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Mobile agents start at different nodes of an n-node network. The agents synchronously 
move along the network edges in a collision-free way, i.e., in no round two agents may 
occupy the same node. An agent has no knowledge of the number and initial positions 
of other agents. We are looking for the shortest time required to reach a configuration in 
which each agent has visited all nodes and returned to its starting location. In the scenario 
when each mobile agent knows the map of the network, we provide tight (up to a constant 
factor) lower and upper bounds on the collision-free exploration time in arbitrary graphs, 
and the exact bound for the trees. In the second scenario, where the network is unknown 
to the agents, we propose collision-free exploration strategies running in O (n2) rounds in 
tree networks and in O (n5 logn) rounds in networks with an arbitrary topology.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The graph searching problem is a task of central importance in many contexts, including network maintenance, terrain 
patrolling, and robotics. Its different aspects have been thoroughly investigated, cf. [12]. The rendezvous search problem has 
been often presented as a game with two mobile players walking within the search space and having the common goal of 
arriving at the same time at the same location (see [4]). On the other hand, the exploration problem consists in examining 
all elements of the search space by a mobile agent (e.g. visiting all graph nodes or traversing all its edges), e.g., in order to 
find a hidden target (see [1,21]).

In this paper we consider a graph searching problem in which each of a set of mobile agents must explore a given 
undirected graph, in such a way that two agents may never visit the same node of the graph at the same time. This 
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Table 1
The time of optimal collision-free graph exploration. �(G) denotes 
the maximum degree of a node in graph G , and �∗(G) = �(T ), 
where T is a minimum-degree spanning tree of G .

Scenario Tree General graph

With complete map: n�(G) �(n�∗(G))

Theorem 2.2 Theorem 2.4

With local knowledge: O (n2) O (n5 log n)

Theorem 3.1 Theorem 3.2

property of the model, which we call collision avoidance, is motivated by the fact that the processes executed by mobile 
agents (software agents or physical robots) sometimes require exclusive access to network resources. Our problem may have 
practical applications. For example, mobile software agents may need exclusive access to a node’s resources when updating 
its data. Robots (or nano-robots) distributing interacting chemical or pharmacological agents within a battlefield or a human 
body must avoid to be simultaneously present at a small distance apart. Individuals, one of which is highly infectious or 
socially conflicting, should avoid a meeting. This problem has been studied in [20] for the case of tree networks. A question 
related to the offline version for our problem has been given some attention in the context of routing (cf. [3]).

In our considerations, time is divided into synchronous rounds. Initially, each agent is placed at a different node and in 
each round it may choose to move to a neighboring node or to stay motionless. The agents are independent in the sense 
that they cannot communicate and none of them knows the number of other agents, their initial placement in the graph, 
and is unaware of the current location of the other agents. The agents move independently, and each of them executes 
the same algorithm. The effectiveness of the algorithm is measured in terms of the collision-free exploration time, i.e., the 
number of rounds until all potentially existing agents are certain to have completed the exploration and returned to their 
initial location. Details of our model are discussed at the end of this section.

1.1. Our results

We consider two scenarios, differing in the amount of global information about the network topology which is available 
to each agent. Our results are summarized in Table 1.

For the first scenario, considered in Section 2, we assume that a map of the network is a priori known to the agents. 
We show that a collision-free exploration strategy exists for any graph, and provide efficient solutions for trees and general 
graphs. We start by considering the case of trees, proposing a strategy which involves the simultaneous activation of agents 
located at the endpoints forming a matching in some optimal edge-coloring of the tree. This strategy is shown to yield op-
timal exploration time. We then extend this approach from the case of trees to the case of general graphs, by requiring that 
the agents perform exploration using only the edges of a well-chosen spanning tree of the graph. Somewhat surprisingly, it 
turns out that this approach is asymptotically the best possible, i.e., within a constant factor of the optimum. To prove the 
corresponding lower bound on the collision-free exploration time in graphs, we establish a tight connection between our 
problem and the fractional relaxation of the LP formulation of the minimum-degree spanning tree problem.

In the second scenario, discussed in Section 3, we deal with synchronous agents possessing only local knowledge about 
the graph to explore. In particular, no knowledge of the size of the graph is assumed. We suppose that each agent executes 
a local, distributed algorithm, in every round making a decision based on the information concerning the currently occupied 
node and the identifiers of the neighboring nodes. For this scenario, we show that a collision-free exploration is always 
feasible in finite time and we give algorithms for trees and general graphs. Our collision-free exploration strategies are 
of length O (n2) for trees and O (n5 log n) for arbitrary graphs, and make use of the application of universal exploration 
sequences.

Throughout the paper, we assume that the strategies for collision-free exploration are required to return the agent to 
their initial location. This assumption allows us to see our strategies as an analogue of the classical Traveling Salesman 
Problem with mutually-exclusive salesmen on an unweighted graph, and also allows the agents to engage in perpetual 
(periodic) exploration of the graph. After minor modification of the proofs, all the results presented in Table 1 also hold up 
to constant factors for the variant of the problem in which agents may end exploration at an arbitrary node of the graph.

1.2. Related work

We remark that a similar process was studied in a different context by Nakaminami et al. [20], who obtained a �(�n)

bound for trees. Herein, we provide our own analysis of this case for the sake of completeness. We then generalize this 
analysis to the case of arbitrary graphs, and also to the case where agents do not have a map of a graph. Our analysis for 
trees shows in a simple way that the number of steps required in a tree is precisely �n.

The offline setting of our question is related to the following problem (cf. [3]), which was studied in the context of 
routing. Each vertex of a given graph is initially occupied by a “pebble”, which has to be moved to a destination, so that 
the destinations of different pebbles are different. In every synchronous round a set of edges is selected and the pebbles 
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at each edge endpoints are interchanged. [3] attempts to minimize the number of rounds so that all pebbles reach their 
destination, giving lower and upper bounds for different classes of graphs. The routing model of [3] inherently implies the 
usage of matchings – the technique that we choose to apply in some results of our paper. The 3n upper bound for trees 
given in [3] was improved to 1

2 n + O (log n) in [23]. [18] and [22] independently extended this model to allow more than 
one pebble per origin and destination node.

The offline version of our problem is also related to a graph parameter called acquaintance time of a graph, recently 
introduced in [7] and defined as follows. Consider a graph G whose each node is initially occupied by an agent. In each 
round, a matching M in G is selected and for each e ∈ M , the two agents occupying the endpoints of e switch places, i.e., 
each of them slides along e from its current position to the other endpoint of e. If, at any point, two agents occupy two 
adjacent nodes, then they are called acquainted. The acquaintance time of G is the minimum number of rounds for which 
there exists a sequence of matchings that guarantees that each pair of agents becomes acquainted. In [5], the authors show 
an upper bound of O (�n) on the acquaintance time of a graph, where � is the maximum degree and n is the number 
of nodes of the graph. Similarly to our approach, this result is obtained by forcing the agents to move along edges of a 
spanning tree of G and, an upper bound of 20�n on the acquaintance time of a tree gives the general bound. We note that 
this problem was also studied in the context of random graphs, see [10,17,19].

For the (classical) graph exploration problem with local knowledge, a lot of attention has been given to exploration in 
anonymous networks, in which the agent, when located at a node, has to decide on its next move based only on its own 
local memory state, the local port ordering at the node, and the port by which it entered the current node. It has been 
shown in [13] that an agent must be equipped with at least n states (i.e., �(log n) bits of memory) to be able to explore 
all anonymous graphs with n nodes. On the positive side, unknown anonymous graphs can be deterministically explored 
by following so called universal traversal/exploration sequences. These exist for any number of nodes, and have polynomial 
length [2]. The exploration time obtained using such an approach is O (n5 log n), i.e., a factor of about n2 greater than the 
(expected) cover time of a corresponding random walk.

The problem of graph exploration without collisions was also studied in the case when two agents also collide when 
traversing one edge in opposite directions. In [6] the authors study the maximal number of agents that can explore graph 
without collisions in a synchronous setting. The asynchronous Look–Compute–Move model is considered in [8] where the 
authors study the maximal and minimal number of agents that are necessary and sufficient to solve the problem for a ring. 
In both these papers it is assumed that each agent can observe (or compute) the positions of the other agents.

1.3. Model and definitions

We assume that the nodes of each n-node network have unique identifiers in {1, . . . , n}. The identifier of a node v is 
denoted by id(v). Several agents are initially located at pairwise different nodes of the network. The initial position of each 
agent a is denoted by home(a). Each agent is unaware of the number and initial positions of the other agents, and all agents 
are given the same algorithm that determines their behavior in the subsequent rounds.

Each agent can perceive the identifier id(v) of the currently occupied node v and can perceive the identifiers of all 
neighbors of v . Moreover, the agent can distinguish the edges incident to v according to the identifiers of the nodes located 
at the endpoints of the edges. The latter assumption is necessary to properly perform the navigation in a node labeled 
network.

The agents are synchronous and hence the time is divided into rounds of equal duration. Each round is divided into 
two stages. In the first stage each agent a makes a decision (by executing its algorithm) that determines its behavior in the 
second stage of the round. The decision can be three-fold: it may decide to stay in this particular round at the currently 
occupied node, to move from the currently occupied node to one of its neighbors, or decide that its exploration is completed. 
In the second stage of the round, all agents simultaneously perform the action corresponding to their decision. If, as a result, 
two agents located at some adjacent nodes u and v decide to move from u to v and from v to u, respectively, then they 
traverse the same edge in this round, but remain unaware of this event, i.e., the two agents do not communicate and do 
not perceive each other. We require that the algorithm given to the agents ensures the following:

• at the end of each round no two agents are present on the same node of the network,
• by the end of some round t ≥ 0, all the agents have decided that the exploration is completed,
• each agent has visited each node of the network in one of the rounds 1, . . . , t ,
• each agent a is present at home(a) at the end of round t .

Note that, in this setting, the execution of the agent’s algorithm (and thus the behavior of the agent) only depends on the 
input to the algorithm and on the identifiers of the nodes visited by the agent. Thus, in particular, an agent is unable to 
ever discover the initial or current position of any other agent or the number of agents in the network.

With respect to additional information available to the agents, we study two scenarios in this work: either the agents 
have no prior knowledge of network topology and no knowledge of global parameters, or the complete map of the network 
is given to all agents. In the latter case the map consists of node identifiers, but provides no information on the locations of 
other agents. Note that if, together with a complete map of the network, all agents receive as an input information on the 
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initial positions of all agents, then our exploration problem becomes similar to the off-line routing problems considered e.g. 
in [3,22,23].

Let G = (V (G), E(G)) be any network. For any node v of G let NG(v) be the set of neighbors of v in G . We use the 
symbol �(G) to denote the degree of G , defined as �(G) = max{|NG(v)| : v ∈ V (G)}. (|NG(v)| is called the degree of v .) 
Given a set of edges X ⊆ E(G), define G[X] to be the network with nodes in V (G) and edges in X , G[X] = (V (G), X). 
Note that G[X] is not necessarily connected. A connected network H such that V (H) ⊆ V (G) and E(H) ⊆ E(G) is called a 
connected component of G if there exists no connected network H ′ such that V (H) ⊆ V (H ′) ⊆ V (G) and E(H) ⊆ E(H ′) ⊆
E(G) and H �= H ′ .

Any sequence R = (v0, v1, . . . , vl) of nodes of a network G is called a route in G if vi = vi−1 or {vi, vi−1} is an edge of 
G for each i = 1, . . . , l. We say that l is the length of R and we write Ri = vi for each i = 0, . . . , l. The route R covers G
if for each node v of G there exists i ∈ {0, . . . , l} such that v = Ri . The route R is closed if R0 = Rl , where l is the length 
of R. Let a be an agent. We say that the route R of length l is a route of a if:

(i) R0 = home(a) and a is present at Ri at the end of round i, i = 1, . . . , l, and
(ii) a does not move in any round r > l.

We say that a route R of length l is an exploration strategy for a if

(i) R is a route of a,
(ii) R is closed,

(iii) R covers G .

Two routes R and R′ of length l are collision-free if Ri �=R′
i for each i = 0, . . . , l. Let A = {a1, . . . , ak}, 1 ≤ k ≤ n, be the set 

of agents that are initially located at the nodes of G . Let R(a) be the exploration strategy for each agent a ∈ A. We say that 
R(a1), . . . , R(ak) are collision-free if R(ai) and R(a j) are collision-free for each i, j ∈ {1, . . . , k}, i �= j. Let t be the minimum 
integer such that for each set of agents placed arbitrarily on the nodes of G there exist collision-free exploration strategies, 
each of length at most t , for the agents. Then, t is called the collision-free exploration time of G .

2. Network exploration with a map

In this section we consider the problem of collision-free exploration in the case when each agent is given a complete 
map of the network to be explored. We start by discussing the simpler case of tree networks in Subsection 2.1, and in 
Subsection 2.2 we generalize our approach from trees to arbitrary networks, showing its asymptotic optimality by proving 
a corresponding lower bound.

2.1. Tree exploration with a map

We start with some notation and two preliminary lemmas that are the main tool in the analysis of an algorithm given 
in this section.

Given a tree network T , we say that a function c : E(T ) → {1, . . . , d} is a d-edge-coloring of T if c(e) �= c(e′) for any two 
adjacent edges in T .

Let d be an integer, let c be a d-edge-coloring of G , and let v be any node of G . Define T (v, d, c) = (v0, v1, v2, . . .) to be 
an infinite route in G starting at v such that:

(i) if c({vi−1, u}) �= 1 + (i − 1) mod d for each neighbor u of vi−1 in G , then vi = vi−1,
(ii) if c({vi−1, u}) = 1 + (i − 1) mod d for some neighbor u of vi−1, then vi = u.

Then, define T l(v, d, c), l ≥ 0, to be the prefix of T (v, d, c) of length l, and T l
i (v, d, c) to be vi for each i = 0, . . . , l. 

(See Fig. 1.)
We now give two preliminary lemmas in which we prove that if u and v are two distinct nodes of T , then the routes 

T dn(u, d, c) and T dn(v, d, c) are collision-free, and each of them is closed and covers the tree network.

Lemma 2.1. Let T be a tree network. If c is a d-edge-coloring of T , then for any two distinct nodes u and v of T the routes T l(u, d, c)
and T l(v, d, c) are collision-free for each l ≥ 0.

Proof. Let l ≥ 0 be fixed arbitrarily. Denote T l(u, d, c) = (u0, u1, . . . , ul) and T l(v, d, c) = (v0, v1, . . . , vl).
We prove by induction on i = 0, . . . , l that T i(u, d, c) and T i(v, d, c) are collision-free. By assumption, u �= v and by 

definition, T 0(u, d, c) = (u) and T 0(v, d, c) = (v). Hence, the claim follows for i = 0.
Assume that the claim holds for some i ∈ {0, . . . , l −1} and we prove it for i +1. If ui = ui+1 and vi = vi+1, then the proof 

is completed. Thus, ui �= ui+1 or vi �= vi+1 and assume without loss of generality that the former occurs. By construction of 
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Fig. 1. (a) a 15-node tree network T with a 6-edge-coloring c; (b) the route T dn(v, d, c) = T 90(v, 6, c) = (v0, . . . , v90) encoded as follows: an integer i that 
is a label of an arc going from u to v indicates that vi = v and vi−1 = u; an integer label i of a node u of T means that vi = vi−1 = u.

T (u, d, c), c({ui, ui+1}) = 1 + (i mod d). If ui+1 = vi , then from the construction of T (v, d, c) we obtain that vi+1 = ui and 
consequently ui+1 �= vi+1 as required. If ui+1 �= vi , then vi+1 �= ui+1, because ui �= vi and c is an edge-coloring of T . �
Lemma 2.2. Let T be a tree network and let d be an integer. If c is a d-edge-coloring of T and v is a node of T , then the route 
T dn(v, d, c) is closed and covers T .

Proof. Consider T to be rooted at v and let Tu be a subtree of T induced by u and all its descendants for each u ∈ V (T ). 
Assume without loss of generality that T consists of at least two nodes. Denote T (v, d, c) = (v0, v1, v2, . . .).

We prove by induction on the subtree size that for each u ∈ V (T ), if i ∈ {0, . . . , dn} is the minimum index such that 
vi = u, then (vi, . . . , vi+s) is closed and covers Tu , where s = |V (Tu)|d − 1.

We first consider the case of a single node tree Tu . Since |V (T )| > 1, u has a parent u′ . By the definition of T (v, d, c), 
c({u, u′}) = 1 + (i − 1) mod d. Let s ≥ 0 be the maximum index such that vi = vi+1 = · · · = vi+s . Such an s exists because 
there exists j > i such that c({u, u′}) = 1 + j mod d. Clearly, vi+s+1 = u′ . We obtain that s ≥ d − 1, because otherwise 
1 + (i + s) mod d = c({vi+s, vi+s+1}) = c({u, u′}) = 1 + (i − 1) mod d, and hence (s + 1) mod d = 0, which is a contradiction. 
Moreover, vi+d = u′ , because 1 + (i + d − 1) mod d = 1 + (i − 1) mod d. Hence, s = d − 1 as required.

Consider any rooted subtree Tu , |V (Tu)| > 1, and suppose that the claim holds for any subtree with less than |V (Tu)|
nodes. We first consider the case when u �= v .

Let u1, . . . , up , p ≥ 1, be the children of u in Tu . By the definition of edge-coloring, d ≥ �(T ), and hence p ≤ d. Let u′ be 
the parent of u in T , and assume without loss of generality that for some 1 ≤ q ≤ p

c({u, u′}) < c({u, u1}) < · · · < c({u, uq}) and c({u, uq+1}) < · · · < c({u, up}) < c({u, u′}). (1)

Let i j be the minimum index such that vi j = u j , j = 1, . . . , p. By the induction hypothesis, R(u j) = (vi j , . . . , vi j+s j ) is 
closed and covers Tu j , where s j = |V (Tu j )|d − 1, for each j = 1, . . . , p.

First we prove that for each j = 1, . . . , p it holds vi j+s j+1 = u. Let j ∈ {1, . . . , p} be selected arbitrarily. By the choice of 
i j , vi j �= vi j−1. Since v0 is the root of T , u = vi j−1. This implies that

c({u, u j}) = c({vi j−1, vi j }) = 1 + (i j − 1)mod d. (2)

Note that

1 + (i j + s j)mod d = 1 + (i j + |V (Tu j )|d − 1)mod d = 1 + (i j − 1)mod d. (3)

By the fact that R(u j) is closed, u j = vi j+s j . Hence, by (2) and (3),

c({u j, u}) = c({vi j+s j , vi j+s j+1}) = c({u j, vi j+s j+1}).
Since, c is an edge-coloring of T , vi j+s j+1 = u as required.

Let C(u j) be the maximal subsequence of T dn(v, d, c) starting with vi j+s j+1 and with all elements equal u, j = 1, . . . , p. 
By (1) and by construction of T (v, d, c),

C(u j) = (vi j+s j+1, . . . , vi j+1−1) for each j = 1, . . . , p − 1. (4)

Define C(u0) and C(up) to be the maximal subsequences of T dn(v, d, c) starting with vi and vip respectively, with all 
elements equal u. Note that the definition of C(u0) is correct, because vi = u. By (4),
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(vi, . . . , vi+s) = C(u0),R(u1),C(u1),R(u2),C(u2), . . . ,R(up),C(up),

where

s =
p∑

j=0

|C(u j)| +
p∑

j=1

|R(u j)| − 1 = 2p +
p∑

j=0

(|C(u j)| − 1) +
p∑

j=1

(|V (Tu j )|d − 1). (5)

The sum 
∑p

j=0(|C(u j)| −1) equals, informally speaking, the number of two consecutive appearances of u in (vi+1, . . . , vi+s). 
By (1), this sum equals d − p − 1, because c is a d-edge-coloring of T and u is not the root of T . Hence, by (5),

s = d − 1 +
p∑

j=1

|V (Tu j )|d = d(1 +
p∑

j=1

|V (Tu j )|) − 1 = |V (Tu)|d − 1.

Finally, if u = v , then the proof is analogous, and the fact that u has no parent implies that 
∑p

j=0(|C(u j)| − 1) = d − p. 
Hence, we obtain that s = dn when u is the root, which completes the proof. �

It remains to observe that the considered routes can be implemented as exploration strategies. Indeed, each agent a is 
able to construct some d-edge-coloring c of T (the same for all agents, e.g., lexicographically first with respect to some 
chosen ordering of all colorings) with d = �(T ), and hence it is able to ‘follow’ T n�(T )(home(a), �(T ), c). We formulate this 
strategy in the form of the algorithm below.

Algorithm Tree-Exploration(T )

Input: A node-labeled tree network T .
begin

Let v be the initial position of the executing agent.
Compute the lexicographically first �(T )-edge-coloring c of T
for each round r ← 1 to n�(T ) do

if there exists an edge {v, u} such that c({v, u}) = 1 + (r − 1) mod �(T ) then move from v to u in round r, set 
v ← u.
else stay at v in round r.

end Tree-Exploration

For an agent a following Algorithm Tree-Exploration, its route is of length n�(T ), and given as Rn�(T )(a) =
T n�(T )(home(a), �(T ), c), where c is the �(T )-edge-coloring computed in the Algorithm. Consequently, taking into account 
Lemmas 2.1 and 2.2, we have the following.

Proposition 2.1. Let T be a tree network and let a1, . . . , ak, 1 ≤ k ≤ n, be the agents initially located at pairwise different nodes 
of T . Suppose that the agent ai uses Algorithm Tree-Exploration to compute its route Rn�(T )(ai), for each i = 1, . . . , k. Then, 
Rn�(T )(a1), . . . , Rn�(T )(ak) are exploration strategies, and are collision-free.

It turns out that there exist no shorter collision-free exploration strategies than those constructed with Algo-
rithm Tree-Exploration.

Theorem 2.2. The collision-free exploration time of any n-node tree network T is precisely equal to n�(T ).

Proof. The upper bound follows from Proposition 2.1. Now, we prove the lower bound, i.e., that the collision-free exploration 
time of T is at least n�(T ). Let u be a fixed node of degree �(T ) in T . First assume that there are n agents in T . We say 
that an agent a is active in round r if a goes from v to u in round r for some v ∈ NT (u). In each round at most one agent 
is active. For each agent a there exist at least �(T ) rounds in which a is active, because the route of a needs to be closed 
and T is a tree. Since there are n agents in total, we obtain that there are at least n�(T ) rounds in which an agent is active. 
This proves that there exists an agent a that is active in round n�(T ), and hence its exploration strategy is of length at least 
n�(T ). Finally, observe that a constructs the same route regardless of the number of agents present in the network. This is 
due to the fact that T and id(home(a)) is the entire input to the algorithm that a executes. �

We finish this section by remarking on the complexity of Algorithm Tree-Exploration. For any tree network T on n nodes, 
there exists a �(T )-edge-coloring of T and it can be computed in O (n)-time. Consequently, the total time of an agent’s 
local computations when running Algorithm Tree-Exploration is O (n�(T )).
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2.2. General network exploration with a map

We say that T is a spanning tree of G if T is a tree such that V (T ) = V (G) and E(T ) ⊆ E(G). Then, T is a minimum 
degree spanning tree of G if T is a spanning tree of G and the degree of T is minimum over the degrees of all spanning trees 
of G . Define �∗(G) = �(T ), where T is a minimum degree spanning tree of G . We propose the following solution to the 
collision-free exploration problem.

Algorithm Network-Exploration(G)

Input: A node-labeled network G .
begin

Compute the lexicographically first minimum-degree spanning tree T ∗ of G .
Call Algorithm Tree-Exploration(T ∗).

end Network-Exploration

Proposition 2.3. Let G be a network and let a1, . . . , ak, 1 ≤ k ≤ n, be the agents initially located at pairwise different nodes of G. 
Suppose that the agent ai uses Algorithm Network-Exploration to compute its route R(a), i = 1, . . . , k. Then, R(a1), . . . , R(ak) are 
collision-free exploration strategies of length n�∗(G).

Now, the following theorem implies that our result is asymptotically tight, i.e., it implies that Algorithm Network-
Exploration constructs exploration strategies whose length is within a constant factor from the optimum.

Theorem 2.4. The collision-free exploration time of any network G is �(n�∗(G)).

Proof. The fact that the collision-free exploration time of G is O (n�∗(G)) follows from Proposition 2.3.
Now, we prove the lower bound of �(n�∗(G)). Observe that if �∗(G) ≤ 3, then the theorem follows, because each 

exploration strategy must be of length �(n). To finish the proof, suppose that there exist exploration strategies for the 
agents, such that the length of each exploration strategy is at most n(�∗(G) − 3)/2.

For each node v of G let E v = {{v, u} : u ∈ NG(v)}. Consider the following linear program (LP) with variables (xe : e ∈
E(G)), which satisfies the following set of constraints [11,16]:∑

e∈E(G)

xe = n − 1 (6)

∑
e∈E(G[S])

xe ≤ |S| − 1, for each S ⊆ V (G) (7)

∑
e∈E v

xe ≤ t, for each v ∈ V (G) (8)

0 ≤ xe ≤ 1, (9)

where t is an integer and n is the number of nodes of G . Any solution to the above problem is called a fractional spanning 
tree of degree t of G . Informally speaking, if (xe : e ∈ E(G)), is a solution to (6)–(9), then xe is the ‘fraction’ of the edge e
that is included in the resulting fractional spanning tree. Note that any integer solution, i.e. the one in which xe ∈ {0, 1} for 
each e ∈ E(G), is a spanning tree of degree at most t of G .

Suppose that n agents a1, . . . , an are present in the network G . Let R(a1), . . . , R(an) be some collision-free exploration 
strategies for the agents. Suppose that the length of each exploration strategy is at most nt/2. Based on these exploration 
strategies, we now construct a solution to the LP in (6)–(9). For each i = 1, . . . , n, let Ti be any spanning tree of G such 
that if e ∈ E(Ti), then there exists a round r such that e = {Rr−1(ai), Rr(ai)} (in other words, ai traverses e in some round). 
Such a Ti exists, because R(ai) covers G , i = 1, . . . , n. Define:

f i(e) =
{

1/n, if e ∈ E(Ti)

0, if e /∈ E(Ti)
and xe =

n∑
i=1

f i(e) for each e ∈ E(G). (10)

Now, we prove that xe ’s defined in (10) form a solution to the LP in (6)–(9).
First note that 

∑
e∈E(G) f i(e) = (n − 1)/n for each i = 1, . . . , n, because f i assigns 1/n to exactly n − 1 edges of G , which 

follows from the fact that Ti is a spanning tree of G , i = 1, . . . , n. Thus, (6) holds.
Now, let S ⊆ V (G) be selected arbitrarily. For each i = 1, . . . , n, |E(Ti) ∩ E(G[S])| = |E(Ti[S])| ≤ |S| − 1, because Ti[S] is, 

by definition, a collection of node-disjoint trees on set S . Hence, (7) follows.
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Let v be any node of G and let X = E v ∩ (E(T1) ∪ · · · ∪ E(Tn)). For each r there exist at most two edges in X traversed 
by an agent in round r. Hence,

∑
e∈X

n∑
i=1

f i(e) ≤ nt

2
· 2

n
= t.

Note that if e ∈ E v \ X , then 
∑n

i=1 xe = 0. This proves that (8) holds.
Finally, (9) follows directly from (10).
We have proved that the existence of exploration strategies of length nt/2 implies the existence of a solution to (6)–(9). 

Moreover, we have the following.

Claim. ([16]) If there exists a solution to (6)–(9), then there exists an integer solution to (6), (7), (9) with the additional constraint∑
e∈E v

xe ≤ t + 2 for each v ∈ V (G)

which replaces (8).

We remark that such an integer solution defines a spanning tree of G , given by the set of edges {e ∈ E(G) : xe = 1}.
In view of the definition of xe ’s in (10), it follows that if there exist exploration strategies of length at most nt/2 for the 

n agents, then there exists a spanning tree T ∗ of G , and the degree of T ∗ is at most t + 2. By assumption, there exist in G
exploration strategies of length at most n(�∗(G) − 3)/2, hence, putting t = �∗(G) − 3, it follows that G has a spanning tree 
of degree at most �∗(G) − 1, a contradiction with the definition of �∗(G). �

We finish this section with a complexity remark. Finding a minimum-degree spanning tree is in general an NP-hard 
problem. We can, however, modify the approach to obtain an exploration strategy of length n(�∗(G) + 1) that can be 
computed efficiently. We make use of a O (mnα(m, n) log n)-time algorithm that for a given G finds its spanning tree T of 
degree �(T ) ≤ �∗(G) + 1, where m and n are, respectively, the number of edges and nodes of G , and α is the inverse 
Ackermann function [14]. By using the tree T in Algorithm Network-Exploration instead of T ∗ we obtain an exploration 
strategy of length n(�∗(G) + 1) for agent a, and this strategy is computed in time O (mnα(m, n) logn). On the other hand, 
computing the precise value of collision-free exploration time is a hard problem.

Proposition 2.5. The problem of deciding, for a given network G and integer l, whether the collision-free exploration time of G is at 
most l, is NP-complete.

Proof. By Theorem 2.4, the collision-free exploration time of G is bounded by a polynomial in the size of the graph. Thus, 
a solution to the problem is an exploration strategy whose length is polynomial in n and thus it can be constructed in 
nondeterministic polynomial time and therefore the problem is in NP.

We prove that the problem is NP-complete already for the special case of l = n, where n is the number of nodes of G . 
The proof is by reduction from the Hamiltonian cycle problem [15]. We argue that there exists a Hamiltonian cycle in G if 
and only if the collision free exploration time of G is n.

If such a Hamiltonian cycle C = v1-v2-· · · -vn-v1 exists, then one constructs an exploration strategy R(a) for an agent a
with home(a) = vi by taking

R(a) = (vi, vi+1, . . . , vn, v1, . . . , vi−1, vi).

Clearly, R(a) is a route of length n in G , because C is a cycle. Also, R(a) is closed and covers G . Moreover, if for another 
agent a′ we have home(a′) �= vi , then R(a) and R(a′) are collision-free.

Now suppose that the collision-free exploration time of G equals n. Let a be any agent initially occupying any node of G
and take an exploration strategy R(a) of length n for a. Since R(a) covers G , Ri(a) �= Ri−1(a) for each i = 1, . . . , n. By the 
fact that R(a) is closed, R0(a) =Rn(a). Hence, R(a) is a cycle of length n in G as required. �
3. Local network exploration

In this section we consider the problem of collision-free exploration in the setting when the agents do not receive any 
information about the network in which they operate, in particular, the agents do not know n, the size of the network. Recall 
that we assume, that each node v ∈ V is equipped with a unique identifier id(v) ∈ {1, 2, . . . , n}, and each agent located at v
is only aware of the identifier id(v) and the identifiers of the neighbors of v at the endpoints of respective edges incident 
to v . In Section 3.1 we consider tree networks, and in Section 3.2 we show how any network can be explored.
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Let G be any network. For the purposes of this section we introduce an edge-labeling function id′ defined as

id′({u, v}) = id(u) + id(v) for each {u, v} ∈ E(G). (11)

We recall without proof the following essential property of function id′ .

Lemma 3.1. Let G be any n-node network. Then, id′ is a 2n-edge-coloring of G.

3.1. Local exploration of tree networks

In this section we provide an algorithm which defines collision-free routes of agents, and is guaranteed to perform 
exploration if the explored network is a tree. For any integer b ≥ 2 define the following sequence of integers U (b) =
(1, . . . , 2b, . . . , 1, . . . , 2b), where 1, . . . , 2b is repeated b times, and let Ui(b), i ∈ {1, . . . , 2b2}, be its i-th element.

Define phase p, as the sequence of rounds (1 + ∑p−1
j=1 |U (2 j)|, . . . , ∑p

j=1 |U (2 j)|) and denote by �(p) = |U (2p)| the num-
ber of rounds of phase p. Note that

�(p) = 22p+1 for each p ≥ 1, (12)

and that phase p consists of the rounds in which the behavior of any agent a is determined in the p-th iteration of the 
‘while’ loop of its execution of Local-Tree-Exploration, whenever p does not exceed the total number of iterations executed.

Recall that an agent upon vising a node v receives a list of identifiers of all neighbors of v . Hence, during each phase, the 
executing agent can compute two sets of node identifiers. In the first set, the agent stores the identifiers of all nodes it vis-
ited during the phase, while in the second set it stores the identifiers of each neighbor of each node it visited. Then, we have 
that these two sets are equal if and only if the agent visited all nodes of the network. Thus, the agent is aware if it visited 
all nodes during a phase and can correctly determine the condition in the ‘while’ loop in Algorithm Local-Tree-Exploration.

Algorithm Local-Tree-Exploration
begin

Let v be the initial position of the executing agent a.
b ← 2
r ← 0
while not all nodes have been visited so far do {start a new phase}

for s ← 1 to |U (b)| in round r + s do
if there exists an edge {v, u} such that id(u) ≤ b

and id(v) ≤ b and id′({v, u}) = Us(b)

then move from v to u {in round r + s}; set v ← u.
else stay at v . {in round r + s}

end for
r ← r + |U (b)|
b ← 2b

end while
Backtrack all previous moves, i.e., a moves from v to u in round r + i if and only if a moved from u to v in round 
r − i + 1 for each i = 1, . . . , r.

end Local-Tree-Exploration

Before continuing we make a remark on the backtracking mechanism used at the end of Algorithm Local-Tree-Exploration. 
It is assumed that the executing agent records in its local memory for each round i′: the identifier of the node occupied 
at the beginning of round i′ , the identifier of the node occupied at the end of round i′ , and the round number i′ . Thus, 
during backtracking the agent is able to determine that in a round i′ it moved from a node with identifier x to a node with 
identifier y. Denote x = id(u) and y = id(v). If id(u) = id(v), then no move was performed in round i′ which means that in 
this particular round during backtracking the agent also stays idle. Otherwise, by construction, the agent being present at 
v is able to determine in the neighborhood of v the node with identifier id(u) and therefore correctly perform the move 
from v to u during backtracking. Note that the backtracking is performed to ensure that the executing agent is located at 
its initial position at the end of the strategy since there is no guarantee that the agent returns to its initial position at the 
end of a phase, in particular at the end of the last phase.

Denote by R(a, p) the route of an agent a restricted to its moves in phase p, p ≥ 1.
We denote by T p the subgraph of T induced by all edges e whose endpoints have identifiers at most 2p , T p = T [{{u, v} ∈

E(T ) : id(u) ≤ 2p ∧ id(v) ≤ 2p}].
Finally, define � = 2 

∑�log2 n�
p=1 �(p).

We now prove that each agent a moves in phase p ‘inside’ the connected component T ′ of T p that contains the vertex 
occupied by a at the beginning of phase p.
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Lemma 3.2. Let p ≥ 1 be an integer, let T be a tree network and let a be an agent. Let v be the vertex occupied by a at the beginning 
of phase p. Then, R(a, p) is a route in the connected component of T p that contains v, and R(a, p) = T �(p)(v, 2p+1, id′).

Proof. First we argue that R(a, p) is a route in the connected component T ′ of T p that contains the node v . The 
agent a performs its moves in phase p as a result of the execution of the p-th iteration of the ‘while’ loop of Algo-
rithm Local-Tree-Exploration. The value of the variable b in this p-th iteration equals 2p . Hence, if a decides to move from a 
node v to a node u in some round of phase p, then id(u) ≤ 2p and id(v) ≤ 2p . Thus, {u, v} is an edge of T p , and therefore 
{u, v} ∈ E(T ′).

To conclude that R(a, p) = T �(p)(v, 2p+1, id′), note that, by Lemma 3.1, id′ restricted to T ′ is a 2p+1-edge-coloring of T ′ . 
Thus, the lemma follows from the definition of T and from the formulation of Algorithm Local-Tree-Exploration. �

Note that the length of the route R(a, p) of a in phase p is bounded by �(p), hence is, in general, ‘unrelated’ to the 
number of nodes of T ′ . For this reason, T ′ need not be completely explored. However, by the definition of T p , we have that 
T p = T (and T ′ = T ) if and only if p ≥ �log2 n�. We use this observation to show that all agents perform backtracking and 
stop after exactly the same phase p = �log2 n�, and that in this phase each of them visits all nodes of T .

Lemma 3.3. Let T be a n-node tree network. For each agent a the number of iterations of the ‘while’ loop of Algorithm Local-Tree-
Exploration executed by a equals �log2 n�. Moreover, R(a, �log2 n�) covers T .

Proof. If p ∈ {1, . . . , �log2 n� − 1}, then T p �= T . Hence, T p is not connected and, by Lemma 3.2, R(a, p) does not cover T . 
The agent a determines this fact, e.g., by recording, in a set X , the identifiers of all nodes adjacent to the nodes of its route 
in phase p, R(a, p). Then, due to the connectedness of T , X contains an identifier such that the corresponding node is not 
in R(a, p) and consequently a starts executing the (p +1)-st iteration of the ‘while’ loop of Algorithm Local-Tree-Exploration.

Now, let p = �log2 n�, and so T p = T . Due to Lemma 3.2, R(a, p) = T �(p)(u, 2p+1, id′), where u is the node occupied by 
a at the beginning of phase p. By the formulation of Algorithm Local-Tree-Exploration and by (12), �(p) = 22p+1 ≥ 2n2 ≥
2n�(T ). By Lemma 2.2, R(a, p) covers T , because, due to Lemma 3.1, id′ is a 2n-edge-coloring of T . �

We now argue that the agents will never meet while moving during any given phase p.

Lemma 3.4. Let a and a′ be any two agents, let T be a tree network, and let p ≥ 1 be an integer. The routes R(a, p) and R(a′, p) are 
collision-free.

Proof. Let u and u′ be the nodes occupied by a and a′ , respectively, at the beginning of phase p. By the formulation of 
Algorithm Local-Tree-Exploration, the moves of both agents in phase p are determined in the p-th iteration of the ‘while’ 
loop of their executions of Algorithm Local-Tree-Exploration. If u and u′ belong to different connected components of T p , 
then due to Lemma 3.2 the routes R(a, p) and R(a′, p) are collision-free. Hence, assume that u and v are in the same 
connected component T ′ of T p . By Lemma 3.2, the routes in T ′ are given as R(a, p) = T �(p)(u, 2p+1, id′) and R(a′, p) =
T �(p)(u′, 2p+1, id′). Thus, the proof is complete in view of Lemma 2.1. �
Theorem 3.1. Let T be a tree network and let a1, . . . , ak, 1 ≤ k ≤ n, be the agents initially located at pairwise different nodes 
of T . Suppose that the agent ai uses Algorithm Local-Tree-Exploration to compute its route R�(ai), for each i = 1, . . . , k. Then, 
R�(a1), . . . , R�(ak) are collision-free exploration strategies of length O (n2).

Proof. By Lemma 3.3, each route R�(ai), i = 1, . . . , l covers T in at least one phase. Since the route performed by each agent 
is closed due to the backtracking steps included in Algorithm Local-Tree-Exploration, R�(ai) is an exploration strategy for ai . 
Taking into account that the phases of all agents are perfectly synchronized in each phase, and that the agents perform 
backtracking and stop after exactly the same phase �log2 n�, it follows from Lemma 3.4 that their exploration strategies are 
collision-free. Finally, from the definition of � we have � = O (n2). �
3.2. Local exploration of general networks

For the purposes of analysis, we introduce some auxiliary notation concerning the so-called anonymous graph model. In 
this model nodes are anonymous, and each edge has two port numbers assigned, each to one of its endpoints, in such a 
way that the ports at edges incident to any node form a set of consecutive integers, starting from 1. An agent located at a 
node v can only perform its next move based on the local port numbers.

Before continuing, we provide several comments and informal intuitions concerning this model. First note that a 
collision-free exploration is, in general, impossible in arbitrary anonymous port-labeled networks. (This is the case, for 
example, for two agents located initially in symmetric, and thus indistinguishable, positions at the endpoints of a 3-node 
path.) However, we will overcome this difficulty by designing an auxiliary port-labeled network A(G) based on the node-
labeled network G , that has the property that each edge has identical port numbers at both of its endpoints, and in such 
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a case the collision-free exploration will be guaranteed to exist. The behavior of an agent can be seen as navigating in our 
node-labeled network G by navigating in the underlying ‘virtual’ port-labeled network A(G). In particular, the function id′
defined in (11) provides both port numbers for each edge. Hence, each agent, while present at any node v can compute the 
port number of the edges incident to v . Then, the agent ‘simulates’ its next move in the port-labeled network and, based 
on that, performs the move in the node-labeled network.

As a tool for our analysis we use the theory of universal sequences (formal definitions are provided below) that has been 
developed for regular port-labeled networks. Such a universal sequence, once computed by all agents, is then used to find 
a collision-free exploration strategy in the port-labeled network. In view of our earlier comment, the latter results in the 
collision-free exploration strategy in the node-labeled network.

We say that a network is d-regular if all nodes of the network have degrees equal to d. Given a port-labeled network 
A and a node v of A, we say that an agent a initially located at v follows a sequence of integers U = (x1, . . . , xl), with 
1 ≤ xi ≤ d for i = 1, . . . , l, if for each i = 1, . . . , l, in round i the agent a performs a move along the edge with port number 
xi at its current node. By a slight extension of notation, we allow a port-labeled network to have self-loops (with exactly 
one port number assigned to the loop); a traversal of the self-loop is assumed not to change the location of the agent.

We say that a sequence U of integers is (n, d)-universal if for each node v of each regular n-node network A of degree d, 
an agent initially placed at v visits each node of A by following U . Aleliunas et al. [2] have shown non-constructively 
that for each n > 0 and d > 0, there exists a (n, d)-universal sequence of length O (d2n3 log n) for networks with self-loops. 
Note that a (n, d)-universal sequence can be computed (rather inefficiently) by examining all sequences of the considered 
length and for each such candidate sequence one can generate all n-node port-labeled regular networks of degree d. Once a 
sequence U and a network A are selected, it can be tested if following U from each node of A results in visiting all nodes 
of A.

Given a node-labeled network G , we define the corresponding port-labeled network A(G) so that there exists a bijection 
ϕ : V (G) → V (A(G)) such that {u, v} ∈ E(G) if and only if {ϕ(u), ϕ(v)} ∈ E(A(G)), and for each {u, v} ∈ E(G) the port 
numbers at both endpoints of edge {ϕ(u), ϕ(v)} ∈ E(A(G)) are equal to id′({u, v}). Since, according to Lemma 3.1, id′ is an 
edge-coloring of G , no two edges of A(G) sharing a node have the same port number at this node. Then, for each node 
u ∈ V (G) we add 2n − |NG(u)| loops at ϕ(u) in A(G). As a result, the degree of each node of A(G) is 2n, and the length of 
the universal sequences constructed following [2], which we will use when exploring A(G), will not exceed O (n5 log n). In 
what follows, we will identify exploration of G with exploration of A(G).

The algorithm will use a similar concept of exploring a growing subgraphs in consecutive phases as in Algorithm
Local-Tree-Exploration. The difference is that during a phase instead of a sequence U (b), we will use here some univer-
sal exploration sequence.

Theorem 3.2. There exists an algorithm that allows any set of agents located initially at distinct nodes of any network G, and having 
no information about G, to compute collision-free exploration strategies of length O (n5 log n).

Proof. Consider an execution of Algorithm Local-Tree-Exploration such that the sequence U (b) defined in Subsection 3.1 is 
replaced by a (b, 2b)-universal sequence. By [2], such a sequence exists and is of length O (n5 log n). We argue that for this 
modified algorithm, the route R(a) of each agent a is a collision-free exploration strategy of G .

First, observe that R(a) is a well-defined route, because, due to the formulation of Algorithm Local-Tree-Exploration, the 
agent a does check if an edge {v, u} exists before moving from v to u in any round. Now we argue that R(a) covers G . 
Consider phase p = �log2 n� that consists of the rounds in which the moves of a are determined in the p-th iteration of the 
‘while’ loop of Algorithm Local-Tree-Exploration. We have that id(v) ≤ b for each node v of G , because b ≥ n in this particular 
iteration. Let a′ be an agent that follows U (b) in A(G), starting at the node ϕ(v ′) such that v ′ is the node occupied by a at 
the beginning of phase p. By the formulation of Algorithm Local-Tree-Exploration, the agent a moves from v to u in round 
s of phase p if and only if id′({u, v}) = Us(b). By the definition of A(G), the port number of {ϕ(u), ϕ(v)} at ϕ(v) is Us(b). 
Hence, a goes from v to u in round s of phase p if and only if a′ goes from ϕ(v) to ϕ(u) in A(G) in round s. Since U (b) is 
(b, 2b)-universal and b ≥ n in phase p, the route of a in phase p covers G , regardless of the position of a at the beginning 
of phase p. Finally, the fact that R(a) is closed is due to the formulation of Algorithm Local-Tree-Exploration (a backtracks 
its moves performed during the execution of the ‘while’ loop).

Let a and a′ be two agents initially placed at distinct nodes of G . We prove that their routes R(a) and R(a′) are 
collision-free. Similarly as in the proof of Lemma 3.3 one can argue that the number of phases for each agent equals 
�log2 n�. Hence, it is enough to analyze the moves of a and a′ in an arbitrarily selected phase p ∈ {1, . . . , �log2 n�}. Suppose 
that a moves from v to u in round s of phase p. This implies that id′({u, v}) = Us(b). If a′ is located at u at the beginning 
of this round, then a′ moves from u to v in round s of phase p, because it also verifies that id′({u, v}) = Us(b). Also, two 
agents cannot simultaneously move from v to u and from v ′ to u for two different nodes v and v ′ , because id(v) �= id(v ′)
and therefore id′({v, u}) = id(v) + id(u) �= id(v ′) + id(u) = id′({v ′, u}).

To complete the proof, observe that for each agent a the length of its route is at most

2
�log2 n�∑

i=1

|U (2i)| =
�log2 n�∑

i=1

O (25i log 2i) = O (n5 log n). �

http://mostwiedzy.pl


J. Czyzowicz et al. / Journal of Computer and System Sciences 86 (2017) 70–81 81

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

4. Final remarks

We have shown that, in our model, a solution to the collision-free exploration problem is always feasible, even when 
the agents only have local knowledge. This should be sharply contrasted with asynchronous variants of the problem (when 
agents do not have synchronized clocks or may perform an asynchronous meeting in the middle of an edge), in which a 
solution is not always feasible. This is the case even for the fully symmetric scenario on the two-node line, where two agents 
starting from the two nodes cannot complete exploration without swapping, thus implying the possibility of asynchronous 
meeting.

One type of open question is whether the collision-free exploration problem remains feasible when some weaker model 
is assumed, but the agents have additional knowledge about the topology of the network, or an additional mechanism for 
breaking symmetries.
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