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A B S T R A C T

The increase in population and industrialization has intensified water scarcity and stress, and contaminated 
water bodies. Therefore, the development of advanced water and wastewater treatment technologies has gained 
global attention from researchers. Adsorption, using natural materials (nano, polymer, and bio) is one of the 
most cost-effective, less challenging, and well-known technologies for wastewater treatment and improving 
water quality. Among them, chitosan (CS) has demonstrated a set of unique features, such as biodegradability, 
eco-friendliness, availability, low cost, and biocompatibility. Hence, this review provides an overview of some 
recent advancements in the removal of heavy metals, including As (III) and (V), Cd (II), Cu (II), Cr (VI), and Pb 
(II) by CS-based adsorbents, and their potential effects on human health. It also covers the synthesis of CS-based 
adsorbents for the elimination of mentioned contaminants in recently reported studies. In addition, this study 
recommends encountering potential drawbacks by enhancing the adsorption capacity by incorporating func-
tional groups, nanoparticles, and other materials. These modifications may help increase selectivity for specific 
metal contaminants and synthesize adsorbents that can perform better over a wide range of pH. Insights gained 
from this study will guide researchers in the future toward optimal water treatment and pollutant elimination 
strategies.

1. Introduction

The world is now more concerned with the simultaneous problems 
of water scarcity and contamination than ever before. These are com-
plex issues that require a variety of approaches to solve. The urgent 
challenges of both quantity and quality have become more linked as 
growing populations and expanding industrial activity increase the 
burden on water resources [1]. Pollutants including heavy metals, in-
dustrial effluents, and agricultural runoff contaminate water, making a 
large amount of available water sources unfit for human consumption 
and exacerbating the scarcity issue. A critical turning point has been 
reached in the navigation of the complicated terrain of water man-
agement: improved water treatment technology. These technologies 
have become essential in lessening the effects of contamination on 
water resources as a result of the realization that focused and effective 
cleanup solutions are required. Now, let us examine this ground-
breaking trip from the general problems of water scarcity and con-
tamination to the field of cutting-edge water treatment technologies, 
clarifying the rationale for our work and its contributions. Researchers 
from across the globe have been trying to resolve water-related issues 

and remove the contamination from the water. Water contamination 
has caused many human health issues, and about 0.7 million people die 
from water-related diseases around the globe [2]. The most common 
water contaminants include dyes, heavy metals, and phenols [3]. Heavy 
metal's presence in water has gained more attention due to their higher 
toxic levels and carcinogenic effects on the health of human beings at 
even lower concentrations [4]. They lead to acute and chronic effects 
such as different kinds of cancers, improper development of organs, 
nerve damage, and even death [5]. After the industrial revolution, the 
world has seen drastic growth in industrial and economic sectors that 
has also contributed to the heavy metals accumulation on the surface 
and groundwater which has sought global attention [6–9]. As a con-
sequence, the researchers have shifted their focus to the quantification 
of heavy metals and their overall effects on human life [8,10–13]. The 
heavy metals have different toxic levels due to their chemical properties 
and characteristics, and they pose different health implications dis-
cussed later in this review.

Within the broad field of water treatment techniques, various 
technologies are essential in tackling the intricate problems related to 
water quality. Among them are processes such as membrane filtration, 
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chemical precipitation, electrochemical reactions, and others that are 
noteworthy due to their unique mechanisms and uses.

Membrane filtration uses semi-permeable membranes to filter im-
purities and particles from water according to their molecular weight 
and size. Chemical precipitation is the process of adding chemicals to 
create precipitates that are insoluble and readily separated from water. 
Electrical current is used in electrochemical processes to create reac-
tions that help remove or change pollutants. Although there is a wide 
range of water treatment technologies available, this article deliber-
ately focuses its discussion on one aspect: adsorption. One well-known 
and adaptable technology that is particularly notable for its effective-
ness in reducing water pollution is adsorption. It has gained recognition 
for its low cost, easy operation [14] and modifications, high effective-
ness, sludge-free operation, easy recovery, and regeneration capacity 
[15]. For the removal of heavy metal ions (HMIs), activated carbon has 
been widely used; however, it has limitations due to its high cost, and it 
also causes secondary pollution [16]. Several other adsorbents have 
been used to eliminate HMIs, including nanomaterial adsorbents, bio 
adsorbents, industrial by-products, and their composite.

The adsorbents prepared using CS exhibit commendable efficiency 
in removing dyes, heavy metals, pesticides, and pharmaceutical pollu-
tants from water. They have distinctive features, helping with selective 
adsorption, and are very versatile for environmental applications 
[17–23]. Many efforts have been in progress on using CS and its deri-
vatives for dye removal and HMI removal from water and wastewater 
[24–31]. However, there is still a gap to be filled, and we believe this 
critical review helps researchers to work more efficiently in this field of 
study. This review includes the synthesis of CS-based adsorbents, their 
mechanism and characteristics for removing heavy metals from the 
environment, their interaction with human health, and the reasons for 
deteriorating the human body with several diseases. This article also 
discussed the major heavy metal ions and their chemical interaction 
with CS-based adsorbents. In this era of development, research plays a 
significant part in the progress of academic society and institutions. 
Moreover, this review will open doors of knowledge for the researcher 
and provide the gap in this field of research, and it will create pathways 
to achieve sustainable development goals (SDGs) and bring opportu-
nities for better living on the planet Earth.

CS is derived from the partial deacetylation of chitin (Fig. 1) and is 
the second ample natural polymer in shrimp shells, crab shells, and 

some fungi [32]. CS is obtained by removing acetyl groups from chitin 
to the extent of about 50 %. The resulting structure is heterogeneous 
and consists of both 1–4 linked 2-acetamido-2-deoxy-β-D-glucopyr-
anoses and 2-amino-2-deoxy-β-D-glucopyranoses as well as 2-amino-2- 
deoxy-β-D-glucopyranose (as shown in Fig. 2a and b).

Given structure, CS is similar to cellulose; as hydroxyl in cellulose is 
replaced by amino or acetamido groups in CS at carbon-2 [33]. CS and 
its derivatives have shown extraordinary results in the fields of phar-
macy [34], medicine [35], chemistry [36], and environment [37] be-
cause they have specific characteristics that include low toxicity, high 
adsorption capability, biocompatibility, and biodegradability. En-
vironmental engineers have reported successful results in removing 
heavy metals and treating water. CS derivatives have been found to 
remove pigments [38], fluorides [39], and phenols [40]. CS has not 
only shown remarkable results for the removal of HMIs but also has 
shown antibacterial properties [41]. The preparation of CS and its de-
rivatives-based adsorbents, adsorption mechanism, and application 
studies have been discussed briefly in detail in this review.

2. Chitosan-based adsorbents

CS was first obtained by Rouget in 1859 when boiling chitin in the 
concentrated potassium hydroxide (KOH) [42,43], and later, Hoppe- 
Seyler named it in 1894. CS has been considered one of the most useful 
cationic adsorbents for removing aromatic compounds, highly toxic 
organic dyes, heavy metals, anions, pharmaceutical residues, and oil 
spills [44–48]. It holds several advantages, such as hydrophilicity, high 
reactivity, biodegradability, biocompatibility, and nontoxicity [49]. It 
is a multifunctional biopolymer and has unique properties that make it 
useful for treating water, especially in adsorption operations. It is en-
vironmentally friendly because it is naturally biocompatible and bio-
degradable. Because positively charged amino groups on CS and ne-
gatively charged ions have a favorable interaction, CS's cationic 
composition allows for the effective adsorption of anionic pollutants, 
like heavy metals. It’s adsorption capacity is enhanced by its high 
surface area and porous structure, which offer a multitude of active 
sites for pollutant binding. Amino and hydroxyl functional groups, for 
example, contribute to a variety of interactions with different pollu-
tants. The capacity to produce films makes it possible to create coatings 
that function as efficient adsorption layers. Because it can be easily 

Fig. 1. Representation of CS recovery from shrimps. 
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altered, customized improvements can be made, and because it is in-
expensive and frequently derived from crustacean shells, water treat-
ment procedures become more financially feasible. To summarize, it is 
a valuable and sustainable adsorbent for water treatment applications 
due to its unique mix of biocompatibility, cationic nature, high surface 
area, and adaptability. Moreover, Table 1 presents several conventional 
and non-conventional adsorbents and their features for removing con-
taminants from the water.

Furthermore, CS has a linear polyamine structure with free amine 
groups accessible for modifications and crosslinking [50]. Several 
chemical and physical modification techniques have been applied to 
improve its adsorption selectivity and characteristics for removing 
heavy metals, including amination, sulfonation, and carboxymethyla-
tion [51–55].

3. Chitosan for HMI removal

They have been proven efficient for absorbing toxic heavy metal 
ions from water and wastewater due to various chelation sites and 
hydroxyl and amino functional groups that attract heavy metals using 
ion exchange methods or coordination bonds [69,70]. Many re-
searchers have analyzed and evaluated the adsorption capacities of CS 
and their derivatives to remove HMIs as their application studies 
[71–73]. Fig. 3 shows the mechanism of CS-based adsorbent for the 
removal of heavy metals from the water.

This study includes various studies on removing metals (As, Cd, Cr, 
Cu, and Pb) from the wastewater through an adsorption mechanism 
using CS-based adsorbents. The complex relationship between CS-based 
adsorbents and different heavy metal ions requires a careful analysis of 
their interactions. Arsenic compounds, such as arsenic (III) and arsenic 
(V), use their hydroxyl and amino groups to form complexes and create 
hydrogen bonds, respectively. Lead ions (II) mostly stick to the amino 
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Table 1 
Various conventional and non-conventional adsorbents with their features. 

Adsorbents Features Type of adsorbent Ref

Activated alumina − Efficient for the removal of organic pollutants and bacteria
− Commercially available

Conventional [56]

Agricultural waste − Efficient
− Rapid

Conventional [57]

Biomass obtained via microorganism − More selective & and effective from the ionic adsorbent Non-Conventional [58]
Chitin/CS (Chitosan based derivatives) − Biodegradable

− Cheap
− Abundant
− Renewable
− Exemplary diffusion properties
− High Swelling properties

Non-Conventional [59]

Coconut waste (shell) − Works in the granular form
− Wastewater treatment

Conventional [60]

Cross-linked polymers − Surface area is more
− Mechanical strength is high
− Has chelating properties

Conventional [61]

Hydrogel − Efficient for metal recovery (not all types) Non-Conventional [62]
Polysaccharide − Low-cost and highly selective Non-Conventional [63]
Resins − Wastewater treatment Conventional [64]
Silica gel − Efficient for removing organics Conventional [65]
Solid waste from the forest industry − Possible degeneration

− Cheap
− Effective

Non-Conventional [66]

Wood waste − Efficient for large-scale pollutants
− Good surface phenomenon

Conventional [67]

Zeolites − Good adsorbent for organic solvents and dyes
− High Ion exchange capacity

Conventional [68]
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groups of CS through coordination bonds, highlighting the need to as-
sess the density and accessibility of these amino groups. Chromium (VI) 
binding to CS may include redox reactions, emphasizing the need to 
understand electron transfer mechanisms. Cobalt ions (II) show pre-
ferential adsorption aided by the amino groups of CS, requiring a 
comprehensive study of its ability to form chelation complexes and 
coordinate bonds. Likewise, copper ions (II) bind with the amino groups 
of CS, which requires examination of the surface charge and the kinetics 
of complex formation. Comprehending these complex interactions is 
crucial for improving CS-based adsorbents in order to improve their 
effectiveness in reducing heavy metal pollution in the waste water 

treatment applications. Fig. 4 shows the adsorption mechanism of 
heavy metals on CS-based adsorbents.

Understanding the details of the heavy metal adsorption on CS- 
based adsorbents requires a thorough examination of kinetics, iso-
therms, and thermodynamics. Kinetic studies provide vital information 
on the time-dependent behavior of adsorption processes, giving im-
portant details about the speed and mechanisms that control the ab-
sorption of metal ions. Methods include being influenced by time batch 
adsorption tests and the use of kinetic models help to understand ad-
sorption kinetics and determine the time needed to reach equilibrium. 
This information is important for designing and optimizing systems. 

Fig. 3. Schematic diagram for the removal of heavy metals by CS-based adsorbents. 

Fig. 4. Adsorption mechanism. 
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Isotherm analyses define the balance between the concentration of 
metal ions and their adsorption onto CS. This provides important in-
formation on the maximal capacity for adsorption, the characteristics of 
the surface, and the affinity of the adsorbent for different metal ions. 
Using well-known isotherm models, such as Langmuir, Freundlich, and 
Dubinin-Radushkevich, allows for the determination of important iso-
therm parameters from experimental data, which improves the ability 
to predict adsorption behavior in different settings.

In addition, thermodynamic studies offer a basic understanding of 
the spontaneity, possibility, and energy involved in metal adsorption 
onto CS. By conducting experiments at various temperatures and uti-
lizing thermodynamic models like the Van't Hoff equation, important 
thermodynamic values like as standard enthalpy (∆H°), standard en-
tropy (∆S°), and Gibbs free energy (∆G°) can be determined. These 
factors provide information about the stability of metal-chitosan com-
plexes and the impact of temperature on adsorption behavior, helping 
to optimize operational settings for practical use. To summarize, a 
thorough analysis of the speed of reactions, temperature effects, and 
energy changes is essential for improving the efficiency of removing 
heavy metals from water using CS-based adsorbents. This analysis 
provides important guidance for designing water treatment systems and 
implementing effective environmental cleanup strategies.

3.1. Removal of Arsenic

Arsenic (As) is a metalloid in the air, rocks, organisms, soil, and 
water. It has been a source of environmental pollution using natural 
processes and a combination of anthropogenic activities, including 
biological actions, weathering reactions, and vehicular and other 
emissions [74]. Fig. 5 elucidates the natural and anthropogenic sources 
of As contamination. Moreover, it is among the elements that are 
multivalent and cannot be easily removed, though, it can convert into 
several different forms or combine with other elements [75]. However, 
the most dominant and toxic forms of arsenic include arsenite and ar-
senate [76].

Due to its toxicity, the World Health Organization (WHO) in 1993 
reduced the exposure limit of arsenic from 50 to 10 ug−1 [78]. Until 
today, many researchers have used advanced adsorbents to remove As 
from wastewater [70], however, many drawbacks need to be addressed.

Recently, CS has gained drastic attention for its exceptional char-
acteristics for arsenic removal application from the waters [79]. Uti-
lizing gel, microsphere, and cross-linker of CS are a few advanced 
techniques that help to enhance mechanical strength, stability, and it's 

reusability; embedding molybdenum or iron, etc., into CS microsphere 
is an efficient technique to increase the adsorption property of CS 
[80–82]. Furthermore, iron (Fe) is always considered an arsenic lover 
as it possesses excellent adsorption properties towards As. Interestingly, 
the Fe-CS composite has gained attention for adsorption from water; Fe- 
CS granules (ICSB) and Fe-CS flakes (ICSF) have also been studied and 
reported [83].

Among several studies in the last decade that were carried out to 
analyze the adsorption capacity and efficiency of As (III); graphene 
oxide (GO), GO-modified CS derivative is recognized as a cost-effective 
(cheap) and efficient adsorbent [84–86], and graphene oxide-chitosan 
(GO-CS) has various application studies other than As. In a study, both 
toxic forms of As were removed from contaminated water with clays or 
zeolite CS-based adsorbents. In addition to other research, Wang and 
coauthors experimented with the CS coating biopolymer on iron oxide 
nanoparticles, showing a significant increase in As adsorption (V) [87]. 
Table 2 summarizes the qmax for arsenic on several CS-based ad-
sorbents.

CS-based adsorbents have a remarkable ability to adsorb arsenic 
thanks to their positive charge, which allows them to interact with 
negatively charged arsenic species. In addition, these materials have a 
high level of compatibility with biological systems and are also en-
vironmentally friendly, which helps to minimize any potential risks to 
both human health and the environment. Nevertheless, the relatively 
sluggish adsorption kinetics of these substances may necessitate longer 
contact durations, while the pH dependence may present difficulties in 
upholding ideal conditions. In addition, the restricted surface area of CS 
matrices may limit their adsorption capacity in comparison to other 
materials.

3.2. Removal of Cadmium

Cadmium (Cd) is among the extremely toxic elements due to its 
teratogenic and carcinogenic effects on human life [95]. It is disposed 
of majorly into the environment through human-made activities due to 
mining operations, industrial effluent, waste incineration, and coal and 
oil combustion. Fig. 6 shows the different sources of cadmium con-
tamination. According to WHO, the maximum permissible limit of Cd in 
potable water is 3–5 ppb [96]. Among several other adsorbents utilized 
to remove cadmium, hydrogels, and CS-based composites have acquired 
great attention [97].

Babakhani and coauthors reported an efficient, low-cost, and ef-
fective technique for removing Cd (II) from wastewater using a benign 

Fig. 5. Schematic diagram of As contamination and health effects [77]. 
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adsorbent. Sodium tripolyphosphate CS beads (STPP-CLCS) were fab-
ricated to access cross-linked CS adsorption capacity and behavior. In 
the experiment, the lower cross-linked beads revealed a higher con-
centration of adsorption when the concentration of Cd was low; con-
sequently, the lower CS beads had higher adsorption even at a higher 
concentration [98]. In a recent study, a hollow nanofibrous membrane 
(HNM) was synthesized from CS, polyvinyl alcohol (PVA), and poly-
vinylpyrrolidone (PVP) through electrospinning. It was analyzed on 
lead, nickel, cadmium, and copper, and maximum adsorption capacities 
were 87.8, 97.5, 88.1, and 106.7 mg g−1 [99]. In another study, bio-
composites based on clay minerals and CS have gained interest in re-
moving cadmium, and Vilela reported the maximum adsorption capa-
city was 234.8 mg g−1 onto the CS-based hydrogel [100]. In a study, 
Chen et al., 2012 prepared an effective new composite of CS with 
thiourea, modified it to a magnetic ion, and imprinted it on CS/TiO2 

(MICST). Later, results found that the MICST’s efficiency in removing 
Cd (II) decreased barely after the fifth cycle.

In another attempt, Chen and coauthors prepared CS-vermiculite 
(CS-VMT) in reaction with epichlorohydrin and used it for the removal 
of Cd (II) from water. The results showed that on the external surface, 
CS was cross-linked but could not intercalate in the vermiculite [104]. 
Also, Wang and coauthors (2020) also synthesized a low-cost and novel 
cobalt ferrite@SiO2-CS/EDTA composite with higher adsorption capa-
city of cadmium and recyclability using sol-gel and solvothermal pro-
cess [102]. Table 3 summarizes qmax for Cd on CS-based adsorbent.

CS-based adsorbents have been found to exhibit remarkable se-
lectivity for cadmium, thanks to the strong metal-ligand interactions 
they form. This property effectively reduces interference from other 
ions, making them highly effective in Cd removal. Its remarkable ver-
satility enables the creation of customized adsorbents that exhibit a 
heightened affinity for cadmium ions. Additionally, its biodegradability 
helps minimize any potential negative effects on the environment. 
Nevertheless, the adsorption behavior that is dependent on pH and the 
limited surface area may necessitate optimization in order to achieve 

Table 2 
Chitosan-based adsorbents for the removal of Arsenic (As). 

Adsorbent Arsenic 
(III/V)

Maximum 
Adsorption 
Capacity 
(mg g−1)

Isotherms model Kinetics 
model

Surface area Contact 
time 
(min)

pH Ref

Iron (III)-Chitosan (III) 19.7 Langmuir - - - 6 [88]
Fe CS Microspheres (V) 120.7 Langmuir 2nd Order 1.3 mm (dia) 1440 4 −9 [89]
α-FeO(OH)/GO/CS (III) 289.4 Freundlich & Sips 2nd Order - 3000 3 −10 [85]
Magnetic CS-coated GO (III) 45.0 Langmuir 2nd Order 152 m2 g−1 - 7.3 [84]
Chitosan coated Iron magnetite nanoparticles (V) 10.8 Langmuir 2nd Order - 120 7 [90]
MCS/GO with ethylenediamine tetraacetic acid 

(EDTA)
(III) 43.0 Langmuir 2nd Order 81.36 m2 g−1 660 8.0 [91]

Chitosan coated Iron magnetite (III) 10.5 Langmuir 2nd Order 10 nm (dia) 90 9 [92]
Magnetite nanoparticles impregnated chitosan beads (V) 35.7 Langmuir 2nd Order 50.20 m2 g−1 1500 6.8 [93]
CCM (V) 3.4 Freundlich 2nd Order 5.1 m2 g−1 - 3 −9 [94]
Iron-Chitosan composite (III) 16.2 Langmuir - 96.8 m2 g−1 - 7.0 [83]
Iron-CS composite (V) 22.5 Langmuir - 96.8 m2 g−1 - 7.0 [83]

Fig. 6. Different sources of Cd contamination. 
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efficient removal. Furthermore, the process of regenerating after cad-
mium adsorption may pose challenges, affecting the potential for reu-
sability and potentially leading to higher operational costs.

3.3. Removal of Chromium

Chromium (Cr) is naturally present in two oxidation states, such as 
chromium (III) and (VI), whereas, Cr (III) is relatively less threatening 
to animals and plants as compared to Cr (VI). It is widely used in var-
ious industries, including textile dyeing, steel and automobile manu-
facturing, leather tanning, and electroplating, and it causes a potential 
threat [109,110]. Fig. 7 presents the sources of chromium contamina-
tion. According to the International Agency for Research in Cancer 
(IRCA), Cr (VI) is carcinogenic to human beings and considered in 
group 1, while Cr (III) is not classified as carcinogenic [111,112].

Another study describes the synthesis of CS/polyethyleneimine fixed 
hydrophobic sodium alginate composite (MCPS) for sorptions of dyes 
and heavy metals. The maximum adsorption capacities were 351.0 for 
Cu, 87.5 for Cr (VI), 66.4 for methyl orange, and 286.5 mg g−1 for 
methylene blue [113]. Table 4 summarizes the maximum adsorption 
capacities for Cr on CS-based adsorbent.

In a study, Omer and coauthors (2021) examined the adsorption 
characteristics of aminated CS (AmCS)-modified MOF to remove 

chromium (VI). Moreover, the result depicted that the induction of 
amine groups made CS neat and strengthened the cationic nature, 
which is more helpful in removing anionic Cr (VI) [117]. In another 
study, the attapulgite clay and magnetic Fe3O4 modified with AmCS 
(ATP@Fe3O4-AmCS composite) was developed by Eltaweil and co-
authors in 2021 to remove anionic Cr (VI). The examination depicts 
rapid and efficient adsorption, and qmax was achieved at 294.1 mg g−1 

[127]. Dinh (2020) reported an effective and rapid adsorption process 
for Cr (VI) ions onto MnO2/CS nanocomposite. At pH 2.0 and in an 
hour, the adsorption efficiency reached 92 % [118]. In one of the stu-
dies, fabricated CS-Fe (III) was proven efficient in removing Cr (VI) 
more rapidly. Furthermore, the qmax for removing Cr (VI) on the pre-
pared complex was 173.1 mg g−1 within 10 min [125].

Chromium, specifically hexavalent chromium [Cr(VI)], is strongly 
attracted to CS-based adsorbents because of their exceptional ability to 
form robust complexes with metal ions. Due to their versatility, these 
substances can be easily modified to improve their ability to selectively 
adsorb chromium species. In addition, the matrices are biocompatible 
and environmentally friendly, reducing potential health and ecological 
hazards. Nevertheless, the effectiveness of CS-based adsorbents may be 
influenced by the pH of the solution, which requires precise adjustment 
of the solution conditions to achieve optimal chromium removal. In 
addition, the small size of its particles may limit their ability to adsorb 

Table 3 
Several CS-based adsorbents for the removal of Cadmium (Cd). 

Adsorbent Maximum Adsorption 
Capacity (mg g−1)

Isotherms 
model

Kinetics 
model

Surface area Contact time pH References

Chitosan/PVP/PVA-HNM 88.1 Langmuir 2nd Order 17.16 m2 g−1 - 7 [99]
Chitosan and pectin beads 177.6 Langmuir 2nd Order 23.66 m2 g−1 380 7 [101]
STPP-CLCS 99.8 Langmuir - - - 4 −8.5 [98]
CoFe2O4 @SiO2-CS/EDTA 127.8 Langmuir - 17.57 m2 g−1 180 2 −7 [102]
Chitosan/PVA/PEL 11.1 Langmuir 2nd Order 0.95 m2 g−1 6 [103]
Chitosan-VMT composite 58.5 Langmuir 2nd Order 7.91 m2 g−1 1400 4 [104]
Chitosan@NZVI 142.8 Freundlich 2nd Order 78.3 m2 g−1 180 4 −9 [105]
Vermiculite (Vm) blended 

with CS
169.0 Langmuir 2nd Order - 300 5.0 −5.5 [106]

Ca₅(PO₄)₃/CS 81.1 Langmuir 2nd Order - 1440 9 [107]
MICST 256.4 Langmuir 2nd Order - 360 6 −7 [108]

Fig. 7. Sources of Cr contamination. 
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substances, which could mean that larger amounts of the adsorbent are 
needed for effective treatment. In addition, the regeneration of CS 
matrices following chromium adsorption may present difficulties, im-
pacting their reusability and leading to higher operational expenses.

3.4. Removal of Copper

According to the World Health Organization (WHO), Copper (Cu) is 
among the essential nutrients in the water for all human beings if the 
concentration is below 0.05 ppm [128], but if the concentration is 
higher, it may lead to water pollution, especially heavy metals con-
tamination. If the concentration of Cu (II) ions gets higher in the human 
body, it affects the nervous system, damages the liver, and can cause 
cancer by triggering several mutations [129,130]. Due to anthro-
pogenic activities, the concentration of Cu (II) is increasing in water 
bodies and a few reasons include electrical combustion, dyes, mining, 

printing, and electroplating; hence, researchers have given great at-
tention to the treatment of industrial effluent [102,131]. Fig. 8 shows 
the copper contamination and its bioaccumulation in the food chain.

In an experimental study, He et al. fabricated amidoxime-functio-
nalized CS (AM/AO/AEBI-CS) for the removal of Cu (II). After the 
complete investigation, the Cu (II) adsorption capacity on the synthe-
sized material was 190.7 mg g−1 [132]. In a recent study, magnetic CS 
hydrogel beads (MCHB) were prepared with different ratios to remove 
Cu (II) by blending magnetite (Fe3O4) and CS in the solution of sodium 
alginate. The highest removal efficiency for Cu (II) was 56.51 % by 
MCHB-0.5 and determined by several parameters (pH, contact time, 
and various ratios of adsorbent) [133]. Zhang et al. examined the for-
mation of a CS membrane that was stacking and based on an electro- 
spinning technique and greatly enhanced the efficiency of Cu (II) ad-
sorption on CS via multi-layer. The electro-spinning technique boosted 
the surface area, and the qmax was 276.2 mg g−1[134]. 

Table 4 
Various Chitosan-based adsorbents for the removal of Chromium (Cr). 

Adsorbent Maximum 
Adsorption 
Capacity 
(mg g−1)

Isotherm model Kinetics model Surface area Contact 
time

pH Ref

CS-based hydrogel 234.8 Langmuir 2nd Order - 1440 4.5 [114]
Magnetic CS/polyethyleneimine sodium alginate 87.5 Langmuir 2nd Order 0.0506 m2 g−1 - 3 [113]
Chitosan/g-C3N4/TiO2 nanofibers 68.9 Langmuir 2nd Order - 1440 1 −7 [115]
Citratw-cross linked Zn-MOF/chitosan composite 225.0 Langmuir 2nd Order 16.28 m2 g−1 5.0 [116]
zeolite imidazolate framework−67-MOF@Am-chitosan 119.1 Langmuir & 

Freundlich
2nd Order 220.76 m2 g−1 60 2 −9 [117]

CS-MnO2 nanocomposite 61.6 Sips Intra diffusion 17.80 m2 g−1 120 2 [118]
Aerogel from nano-bentonite/Nano-cellulose/chitosan 98.9 Halsey 2nd Order - 1440 2 −8 [119]
Fe3O4/SiO2/chitosan-TETA composite 254.6 Langmuir 2nd Order 131.4 m2 g−1 - 2 −8 [120]
CA- C6H10O2 /chitosan nanofiber 126.0 Freundlich 2nd Order 249.1 m2 g−1 360 2 −7 [121]
Fe3O4 @SiO2-chitosan 96.2 Johnson-Mehl- 

Avrami-Kolmogorov
2nd Order - - - [122]

Mchitosan/GO 270 Langmuir 2nd Order 74.35 m2 g−1 600 2 [123]
Chitosan/Montmorillonite- Fe3O4 microsphere 58.8 Langmuir 2nd Order - 180 2 [124]
Chitosan-Iron (III) comples 173.1 - - - - - [125]
Polyethylenimine-magnetic CS microspheres 134.9 Langmuir 2nd Order - 300 1 −8 [126]

Fig. 8. Flow diagram of copper contamination. 
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Wang & Li prepared three-dimensional porous CS aerogels for 
copper ions. The CS aerogel showed low adhesion, super hydrophilicity, 
and selectivity. The maximum adsorption capacity was 116.7 mg g−1 

[145]. In another experimental study, He et al. synthesized the beads of 
EDTA on a polyvinyl alcohol (PVA)-CS surface. In addition, newly 
prepared beads exhibited much better adsorption than the previously 
prepared beads and qmax was reported 127.8 mg g−1 of Cu (II) [146]. 
Wang et al., CS-g-poly modified attapulgite (CS-g-PAA/APT) for re-
moving Cu (II) from contaminated water. This combined formation 
enhanced the specific porous surface and surface area; in 15 min, 90 % 
efficiency was reported [144]. Table 4 summarizes the qmax for Cu on 
CS-based adsorbent.

CS-based adsorbents have a remarkable ability to selectively bind 
copper ions, thanks to the strong interactions between the metal and 
the ligand. This property helps to minimize any unwanted interference 
from other ions present in the solution. Their compatibility with living 
organisms and their positive impact on the environment help mitigate 
the health and environmental hazards linked to copper removal pro-
cedures. In addition, the versatile nature of CS enables easy modifica-
tions to improve its capacity and selectivity for copper adsorption. CS- 
based adsorbents have been found to show adsorption behavior that is 
dependent on pH. This means that it is important to carefully adjust the 
solution conditions to achieve optimal copper removal. The surface 
area of CS particles is limited, which can restrict their adsorption ca-
pacity. As a result, higher doses of adsorbent may be necessary for ef-
fective treatment. In addition, the regeneration of CS matrices following 
copper adsorption could present difficulties, affecting their reusability 
and leading to higher operational expenses.

3.5. Removal of Lead

Lead (Pb(II)) is a persistent heavy metal that can deteriorate eco-
system and human health when it is introduced to more than 10 ppb in 
potable water as authorized by WHO [147,148], whereas the United 
States Environmental Protection Agency (US-EPA) allows 15 ppb con-
centration in drinking water [149,150]. Lead contamination sources are 
mentioned in Fig. 9.

Many studies have been reported on the development of adsorbents, 
such as CS, for the adsorption of Pb. In a recent study, CS and PVA were 
combined to remove Zn, Pb, and Fe. The maximum adsorption capa-
cities were 4.0 for Pb, 135.1 for Fe, and 222.2 mg g−1 for Zn [151]. Gao 
and coauthors prepared alginate/melamine/chitosan (SA/ME/CS) 
aerogel for Lead (II) adsorption in this context. The results showed high 

adsorption between pH 5–6 with a maximum adsorption capacity of 
1331.6 mg g−1 towards Pb (II) [78]. Amin et al., synthesized magnetite 
nanoparticles via a thermal decomposition process and coated them 
with silica (mesoporous) layers using cetyltrimethylammonium bro-
mide (CTAB) as a surfacting agent. The prepared adsorbent exhibited a 
maximum capacity of 150.3 mg g−1 for Pb2+ and 126.3 mg g−1 for 
Cd2+ [152]. Table 6 summarizes qmax for Pb on CS-based adsorbent.

In another research, Dinh and coworkers (2018) fabricated CS- 
loaded manganese dioxide (MnO2/CS) nanoparticles where the pores 
surface area of MnO2/CS was larger than the lead ions, proposing the 
possibility of Pb (II) ions to enter in the surface of the beads [156]. In 
one attempt, Guo et al. examined the utilization of CS-PDA aerogel for 
Pb (II) adsorption from the wastewater. The qmax was reported to be 
441.2 mg g−1, and the chemisorption process occurred [157]. Li et al. 
examined the adsorption of Pb (II) onto yeast biomass modified with 
ethylenediamine and coated with magnetic-CS micro-particles 
(EYMCS). The qmax was reported to be 134.9 mg g−1 at 40 °C [158]. 
Furthermore, Liang et al. experimented with beads that were solid and 
synthesized MOF and CS via the solvothermal method, and as a cross- 
linker, sodium tripolyphosphate (Na-TPP) was utilized. The qmax of 
406.5 mg g−1 was found at normal room temperature [159].

CS-based adsorbents have proven to be highly effective in the re-
moval of lead contaminants. This effectiveness can be attributed to the 
strong interactions that occur between lead ions and the functional 
groups present on the surfaces of CS. Their compatibility with living 
organisms and their positive impact on the environment help alleviate 
health and environmental issues related to lead removal methods. In 
addition, it’s versatility allows for easy modifications to improve its 
ability to absorb lead and selectivity. CS-based adsorbents have been 
found to show pH-dependent adsorption behavior. Therefore, it is im-
portant to carefully control the solution conditions in order to achieve 
optimal lead removal. The surface area of CS particles is limited, which 
can limit their adsorption capacity. This means that higher doses of 
adsorbent may be needed for effective treatment. In addition, the re-
generation of CS matrices following lead adsorption presents a potential 
challenge, as it may affect reusability and lead to higher operational 
costs.

4. Regeneration of CS-based adsorbents

The regeneration of CS-based adsorbents is an important aspect in 
assessing their practical feasibility and sustainability for removing 
heavy metals from wastewater and there are several factors to examine. 

Table 5 
Various Chitosan-based adsorbents for the removal of Copper (Cu). 

Adsorbent Maximum Adsorption 
Capacity (mg g−1)

Isotherm 
model

Kinetics 
model

Surface area Contact time pH Ref

Chitosan/PVP/PVA-HNM 106.7 Freundlich 2nd Order 17.16 - - [99]
Magnetic CS/polyethyleneimine sodium 

alginate
351.0 Langmuir 2nd Order 0.0506 - 6 [113]

AM/AO/AEBI-CS 190.7 Sips 2nd Order 247.4 m2 g−1 360 2 −6 [132]
DTPA-chitosan/PEO nanofibers 177.0 Langmuir 2nd Order - 90 5 [135]
CNTs-CHO-Chitosan 115.8 Langmuir 2nd Order - 90 2 −11 [136]
Chitosan-g-MA composite 312.4 Langmuir 2nd Order - 180 6 [137]
Chitosan/PVA/PEL membrane 86.1 Langmuir 2nd Order 0.95 m2 g−1 720 6 [103]
MSC/GO gel beads 55.0 Langmuir 2nd Order - - 1 −7 [138]
Magnetic bentonite/Carboxymethyl 

Chitosan/SA hydrogel beads
56.8 Langmuir 2nd Order - 240 2.0 −6.3 [134]

MSC/GO 217.0 Langmuir 2nd Order 132.9 m2 g−1 75 7 [131]
TEPA/Chitosan/CoFe2O4 168.1 Langmuir 2nd Order - 50 5 [139]
MChitosan/GO with EDTA 207 Langmuir 2nd Order 81.36 m2 g−1 300 5.5 [91]
Chitosan-MMT hydrogel 132.7 Freundlich 2nd Order - - 5 [140]
Chitosan/TEOS/APTES nanofiber 640.5 Langmuir 1st Order - 60 2 −7 [141]
Zeolite X/Chitosan hybrid microspheres 152.0 Langmuir 2nd Order 406 m2 g−1 - 5.5 [142]
Silica/Chitosan composite 870.0 Freundlich - 119.29 m2 g−1 30 1 −6 [143]
Chitosan-g-PAA/APT 303.0 Langmuir 2nd Order 1.83 m2 g−1 180 5.85 [144]
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To begin with, the conversation focuses on the ability to use these ad-
sorbents multiple times and their cost-efficiency, and CS is a cheap 
source [160]. It underscores their potential for repeated use and the 
financial considerations of the regeneration process. Additionally, it is 
important to optimize the circumstances for regeneration, including 
elements such as the kind and concentration of the regenerating agent, 
temperature, and contact time [161]. Elution with an eluent is the most 
used method in the literature to regenerate chitosan-based adsorbents. 
The proportion used of eluents was in the sequence of salts, alkalis, 
chelators, and acids. The HCl, EDTA, NaOH, and NaCl solutions are 
frequently employed to remove substances [162]. This is necessary to 
develop effective protocols and improve desorption efficiency. More-
over, focus is given to the stability and durability of the adsorbent, 
examining any changes in structure or alterations in functional groups 
that may occur over repeated regeneration cycles to appropriately as-
sess long-term performance. Studying how desorption works provides 
information about how metals and CS interact, which helps improve 
methods for regeneration. Environmental factors, such as the possible 
creation of additional pollutants and the impact on the environment 

caused by regenerating agents, are important for assessing the overall 
environmental impact of the adsorption-desorption cycle. Finally, in-
cluding actual uses, like continuous-flow systems or large-scale water 
treatment procedures, requires dealing with scaling issues and sug-
gesting methods to match regeneration elements with real-life situa-
tions. Fig. 10 shows the regeneration of CS-based adsorbents for the 
metals.

5. Effect of heavy metals on human health

Heavy metals are available naturally in the environment, and a few 
are vital for living on Earth, but when they bioaccumulate in the food 
chain, they become hazardous [163] and seriously harm human health. 
Arsenic is an extremely toxic metalloid. Long-term exposure to As has 
been linked to a number of health problems, such as skin lesions, 
bladder, lung, and skin cancers, as well as cardiovascular disorders 
[164]. Long-term consumption of water tainted with As has been con-
nected to the emergence of several malignancies, making it a serious 
public health risk. Furthermore, exposure to arsenic has been linked to 

Fig. 9. Several sources of Pb contamination. 

Table 6 
Various CS-based adsorbents for the removal of Lead (Pb),. 

Adsorbent Maximum 
Adsorption 
Capacity (mg  
g−1)

Isotherm 
model

Kinetics 
model

Surface area Contact 
time

pH Ref

Alginate/Melamine/Chitosan aerogel 1331.6 Langmuir 2nd Order - 850 5.5 [78]
Chitosan/PVP/PVA-HNM 87.81 Langmuir 2nd Order 17.16 m2 g−1 - - [99]
Chitosan-pectin beads 266.5 Langmuir 2nd Order 23.66 m2 g−1 160 1 −9 [101]
Chitosan/Polyvinly alcohol 4.02 Langmuir 2nd Order 1.96 m2 g−1 720 3.64 [151]
Cross-linked carboxylated Chitosan/ carboxylated 

nano-cellulose hydrogel beads
334.9 Langmuir 2nd Order - 30 4 −4.5 [153]

Magnetic-Chitosan-Peracetic acid nano-composite 204.9 Langmuir 2nd Order - 120 2 −5 [154]
Chitosan-Polyvinyl alcohol nano-fibers 266.12 Langmuir 2nd Order - 240 2 −11 [155]
Magnese oxide/Chitosan nano-particles 126.1 Langmuir 2nd Order 15.75 m2 g−1 240 2 −15 [156]
Polydopamine-modified Chitosan aerogels 441.2 Langmuir 2nd Order 77.3 m2 g−1 900 2 −8 [157]
Hydroxyapatite/Chitosan composite 132.1 Langmuir 2nd Order - 240 6 [107]
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neurological diseases and other effects on the nervous system, including 
the ability to reproduce. To lessen these harmful effects on health, the 
World Health Organization (WHO) and other regulatory agencies have 
set strict limits for arsenic in drinking water.

Cadmium is naturally present and released into the atmosphere by 
manmade activities (mainly released into the air via tainted food, drink, 
and tobacco smoke), and it has different effects on humans and animals. 
Chronic exposure to cadmium has been linked to kidney damage, which 
can result in painful and incapacitating illnesses like Itai-Itai disease, a 
form of osteomalacia. In addition, cadmium has been linked to cardi-
ovascular problems, pulmonary problems, and a higher risk of some 
cancers, especially prostate and lung cancer. Cadmium can also have a 
detrimental effect on bone health, increasing the incidence of fractures 
and reducing bone density. Also, a study reported that cadmium hin-
ders in plant metabolic processes and growth [165].

The metal chromium can be found in a number of oxidation states, 
the most dangerous of which is hexavalent chromium [Cr(VI)]. Long- 

term exposure to high concentrations of hexavalent chromium, which are 
frequently present in industrial effluent, has been connected to lung 
cancer and other respiratory problems. Skin disorders, renal damage, and 
irritation of the nose and gastrointestinal tract can also be brought on by 
hexavalent chromium ingestion or inhalation [166]. Because of its link to 
lung cancer, hexavalent chromium has been categorized as a Group 1 
human carcinogen by the International Agency for Research on Cancer 
(IARC). Even though copper is a trace element vital to human health, too 
much of it can have negative effects. Severe copper poisoning in drinking 
water can lead to nausea and vomiting as well as other gastrointestinal 
problems. Copper poisoning is especially dangerous for those with Wil-
son's disease, a hereditary illness that affects copper metabolism. Chronic 
exposure to high copper concentrations may also aggravate the kidneys 
and liver. Copper is routinely monitored in drinking water to ensure that 
levels stay within acceptable limits for human consumption, despite any 
potential health hazards. Fig. 11 shows the human health effects of 
contaminated water with toxic heavy metals.

Fig. 10. Regeneration of CS-based adsorbents for metals. 

Fig. 11. Adverse effects on human health by toxic heavy metals. 
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Mercury is present in the biosphere and is a highly hazardous heavy 
metal. It converts to methyl-mercury when it comes in contact with 
aquatic sediments, which is highly toxic [167]. Manganese is the most 
abundant toxic heavy metal found naturally in several oxidation states. 
It is required in many physiological activities, and its excessive con-
sumption results in high levels of toxicity [168,169]. It has adverse 
human health effects and causes lung and nasal cancer, kidney dis-
orders, cardiovascular diseases, and allergies via inhalation of nickel in 
the air [170–172], whereas cobalt usually has no negative impacts on 
human life but may cause death when massive discharges into the en-
vironment [173]. It is a very poisonous heavy metal and may possess 
negative effects on the body's organs. Exposure to lead throughout 
childhood has the greatest health hazards as it can disrupt cognitive 
development and result in behavioral issues. Adults who are exposed to 
Pb have a higher chance of developing hypertension, cardiovascular 
illnesses, and decreased renal function. It can also build up in bones, 
which presents long-term health hazards. Strict laws limiting lead ex-
posure have been implemented due to the negative consequences of 
lead, especially in paint, drinking water, and other consumer goods. .

Moreover, copper and zinc are considered vital nutrients for human 
life and plants, and their toxicity makes them lethal. The deficiency of 
copper alters vital metabolic processes [191]. Zinc affects ecosystems 
when emitted into the environment [192].

6. Conclusion and recommendations

Adsorbents based on CS demonstrate remarkable characteristics in 
the removal of environmental pollutants, demonstrating significant 
adsorption capacities and efficiencies against a variety of pollutants. 
This review focuses on the incorporation of different materials with CS, 
including forms like beads, hydrogels, membranes, etc., that greatly 
reduce the separation difficulties that come with CS. According to 
analysis, CS can be modified with promising materials to increase its 
adsorption capacity. These materials include clays, carbon materials, 

metal-organic frameworks, layered double hydroxides, etc., which help 
to overcome the low adsorption complexity that CS naturally possesses. 
Moreover, adding the right functional groups to CS improves its elec-
trostatic interaction with contaminants, making it a very powerful 
method for increasing CS selectivity.

This thorough analysis investigates the adsorption phenomena of CS 
toward extremely harmful heavy metals, such as As(III) & (V), Cd(II), 
Cu(II), Cr(VI), and Pb(II), and clarifies the implications for human 
health. Notwithstanding these positive qualities, disadvantages of CS- 
based adsorbents are noted; they include problems with reusability, pH 
dependence, restricted surface area, cost and scalability, and low ad-
sorption capacity. The authors acknowledge that pollutant selectivity is 
a crucial component in the assessment of CS-based adsorbents and 
stress its vital importance in the investigation of actual wastewater.

However, this review includes future recommendations to address 
the drawbacks: 

1. Enhanced Adsorption Capacity: Researchers can investigate CS- 
based adsorbents with various modifications to improve their ad-
sorption capacity. This may incorporate functional groups, nano-
particles, or materials to increase efficiency.

2. pH Tolerant Adsorbents: Synthesis of adsorbents that can effi-
ciently perform over a diverse pH range would improve their 
practical applicability.

3. Selectivity: Synthesis of CS-based adsorbent with surface mod-
ification or specific functional group could help improve selectivity 
for targeted metal contaminants.

4. Thermodynamic Constraints: The thermodynamic capability of 
heavy metal adsorption onto CS is governed by parameters such as 
temperature and pressure. It is essential to comprehend the ther-
modynamic parameters, such as enthalpy, entropy, and Gibbs free 
energy changes, in order to forecast the feasibility and spontaneity 
of the adsorption process under various circumstances.

5. Influence of Ionic Strength: It's adsorption capacity for metals is 
sensitive to differences in ionic strength. Concentrated solutions can 
reduce the electrostatic attraction resulting in the overall lower 
adsorption.

6. Diffusion Limitations: When heavy metal ions diffuse slowly into 
CS matrices, equilibrium may not be reached in a reasonable 
amount of time. This constraint is linked to the necessity for mass 
transfer across the aqueous outer layer and the internal pores of the 
adsorbent, demanding longer contact durations.

By addressing these challenges and implementing recommenda-
tions, CS-based adsorbents can potentially improve in terms of se-
lectivity, cost-effectiveness, and environmentally friendly metal re-
moval solutions.
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