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Abstract
This paper concerns the methodology of multi-modal data acquisition in observing emotions experienced by children with
autism while they interact with a social robot. As robot-enhanced therapy gains more and more attention and proved to
be effective in autism, such observations might influence the future development and use of such technologies. The paper
is based on an observational study of child-robot interaction, during which multiple modalities were captured and then
analyzed to retrieve information on a child’s emotional state. Over 30 children on the autism spectrum from Macedonia,
Turkey, Poland, and the United Kingdom took part in our study and interacted with the social robot Kaspar. We captured
facial expressions/body posture, voice/vocalizations, physiological signals, and eyegaze-related data. The main contribution
of the paper is reporting challenges and lessons learned with regard to interaction, its environment, and observation channels
typically used for emotion estimation. The main challenge is the limited availability of channels, especially eyegaze-related
(29%) and voice-related (6%) data are not available throughout the entire session. The challenges are of a diverse nature—we
distinguished task-based, child-based, and environment-based ones. Choosing the tasks (scenario) and adapting environment,
such as room, equipment, accompanying person, is crucial but even with those works done, the child-related challenge is the
most important one. Therapists have pointed out to a good potential of those technologies, however, the main challenge to
keep a child engaged and focused, remains. The technology must follow a child’s interest, movement, and mood. The main
observations are the necessity to train personalized models of emotions as children with autism differ in level of skills and
expressions, and emotion recognition technology adaptation in real time (e. g., switching modalities) to capture variability in
emotional outcomes.
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1 Introduction

Recent studies in socially assistive robotics (SAR) domain
enable the use of robots in many application areas such
as healthcare, education, entertainment, and edutainment as
well as various applications for vulnerable populations such
as people with hearing disabilities, elderly, or children with
autism spectrum disorder (ASD) [20, 26, 30].

Children with ASD are known to have limited social
and emotional skills in their everyday interactions with oth-
ers [12]. The field of social robotics is showing promising
results in using robots to assist children with ASD to develop
their social and emotional skills, to help them overcome
social barriers, and to get them more involved in their inter-
actions [12, 18].

A systematic literature review on robot-based inter-
ventions targeting emotion-related skills for children with
ASD revealed growing interest in robot-based interventions,
especially with regard to emotional intelligence skills [9].
However, among the papers reviewed, few studies have inves-
tigated automatic emotion recognition of children with ASD
during interaction with a social robot. The main motivation
of the presented study was to investigate the feasibility of
the available practices and work towards a novel approach to
create an affective loop in child-robot interaction that would
enhance the intervention regarding emotional intelligence
building in children with autism.

The study was undertaken within the EMBOA project
entitled “Affective loop in Socially Assistive Robotics as
an intervention tool for children with autism” that was a
research project that aimed to combine affective comput-
ing technologies with social robot intervention for children
with ASD. It was an international research project combin-
ing three research areas: autism therapy, social robots, and
automatic emotion recognition, to develop a practical evalua-
tion of the application of emotion recognition technologies in
robot-assisted intervention for children with autism (https://
emboa.eu/).

Incorporating automatic emotion recognition techniques
into social robot therapy for children with ASD opens up
a wide range of new possibilities. In the future, the social
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robot might be able to automatically recognise the child’s
emotions and adapt its responses according to the child’s
current needs. For instance, let us consider an interaction
scenario between a child and a social robot companion: the
robot detects that the child is bored and adapts its intervention
routine accordingly, asking the child to sing a song together
or start a funny game. This would allow for a more natural,
engaging, and joyful interaction from the child’s perspective.
It would also reduce the amount of manual control needed by
the therapist or operator during a robot-assisted intervention
session.

The research question of our study presented in this paper
might be given as follows: “how to effectively observe emo-
tional states of a child with autism interacting with a robot?”
To answer this question we have first referred to existing
literature on the subject. We found out, that most of the
studies that referred to robotics in autism therapy had no auto-
matic emotion recognition involved, even when they were
addressing emotional and social skills [9]. Moreover, the
other studies that concerned emotion recognition in autism
frequently were based on typically developing participants,
with the classifiers trained on datasets that did not include
people with autism. We found that very few studies com-
bined robots and emotion recognition together and that the
interaction with a robot differs from interactions with other
technological solutions (such as mobile apps). Therefore, the
goal of the study was to explore interaction between a robot
and a child with autism, with regard to automatic emotion
recognition.

This paper presents insights, findings, and comments from
the observational sessions of children with ASD interact-
ing with social robots. Although we discuss the results of
an analysis of the availability of channels used by emo-
tion recognition systems, we do not systematically assess
their capabilities and feasibility during these interactions.
The remainder of the paper is organised as follows: Sect. 2
discusses related studies on emotion recognition in children
with autism; Sect. 3 presents the methodology of the obser-
vational study conducted, including the experimental setting,
participants and interaction scenarios; the challenges identi-
fied in conducting the observational study are then presented
in Sect. 4 and Sect. 5; finally, Sect. 6 summarises the findings
and Sect. 7 presents conclusions and future works.

2 RelatedWorks

ChildrenwithASDsuffer from socio-communicative deficits
and often have significant problems identifying and express-
ing emotions [6]. The literature suggests that children with
ASD may benefit from therapy with social robots, however,
robot-assisted interventions face a number of challenges [3,
12, 21].
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Liu et al. conducted a study with a robot-based basket-
ball game in which the robot recognized the individual level
of satisfaction and engagement of children with ASD in
relation to the game configuration and selected appropri-
ate behaviors based on this. In observational studies of both
low-functioning and high-functioning children, they reported
that children’s low expressivity was a major challenge [25].
Aziz et al. came to similar conclusions in a study of high-
functioning children with the NAO humanoid robot [7]. In
another study with the NAO robot, conducted on a sam-
ple of 36 children, it was shown that automatic engagement
recognition needs to be personalized for each child, espe-
cially in the case of different cultural backgrounds [32].
Kouroupa and colleagues conducted a meta-analysis of 12
randomised controlled trials (RCTs) revealing that robotic
interventions significantly enhanced social functioning of
childrenwith autism.However, no improvement in emotional
or motor functioning was observed [21]. A randomised con-
trolled trial conducted by Holeva et al. showed that there
were minimal statistically significant differences in devel-
opmental improvement, as indicated by neuropsychological
testing and parental report, between the robot-assisted inter-
vention group and a control group that received only human
intervention [17]. In a systematic review, Sani-Bozkurt and
Bozkus-Genc found that while children with autism gen-
erally respond positively to robots as social partners, the
effectiveness of robots in developing joint attention skills
in children with autism is still unclear [34].

Several studies have outlined the perceptual problems of
children with ASD. In their study, Pop et al. investigated
the use of a Probo robot to improve the ability of children
with ASD to identify emotions. In their conclusions, they
emphasized that they cannot determine whether the partici-
pants understood the emotions shown by the robot orwhether
they merely reproduced them [31]. Similar conclusions were
reached by English et al., based on a study conducted with
NAO and Mini Darwin robots [15].

Another set of challenges arises from the highly hetero-
geneous nature of autism disorder; what works for one child
may not work for another [8]. Successful therapy there-
fore requires personalised and tailored interventions for each
individual. Shi et al. developed and validated personalised
models for robot perception of arousal and valence in chil-
dren with ASD [36]. Alnajjar and colleagues proposed an
adaptive robotic intervention system forASDassessment and
therapy.The results of the empirical studyof sixASDpatients
in an autism rehabilitation centre showed that the adaptive
approach significantly improved the attention levels of most
patients in long-term therapy [5].

Silva et al. mentioned the varying developmental levels
of children with ASD as a major challenge in observational
studies of robot interactions. The study used robots built on
a Lego Mindstorms NXT platform, where some activities

were below children’s abilities, leading to low motivation
to complete tasks [37]. In contrast, in a study by Yun et
al. using the iRobiQ and CARO robots, some children were
unable to complete tasks without the help of therapists, due
to the excessive complexity [44]. Furthermore, Landowska
and Robins noticed that autistic children may show refusal
or other atypical behaviors that do not match the planned
interaction, environment, or equipment [22].

A more in-depth analysis of the state of the art in robotic
interventions for children with ASD can be found in a
comprehensive systematic review conducted as part of the
EMBOA project [9].

The list of devices being used to capture person-centered
data for emotion and other affect-related recognition exper-
iments is extensive. Arguably, the most common practices
for emotion recognition are based on (a combination of)
audio-visual and physiological data [45] with multimodal
approaches generally outperforming unimodal approaches
[1]. This holds as well for the special case of children on the
autism spectrum [33]. A core advantage of these modalities
is that the necessary hardware, including eye trackers [46],
show low levels of invasiveness, for instance compared to
electromyography (EMG) or electroencephalogram (EEG)
devices, as used in [13]. Nevertheless, the capturing devices
for physiological signals, as well as lapel microphones need
to be attached to participants, which can lower the acceptance
rates, as further discussed in our study.

The issueof recording emotional symptomswhenchildren
with ASD interact with social robots has been addressed in
a number of papers. For example, in the case of emotion
recognition based on facial expressions, these include the
children’s movement during the observation, which makes
it impossible to find a face, or the subject’s inappropriate
distance from the camera. These issues are described more
extensively in a systematic literature review on automatic
emotion recognition in children with ASD [23].

3 Methodology

This paper is based on an observational study that was con-
ducted to assess the feasibility of using available automatic
emotion recognition technologies, in terms of the availabil-
ity of input channels, during the interaction of children with
ASD with a social robot. The observational sessions were
carried out in therapeutic centers in Poland, North Macedo-
nia, Turkey, and the UK. All sessions in all centers were
conducted using the same procedures and, where possi-
ble, the same or similar equipment. The preparation of the
study involved addressing the ethical aspects of the research,
defining criteria for the inclusion of participants, develop-
ing interaction scenarios, identifying appropriate observation
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channels, designing the study setup, and finally developing
the procedure.

3.1 Ethics Statement

The parents and therapists in the cooperating centers were
informed about the study. The main assumption was that a
child would be under no circumstances forced to interact
with a robot and might quit at any point in time. The par-
ents of the children provided written informed consent, in
which they declared agreement for their child to participate
and (optionally) being recorded. They also gave consent to
process their children’s data within the GDPR. The Ethi-
cal Board of the Gdansk University of Technology, Poland,
approved the study protocol and raised no objections.

3.2 Participants

To ensure the credibility of the studies conducted, criteria
for the inclusion of participants were defined. Three criteria
have been specified:

• children between the ages of 2 and 12 years,
• formally diagnosed with ASD,
• without any other known neurological or psychological
diagnosis.

In addition, it was decided that both treated and untreated
children could participate, moreover, a level of functioning
was also not specified, although we were recruiting children
that had at least some imitation skills.

As outlined, the observational studies were conducted in
four collaborating countries (the institutional abbreviations
for the partners are reported between parentheses): Macedo-
nia (MAAP), Turkey (ITU-YU), United Kingdom (UH), and
Poland (GUT). Data on the number of children, their ages,
and the number of repeated sessions are shown in Table 1.

3.3 Kaspar Robot

Human communication involves many subtleties (e. g., in
facial expressions, in gestures, in body language, in speech

Table 1 Study participants

Institutional # of Children Age # of Sessions
Abbreviation (Gender) Range (Min,Max)

MAAP 11 (9M, 2 F) 2-6 (2,11)

ITU-YU 12 (11M, 1 F) 6-10 (1,2)

UH 7 (6M, 1 F) 10-12 (2,3)

GUT 3 (M) 6-6 (1,4)

etc), making it especially difficult for children with ASD to
process into a coherent and meaningful whole. A common
characteristic of children at the middle- to lower-end of the
autistic spectrum is the difficulty to cope with social interac-
tion, experiencing this as unpredictable, overwhelming, and
frightening, causing anxiety and oftenwithdrawal. A socially
assistive robot designed to address some of these difficulties
could be used as an effective tool to assist these children [12].

Kaspar (Fig. 1) is a social humanoid robot developed by
researchers at the University of Hertfordshire, UK, that was
specifically designed to help children with ASD develop
social interaction and communication skills [43]. It is a
child-size robot and has been purposefully designed with
realistic but simplified human-like features offering a more
predictable form of communication, making social interac-
tion simpler, non-judgmental, and more comfortable for the
child. Kaspar has a child-like appearance, in a sitting position
and is approximately 56cm tall. The robot has 22 Degrees of
Freedom (DOF) and is equipped with sensors, cameras, and
vocal communication that allow it to respond to external stim-
uli. Kaspar is capable of a range of movements, gestures, and
facial expressions, (e. g., eye movements, blinking, nodding,
shaking its head, waving its arms, open mouth and smile,
portraying ‘happy’ or ‘sad’ expressions).

Kaspar can be controlled using a remote control keypad
that is an integral part of the robot setup. Each of the interac-
tion scenarios has an overlay that is placed on the keypadwith
relevant symbols/emojis or pictures on each key. The keypad
can be used by the adult not only to operate the robot, but
also as part of the interaction with the child, motivating the
child to take initiative or respond, and sometimes giving the
keypad to the child to control, build their confidence, allow
them to take initiative and/or manage a collaborative game
with the robot or another person. In addition to the keypad,
the robot responds autonomously (within the context of the
game scenario) when one of its touch sensors is activated.

Kaspar has been used in studies at schools, families’
homes, and clinical centers with about 300 children (long-
term studies where each child interacts with the robot over
several weeks or months) [12]. Kaspar can engage children
withASD in a variety of therapeutic/educational games, e. g.,
turn-taking, joint attention and collaborative games, cause
and effect games etc, that encourage the children to interact
with the robot as well as using the robot as a mediator in
interaction with other people (peers and adult care givers).

3.4 Interaction Scenarios

Kaspar is a robot designed for social skills training. Each
scenario of Kaspar’s interaction addresses some social skill
components such as joint attention, involvement in inter-
action, turn-taking, vocalization imitation, etc. It follows
a learning through play paradigm. For the study, a subset
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Fig. 1 Kaspar, courtesy of The Robotics Research group, University of
Hertfordshire, UK

of interaction scenarios with the Kaspar robot was cho-
sen or implemented with the aim to evaluate the feasibility
of available automatic emotion recognition technologies in
robot-assisted intervention settings. Each scenario with Kas-
par is based on the principle of turn-taking, imitation, and role
changing. These interaction scenarios require basic receptive
language skills related to emotions, animals, and body parts,
as well as movement and vocalisation imitation skills.

In a Standard (starting) scenario, Kaspar introduces itself,
and plays a movement imitation game with the child. The
scenario does not require high communication skills; once
Kaspar introduces itself, the therapist prompts the robot to
perform some upper body gestures using only its arms, such
as raising up its right hand, pointing left with its left hand, etc.
and asks the children if they can copy Kaspar’s movements
(see Fig. 2). If the child performs correctly, then, a positive
feedback is triggered by the researcher/therapist operating
the robot, if not, a neutral feedback is given and the robot
asks the child to try again. There is also a song included
in this scenario, and it is used for familiarization with the
robot (icebreaker) or draw the attention of the child back to
the robot when a child gets bored or distracted. The song is
“If you’re happy and you know it” or a local equivalent per
country.

In the Emotions scenario, Kaspar performs emotional
expressions such as: happy, sad, surprised, and scared, fol-
lowed by a tired expression. Expressions might be launched
interchangeably, and the robot shows them with the move-
ment of hands and limited facial (mouth and eyelids) actions.
Then, the robot asks a child tomimic the expression. As in all
scenarios, there is a number of prompts, reinforcements, and

a song as outlined included as well, to keep a child interested
and engaged.

In the Animals scenario, animal names and sounds are
the theme of play. Kaspar asks the child what does the dog,
cow, cat, duck, pig, and monkey say and requests the child
to imitate these animals both verbally and behaviorally. The
robot also ‘says’ the animal sounds to engage and amuse
the children. This is a basic turn-taking scenario, however,
children sometimes just enjoy hearing and observing rather
than performing sounds.

TheBody parts scenario consists of a pointing gamewhere
Kaspar asks the children to show their head, nose, mouth,
eyes, ears, toes, hands, etc. When it is the robot’s turn, it
points out and says the name of the corresponding body part
aswell.Apart fromnaming bodyparts, this scenario practices
imitation, turn-taking as well as my-your body part differen-
tiation.

The Vowels and syllables scenario tries to pursue active
speech, as well as turn-taking in verbal activities. Kaspar and
a child play a turn-taking game of repeating vowels and basic
syllables. For childrenwith limited speech, it is an occasion to
practice vocalisations,while for childrenwithmore advanced
speech skills, we make it a memory game—a child repeats
a sequence of vowels or syllables—making this scenario to
practice attention and short-term memory.

Each session startswithKaspar introducing itself, prompt-
ing a child’s name, and inviting the children to play with it.
Sessions end with Kaspar saying “Bye-bye, see you next
time” or “Thank you”. All scenarios include positive and
neutral feedback phrases as reinforcements, as well as the
“Auch, you’re hurting me!” reaction when a child acts too
harshly upon a robot. The latter reaction was used in some
centers for teaching children to respect physical boundaries.

The verbal feedback and the songs are displayed in the
native language of each country. Some songs were—as also
outlined above —adjusted to local requirements as well.

3.5 Observation Channels and Experimental Setup

Automatic emotion recognition can be based on different
observation channels and modalities derived from them. In
the study, we decided to use multiple channels in parallel, in
order to compare and combine them. The observation chan-
nels were selected based on their ability to capture symptoms
of emotion in child-robot interaction and a final set of modal-
ities included: facial expressions, posture, eye gaze, speech
prosody, and physiological signals. The setup for the interac-
tion and data collection was implemented in an allocated and
reserved room (Fig. 3). As we aimed at the comparability of
the results, all of the partners in the four countries performing
the studies used the same set of equipment, as agreed in the
project, for conformance of observations. The equipment we
used in our observational studies is given as follows:
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Fig. 2 A child mirroring Kaspar’s arm movements

• Empatica E4 wristband for capturing physiological sig-
nals;

• Gazepoint GP3 Eye tracker to capture eye-gaze;
• 2 microphones: Zoom H4n Pro and AKG C 417L lapel
microphone with an adapter;

• 2 cameras (facial and capturing scene)—cameras were
not standardized.

The criteria used for device selection were as follows: the
lowest intrusiveness of measurement for a child; a possibility
of long-termmeasurements; robustness to disturbance; a data
export function; and quality to price ratio (bearing on mind
potential future mass deployment).

The physiological signals were collected with a smart
wristband. The children were equipped with the Empatica
E4 placed on the wrist during the interaction session. The
facial expressions of children were collected using two video
cameras, one placed above Kaspar (as seen in Fig. 3 on the
transparent screen (‘cam1’)) to capture the facial expressions
of the children, and the second one placed on the right side of
the robot (‘cam 2’) to capture the whole test setup. In addi-
tion, the entire session was recorded with a supplementary
video camera positioned tomonitorKaspar’smovement. Fur-
thermore, gaze movement, duration, and fixation data were
captured by a Gazepoint Eye Tracker, positioned below Kas-
par’s seat. Finally, audio recordings of childrenwere captured
by aH4nPro sound system,whichwas placed under the table,
closer to the children’s side, to prevent the cable clutter on
the table.

As the main goal of this paper was to capture challenges
and lessons learned with regard to automatic emotion recog-
nition solutions, we were analyzing all the captured inputs

Fig. 3 Data collection setup for EMBOA user studies

with regard to their availability, the value they brought, as
well as their limitations.

3.6 Procedure

Some general assumptions for observational sessions were
as follows:

• all setups should be ready before a child enters the room;
• multiple sessions might be held with a child;
• familiarisation sessions are encouraged;
• there is a pre-prepared common list of scenarios to per-
form;

• the scenarios are to be translated into national languages
and adjusted, if necessary (for example children sing dif-
ferent songs in different countries);

• we try to follow the specified scenarios, but itwas allowed
to follow a child—dropping or adding other interactions
in between on the run;

• during the session, we write down the most important
observations and the session might be annotated after-
wards;

• we record, store, and share data (anonymized and coded)
within the consortium.

The child is accompanied to the room by his/her therapist;
if present, the parents are also allowed to monitor the inter-
action. When the child enters the room, (s)he is asked to sit
in front of Kaspar. The child is then equipped with the E4
wristband. The placement of the camera, microphone, and
eye-tracker are all checked, and the eye-tracker is calibrated.
Therapists and researchers introduce themselves and Kas-
par to the children. The interaction starts when Kaspar says,
“Hello, I am Kaspar”. Then, the flow of the entire interac-
tion session is determined by the therapist or experimenter
considering the child’s profile or reactions. The interaction
scenarios are not ordered, and they can be repeated multi-
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Fig. 4 The number of sessions and the number of children for each
session

ple times, or some scenarios can be skipped if the child gets
bored, or is notwilling to cooperate.Most of the time, the first
interaction is ‘singing’, and it helps children to get familiar
with the robot. The interaction takes at least 10 to 15min if
the child is responsive and willing to continue. The duration
of the sessions depended mainly on the developmental stage
and initial level of social skills of a particular child. There
were differences between countries, but thesewere due to age
and ability of recruited participants rather than their cultural
background.

Sometimes, the children notice the robot is controlled via
the keypad, so they may want to use the keypad themselves
to control the robot. If the therapist approves, then the child
can also control the robot to initiate some actions. Ideally,
the child performs the tasks during the interaction scenario
by following the robot’s instructions. However, some chil-
dren need to be encouraged by the therapist, so the therapist
repeats the task instruction to the child. The interaction ends
with Kaspar saying, “Bye bye, see you next time”.

Based on the profile of test participants (children with
ASD), subjective evaluation questionnaires were not possi-
ble for feedback. However, to compensate for the lack of
subjective evaluation of children and their impression of the
solution, the comments of the therapists and experimenters
have been used. The number of children and the number of
sessions they participated in were displayed in Fig. 4.

4 Challenges Regarding Environment

4.1 Room and Accompanying People

Children with ASD are sensitive to external conditions they
are in, including room, equipment, and people. Sometimes,
they are reluctant to novel circumstances.

The robot was new to the participants, but the novelty of
the robot, including the state of surprise, was the factor we
wanted to observe, while the novelty of the room, people,
or other equipment was a confounding factor. Therefore, we
refer to the novelty of the environment as a challenge, while
the novelty of the robot is considered a natural element of
the observed interaction.

We aimed at finding a quiet, isolated room and minimize
the number of people present. However, this was sometimes
difficult to obtain. A minimal number of people involved
a Kaspar operator. We also allowed a child caregiver in the
room in order for a child to be more comfortable. Frequently,
there were more people involved and the roomwe found was
not so quiet, with external sounds coming as a noise to child
vocalisations recording. With regards to recording the voice
channel, also room echo and furniture movement or usage
was generating additional noise. As we created a complex
recording environment, apart from Kaspar’s operator, also a
person for starting/stopping/adjusting devices was present.
Sometimes, additional therapists were present as well for the
child’s comfort or observation, simply. Therewere a few chil-
dren who needed more time to start playing with Kaspar, as
the environment was new. Moreover, some children refused
to start playing and were allowed to walk out. The reasons
include: the room arrangement, number of people present, or
Kaspar itself. In some cases, familiarisation sessions helped
children overcome their reservations.

4.2 Placement of Equipment

The research we report in this paper, includes a feasibil-
ity study before making robots equipped with a set of
devices to capture emotional symptoms; therefore, we were
experimenting with camera, microphone, and eye tracker
placement. There were two cameras (facial and general)
and two microphones (table and lapel) used. Some children
refused to wear the lapel microphone on their clothes. Others
agreed to wear the lapel microphone, but sometimes noise
due to the movements of the clothes appeared that ham-
pered the child voice activity detection. Background noise
in general turned out to be problematic with regard to voice
activity detection. Most child vocalisations were detected if
the child’s voicewas clearly audible on the audio file, was not
overlaid by the voices of others, and if there was no or only
little background noise from furniture, other people, etc. [28]

The placement of the camerawas problematic aswell. The
facial camera frequently did not capture child’s face as they
moved around, leaned forward or sideways (part of the face
visible), were seated and standing interchangeably. The same
challenge applies to the eye tracker, which generally requires
a steady head position and calibration to work properly. The
general camera captured the scene andwasbetter for behavior
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and posture analysis, but not for facial expressions, as the face
was a small fracture of an image.

Some children were sensitive to wearable devices and did
not want to put on the E4 on their wrists. They got uncom-
fortable and did not cooperate with the robot as long as the
wristband was on their wrist. Sometimes, colored bandannas
were used to cover the wristband as an accessory to mini-
mize the children’s discomfort. If a child refused to wear a
wristband, the session continued without one. In total, 11%
of sessions were recorded without a wristband.

4.3 Interaction Challenges

Children were mostly happy to see the robot, and eager to
take part in the scenarios especially after they get used to the
robot. Only two children with autism refused to approach the
robot.

The song scenario was generally the most popular, even if
the children who did not sing along with the robot, clapped
synchronously during the song as a part of the interaction
emerging between the child and the robot. In Poland, the
therapists were also inviting typically developing children to
interact and they observed that they are reluctant to play with
a robot, in contrast to childrenwithASD. It is worthmention-
ing that the robot we used was designed for autism therapy,
and its limited expressions, movement, and appearance was
adjusted to fit the needs of those children.

It was practically impossible to keep the planned linear
scenario order. For children to keep interacting, we had to
adjust and mix, going back to favourite types of interaction.
Rather than keeping to a preliminary plan, we followed a
child in that matter, making it more interesting for a child,
but less suitable for research.

A few children did not comply with playing with Kaspar.
They refused to get closer to the robot (only 2) or sit in front
of it, and some of them tried to hit the robot and harm the
keypad and its accessories. Therewas a verbal and behavioral
manifestation about their impression—the childrenwhowere
reluctant to play with the robot got stressed, irritated, and
angry. They started to display negative behaviors and wanted
to leave the allocated room. The reasons behind it might be
robot-related, but also environment (room) related, or based
on the general reluctance to novelty of a particular child.
Some of those children were highly sensitive to noise. Even
thoughKaspar’s sound level was adjusted, they plugged their
ears during the interaction, and they did not cooperate. We
allowed a child to leave the room, with therapists motivating,
but not forcing child to get into interaction.

Most children were interested in interaction and play,
including being interested in additional equipment like cam-
eras, etc. as well as Kaspar’s operating keypad. Once the
interaction happened, children were able to practice imita-
tion, turn-taking, and verbal skills.

5 Challenges Regarding Emotion Processing
Technologies

5.1 Facial Expressions Analysis

Facial expression analysis is one of the most widely used and
efficient methods of emotion recognition. In order to identify
problems with emotion recognition from video recordings
of the faces of children on the autism spectrum during
interaction with a social robot, an analysis of the collected
recordings was conducted. The output files with recognized
emotions were obtained by processing video files with the
FaceReader software [11], version 9, released in 2021. We
are aware that newer deep neural network-based emotion
recognition systems based on facial expression analysis are
now available; however, our focus in this study was on chan-
nel availability rather than emotion recognition accuracy.

In order to determine the capability of emotion recog-
nition from video recordings, we evaluated availability of
the channel and the possibility to analyse facial expressions.
Each frame was marked as FIND_FAILED—could not find
the face, FIT_FAILED—could not fit the face model, or
DETECTED—emotion (facial expression) was detected.

The chart in Fig. 5, shows the results of the automated
analysis for 52 session recordings, for different children
from different centers. Green indicates the proportion of
times when any emotional state, including neutral, was
detected, yellow when no face was detected, and red when
no emotional state was detected. In only three cases were
emotions recognized for more than 80% of the duration of
the recording, and for as many as 36 (69.2%), emotions were
recognized in less than half of the recordings time.

All videos were then manually reviewed to identify
problems thatmight have affected the level of emotion recog-
nition. Among the most common issues that recurred in
recordings with low emotion recognition rates were the posi-
tion of the camera, i. e., too far away or at too great an angle
to the child’s face, and overexposure of the video. Further
factors were related to the child’s appearance (e. g., thick
glasses, long fringe) or behavior—lowering head, leaning
forward, looking around, or covering the face with a hand.
Some of the behaviors were even parts of the scenarios we
planned— e.g., touching the nose caused face occlusion.

5.2 Eye Tracker-Based Analysis

The most commonly used features of eye-tracking sensors
for automatic emotion recognition are pupil diameter and
fixation duration. Thus, in order to evaluate the availability
of this channel, we decided to analyze two parameters from
each available eye-tracker recording: (1) a percentage of the
time when the eye gaze was detected; (2) a percentage of the
time when the fixation point was detected. Without the first
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Fig. 5 Distribution of successful (green) or unsuccessful (other)
moments where attempts at emotion recognition could be made

parameter, i. e., without an eye gaze detected, we are unable
to obtain any eye-tracking feature, including a pupil diameter.
The second parameter is the total duration of fixation in the
recorded session. An overview of the results is presented in
Table 2.

From our analysis, it can be concluded that the eye-
tracking data has a limited availability on the designed
environment with children with ASD. It was a disappoint-

ing finding, since current researches reported promising
results for automatic emotion recognition from eye- tracking
data [24, 40]. Therefore, each session recording was exam-
ined by an expert in order to find a possible explanation for the
problem. The most common recurring issues were identified
in three areas: (1) technical, (2) interaction characteristics,
and (3) child behavior.

The technical problems are usually due to the eye tracker
being placed incorrectly with regard to the child’s face. It
was pointing too high from one side when it should be point-
ing frontally. In some recordings, a child was sitting too far
away from the eye tracker, or the room was too dark. One of
the most frequent technical issues, also related to children’s
behavior, is the way in which the eye tracker finds a fixation
point. This is achieved by moving the gaze, while younger
children change their point of focus by moving their head
rather than their gaze.

Many issues are a result of the characteristics of a session.
The eye tracker works best when a person is sitting still.
However, children are asked to move and play during the
robot-based interventions. One of the tasks even required
them to cover their face with their hands. This meant that the
children’s eyes were not visible for some of the time. In some
recordings, especially with younger children, the therapist’s
hand is visible between the child and the eye tracker. This
also reduces the time that eye gaze can be detected.

The most common issues related to a child’s behavior are
the movements of the child and closed eyes. Some of the
situations are related to an intervention scenario, while others
are specific to a particular child, e. g., younger children tend
to move and cover faces more.

Apart from eye gaze detection from the eye tracker, we
have also tried the video-based approach, such as OpenFace,
and GazeTracker solution developed by one of the partners.
The gaze recognition rates were comparable, while the chal-
lenges related to the children’s face turning and coverage,
and interaction scenarios remained.

5.3 AutomatedVoice andVocalization Analysis

The analysis of speech or, in general, vocalizations is another
common way to gain insights into the affective state of
an individual. The main advantages are generally the non-
invasive nature of audio recordings, a (relatively high)
robustness to the device placement [29], and a particularman-
ifestation of arousal in the acoustic signature of the voice[39,
42].

A main disadvantage, however, is similar to the other
modalities— the availability of the modality. Vocalizations
are not always present, especially in unscripted interven-
tion sessions with autistic children. Additionally, automatic
analysis models may confuse the vocalizations of different
persons when analyzing the affective state of a single indi-
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Table 2 Overview of results on child eye gaze activity detection

Activity Unit Eye gaze detection Eye gaze fixation

Session duration;

mean ± std [s] 592.00 ± 218.00 592.00 ± 218.00

Time with detected child eye activity per session; mean ± std [s] 171.90 ± 119.39 3.54 ± 4.82

Proportion of time with detected child eye activity per session; mean ± std [%] 28.75 ± 17.21 0.57 ± 0.69

vidual. As a result, the availability of the voice of a child was
available as little as 6% of the session time. For this reason,
it is common practice to use voice activity detection (VAD)
systems prior to the application of speech emotion recog-
nition (SER) systems [4]. In [27], a specific voice activity
detection system and a cascaded speech emotion recogni-
tion system, both based on deep learning architectures, were
trained based on vocalizations of children with ASD in a
robot-assisted intervention setting, which serve as a basis
for evaluation here. Generally, performance drop-offs are
to be expected when applying a deep learning model to
out-of-domain (OOD) data. Our study setting shows over-
all quite some similarities with the data on which the SER
pipeline [27] was trained, as both are concerning interven-
tion sessions with autistic children.Major challenges in these
settings can arise from differences in recording devices, the
acoustic response behavior of the observation rooms, the age
distribution of participants, or most notably, the language
and cultural background of the participants. These aspects
hinder the robustness of VAD and SER systems for children
with ASD, which in itself is a challenging task given the
peculiarities in the affect expression of children with ASD.
Nevertheless,we used the deep learning-based tools provided
by [27] to analyze the effects of varying circumstances in an
application scenario, the results of which are reported in [28].

In that study, we were able to analyze our recordings with
two different microphones in the same situation—except for
a few sessions with technical problems or a child not wanting
to wear a lapel microphone. Different outputs of the analy-
sis tools could thus be directly linked to different recording
settings, which manifested itself in different types of micro-
phones and their placement; one microphone was placed
centrally in the room, while the other was attached to the
child or researcher. Concerning VAD, we found that the dif-
ferent recording settings only had a clear effect on the amount
of voice activity detection events in the Polish study with
almost twice as many detections recorded with table micro-
phone,while the other study arms showed a similar amount of
detection events betweenmicrophones (only up to 27%more
detections with the table microphone). Beyond, an analysis
with the SER system showed that the different microphones
(lapel or table) had a relatively small impact on estimated
valence and arousal prediction, as the mean absolute devi-

ations between predictions based on the two microphones
stays below 0.1. However, larger deviations occurred if we
applied different SER systems, i. e., one SER system with
VAD-based pre-filtering and one without. The highest mean
difference between the two system predictions occurred with
0.208 for arousal. In the provided results, we could thus
observe that the choice of SER systems had a seemingly
higher impact on outcomes than the choice of microphones.
Nevertheless, we were not able to make estimations about
the accuracy of the applied analysis tool, as for data col-
lected within the EMBOA project, no ground truth labels
were provided [28].

5.4 Physiological Signals Analysis

Another modality for the investigation of the affective state
of children during their interaction with the robot is to moni-
tor their physiological signals. The physiological signalsmay
provide insights into the emotional changes that othermodal-
ities, such as facial or vocal expressions, would not manifest.

In this study, the blood volumepulse (BVP), electrodermal
activity (EDA), and skin temperature (ST) data of children
were collected by the Empatica E4 smart wristband while
they were interacting with Kaspar. In the first round of inter-
action studies, 32 children volunteered to interact with the
robot in one or more than one sessions, separated periodi-
cally. The collected data were analyzed, and the data with
low quality of the signal were excluded from the E4 data
set—details on the evaluation of the signal quality follow.

To detect the affective state of children, first, a set of
heart rate variability (HRV) features were extracted from
the BVP signal. The 6 HRV features used for this assess-
ment are the standard deviation of NN intervals where NN or
R-R intervals are described as the period between two con-
secutive heartbeats (SDNN), the total number of NN (R-R)
intervals divided by the fraction of NN50 intervals where
NN50 is described as the number of times two consecutive
NN or R-R intervals diverge by more than 50 milliseconds
(pNN50), the root mean square of the successive differences
(RMSSD), and the heart rate (HR) mean as time-domain fea-
tures; whereas the low (LF) and high (HF) frequency power
and their ratio (LF/HF) serve as frequency-domain features.
The features and the corresponding reference intervals pre-
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Table 3 Reference intervals for
the HRV features extracted from
the previous studies in the
literature

Ref Age SDNN pNN50 RMSSD HR Mean HF LF ASD Gender
Study Range (ms) (%) (ms) (bpm) (ms2) (ms2)

[10] 18–33 70.12 19.78 71.44 None 910.10 1020.00 No M

±28.03 ±9.46 ±53.99 ±915.31 ±1016.20

[10] 18–33 70.90 23.17 77.431 None 731.79 1261.69 No F

±29.13 ±10.27 ±35.82 ±901.30 ±1237.95

[35] 6–8 25.00– 2.20– 22.00– 69.20– 221.00– 188.00– No All

116.00 71.90 149.00 101.80 3124.00 7690.00

[38] 7.40 133.00 24.00 75.00 None None None No F

±1.10 ±32.00 ±11.00 ±50.00

[19] 4–17 51.00– 6.00– 25.00– 99.62 406.30– 173.30– No All

236.00 48.00 92.00 99.62 2200.60 1612.10

[16] 7–12 154.10 None 44.00 None 1889.50 2308.40 No All

±40.20 ±35.40 ±1116.00 ±1958.40

[41] 10.70 None None None 72.00 2243.00 3127.00 Yes All

±0.90 ±9.00 ±3230.00 ±3911.00

viously reported in the literature are displayed in Table 3, as
well as the demographic profile of study participants.

A scoring method was used to measure the quality of the
collected signal based on the reference studies given in Table
3.New reference intervalswere extracted to assess the quality
of the collected signals: For eachHRV feature, minimum and
maximum values were taken to be the broadest range con-
sidering every row. For example, the SDNN minimum value
was specified as 25ms, and the maximum was 154.10ms. If
the feature values extracted from the collected signal were
between the predetermined intervals, then the signal was
labeled as ‘good quality’ for the analysis and scored 1. If
not, it was labeled as ‘not okay’ and not scored. Since the
selected set of HRV features consists of 6 signals, the total
quality score ranged from 0 to 6. The scored recordings and
their quality are shown in Fig. 6.

The recordings with a total quality score equal to or higher
than 4 were selected for the physiological signal analysis
based on the HRV features: While 68% of the recordings
were labeled as ‘good quality’, the remaining recordings
were discarded.

In order to monitor the affective state of children, we con-
ducted a preliminary study to detect their stress level based
on the LF and HF power extracted from the BVP signal. LF
power has been shown to increase, and HF power to decrease
during stressed conditions. When the LF and HF features
were analyzed, the results revealed that in most cases, they
output conflicting results. Even though in specific cases, the
LF and HF were accurate in monitoring the fluctuating stress
level of children, higher at the beginning of the interaction
session and lower after the familiarization with the robot, the
findings showed that multi-modal data is crucial to achieve
better accuracy in the monitoring and the prediction of the

affective state; for further information on the stress detection
study, see [14].

In another study,we combined theLFandHF featureswith
the peak count and signal amplitude extracted from the EDA
signal to explore if there is any improvement in the stress
detection task. Similar to the previous study, although in spe-
cific cases the combination of the signals provided accurate
results indicating the accurate level of stress for the chil-
dren, the results of the physiological signal analysis were not
accurate in detecting the stress of the children; for further
information, refer to [2]. We used an automatic annotation
tool in both studies to identify children’s facial expressions
from the video recordings. The physiological signal analysis
results were validated with the emotion labels extracted from
the session recordings, highlighting the contribution of the
multi-modal data collection.

6 Summary of Results and Discussion

The research question of the study presented in this paper
was to indicate how to observe the emotional states of a child
with autism interacting with a robot. In order to answer that
question we performed an international observational study,
that allowed us to name some challenges and lessons learned,
as summarized below:

• challenges that exist in observing the emotions of a child
with autism are of various nature—technical (those are
the simplest ones to address), procedure or task-based,
and related to the specificity of the participant group;

• observational studies with children with autism are
challenging—there are multiple factors to take into
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Fig. 6 The quality of E4 recordings based on HRV features

account, as such of the respective children potentially
being demanding study participants—one has to take into
account that despite careful planning and efforts, some
children would not involve in interaction at all;

• the more complex environment we create and the more
sophisticated equipmentwe use, themore technical prob-
lems might arise, including device placements, etc.;

• all observational channelsweusedhad limited availability—
none of the analyzed modalities (facial expressions, eye
gaze, vocalizations, physiological signals) was available
the entire time, and for some, their availability is really
low;

• availability of the facial expression channel differed from
session to session—in three sessions only any emotions
(including neutral state) were recognized for more than
80% of the duration of the session, for as many as 36 out
of 52 sessions (69%) the facial expression modality was
available for less than half of the session time;

• availability of the sound channelwas even lesser—during
only 6% of the sessions’ time, vocalizations of a child
were available—this is a result of not every task in the
scenario being based on speech, as well as common diffi-
culties with productive language in children with autism;

• availability of eye tracker data was also limited—
although a child’s eye gaze was detected during 29% of
the session time, and the eye gaze fixation was available
for less than 1% of the session time—we presume, that
this outcome is a result of eye trackers requiring precise
calibration and lack of major head movements to work
properly and those two factors were not possible with the
given participants;

• physiological signals, apart from sessions when a child
refused to wear a wristband, were the most available—
68% of the recordings had quality good enough for
further analysis, and this result is promising;

• there are a number of challenges with regard to proce-
dure and interaction itself, as children with autism are
demanding partners and all the planned scenarios some-
timesweremixed or discarded to follow a child; although
for research, it would be more beneficial to follow a pre-
defined standardized procedure, it is worth remembering
that the most important thing is to keep a child interested
and engaged in interactionwith a robot, as this is themain
indicator influencing possible benefits for training skills
of a child.

• the question on how much of the challenges are due to
the nature of ASD rather than sensor or data limitation
remains open— it is heavily dependent on the study—the
equipment used, the robot itself, implemented scenarios,
and participants. The proportion between the challenges’
categories might be changed by improvement of the pro-
cedures and sensors, which are easier to address than
challenges related to the specificity of ASD.
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We are aware that our study, although carefully planned,
is not free from some limitations. The main validity threats
of the study and our mitigation methods are listed below, and
further explained:

• individual differences bias,
• disposition-of-the-day bias,
• Hawthorne effect/context effect,
• instrumentation effect,
• maturation/history effect.

Individual differences bias is a threat to the external valid-
ity (generalizability) of the study. This threat is especially
present in studies involving children on the autism spectrum,
as theymight significantly differ in disorder severity, intellec-
tual abilities, skills, behaviors, and level of other limitations.
In order to address this risk, we planned to invite 20 children,
but we recruited even more (33). Most studies with children
with autism and robots invite up to 10 children, as we found
out in a literature study [9], so it seems that our study is
among the largest. Moreover, we added inclusion criteria,
such as age and formal diagnosis and additionally, we have
asked some preliminary questions on the severity of autism,
and the level of basic skills.

Disposition-of-the-day bias is immanent in all human-
related studies and in our opinion, it applies in particular
to children with autism due to the specificity of the disorder,
whichmight influence the obtained results.We have foreseen
this issue and addressed this in the research methodology of
our study—we planned multiple sessions per child. More-
over, we added a before-session question (to caregivers or
therapists) on whether anything special happened before the
session that might influence the child’s behavior.

There are two effects that refer to the situational context of
an observation—one of those is theHawthorne effect (people
behave differently when knowing they are observed—also
known as observer’s paradox) and the context effect (the
environment and circumstances of observations influence
subjects of observation). As participants of the study were
mainly children at the kindergarten or early school level,
we think that the Hawthorne effect was minimal. However,
the context effect was severe—children with autism are in
general not open to new rooms, situations, and people, and
all those circumstances were present in our study. We were
unable to mitigate this risk, the only thing we could do and
did was to set up the sessions in therapeutic centers (environ-
ments they knew) rather than inviting children to labs at the
partners’ premises. We also encouraged Kaspar familiarisa-
tion sessions before the actual measurements.

The instrumentation effect (using different instruments in
groups/locations) had a limited influence on our study. All
partners that recorded sessions were equipped with the same
microphone sets, eye gaze trackers, and wristbands record-

ing physiological signals. The effect applies to cameras—we
used the cameras available to partners, not specifying their
characteristics.

Another validity threat is the maturation/history effect
(making the test/measurement/task for the second time influ-
encing the result) and that effect was present in our study,
as most of the children had multiple sessions. We even
encouraged familiarisation sessions, for children to feelmore
comfortable. We noticed differences between the sessions in
child behavior and emotional states, and as our goal was
to analyze emotion recognition-related channels, this effect
worked for the benefit of our study.

7 Conclusion & FutureWork

The observational study reported here explored us poten-
tial difficulties and challenges that can occur when aiming
to apply state-of-the-art automatic emotion recognition tech-
niques in robot-supported intervention sessionswith children
with autism. We are aware that it will not be possible or rea-
sonable to solve all observed issues. The solution to certain
problems related to automatic emotion recognition, such as
talking less to the child in order to increase the voice activity
detection performance on the child’s speech or avoiding eye
contact with the child in order to recognize the face all the
time from a certain angle, would likely reduce the engage-
ment and enjoyment of robot-supported intervention sessions
for the children and/or the effectiveness of the intervention.
Still, we identified a number of issues that could be adapted
to maximize the child’s comfort and/or to likely improve
(multimodal) automatic emotion recognition in this specific
setting without risking reducing the intervention’s success.
The detailed recommendations on using particular channels
would best be summarised in the form of detailed guidelines
which – due to the size – could not be presented in this paper.
We are aware that we did not analyze emotions versus inter-
actions and scenarios, and we plan to do this in future works.

The general purpose of this study, however, was accom-
plished – we studied a number of observation channels
frequently used in automatic emotion recognition and sum-
marised the findings. This study was a preliminary feasibility
study for future works on how to extend social robots so that
they can perceive affect of children and act upon it. Our find-
ings showed that voice and eye gaze had limited applicability
here.Also, analysis of facial expressions has some challenges
impossible to be fully addressed. The most available of the
analysed channels – physiological signals, is more difficult
to obtain in the context of human-robot interaction. Perhaps,
multimodal observation is an option, however, the more sen-
sors a robot has, themore expensive the production as well as
the more complex run-time processing of emotional symp-
toms is. Having said this, we still find it promising for a robot
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to perceive human emotions and be able to respond to them,
adjusting activities and forming a human-technology affec-
tive loop. We believe that this research lays the groundwork
for robots to automatically recognize emotions and inter-
act with children with ASD in the future without additional
external intervention.
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14. Coşkun B, Uluer P, Toprak E, et al. (2022) Stress detection of chil-
dren with autism using physiological signals in kaspar robot-based
intervention studies. In: 2022 9th IEEE RAS/EMBS Interna-
tional Conference for Biomedical Robotics and Biomechatronics
(BioRob), pp 01–07, https://doi.org/10.1109/BioRob52689.2022.
9925485

15. English BA, Coates A, Howard A (2017) Recognition of gestural
behaviors expressed by humanoid robotic platforms for teaching
affect recognition to children with autism-a healthy subjects pilot
study. In: Social Robotics: 9th International Conference, ICSR
2017, Tsukuba, Japan, November 22-24, 2017, Proceedings 9,
Springer, pp 567–576, https://doi.org/10.1007/978-3-319-70022-
9_56

16. Fazli C (2019) Pediatric heart rate variability normative values
related to average heart rate and age in a developing country. J
Cardiovas Res 2. https://doi.org/10.33552/OJCR.2019.02.000547

17. Holeva V, Nikopoulou V, Lytridis C et al (2022) Effectiveness of a
robot-assisted psychological intervention for children with autism
spectrum disorder. J Autism Dev Disord. https://doi.org/10.1007/
s10803-022-05796-5

18. Ismail LI, Verhoeven T, Dambre J et al (2019) Leveraging robotics
research for childrenwith autism: a review. Int J SocRobot 11:389–
410. https://doi.org/10.1007/s12369-018-0508-1

19. Karabulut M (2015) Salıklı Çocuklarda kalp hızı deişkenlii. Fırat
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