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tigate its properties when there are multiple, closely spaced,

sources present and demonstrate that it has the superresolution

property. We also include results obtained by processing of

real-world data.

The paper adopts the following organization. Section II

presents the formulation of the problem. In Section III, the

proposed method is derived. Section IV reports results of

computer simulations, while Section V presents real-world

results. Finally, Section VI concludes the paper.

II. PROBLEM STATEMENT

Denote by K the number of sources, and let φk, k =
1, 2, . . . ,K denote the azimuth coordinate of k-th source. Sup-

pose that N , M -variate complex vector valued, observations

are available, yn, n = 1, 2, . . . , N , and let φa,n denote the

azimuth of the array at n-th observation.

Assuming that the source DoAs can be regarded as constant

in the observation interval, one can model the observations as

originating from

yn =
K
∑

k=1

sk,na(∆n(φk)) + vn n = 1, 2, . . . , N , (1)

where sk,n is the complex amplitude of k-th source at time n,

∆n(φk) = φk − φa,n

is the displacement of k-th source from the array boresight at

time n, and a(∆φ) denotes the array manifold, i.e., a mapping

between the displacement of the source from the boresight

∆φ and the corresponding array steering vector. Finally, vn

denotes the M -variate complex vector that represents noise

and interference.

We will model the sources as zero-mean and mututally

independent (noncorrelated) from each other and noise

E[sk,n] = 0

E[sk1,n1
s∗k2,n2

] = σ2
k1
δ(k1 − k2)δ(n1 − n2)

E[sk,n1
v(n2)] = 0 ,

where δ(·) denotes the Kronecker delta function, z∗ denotes

the complex conjugate of z, and σ2
k, k = 1, 2, . . . ,K is

the variance of k-th source, assumed to be an unknown

deterministic quantity. Similarly, we will treat the covariance

matrix of the noise and interference vector vn as unknown

and, due to the rotation of the array, possibly time-varying.

Abstract—We propose a nonparametric superresolution DoA 
estimator that is suitable for use with rotating arrays. The 
proposed method can be regarded as an extension of the 
Capon approach. We investigate its properties using computer 
simulations and present results obtained by processing of real-
world data.
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I. INTRODUCTION

Modern rotating arrays are a cost-effective solution of the 
360 degree coverage requirement. Unlike systems that use 
stationary (non-rotating) arrays, which typically require three 
to four arrays facing different directions, the systems with 
rotating arrays can employ only one, which reduces the unit 
cost considerably. Moreover, the combination of mechanical 
and electronic scanning avoids many drawbacks of the purely-

mechanical solution, although some limitations remain.

One of the difficulties that come with a rotating array is 
estimating the azimuth of the observed sources precisely. Sys-

tems with stationary antennas can take advantage of numerous 
superresolution methods, such as Capon [1], MUSIC [2] or 
ESPRIT [3], among others. The formulation of superresolu-

tion methods often involves estimating the signal covariance 
matrix, which means that an implicit assumption of signal 
stationarity takes place. Unfortunately, when the array rotates, 
this assumption does not hold, which limits the range of 
available techniques considerably.

In many systems, particularly legacy ones, the azimuth is 
estimated by a very simple algorithm that involves weighting 
of the array azimuth using the magnitude of the sum signal 
[4]. Another approach involves the averaging of the monopulse 
estimates [5], [6], but this method often fails at low signal to 
noise ratio. More recently, a family of parametric estimators 
based on the maximum likelihood principle was proposed [6],

[7]. These estimators can offer very good accuracy provided 
that the number of sources included in the model is correct. 
However, their computational complexity grows substantially 
when the number of sources included in the model increases.

In this paper, we investigate the application of the non-

parametric approach to the azimuth estimation problem. We 
propose a novel solution that one can regard as an extension 
of the Capon method. Using computer simulations, we inves-
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The quantities of interest, that is, the quantities that we wish

to estimate, are the source angles φk, and the source variances

σ2
k, 1, 2, . . . ,K. We will present the proposed solution of this

problem in the next section.

III. DERIVATION OF CAPON-LIKE ESTIMATOR

We propose to estimate the source DoAs and variances using

a novel nonparametric estimator, whose underlying principle is

related to the classical Capon approach [1]. We will therefore

succinctly discuss the latter method first.

A. Stationary array case – classical Capon estimator

For the stationary array case, without any loss of generality

one may set φa,n = φa = 0, which results in a(∆φ) = a(φ).
Additionally, it is typical to assume that the steering vectors

are normalized, ‖a(∆φ)‖ = 1. The Capon method is obtained

using the following argument. One can estimate the power

originating from a direction φ using a beamformer

σ̂2(φ) =
1

N

N
∑

n=1

|wH(φ)yn|
2 = wH(φ)Ryw(φ) , (2)

where w(φ) denotes the beamformer weight vector that must

satisfy the distortionless constrant in the direction of interest

wH(φ)a(φ) = 1 , (3)

and

Ry =
1

N

N
∑

n=1

yny
H
n

is the correlation matrix of available observations.

To minimize the bias of σ̂2(φ), caused by the presence of

multiple sources [leakage of spurious energy through sidelobes

of the beampattern resulting from weight vector w(φ)], one

can employ the adaptive beamforming approach. Specifically,

the beamformer can be adapted to minimize σ̂2(φ) subject to

(3)

w(φ) = arg min
w

wHRyw s.t. wHa(φ) = 1 . (4)

The optimal weight vector takes the form

w(φ) =
R−1

y
a(φ)

aH(φ)R−1
y a(φ)

,

which, after substituting into (2), leads to the celebrated Capon

method formula

σ̂2(φ) =
1

aH(φ)R−1
y a(φ)

. (5)

The DoAs of the sources are found by localizing K highest

peaks of (5).

B. Rotating-array case – Capon-like estimator

The classical Capon method employs the assumption that

the sequence {yn}, n = 1, 2, . . . , N is wide-sense stationary.

For a rotating array, this assumption does not hold because

the source steering vectors a(∆n(φk)) change with n. As

a consequence, the estimator (5) will perform poorly in this

situation. In this subsection, we will show how one can extend

the the method to cope with this difficulty.

Assume that one can represent a(∆φ) as a polynomial of a

function f(∆φ)

a(∆φ) =

P−1
∑

p=0

αpf
p(∆φ) , (6)

where αp, p = 0, 1, . . . , P − 1 denote the complex vector

coefficients, and fp(∆φ) = [f(∆φ)]p denotes the p-th power

of f(∆φ). Typical choices of f(∆φ) include, among others,

the identity function

f(∆φ) = ∆φ , (7)

and the complex exponent

f(∆φ) = ejc sin(∆φ) , (8)

where c 6= 0 is an arbitrary coefficient.

One can estimate the power originating from the direction

φ using a time-varying beamformer

σ̂2(φ) =

∑N

n=1 |w
H
n (φ)yn|

2

∑N

n=1‖a(∆n(φ))‖4
, (9)

where wn denotes the time-varying beamformer weight vector

that satisfies

wH
n (φ)a(∆n(φ)) = ‖a(∆n(φ))‖

2 ∀n . (10)

We will construct the weight vector wn(φ) in the form

analogous to used in eq. (6)

wn(φ) = w(∆n(φ)) =

Q−1
∑

q=0

ωpf
p(∆n(φ)) , (11)

where Q ≥ P , and adapt the coefficients ωq , q = 0, 1, . . . , Q−
1, to minimize the sum that appears in the nominator of (9),

i.e., to minimize J =
∑N

n=1 |w
H
n (φ)yn|

2, subject to (10).

Substituting (11) into the objective yields

J =

N
∑

n=1

|wH
n (φ)yn|

2 =

N
∑

n=1

∣

∣

∣

∣

∣

Q−1
∑

q=0

ω
H
q f

∗q(∆nφ)yn

∣

∣

∣

∣

∣

2

Q−1
∑

q1=0

Q−1
∑

q2=0

ω
H
q1

[

N
∑

n=1

f∗q1(∆n(φ))yny
H
n f

q2(∆n(φ))

]

ωq2 .

(12)
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Set

x =
[

ω
H
0 ω

H
1 . . . ω

H
Q−1

]H

R̃y =











R̃0,0 R̃0,1 . . . R̃0,Q−1

R̃1,0 R̃1,1 . . . R̃1,Q−1

...
...

. . .
...

R̃Q−1,0 R̃Q−1,1 . . . R̃Q−1,Q−1











, (13)

where

R̃q1,q2 =

N
∑

n=1

f∗q1(∆n(φ))yny
H
n f

q2(∆n(φ)) .

Using this notation, one may express the objective function as

the following quadratic form

J = xHR̃yx . (14)

In the same way, one can rewrite eq. (10) as a linear

constraint

Ax = b . (15)

However, the exact forms of A and b depend on how f(∆φ)
reacts to the complex conjugation, and each case requires

careful evaluation. We discuss our illustrative examples (7),

(8) separately.
Real-valued f : For f(∆φ) such as (7), where f∗(∆φ) =

f(∆φ), combining (6), (7), (10), and (11) leads to

P+Q−2
∑

r=0

∑

p+q=r

α
H
p ωqf

r(∆n(φ)) =

2P−2
∑

r=0

∑

p1+p2=r

α
H
p1
αp2

fr(∆n(φ)) , (16)

which must hold for n = 1, 2, . . . , N . For sufficiently large

values of N , the two polynomials of f(∆φ) that appear on

the left and the right side of the above equation are equal to

each other only when their coefficients are equal, i.e., when

∑

p+q=r

α
H
p ωq =

{

br for r = 0, 1, . . . , 2P − 2
0 for r = 2P − 1, . . . , P +Q− 2

,

where

br =
∑

p1+p2=r

α
H
p1
αp2

.

Using x defined in eq. (13), one can summarize the above

system of equations in the matrix form (15), where A is a

(P +Q− 1)×MQ matrix of the form

A =

































α
H
0 0 0 . . . 0

α
H
1 α

H
0 0 . . . 0

α
H
2 α

H
1 α

H
0 . . . 0

...
. . .

. . .
. . .

...

α
H
P−1 α

H
P−2 α

H
P−3

. . .
...

0 α
H
P−1 α

H
P−2

. . .
...

...
. . .

. . .
. . .

...
0 0 . . . 0 α

H
P−1

































and b is a P +Q− 1 element vector defined below

b =
[

b0 b1 . . . b2P−2 0 . . . 0
]T

.

Complex-valued f : For f in the form given by eq. (8), it

holds that f∗(∆φ) = f−1(∆φ). The combination of (6), (8),

(10), and (11) results in

P−1
∑

r=−Q+1

∑

p−q=r

ω
H
q αpf

r(∆n(φ)) =

P−1
∑

r=−P+1

∑

p2−p1=r

α
H
p1
αp2

fr(∆n(φ)) , (17)

which can be expressed as (15) with

A =



















0 . . . 0 0 α
H
0

0 . . . 0 α
H
0 α

H
1

0 . . . α
H
0 α

H
1 α

H
2

... . .
.

. .
.

. .
. ...

α
H
P−2 α

H
P−1 0 . . . 0

α
H
P−1 0 0 . . . 0



















and

b =
[

0 . . . 0 b−P+1 . . . b0 . . . bP−1

]T

with

br =
∑

p2−p1=r

α
H
p1
αp2

.

Again, the dimensions of A and b are (P + Q − 1) ×MQ,

and P +Q− 1× 1, respectively.

Discussion: The solution of the optimization problem

stated in equations (14), (15) exists provided that the matrix

R̃y is nonsingular, in which case it reads

x = R̃−1
y

AH
[

AR̃−1
y

AH
]

−1

b . (18)

The smallest number of observations required for R̃y to be

invertible is MQ, which is a straightforward consequence of

the observation that

R̃y = DDH ,

where

D =











y1f
∗0(∆1(φ)) . . . yNf∗0(∆N (φ))

y1f
∗1(∆1(φ)) . . . yNf∗1(∆N (φ))

...
. . .

...
y1f

∗Q−1(∆1(φ)) . . . yNf∗Q−1(∆N (φ))











.

Finally, observe that, despite the large dimension of the

vector x, which equals MQ, the actual number of degrees of

freedom can be considerably smaller. Since there are P+Q−1
constraints, there problem has MQ−P−Q+1 = (M−1)Q−
P + 1 degrees of freedom, which also means that M ≥ 2 is

required to make the optimization problem feasible.
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IV. SIMULATION RESULTS

One may investigate the behavior of the proposed estimator

using the computer simulation approach. In our case, we

modeled a system with the standard (half-wavelength element

spacing) uniform linear array with M = 4 elements. Due to

the small size of the array, its classical limit of resolution is

30◦. We simulated the rotation of the array between 0◦ and

12.7◦, and took measurements every 0.1◦, which results in

N = 128 observations.

We compared the behavior of the baseline, nonadaptive

estimator,

σ̂2(φ) =

∑N

n=1 |a
H
n (∆nφ)yn|

2

∑N

n=1‖a(∆n(φ))‖4
, (19)

and the proposed Capon-like approach. In the case of the latter,

we described the array manifold using (6) with P = M = 4,

f(∆φ) = ejπ sin(∆φ) ,

and

α0 = e1 α1 = e2 α2 = e3 α3 = e4 ,

where ei denotes the vector than consists of zeros except one

at the i-th element. To construct the time-varying adaptive

beamformer, we used Q = 6. Moreover, to avoid possible

problems with ill-conditioning of the matrix R̃y, we employed

the diagonal loading technique, i.e., we added the identity

matrix to the product DDH.

Fig. 1 shows a comparison of typical aziumuth spectra

obtained using the two solutions for a single source, placed at

10◦. Using the proposed approach, tho source, whose SNR was

equal to 20 dB, was localized properly. Moreover, the shape

of the spectra clearly suggests that the proposed estimator has

the superresolution property known from the classical Capon

method.

One may confirm this observation easily by simulating

an additional source. Fig. 2 shows the angular spectra for

two sources 20 dB above noise, placed at 5◦ and 20◦. The

nonadaptive estimator fails to resolve the sources, while the

proposed one can separate them. We verified that, in this

scenario, the method can resolve the sources separated by 9◦.

Finally, we compared accuracy of the proposed method

with the classical Capon approach, implemented by neglecting

the fact that the antenna rotates. To this end, we treated the

rotating antenna as if it was stopped is in the middle of the

angular sector covered by the N observations, i.e., at 6.4◦,

and proceeded with (5). Fig. 3 shows the comparison of typical

angular spectral estimates obtained using the proposed method

and the classical approach in the single-source and the two-

source scenarios. It is clear that the proposed approach is the

superior one, as it exhibits better resolution.

Ta evaluate the performance of the proposed method in

relative and absolute terms, we compared its accuracy with

the Crámer-Rao lower bound (CRB), the maximum likelihood

approach, and the classical method, implemented as above.
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φ / ◦

σ̂
2
(φ

)

Figure 1. Comparison of typical angular spectral estimates obtained using a
nonadaptive beamformer (dashed line) and the proposed method (solid line)
for a single source at 10◦.
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Figure 2. Comparison of typical angular spectral estimates obtained using a
nonadaptive beamformer (dashed line) and the proposed method (solid line)
for two sources at 5◦ and 20◦, respectively.
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Figure 3. Comparison of typical angular spectral estimates obtained using
the proposed method (solid line) and the classical one (dashed line) for the
single-source (top plot) and the two-source scenario (bottom plot).
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Both the maximum likelihood estimator and the CRB were

based on the assumptions presented in Section II with the

number of sources K = 1 – the corresponding form of the

log-likelihood function reads

l(φ1, σ
2
1 , σ

2
v) =

C −

[

N
∑

n=1

log detRn(φ1, σ
2
1 , σ

2
v) + yH

nR
−1
n (φk, σ

2
1 , σ

2
v)yn

]

,

(20)

where C is a constant, whose exact form is of little importance

to the maximum likelihood estimator, and

Rn(φ1, σ
2
1 , σ

2
v) = σ2

vI + σ2
1a(∆n(φ1))a

H(∆n(φ1))

is the covariance matrix of n-th observation. The maximization

of the log-likelihood was performed using a fast approximate

method proposed in [5]. In this method, the optimal values of

the parameters σ2
v and σ2

1 are approximated by projecting the

data on the noise and the signal subspaces, and inserted into

(20). The corresponding formulas read

σ̂2
v(φ1) =

1

N

N
∑

n=1

yH
nQn(φ1)yn

σ̂2
1(φ1) =

∑N

n=1 y
H
nPn(φ1)yn −Nσ̂2

v(φ1)
∑N

n=1 a
H(∆n(φ1))a(∆n(φ1))

where

Qn(φ1) = I −
a(∆n(φ1))a

H(∆n(φ1))

aH(∆n(φ1))a(∆n(φ1))

Pn(φ1) =
a(∆n(φ1))a

H(∆n(φ1))

aH(∆n(φ1))a(∆n(φ1))

are the noise and the signal subspace projection matrices,

respectively.

Such an approach reduces the number of arguments in

the log-likelihood from three to one, which improves its

convergence speed greatly. Despite this simplification, the

resultant accuracy of the angle estimates seems to not degrade

significantly from the practical point of view.

Fig. 4 shows the results of such a comparison performed

for a source at φ1 = 5◦ and M = P = Q = 4. To

evaluate the estimators’ MSE, we performed 2500 Monte

Carlo simulations for each value of SNR. Not unexpectedly,

the classical method is the least accurate, and its performance

drops at high SNRs, where the bias caused by neglecting

the array rotation starts to dominate. The proposed approach

and the maximum likelihood method behave much better, and

reach the CRB for higher values of SNR. Remarkably, the

proposed approach behaves slightly better in the threshold

area, i.e., for SNR around -7 dB, which is where the accuracy

of the estimators starts to break down. The somewhat poorer

behavior of the maximum likelihood estimator is likely related

to the application of the approximate minimization method

described above.

To investigate possible adverse effects of increasing Q, we

repeated the above experiment with Q, equal to 6 and 8. There

−20 −15 −10 −5 0 5 10
10

−1

10
0

10
1

10
2

10
3

10
4

SNR / dB

M
S
E
/
◦2

Figure 4. Dependence of the proposed method’s mean-square error on
the source signal to noise ratio (solid line), compared with the maximum
likelihood approach (dashed line), classical Capon estimator (dash-dotted
line), and the corresponding Crámer-Rao lower bound (dotted line). The
simulations were performed for the standard uniform linear array with M = 4

elements, and N = 128, P = 4, Q = 4.

difference in the observed behavior of the proposed estimator

were negligible, although the computation time increased

considerably.

V. APPLICATION TO REAL-WORLD DATA

We applied the proposed method to real-world data we used

previously in [5]. The data consists of 689 sequences yn,

n = 1, 2, . . . , N , with N = 1024 obtained by observing a

cooperative target. Unlike in Section IV, where we used the

element-space processing, in this dataset the radar array output

was preprocessed using a beamformer, so that each observation

vector yn has only two elements that correspond to the sum

and the difference beam of the radar. Typical contents of the

dataset are shown shown in Fig. 5.

The adopted representation of the array manifold a(∆φ)
employs P = 6 components and the following form of f(∆φ)

f(∆φ) =

{

∆φ for |∆φ| ≤ ∆max

0 for |∆φ| > ∆max

where ∆max equals 0.75φ3dB , and φ3dB is the 3-dB

beamwidth of the sum beam. The clipping of f(∆φ) improves

the behavior of the approximation in the sidelobe region of

the sum and difference beampatterns, which would otherwise

diverge for high values of ∆φ.

Fig. 6 compares the histograms of the azimuth estimation

errors, normalized by the 3 dB beamwidth of the system, ob-

tained using the ML estimator and the proposed method with

Q = P . Both methods exhibit a small bias, equal to 0.013φ3dB

for the ML estimator and 0.016φ3dB for the proposed method.

We attribute the existence of the bias to inaccuracies in our

model of the array manifold. Despite having smaller bias,

the ML estimator actually has slightly larger RMS error –

0.049φ3dB – than the proposed method – 0.046φ3dB . Overall,

however, the differences are so small, that it seems fair to say

that the accuracy of both methods is comparable. The proposed

estimator, however, allows one to resolve multiple sources in
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Figure 5. Typical realization of yn for the case of real-world data: top plot
– sum beam, bottom plot – difference beam.

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
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Figure 6. Comparison of histograms of azimuth estimation errors obtained
using ML estimator and proposed method.

a more straightforward way. While in the case of the ML

method one is required to increase the number of parameters

in the model, which increases the computational complexity

considerably, the proposed nonparametric approach simply

requires one to scan the spectrum estimate (9) for the presence

of multiple peaks.

VI. CONCLUSIONS

We proposed a Capon-like DoA estimator that is suit-

able for the application in systems with rotating-arrays. The

method, which employs time-varying adaptive beamforming,

can achieve sub-beamwidth resolution. Its properties were ver-

ified using several computer simulation experiments. Results

obtained using real-world data were also presented.
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