test cases. The results indicate that the proposed M2LP framework 
outperforms the benchmark by a considerable margin. In particular, the average MAE of M2LP is lower by a 
multiplicative factor of 1.6, 1.9 and 1.9 as compared to CNN, MLP, and SVRM, respectively for SNR = 30 dB, 
whereas the improvement is as high as 1.5, 1.8, and 1.6 over CNN, MLP, and SVRM, respectively, for SNR = 20 dB.

Data‑driven surrogate modeling and object characterization with measurement data.  For 
the sake of supplementary demonstration of the proposed surrogate modeling approach, an additional study 
has been conducted using experimental data (B-scans) collected through the measurements in a “sand pool” 
environment. A sparse data set is utilized that contains 33 scenarios in total, 27 scenarios for training and the 
remaining scenarios utilized for testing. It should be emphasized gathering the experimental data is an expensive 
endeavor due to the considerable manual labor involved (digging and burying targets with high accuracy), as 
well as the adjustments/maintenance of the measurement system. These are the main reasons for using data-
driven surrogate modeling approaches in the field of GPR characterization/detection systems. In this section, 
our aim is to demonstrate that the proposed technique is also applicable in the case of using physical measure-
ments as a source of data. The experimental samples are obtained in the laboratory at Yıldız Technical University. 
During the process, raw B-scan data corresponding to various scenarios are generated by the impulse ground 
penetrating near-zone radar system, which is utilized in various subsurface imaging operations50–53. Figure 14 
shows the experimental setup. The measurements are taken in a wooden pool filled with dry soil utilized as 
subsurface. The scanning subsurface domain has the dimensions of 1.90 m (width), 0.22 m (depth) and 1.15 m 
(length). The cylindrical PEC object is buried in the inhomogeneous dry soil consisting of a mixture of small 
stones and sand. The experimental setup (GPR, transmitter and receiver antennas) is manually relocated above 

Table 3.   M2LP-based estimation of the characteristic parameters in comparison with their true values for 
selected test scenarios. Explanation of terms: D—depth, P—lateral position, R—radius (all in mm).

D P R

True value 152 102 32

M2LP [this work] 160 101 31

Error − 8 1 1

True value 187 152 39

M2LP [this work] 187 152 33

Error 0 0 6

True value 198 146 14

M2LP [this work] 204 143 17

Error − 6 3 − 3

True value 212 318 19

M2LP [this work] 214 311 20

Error − 2 7 − 1

True value 217 201 29

M2LP [this work] 218 198 27

Error − 1 3 2

Table 4.   Performance metrics and the training time of the proposed and the benchmark models, averaged 
with standard deviation over ten independent runs. The models trained using the dataset DS4 (500 samples).

Model MAE [mm] RME [%] Training time [min] Processing time for a single input test data [ms]

CNN 19.8 ± 1.8 15.4 ± 1.7 6 ± 0.6 10 ± 0.4

MLP 29.6 ± 6.0 26.5 ± 3.4 19 ± 1.0 3 ± 0.2

SVRM 28.8 ± 5.3 24.2 ± 5.0 2 ± 0.3 2 ± 0.2

M2LP [this work] 10.4 ± 1.2 8.1 ± 0.9 4 ± 0.5 7 ± 0.3
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Table 5.   Breakdown of the best prediction performance of the proposed and the benchmark models, over ten 
independent runs. The models trained using the dataset DS4 (500 samples).

Model Characteristic MAE [mm] RME [%] Average MAE [mm]

CNN

Depth 25.5 7.9

18.3Lateral position 22.6 16.3

Radius 6.6 26.5

MLP

Depth 19.0 7.3

26.0Lateral position 51.5 35.0

Radius 7.3 36.5

SVRM

Depth 39.7 15.7

23.7Lateral position 23.3 17.5

Radius 6.2 30.4

M2LP [this work]

Depth 14.2 4.4

9.6Lateral position 11.8 7.3

Radius 2.6 10.8

Table 6.   Characteristic parameter prediction for the proposed and benchmark methods for selected test 
scenarios.

Model D P R Error (D, P, R) [mm]

True value 107 210 33 –

M2LP [this work] 111 208 30 − 4, 2, 3

CNN 121 201 24 − 14, 9, 9

MLP 113 212 21 − 6, − 2, 12

SVRM 125 202 32 − 18, 8, 1

True value 279 134 37 –

M2LP [this work] 277 130 36 2, 4, 1

CNN 275 132 30 4, 2, 7

MLP 249 191 26 30, − 57, 11

SVRM 248 132 27 31, 2, 10

True value 170 120 11 –

M2LP [this work] 177 117 14 − 7, 3, − 3

CNN 186 108 9 − 16, 12, 2

MLP 168 135 26 2, − 15, − 15

SVRM 287 154 25 − 117, − 34, − 14

True value 287 142 31 –

M2LP [this work] 287 147 31 0, − 5, 0

CNN 282 143 26 5, − 1, 5

MLP 267 194 26 20, − 52, 5

SVRM 282 150 26 5, − 8, 5

True value 260 187 15 –

M2LP [this work] 260 187 16 0, 0, − 1

CNN 258 194 13 2, − 7, 2

MLP 262 193 26 − 2, − 6, − 11

SVRM 334 169 24 − 74, 18, − 9

Table 7.   Average performance metrics of the proposed and the benchmark cases and standard deviation, 
computed over ten independent runs.

Model and methodology MAE [mm] RME [%]

M2LP [this work] 10.4 ± 1.2 8.1 ± 0.9

M2LP with hyperbolic signature, reconstruction B-scan via PCA 17.4 ± 0.4 20.4 ± 0.4

M2LP with extracted features, the principal components and mean, variance coordinates 17.2 ± 0.9 21.3 ± 0.9

TFRM with unprocessed raw 1D data, A-scan analysis49 12.1 ± 0.1 16.5 ± 0.5
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Table 8.   Characteristic parameter prediction of the proposed M2LP framework assuming short distance 
between the object and the ground surface. Explanation of terms: D—depth, P—lateral position, R—radius and 
closeness to the ground surface (all in mm).

Scenarios and error metrics D P R Closeness to the ground surface

True value 60 159 40 20

M2LP [this work] 54 159 35 19

Error [mm] 6 0 5 1

Absolute relative error [%] 10.0 0.0 17.5 5.0

True value 68 254 38 30

M2LP [this work] 62 260 34 28

Error [mm] 6 − 6 4 2

Absolute relative error [%] 8.8 2.4 10.5 6.7

True Value 43 270 23 20

M2LP [this work] 53 277 29 24

Error [mm] − 10 − 7 − 6 − 4

Absolute relative error [%] 23.3 2.6 26.1 20.0

True value 50 344 30 20

M2LP [this work] 52 328 26 26

Error [mm] − 2 16 4 − 6

Absolute relative error [%] 4.0 4.7 13.4 30.0

Figure 12.   Prediction of geophysical parameters of the object, obtained using the proposed surrogate model 
and the benchmark techniques (all using the DS4 dataset). The target and surrogate-predicted object marked 
using the dark- and light-grey shade, respectively: Scenario I: D = 193 mm, P = 110 mm, R = 34 mm, (a) proposed 
model, (b) CNN; Scenario II: D = 361 mm, P = 189 mm, R = 21 mm, (c) proposed model, (d) MLP; Scenario III: 
D = 244 mm, P = 299 mm, R = 26 mm, (e) proposed model, (f) SVRM.



17

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5717  | https://doi.org/10.1038/s41598-023-32925-6

www.nature.com/scientificreports/

the subsurface along the scanning path of the approximate length of 1.90 m. Each B-scan is set as 255 (discrete 
time step) × 95 (A-scan number). The discrete time step is arranged for 6 ns according to the sample rate within 
7.5 ns of the compressed data obtained by using gprMax simulation tool. In addition, the measurement data in 
the form of and Nt × k (position number at the scanning aperture) matrix includes 255 × 95 elements. The value 
of the A-scan number is expressed as 95 and it is defined according to the step size which is 20 mm gives the 
distance between two consecutive A-scan measurements9,10,22.

Figure 13.   Raw and pre-processed B-scan data along with their extracted hyperbolic patterns for selected 
samples from the test scenarios including noise. The SNR for first scenario is 30 dB, whereas the objective 
parameters are D = 212 mm, P = 318 mm, and R = 19 mm: (a) raw B-scan image, (b) B-scan image with removed 
background reflections, (c) extracted hyperbolic pattern. The SNR for the second scenario is 20 dB, D = 259 mm, 
P = 231 mm, and R = 12 mm: (d) raw B-scan image, (e) B-scan image with removed background reflections, (f) 
extracted hyperbolic pattern.

Table 9.   Prediction accuracy of characteristic parameters of the buried object for all models (dataset DS4 with 
500 samples). Considered scenarios include noisy data with SNR of 30 dB and 20 dB.

Model Characteristic

SNR = 30 dB SNR = 20 dB

MAE [mm] RME [%]
Average MAE 
[mm] MAE [mm] RME [%] Average MAE [mm]

CNN

Depth 38.1 14.1

28.9

58.1 19.7

37.9Lateral position 43.0 27.6 48.9 30.8

Radius 5.5 25.2 6.7 31.4

MLP

Depth 53.7 18.2

35.6

72.9 27.5

45.6Lateral position 45.8 30.0 56.6 37.2

Radius 7.1 36.3 7.4 36.6

SVRM

Depth 47.8 18.9

35.8

61.5 24.1

41.1Lateral position 54.3 37.0 56.5 37.1

Radius 4.6 21.6 5.4 26.8

M2LP [this work]

Depth 25.3 7.8

18.8

28.4 9.6

24.5Lateral position 26.6 17.6 39.3 24.5

Radius 4.6 21.2 5.8 27.7
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According to the proposed approach, background subtraction is applied to obtained raw B-scan images. Sub-
sequently, hyperbolic signatures are extracted from pre-processed measured data (B-scans) by using the linear 
regression technique. Figure 15 shows an example scenario with its raw B-scan data, pre-processed B-scan data, 
and the extracted hyperbolic signature utilized as the input for the purpose of surrogate modeling. By following 
this approach, 1-D reduced data set is obtained. The extracted hyperbolic pattern, representing the amplitude 
of the reflected impulse versus the A-scan index along the scanning path is associated with the characteristic 
parameters of buried object in terms of depth, lateral position and radius.

Table 11 shows the modeling performance of the proposed surrogate approach and one of the benchmark 
methods, CNN. The error of the M2LP framework is 27.3 mm (MAE) and 17.9% (RME), which is the average of 
considered outputs (depth, lateral position and radius). The CNN model exhibits considerably worse accuracy 
with the average error being almost twice as high. Figure 16 shows the prediction performance for selected sce-
narios. It should be noted that the proposed method accurately predicts the location of the object (Fig. 16a,c), 
whereas CNN prediction is poor with this respect (Fig. 16b,d). The prediction of the object size is considerably 
better for the M2LP model as well.

Table 10.   Predicted characteristic parameters of the buried object versus true values for selected test 
scenarios.

Model D P R Error (D, P, R) [mm]

True value 170 120 11 –

M2LP [30 dB] 182 124 11 − 12, − 4, 0

CNN [30 dB] 196 114 17 − 26, 6, − 6

MLP [30 dB] 195 102 27 − 25, 18, − 16

SVRM [30 dB] 289 158 18 − 119, − 38, − 7

True value 372 196 35 –

M2LP [30 dB] 361 195 33 11, 1, 2

CNN [30 dB] 302 193 29 70, 3, 6

MLP [30 dB] 380 160 25 − 8, 36, 10

SVRM [30 dB] 323 199 28 49, − 3, 7

True value 276 172 33 –

M2LP [20 dB] 265 161 28 11, 11, 5

CNN [20 dB] 209 180 20 67, − 8, 13

MLP [20 dB] 307 200 24 − 31, − 28, 9

SVRM [20 dB] 288 189 28 − 12, − 17, 5

True value 143 333 25 –

M2LP [20 dB] 150 325 22 − 7, 8, 3

CNN [20 dB] 201 216 23 − 58, 117, 2

MLP [20 dB] 130 316 28 13, 17, − 3

SVRM [20 dB] 247 274 27 − 104, 59, − 2

Figure 14.   Illustration of the GPR configuration utilized for generating experimental training and testing data 
used by the proposed surrogate-assisted buried object characterization framework.
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Conclusion
This paper introduced a novel regression-assisted surrogate modeling technique for characterization of buried 
objects. The proposed M2LP framework consists of deep-learning-based feedforward network configuration 
in the form of a series of blocks of fully connected layers, batch normalization, and activation layers, the latter 
involving the ReLU activation functions. The B-scan data utilized for object characterization is obtained by 
using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) for estimating 
of geophysical parameters of a cylindrical shape objects of various radii, buried at different locations. One of 
the novelties of the work is utilization of the hyperbolic signatures, extracted from the pre-processed B-scans 
by using linear regression technique, as the inputs of the modeling process. The latter simplified and reduces 
dimensionality of the input parameter space. This does not only enhance computational efficiency of model 
construction but also permits a rendition of accurate data-driven surrogates using small number of training 
data samples. The presented approach is compared to a number of benchmark models including MLP, SVRM, 
and CNN. The results indicate competitive prediction performance of our method with the average MAE as low 
as 10 mm versus 18.3 mm for the best benchmark model, CNN. For supplementary verification, the proposed 
methodology has been applied to buried object characterization using noisy data sets of SNR levels corresponding 

Figure 15.   Raw and pre-processed B-scan data with their extracted hyperbolic patterns for selected sample 
concerning the following test scenario which corresponds to D = 750 mm, P = 90 mm, and R = 15 mm: (a) raw 
B-scan image, (b) B-scan image with removed background reflections, (c) extracted hyperbolic pattern.

Table 11.   Prediction performance of considered characteristic parameters for M2LP and CNN models by 
using real data set obtained from measurements.

Model Characteristic MAE [mm] RME [%] Average MAE [mm]

M2LP

Depth 29.3 27.5

27.3Lateral position 47.9 5.3

Radius 4.5 21.1

CNN

Depth 18.0 15.2

43.0Lateral position 105.9 11.3

Radius 5.2 23.0

Figure 16.   Prediction of geophysical parameters of the object, obtained using the proposed surrogate model 
and the benchmark model, CNN (using measured data). The target and surrogate-predicted object marked 
using the dark- and light-grey shade, respectively: Scenario I: D = 90 mm, P = 970 mm, R = 25 mm, (a) proposed 
model, (b) CNN; Scenario II: D = 150 mm, P = 850 mm, R = 30 mm, (c) proposed model, (d) CNN.
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to 30 dB and 20 dB. The modeling error in these cases corresponds the average MAE of 18.8 mm and 24.5 mm 
respectively, which is excellent given the scarcity of the datasets. Finally, modeling based on experimental data 
has been discussed as well, corroborating the relevance of the presented approach. For the considered scenarios, 
the prediction accuracy of the buried object parameters has been shown to be almost twice as good as the best 
benchmark method (again, CNN). The numerical and experimental data gathered in the paper is indicative of 
the competitive accuracy of the introduced methodology, as well as the relevance of the considered algorithmic 
components, especially dimensionality and problem complexity reduction through delegating the modeling 
process to hyperbolic signature level. The approach presented in this work can be considered a viable alterna-
tive to existing surrogate-assisted techniques for buried object characterization both with respect to accuracy 
and computational efficiency. On the other hand, the proposed methodology some presents limitations, in 
particular, characterization objects in different soil media, objects made of different material types, and buried 
multiple objects. It should be emphasized that the proposed model is expandable. One of possible options, to 
be considered as a part of the future work, is to enable identification of the objects buried in different soil types, 
different material types, by adding the mentioned features as extra inputs of the underlying surrogate model.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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