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Abstract

Honeybees are one of the highly valued pollinators. Their work as individuals is appreciated for crops pollination and honey

production. It is believed that work of an entire bee colony is intense and almost continuous. The goal of the work presented in this

paper is identification of bees circadian rhythm with a use of sound-based analysis. In our research as a source of information on

bee colony we use their buzz that have been analysed using algorithms. For the purpose of bees day/night definition, a dedicated

electronic system has been developed. The data analysis involves demonstration of the circadian rhythm based on the RMS signal

level. Method for defining the start and end of the presumed bees’ night was also presented. Mel Frequency Cepstral Coefficients

(MFCCs) features and SVM classifier were used. The performed experiment shown the existence of repetitive cycles, which may

indicate the presence of bee night. An attempt was made to estimate the time range of this phenomenon.

Keywords: signal processing, hive monitoring, agriculture IoT, bee acoustic signal classification, SVM, MFCC

1. Introduction

Almost all animals need sleep, thereby they regenerate them-

selves or strengthen their immune system [1, 2, 3]. One might

wonder if this also applies to insects. Honey bees, which are

one of the main pollinators [4], have become a symbol of dili-

gence and hard work over the years. Such belief might lead

to the conclusion that bees never sleep. This phenomenon has

been researched and it was proved that sleep is also honey

bees’ province [5]. Behavioural changes suggest that individu-

als are able to fall asleep. Bee’s sleep has been examined, but

concept proposed by Jürgen Tautz raises new questions argu-

ing that within the hive bee population can be treated as one

super-organism [6]. Comparing a bee colony to mammals, au-

thor states that bees maintain a constant temperature (around
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35 ◦C). They also provide their offspring with a safe and sta-

ble environment. The analogy to mammals leads to the ques-

tion whether bees also sleep in terms of the entire population or

only in terms of particular organisms. Are there periods when

the bees’ work stops and their diligence decreases? Possible

answer to this question could provide valuable information for

beekeepers and researchers. For example, minimal bees activity

can indicate the most optimal time for moving the hive to a new

location. Mobile apiaries are common way for optimization of

honey farming – beekeepers increase their yields by minimiz-

ing the effort that a bee is forced to make in order to reach the

plants. The bee night time range definition could possibly help

beekeepers to avoid colony losses caused by stress during hive

transportation [7]. After all, proving the bees day/night exis-

tence can be yet another vote for Tautz hypothesis correctness.

To our best knowledge, there are not many research and elec-

tronic systems for sound-based bees’ night identification. This

Preprint submitted to Elsevier July 27, 2020

Postprint of: Cejrowski T., Szymański J., Logofătu D., Buzz-based recognition of the honeybee colony circadian rhythm,
Computers and Electronics in Agriculture, Vol. 175 (2020), 105586, DOI: 10.1016/j.compag.2020.105586
© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.compag.2020.105586


paper attempts to fill the missing gap and combine research

from biology, electronics and data analysis for bees’ sleep de-

tection. We present an approach to define bee day/night time

range based on the audio analysis. Like Tautz, we treat bee

colony as a single super-organism that produces sound in the

form of common buzz. In order to carry out the research, a bee

monitoring system was developed, described in Section 3. Our

research on algorithms and findings from the audio analysis has

been shown in Section 4. Our conclusions presented in Section

5 specify periodic time ranges of bee colony behaviour which

can be considered as bees’ night.

2. Related Work

Automatic sleep analysis has a long history. It is natural,

that first research was done for human sleep monitoring, eg. in

1993 authors [8] propose the neural network for EEG signal

classification. Extended review of the methods used for sleep

classification task has been given in [9]. Research in that field

is still developing, eg. in [10] the approach of human sleep

patterns based on SVM ensembles is demonstrated. Authors

claim that they achieved sleep stage classification accuracy over

90% with use of only one EEG signal channel.

It is difficult to gather bees EEG data like in human specific

studies. Instead we try to present bee sleep work conducted

with use of diverse methods. We focus on studies of bees sleep-

like behaviour and give general description of the works done in

that domain. Studies performed by biologists and insights into

electronic systems for bee hive monitoring will be presented.

One of the first studies focused on bee sleep has been pre-

sented in [5]. Research in this paper was based on observation

of bee colony where author specified postures and specific be-

haviours reflecting forager bee’s sleep. The bee is most sus-

ceptible to sleep when remains stationary in one and the same

location for several hours. Motility should be greatly reduced

in comparison to daytime with the motionless antennae. There

is also progressive decrease in muscle tone during honeybee’s

rest at night. Finally, the bee’s sleep is accompanied by a main-

tained reduction in thoracic temperature.

The extended analysis of sleep patters and circadian rhythms

have been reported in [11]. Authors identify bee’s sleep by ob-

serving following phenomena: a period of quiescence, an in-

creased response threshold, and changes in homeostatic regu-

lation mechanism. They describe circadian rhythms of individ-

ual bees depending on their colony function and regulated by

contact with the brood. For example, nurse bees express no

circadian rhythms and foragers rely on the circadian clock to

forecast day and night fluctuations.

The dynamics of sleep-like behaviour of honey bees have

been performed using video analysis. Authors [12] have devel-

oped a system that allows for continuous recording of position

and movements of the bee’s antennas, head inclination and ven-

tilators movements that are one of the indicators of this insect’s

sleep. With continuous monitoring they successfully verify the

conclusions drawn by Kaiser in [5]. Furthermore an attempt to

determine the deepest bee ”sleep” was presented. It was con-

cluded that for honeybee case such phenomena occurs during

the seventh hour of the total rest phase.

The research from [13] analyses influence of sleep disorder

on bees and the effect of a 12-h total sleep deprivation by forced

activity has been studied in [14]. Sleep-deprived insects be-

haviour was compared with the one of a controlled group being

under exposure of periodic alternation between light and dark-

ness with 12:12 hours ratio. The research indicated a significant

difference with respect to the antenna mobility. Bees locomotor

activity has been used for sleep pattern analysis in [15]. Au-

thors also analyse the level of juvenile hormone (involved in

the coordination of physiological and behavioral processes) to

perform age-related division of labor honey bees.

In [16] patterns of bees sleep behavior have been visualized

and interpreted using maps. Authors present graphically the

occurrence of sleep across individuals. Their research indicates

that the older worker bees generally slept outside cells, closer

to the perimeter of the nest, in colder regions, and away from

uncapped brood. Younger worker bees generally slept inside

cells and closer to the center of the nest, spending more time

asleep than awake when surrounded by uncapped brood.
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All the above studies concern bee individuals and do not ad-

dress the problem of the ”sleep” definition with respect to the

entire colony. Authors focus on visual observations or temper-

ature measurements which may not be feasible when analyzing

more individuals at once. Electronic systems along with more

sophisticated data analysis techniques are vital for better under-

standing the bee colony night.

There are many academic electronic devices performing ba-

sic bees monitoring [17, 18, 19]. All those systems are aimed

towards aggregation of hive specific values such as: tempera-

ture, humidity or atmospheric pressure. More developed sys-

tems are extended by carbon dioxide, weight, air-flow sen-

sors [20] or microphones. The research described in [21, 22]

presents the Wireless Sensor Network (WSN) for apiary moni-

toring with a focus on power efficiency. Pre-processing and data

analysis is often performed within device’s own computational

power. In order to fully utilize the potential of collected data,

it is necessary to analyze it using more sophisticated devices

and sensors. Electronic bee-colony monitoring based on sound

analysis is becoming increasingly popular, eg: [23] presents

different machine learning methods for the detection of bee-

specific sounds. Various electronic bee-hive monitoring sys-

tems with a focus on critical bee phenomena, such as swarming

or disease detection, are presented in [24, 25]. The audio signal

has been also used for automatic recognition of health status in

[26]. Work presented in [27] focuses on sound analysis and re-

lationship between spectral density and upcoming swarming. It

was shown that before swarming process bees emit noise that

affects the frequency bandwidth. Many other authors used au-

dio analysis as a source of knowledge about the specific bee

colony states [28, 29]. Analysis of temperature together with

audio data has been also used in bees thermal comfort system

monitoring [30].

3. System Design

In order to study bees behaviour during the night a dedicated

monitoring system was developed. Monitoring device was de-

signed for sensing beehive’s temperature, humidity and record

Figure 1: Sensors installed in the hive frame.

sounds. Collected data was sent and stored on a remote server.

The data analysis was designed as an offline process. A set of

dedicated algorithms, presented in the following sections, has

been used to define bees’ night presence and its time ranges.

3.1. Monitoring Device

The monitoring device was designed to extract bees most rel-

evant physical quantities such as: temperature, humidity and

sound. Measurements had to be performed in a way that did

not negatively influence bees ecosystem that has been shown

in Figure 1. In order to gather reliable information, the device

should also work constantly for several days and nights. Con-

sidering the above-mentioned criteria, a dedicated measurement

frame (shown in Figure 1) and a device with the functionality

allowing beehive measurements were designed. The device was

battery-powered and energy-efficient, with optimisation tech-

niques (use of Direct Memory Access or dedicated low power

modes) applied [22]. Ready-to-use solutions based on Rasp-

berry Pi and commercial ones [31, 32], were excluded due to the

lack of WiFi network access and external power supply at the

place of device installation. Furthermore, access to sound data

in commercial systems is often restricted, where only elemen-

tary parameters are reported. Such conditions are insufficient

to carry out more extensive research. Given the restrictions we

built our system from the scratch.

Our approach for bee family day/night definition as a data

source employs sound emitted by whole family. To gather reli-

able data, it is necessary to design a hive-sensitive microphone.

An analog microphone module has been developed in the form
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Figure 2: Probe mounted in spatial center of the hive.

of a probe and mounted into measurement frame. Hive spatial

center sensor installation allows the gathered sounds to reflect

the actual state of the bee colony. Figure 2 shows probe instal-

lation point. The recorded sound for human perception resem-

bles a common-buzz similar to the low-pitched tones of a hair

trimmer. Sensor is sampled at 3 kHz with 12-bit resolution thus

allowing frequency components detection up to 1.5 kHz.

Complete system is composed from three parts: server, client

and embedded module. The wireless network of embedded de-

vices was made according to master-slave architecture. Only

one device within the network is equipped with a GSM mod-

ule connecting to the Internet. Choosing master-slave archi-

tecture reduces overall system costs where GSM module is the

most expensive component. Master uploads data from multi-

ple slaves during a single connection. Server communication

was implemented with use of TCP sockets and protocol buffers

messages [33]. Choosing a Web Socket connection over HTTP

and REST endpoints is presented as preferable for IoT devices

in scope of energy efficiency [34]. Slave devices collect mea-

surements and communicate with master via radio modules. To

ensure the highest possible energy efficiency, each sensor and

radio module is keyed, i.e. has its own power line transistor

switching the power supply. Before entering a sleep mode, the

processor switches off all sensors in order to eliminate leakages

and minimize power consumption. In presented study only one

master and one slave device was used to collect data and per-

form preliminary analysis of bee’s night existence. In the future

work complete network will be applied to more hives in order

to validate drawn conclusions.

3.2. Data pre-analysis

In order to examine the feasibility of bees day and night clas-

sification problem preliminary work has to be done. We aim

to assess whether our hypothesis about bees’ night existence is

reasonable. Our research involves study of the changes in the

bee colony sound level from 9 days of operation. That period

of time is considered to be reasonable for day and night prelim-

inary observation. Finding signal level cycles may indicate the

periodicity of particular bee sounds.

In order to carry out the test, monitoring device has been

set up for this task. During the nine days of device operation

data were collected within 15 minutes intervals resulting with

809 one-second length recordings. Next, the Root Mean Square

(RMS) signal level related to the bees common buzz loudness,

was extracted for every recording. The RMS feature for one-

second audio signal X, sampled at 3000 Hz was calculated using

Formula 1

Xrms =

√∑N
i=1 x2

i
N ∗ 3.3V

4096
(1)

where, xi is single, discrete microphone analog value collected

by the microcontroller through Analog to Digital Converter

(ADC), N defines how many analog samples were collected for

one recording. In presented work, device collects one-second

audio recordings with sampling frequency set to 3 kHz thus

N = 3000. Value of 4096 is the maximum ADC resolution

and 3.3V is the corresponding maximum voltage value.

Figure 3 presents the RMS level graph over time for all 809

recordings. One can see RMS growth in the early hours of the

morning (green zones cover the time from sunset to sunrise)

which may indicate the bees waking up. The loudness increases

as the foragers prepare for the flight. The RMS characteristics

for the mornings are not identical and may depend, for example,

on the outside-the-hive weather conditions. It can be concluded
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Figure 3: RMS signal level with green-marked sunless periods (from sunset to sunrise ) for samples collected during 9 days of device operation (10-19.08.2019)

that in the sunless period the RMS level increases, but the dy-

namics of change as well as their beginning and end are not

closely related to sunrise and sunset. Nevertheless, it is clear to

spot repetitive cycles which might indicate bees night existence.

In order to formalise conclusions drawn about possible repet-

itive cycles the Autocorrelcation Function (ACF) was used, that

is defined using Formula 2.

rk =

∑T
t=k+1(yt − ȳ)(yt−k − ȳ)∑T

t=1(yt − ȳ)2
(2)

where, k is a time-lag for which RMS autocorrelation coefi-

cient will be calculated, rk is the ACF coefficient, yt is an RMS

value at time t and ȳ is an RMS average for the full dataset.

The ACF for discrete time-series refers to the similarity cal-

culated with use of Pearson correlation coefficients, between

the observations as a function of the time lag k. Autocorre-

lation analysis alows to find repeating patterns, which might

indicate periodic bees behaviour. It describes how given RMS

values depends on previous values within that time series. The

ACF coefficient at given k ranges from [−1, 1] and states if there

is a correlation between the RMS values starting from k to T ,

where T is the time-series length in the range 0 to T − k. In pre-

sented work one-second audio recordings were collected every

15 minutes. Singular lag unit refers to 15 minutes period be-

tween successive measurements.

Figure 4 presents the RMS correlogram with statistical sig-

nificance set to 95%. The significance level is reached for sam-

ples representing lags from 0 to 20 and 75 to 98. Values from

0 to 20 were excluded from analysis due to the need of long

term dependencies identification (starting from 6 hours lag).

The measurement interval has been set to 15 minutes, hence

the first significant periodical dependence in bees’ RMS sound

levels appears after about 19 hours. The maximum correlation

(0.6) is placed at lag of 90 which corresponds to 22 hours and

30 minutes. Calculated shift fits into a 24-hour cycle, which

indicates the periodicity of RMS level emitted by the colony of

bees during the day and night.

Statistical significance was exceeded for samples 75-98,

which suggests that bees behave in similar way within period

starting with 18 hours and 45 minutes and ending with 24 hours

and 45 minutes. It can be concluded that the bees night is max-

imum 6 hours long. However, there is still lack of information

about the night’s beginning and end. Following paragraphs try

to address that problem.
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Figure 4: The 24-hour RMS level correlogram calculated for samples collected
during 9 days of device operation (10-19.08.2019) with step of 2. Lag unit
refers to 15 minutes interval between successive audio recordings.

4. Methodology

As it can be seen form preliminary analysis shown in pre-

vious section, to identify the bees’ night and day time ranges

with use of their sound analysis it is necessary to apply more

advanced algorithms. Collected data reflects sounds produced

by an entire bee family thus describing the whole colony state.

Feature extraction technique followed by proper data prepro-

cessing should be done to characterise the data. Mel fre-

quency cepstral coefficients (MFCCs) [35] were used as fea-

tures. Method is widely used in speech recognition [36], sound

modeling [37] and bee-sound analysis studies [38, 39].

The resulting features describe the state of the colony at a

given moment. Bees night time-range identification is based

on marking out the most similar sounds in the sunless period.

The machine learning based classifier was used for this purpose.

Classifier training was performed with use of data from prede-

fined time range, e.g. for first training process: 6 days with data

from 9 p.m. to 11 p.m. labeled as bee night. After the training

phase model accuracy was validated for the test data (consecu-

tive days with same hours). The accuracy of the classification

states about sounds similarity for given time range. Process was

repeated for different expected bee night’s start and end hours.

The model with the highest accuracy is associated with the most

similar sounds thus representing bees night time range.

4.1. Feature extraction and preprocessing

The one-second recording was sampled with a 3 kHz fre-

quency with a use of dedicated microphone and analog to dig-

ital converter (A/D). In such manner, a harmonic component

up to 1.5 kHz can be detected due to Nyquist–Shannon sam-

pling theorem [40] which states that continuous-time signal can

be sampled and perfectly reconstructed from its samples if the

waveform is sampled over twice as fast as it’s highest frequency

component. If sampling rate follow Formula 3 then no informa-

tion will be lost.

fs > 2 fmax (3)

Bee family sounds fluctuate around 200 Hz so there is no risk

of losing vital information. However, recordings might be in-

fected and contains problem-specific noise. For example, sound

of a single bee that appears near the microphone might produce

recordings that contain higher frequencies. These are not rele-

vant to the day/night bee family classification so preprocessing

should be done. Thus in our analysis, recordings whose most

significant harmonic components are above 600 Hz or their sig-

nal RMS level deviate from the dataset average by at least 80%,

have been removed.

Mel-frequency cepstral coefficients (MFCCs) as a method of

sound parameterization is widely used in speech recognition

and speaker identification. In the first step, signal is windowed

and each window is converted to the frequency domain using

Fast Fourier Transform (FFT) algorithm. Next, the power spec-

trum (periodogram) is computed with Formula 4

P =
|FFF(xi)|2

N
(4)

where, xi is the ith frame of signal X and N is window length.

The power components transformed to mel scale are filtered

with triangular filter bank [41] that imitates human perception

(Mel-scale filter). Calculation from the frequency domain to the

Mel frequency is performed with the Equation 5. Mel spectrum

is converted using Discrete Cosine Transformation (DCT) to

obtain Mel Frequency Cepstrum Coefficients.

Mel( f ) = 2595 log10 (1 +
f

700
) (5)
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Figure 5: Classification flow of bees circadian rythm.

The first DCT coefficient represents the average power in the

spectrum and the following coefficients approximates the broad

shape and minor spectral details [42]. It can be summarized

that the first 8–13 MFCC coefficients sufficient to represent

the shape of the spectrum. In presented work, 13 coefficients

were used and calculated as an average from 50% overlapped

hanning windowed MFCCs. The number of 13 coefficients is

widely used and considered to be sufficient for language model-

ing and speech recognition tasks [43, 44]. Window length was

set to 50 ms resulting with 150 samples of original 3000 sam-

ples length, one second audio signal. Each audio is described

using 13 element feature vector.

4.2. Night detection with Classification

The definition of bees day and night can be solved using clas-

sification approach. At the beginning the complete dataset of

MFCCs values and corresponding timestamps was labeled with

two classes (day = 0 and night = 1) according to the presumed

bees night start and end. Data was divided into training and

testing set, respectively 80% and 20%. After model training

and testing, the accuracy was saved and whole process was re-

peated for the shifted bees night hour range. Set of models

with the corresponding bee night classification accuracy was

obtained. Model with the highest accuracy reflects situation

where in given hour range (night start and end) bees behave

similarly for each day in the test set. Such observation may

serve for bee night definition.

In our research we employ the Support Vector Machine clas-

sifier (SVM) [45] as a tool which is well suited and success-

fully tested on multidimensional MFCCs classification tasks

[46, 47, 48]. The classifier was used with Radial Basis Function

(RBF) kernel [49] and parameters γ = 0.5, C = 1 as it has been

used and tested in scope of queen bee presence detection [29].

The detailed algorithm flow was shown in the Figure 5.

4.3. Results

Monitored devices were constructed and mounted inside the

two hives to carry out the experiment. For the first colony the

Buckfast bee colony was selected, which, in the owner’s opin-

ion, was healthy and described as severe. The examined hive

was placed in the North Poland and was considered as the main

subject of research. Second hive was also the Buckfast breed

but this time colony was described as calm and weaker (less

bees within the colony). Fewer bees produce less distinct tones,

therefore second hive has been classified as a validation one.

Hive was placed 50 km from the first location.

Experiment took place in August 2019 which was a warm

month with average temperature of 19.3 ◦C and relative humid-
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Table 1: SVM accuracy with presumed bee night end time for main hive. Green cells indicate models with the highest accuracy

Start
Length

1-hour 2-hour 3-hour 4-hour 5-hour 6-hour

8 p.m 80.52% 71.21% 67.24% 66.50% 65.38% 65.63%
9 p.m 72.08% 67.49% 66.62% 66.00% 67.99% 72.45%

10 p.m. 77.29% 72.70% 72.58% 73.94% 76.30% 78.66%
11 p.m. 79.90% 75.93% 76.17% 78.41% 79.15% 78.78%
12 a.m. 80.14% 76.79% 77.91% 79.28% 78.28% 77.29%
1 a.m. 80.39% 79.40% 78.03% 76.92% 75.80% 73.20%
2 a.m. 81.14% 77.66% 74.19% 72.82% 71.33% 68.23%
3 a.m. 78.41% 73.57% 70.22% 68.23% 66.50% 65.50%
4 a.m. 73.44% 71.09% 68.85% 66.37% 66.25% 63.52%
5 a.m. 76.17% 73.07% 70.34% 67.24% 67.49% 67.24%

ity 70%, favorable for bees’ work. No extensive rainfall was

observed during this time.

For the main hive data was collected over three time inter-

vals with a total number of 22 days and nights. First set has 455

recordings collected from August 2 to August 9. The second

one consists of 809 recordings from August 10 to August 19.

The last one contains 352 sounds from August 23 to August 28,

2019. Possible bees’ night time is assumed to be between sun-

set to sunrise which is from 8 p.m to 5 a.m. for August. All

recordings were described using the 14 element MFCC vector

and standardized. We assumed that bees night could possibly

lasts from 1 to 6 hours, starting between 8 p.m and 5 a.m. thus

full dataset was standardised and replicated to 60 identical ones.

Audio samples from each subset were labeled differently based

on presumed bee night length (with step of one hour) and time

range within sunless period. For every subset the SVM classi-

fier with RBF kernel was trained and validated. Results with

SVM accuracy for different bees night setups are presented in

Table 1.

Classification accuracy for all main hive models exceeds

65%. The highest accuracy level of 81.14% was observed for

time between 2 a.m. and 3 a.m. When one-hour and two-

hour long bees night is considered, the most similar colony be-

haviour was observed from 2 a.m. to 3 a.m. (or starting from

1 a.m for two-hour setup). For three-hour and four-hour bees

night, the most similar colony behaviour starts at 12 a.m. and

ends at 3 a.m. or 4 a.m. Bees night of five-hour and six-hours

long starts at 11 p.m. and lasts up to 4 a.m. or 5 a.m.

The same procedure where models were trained and tested

against different bees’ nights was run on a validation hive. Data

consists of 585 recordings, collected from 14 to 22 of August

with similar external atmospheric conditions as for the main

hive. For the sake of simplicity only the top results from differ-

ent presumed bees’ night duration was shown in Table 2. The

SVM models accuracies exceed 70% for all cases. The 1-hour

and 2 hour night starts at 2 a.m. and ends at 3 a.m. or 4 a.m

respectively. The 3-hour night is placed between 1 a.m. and

4 a.m. The 4-hour night is 12 a.m. - 4 a.m. The 5-hour and

6-hour bees’ night is considered to start with 11 p.m. and ends

at 4 a.m. or 5 a.m.

Results from tests carried out on two different beehives reveal

83% convergence in terms of night existence. The only devia-

tion is the 2-hour case, which was defined for the main hive as

1 a.m to 3 a.m. and 2 a.m. to 4 a.m for the validation hive. The

accuracy of the classification models for these two hives are not

identical for due to the varying size of the family and differ-

ent Bee Queens across the colonies. In [29] it was shown that

even in the same hive different Bee Queens make colony to pro-

duce different sounds. Nevertheless, the SVM models with the

highest accuracy for 1, 3, 4, 5 and 6 hour cases arise in the same

hourly ranges for main and validation hive. Furthermore, all the

max-accuracy hourly models involve time between 2 a.m. and

3 a.m. This time-range could be considered as bee midnight.

The 4 a.m. appears in 58% of models as the end-time (contrary
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Table 2: SVM accuracy with presumed bee night end time for validation hive.

Start
Length

1-hour 2-hour 3-hour 4-hour 5-hour 6-hour

11 p.m. 82.96% 81.48% 86.66% 88.88% 91.11% 90.37%
12 a.m. 77.77% 82.22% 85.92% 90.37% 87.40% 83.70%
1 a.m. 81.48% 85.92% 89.62% 88.14% 82.22% 77.77%
2 a.m. 88.14% 89.62% 88.14% 82.96% 80.74% 77.03%

to 16% for 5 a.m and 25% for 3 a.m.) thus could be defined

as bees’ night end. Determining the beginning of bees’ night is

problematic because of a almost uniform start-time distribution

(33% for 11 p.m., 25% for 1 a.m. and 2 a.m., 17% for 12 a.m.).

The ACF findings from 3.2 suggest a maximum bees’ repetitive

cycle duration of 6 hours long. Starting with 4 a.m as end-time

the bees’ night could possibly start with 11 p.m.

5. Conclusions and Future Work

This paper presents an attempt for summer bees’ night defini-

tion based on the colony sound. Conclusions drawn from RMS

level show the repetitive bees night-time behaviour. The ACF

was used for that purpose. Methodology for bee night start/end

definition proposes the use of Mel Frequency Cepstral Coeffi-

cients as sound features and SVM-based classification for bee

night inference. Time range between 11 p.m. and 4 a.m. was

concluded as the bees’ deep night. Within that time bees reveal

repetitive behaviour during which colony activity decreases the

most. This is probably the most suitable time for hive reloca-

tion.

It should be noted that the results presented here are made

on the data which acquisition was maid during summer period

and is a ground-work for multi-hive setup. Also the conclu-

sions drawn for winter might be different and should be anal-

ysed. Future studies aim to extend presented analysis with ex-

ternal/internal gas measurements and quantities from more so-

phisticated sensors. Temperature and humidity relevance in a

bee day/night evaluation will be also examined. New sound pa-

rameterization algorithms will be tested and extended (such as

Linear Predictive Coding or Autoencoder models).

Acknowledgements

Presented work has been supported by founds of Department

of Computer Architecture Faculty of Electronics, Telecommu-

nications and Informatics, Gdańsk University of Technology.
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