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Abstract

Personnel behavior understanding under complex scenarios is a challenging task for computer vision. This paper proposes
a novel Compact model, which we refer to as CGARPN that incorporates with Global Association relevance and Adaptive
Routing Pose estimation Network. Our framework firstly introduces CGAN backbone to facilitate the feature representation
by compressing the kernel parameter space compared with typical algorithms, effectively lowering the calculation capacity and
consumption. The framework integrates the Global Association information between keypoints, and learns the correlation between
high-dimensional feature parameters. ARPN introduced by our structure is established to sufficiently excavate the resembling
properties of outcome concealed in the network, adaptively achieving remarkable performance by selecting compatible paths for
optimization. Meanwhile, Parametric Content Similarity NMS (PCSNMYS) is developed where detailed information on proposal
boxes is associated. Comparative experiments (datasets on FLIC, MPII, etc.) with CNN-based counterparts have empirically
demonstrated the effectiveness and competitiveness of the model in perspective of accuracy, memory consumption, and computation

perplexity. Our model contributes to an efficient and feasible framework of human behavior apprehension.

Key words: adaptive routing, global association fusion, compact pose estimation framework

1. Introduction

Recognition and understanding of personnel behavior [1-
3Jon articial intelligence algorithms and technologies has
always been an important research hotspot in the domain
of computer vision. Scholars mainly focus on the analysis
methods that rely on direct analysis methods of 2D image [3—
11] and modeling constructed on 2D image sequences (3D
methods)[12-16] . Approaches of 2D sequences combined with
time dimension has more expression of behavior information,
while demanding enormous amount of calculation. Hence it
enables 2D methods remaining the focus of many scholars
research. In terms of those algorithms, human pose estimation
counts as a significant approach, that is, a way to acquire
accurate joints and locations of human keypoints through image
analysis, and accordingly to capture the behavior characteristics
of people, thus further understanding the specic behavior.

Subject to the complexity of the scenes (such as variations in
appearance, crowding, occlusion etc.), it is a very challenging
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task to precisely estimate the human posture in the wild. The
rapid development of deep learning[4, 17, 18] has greatly
promoted the progress of intelligent science. Related modeling
methods have also been widely used understanding various
scenes in computer vision, with human pose estimation task
included. Among these processing algorithms, two-stage
(Top-down) framework methods (detailed in Section 2) firstly
detect individual persons from the picture, obtaining matching
candidate boxes of interest regions, and then execute regression
prediction on the relevant keypoints. They are very different
from Bottom-up methods completing the procedure without
checking the proposal boxes, which we will specify in section
2.

There is another way to categorize pose estimation methods
based on the type of prediction outcome for the network. It’s
called heatmap and regression. Heatmap-based approaches
act as constructing a dense map depicting the probability of
keypoint detection. Regression-based methods function as
direct prediction of keypoint locations with less processes and
calculation, such as clustering and grouping. Both collections
of methods have their own advantages. Accordingly, different
combinations of ‘Top-down’, ‘Bottom-up’, ‘Heatmap’, and
‘Regression” are presently still the concentration for the
researchers.

This paper ensues the design thought of the Top-down
paradigm framework and optimizes a variety of network
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structures. We introduce an improved compact bottleneck
block structure to compress the model parameters, which
greatly reduces the capacity of core parameters.  The
combination of 1*1 Conv module and Depthwise 3*3 module
also completes high-dimensional feature extraction of images.
Many conventional methods of keypoint prediction for human
posture only take into account the prediction effect of local
features in the pixel viewpoint , lacking the representation of
the global correlation information between keypoints. This
paper combines the relevance of high-dimensional feature
information, and learns internal connectivity of the coordinates
and attributes between keypoints in an extent range through the
CGAN(Compact Global Association Network) sub-module.

In addition, in terms of the high-dimensional feature
information extracted from images, similar feature expressions
have similar attributes, such as the same sitting, standing
posture and running state, etc. These potential properties are
closely related to the final keypoint prediction. That is to say
that the same attributes play the same role in pose estimation.
In order to synthesize the significant indication, we propose a
dynamic routing network module to adaptively select promising
paths according to the underground similar features, which can
be used for more precise calculation of human keypoints.

Over the two-stage human posture estimation framework,
the front-end human detection proposals will greatly influence
the functional effect of the follow-up network. The traditional
NMS algorithm only emphasizes the factors of confidence
and IOU ratio of overlapping areas concerning the elimination
of candidate boxes. These two indicators do not embody
the similarity of the actual content of the candidate images.
Although there exists some situation that the ratio of
overlapping area is the same, some overlapping information
is often neglected. The detailed representation and modeling
of the coherent information are not built in. Therefore, we
have parameterized the statistical expression of the proposals
processed by the detector, and introduced a comprehensive
judgment criterion combining the parametric content similarity
measurement (PCSNMS) with original IOU ratio. In summary,
our contributions are as follow:

e We introduce a compact (referred as CGARPN) framework
with CGAN and ARPN sub-structure incorporating global
association relevance of learning features, with advantages in
perspective of memory and computation expends for behavior
understanding in complex scenarios.

e We demonstrate our architecture is capable of adaptively
routing by modeling geometrically statistical distributing
features and hidden properties in intermediate parameters for
further optimization.

e Our model develops PCS improved criterion excavating
content similarity to facilitate filtering the resembling outputs
for proposals prediction for more accuracy.

We achieve an advisable detection accuracy of human
keypoints on the comparative experiments of datasets (FLIC,
MPII, MSCOCO [19-21]) in a variety of complex scenes.
Besides, the quantitative analysis soundly validates the
effectiveness and combativeness of the work against advanced
alternatives in posture understanding.

2. Related Work

Over the past decade, human pose estimation has become
one of the substantial research foundations in the eld of
machine vision. Traditional methods [22-25] rely on spatial
modeling and component relationship of graph model as the
basis, estimating human posture through random forest and
other conventional methods. With the rapid development of
deep learning concerning neural network, CNN neural network
model has been introduced into different territories such as
object recognition and detection, semantic understanding, and
visual analysis etc. Various DNN models [4, 5, 17, 18, 26—
41] have been developed to complete the task of human posture
recognition, with even GAN-based and GCN-based models put
forward recently[42—-45]. We can classify these methods into
two series: Top-down and Bottom-up, which are illustrated
with several delegates in Table 1. Otherwise, according to the
number of people appearing in the image, we roughly divide all
algorithms into single person pose estimation and multi person
pose estimation.

Table 1: Diverse typical models sorted by the processing stage with the recent
development of posture estimation structure.

Top-down Bottom-up
CPM[4] OpenPose[26]
CPN[46] Hourglass+Assiciation Embedding[10]
Hourglass[33] HigherHRNet[11]
Simplebaseline[7] PersonLab[47]
HRNet[8] MultiPoseNet[48]

2.1. Single Person Pose Estimation

Single person pose estimation, as the name indicates, means
one person emerging in the image. Toshev et al. earlier
proposed a DNN-based learning and prediction model for
human keypoint calculation, which was famed as DeepPose [5]
Tompson et al. [35] simultaneously tackled the problem by
describing the spatial relationship information of these joints
in combination with DNN and graphical model. Chen et
al.[36] introduced the idea dividing several typical directions
as to the model, and combined the auxiliary information of
the dependencies among adjacent paired points as to improve
the prediction accuracy. The CPM [4] (Convolutional Pose
Machines) predicting model proposed by Wei et al. assembles
multi-level iterative refining processes, making the framework
unravel the gradient disappearance problem in the learning
process upon intermediate supervision. The Hourglass [33]
structure proposed by Newell et al. is more concise than CPM
[4]. The structure of each Hourglass module, shaped like a
‘Hourglass’, includes a Bottom-up process and a Top-down
one to integrate multi-scale features for more representation.
These research methods mainly focus on single person pose
recognition. Either there is only one person turning up in
the image or the approximate position of the person has been
determined antecedently.
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2.2. Multi Person Pose Estimation

For visual recognition tasks, more extensive scenarios are
susceptible to complex backgrounds with multiple people. The
researchers have conducted in-depth research on the situation
of these circumstances. As mentioned above, these methods
can be composed of Top-down [6-8, 46, 49] and Bottom-
up [9-11, 50] methods. Top-down methods are also entitled
as two-stage methods. First, Persons will be outlined by
the human detector, and then the keypoints are predicted by
the single person pose estimator depicted above. The CPN
(Cascaded Pyramid Network) [46] proposed by Chen et al. is
integrated with two subnets called GlobalNet and RefineNet.
GlobalNet accomplishes the work responsible for preliminary
keypoint prediction and RefineNet is dedicated as further
refiner alongside the following stage. The whole structure is
similar to the Pyramid in FPN. Xiao et al. put forward a
Simplebaseline [7] framework, the skeleton of which resembles
the main pattern in Hourglass [33]. Otherwise, the architecture
is modified by eliminating skip connections between different
front and rear modules. HRNet [8] proposed by Sun et al.
employs the feature map parameters under various resolutions,
adapting from the traditional sequential network to a parallel
one that maintains multiple resolution branches.

The opposite side coin of Top-down is the Bottom-up.
Bottom-up methods predict directly on the original image, and
judges which pedestrian the keypoints belong to through the
subsequent attribution algorithm. Newell et al. [10] developed
a Bottom-up method based on Hourglass[33], which integrates
associative embedding and supports simultaneous End-to-End
processing of detection and grouping tasks. Cheng et al.
[11] afterwards improved HRNet [8] by using the associated
embedding technology in the higher-resolution module. The
Openpose [9] framework introduced by Cao et al. is established
exquisitely based on the CPM [4] model. The algorithm
explores the auxiliary information in the geometric direction
of the body trunk and combines the graph matching algorithm
(called as PAF), learning and estimating the belonging object
of some keypoint. We explicitly summarize the development of
some contemporary alternatives for pose estimation in Table 2.
In a general sense, Bottom-up methods are relatively inferior to
Top-down methods in terms of prediction accuracy.

Table 2: Recent development with several distinct structures and catogories on
MSCOCOI[21] dataset

Authors Method Structure Catogory AP

K. He et al.[51]
A. Newell et al.[10]
G. Papandreou et al.[47]
B. Cheng et al.[52]

Mask-RCNN  ResNet-50
Assoc. Embed.

PersonLab

Top-down 63.1
Hourglass  Bottom-up 65.5
ResNet  Bottom-up 67.8

HigherHRNet+ HRNet-W48 Bottom-up 70.5

X. Sun et al.[53] Integral ResNet-101 Top-down 67.8
F. Wei et al.[54] PointSetNet HRNet-W48 Top-down 68.7
H.Fang et al[55] RMPE SSTN Top-down 72.3

2.3. Attention Mechanism

The attention mechanism in machine learning originates
from cognitive science. Due to the constraints of information
processing, human beings will selectively pay attention to part
of all visible information ignoring anything else. The attention
mechanism is mainly sorted into spatial attention models,
channel attention models and spatial and channel mixed
attention models. The most successful instance dominates in
machine translation in field of Natural Language Processing
[56-58]. In recent years, significant progress has been achieved
in the domains of image object detection and recognition
[59, 60], recommendation system [61]. Vaswani et al. [62]
abandoned the traditional encoder-decoder model combined
with CNNs and RNNs, applying transformer for the novel
architecture. The framework model of Attention introduces
two structures: scaled-dot product attention and multi-head
attention, which can improve the system parallel effciency
and reduce the amount of computation without sacrificing the
experimental results. Wang et al. developed NLNet [63],
a simple generalized non-local operator to express the long-
range relationship of time-series signals, pictures and video
sequences, which has been widely used in many subsequent
semantic segmentation models. The algorithm provides an
advanced long-term dependency modeling method, which
cumulatively maps specific query contexts to query locations.
However, empirical results show that the global context of
the network modeling is almost the same for different query
locations in the image. Cao et al. [64] created a generalized
simplified framework of three-step based on query independent
formula, which not only maintains the accuracy of NLNet
[63], but also reduces the amount of parameter calculation.
Hu et al. [65] studied the architecture and designed a novel
channel relationship to explicitly model the interdependencies
between channels in the abstract feature layer (SENet), so as to
improve the representation ability of the network, functioning
as a similar structure to NLNet.

This paper inherits Top-down algorithms improving and
optimizing a variety of network structures, and proposes a new
CGARPN framework model as an important method of human
posture estimation. The model has beneficial performance on
the prediction effect and can accustom to a variety of situations
with complex backgrounds and diverse dynamic actions. We
will describe the details in the following section 3.

3. Proposed Method

The processing flow of the framework proposed in this paper
is illustrated in Figure 1. Computing framework of the whole
algorithm follows the Top-down method mentioned above.
First, Figure 1(a) illustrates a large number of candidate boxes
obtained through the human detector processing the original
picture captured in the real world. Over the architeture, we
choose the Faster-CNN algorithm to get more accurate results.
Although these candidate boxes can accurately provide the
boundaries of human proposals, they also accumulate more
redundant information. We introduce a novel Parameterized
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(b) Projected Standard

(a) Human Proposals Input Images

(x,, 7,)
| .
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(c) CGARPN=CGAN+ARPN (d) framework Output

Figure 1: The overall architecture of our method. Firstly, projected input images acquired by human detectors with self-defined NMS are entered into the framework.
Next, the CGAN models features extraction with compact structure and attention mechanism. The GA model can disclose what dependencies (regions or joints)
profoundly contribute to the activation positions with maximum likeli-hood in the hidden features. ARPN can adaptively choose different optimization paths for

different intermediate features with similar properties in postures.

Content Similarity NMS algorithm to filter the unnecessaries
(in Subsection 3.3), obtaining better detection results upon
proposals.  Then the detection box will be mapped by
subsequent data augmentation to the unified standard image
through the normalization operator, which is utilized as the
input of the subsequent network (its standardized size is w X h),
as shown in Figure 1(b). Secondly, we use self-defined deep
neural network structure CGARPN to learn the keypoints of
human posture. The structure includes two main sub-processes.
The first part deeply incorporates the high-dimensional global
association feature information, and reduces the processing
parameter capacity through the retrenching and compression
of the traditional residual network. In the following process,
ARPN is introduced, functioning as the adaptive selection
of beneficial paths by modeling geometrically the hidden
charateristics in features for optimization.

On the learning framework, there are commonly two
approaches to achieve the regression of connection points:
direct regression and heatmap regression. The heatmap
regression method was embraced by many researchers lately,
while its computational complexity is relatively larger.
Concerning our model, we adopt the direct prediction guideline,
which will take into account more revision and refinement in
subsequent sub-models. In terms of the network terminal,
we directly perform regression learning on the normalized
coordinate values of keypoints to achieve the final prediction
of keypoints. We use P= (x1,y1,..., X, yx) to represent the
coordinate value of keypoints, where k is the number of
keypoints (for example, k¥ = 17 in MSCOCO dataset). We
apply the following formula (1) to calculate the network loss
value between the prediction and the groundtruth. In the
formula below, P; represents the coordinate vector predicted
in k dimensions on the training picture, and P* represents the
coordinate location of the corresponding groundtruth. 4; stands
for the importance coefficient of keypoints in the whole loss
function, weighted sum of which is 1.

M=

2 i) +(0r)’)
L, P) = S oo )
YA4=10< A <1
i

Where (x7,y;) in the denominator of equation (1) accounts
for the reference coordinate position of left or right shoulder

keypoint, and (x}, y,) denotes the reference coordinate position
of left or right elbow. We can judge the option by specific
situations such as the visibility, or calculate it by averaging
the distances. We follow the direct regression and choose
hyperbolic tangent function as the activation function of the
back-end of the network.

3.1. CGAN Framework Structure

Due to the large scale and capacity for many traditional
pose estimation methods, the network structure proposed in this
paper has been greatly improved on the conventional structure,
as shown in Figure 2. We utilize the Residual network with
good performace of processing, as the backbone network of our
model. It has outstood as a milestone in the history of CNN
algorithms. Boosted from the SimpleBaseline structure, the
ResNet [66] block in the residual network is modified and the
compact bottle neck block (CBB) for parameter compression
is introduced and incorporated. The frontal section of the sub-
network has a Conv+Maxpool layer to extract the features of
the original image and then stream them into subsequent CBB
structures.

In each CBB basic unit, the residual feature is extracted by
combining the 1 % 1 Conv module and the Depthwise 3 * 3
structure, and the BN algorithm module is utilized to process
the intermediate results, resulting in removing the potential
shortcomings of over-fitting. The system selects ReLu as the
subsequent activation function of BN layer.

Many researchers have carried out several researches on
compressing the network model and reducing the network
parameters, which include the network quantization and re-
encoding, the low rank decomposition operations, and network
pruning etc.

The Depthwise architecture in the CBB can complete
calculations quite different from the traditional convolution
calculation, decomposing into two phases, namely ‘depthwise
convolution’ and ‘pointwise convolution’. Depthwise separable
convolution can efficiently lower the capacity of computing
parameters through decoupling classical convolution into
spatial and cross-channel convolution operations, just requiring
the ratio ¢ of computational operations and the scale of
parameters compared to standard convolution. The ratio ¢ can
be approximately computed by the (K LIS N) / (K 2 N) (671,
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where K is the size of kernel size and N stands for output
channel dimensions.

The above structure greatly suppresses the problem of
excessive calculation caused by the large scale of kernel
function parameter data in the traditional structure. It is
conducive to reducing the hardware constrains required for
parameter storage in the feature extraction stage.

The network scale and depth in the framework can be
adjusted by the scale of the CBB structure shown in the Figure
2, which resembles the structure hierarchy defined by the
traditional ResNet network. Following the compact backbone
network, we introduce the context information that fuses
the global relationship between keypoints to meet the high-
dimensional expression of features, similar to the combination
of multi-scale methods and attention mechanism.

We introduced the GA (Global Association) sub-model
to learn the global relevance of the feature map across
spatial constraints, integrating more information about the
hidden feature in long distance.  This special operator
enables networks to construct informative features, despite
bringing about additional resource burden on memory and
computation. Otherwise, this is more likely to be a
learning model with the paradigm of Squeeze and Excitation
structure, which can accordingly re-quantify channel-wise
feature responses by apparently modelling interdependencies
between channels. On the basis of the GA sub-model, the
global pooling and sigmoid modules can learn according to
the data features to obtain different weights accustoming to
the global association relationship of keypoints, with hidden
connectivity internalized. There is an important scale ratio for
GA model keeping a balance between calculation burden and
fusion extent. Accordingly, the output of CGAN structure is
then entered into the subsequent ARPN network structure.

3.2. Adaptive Routing Optimization

With the previous structure compressing the parameter
capacity, we introduce ARPN network structure to refine the
framework structure (in Figure 3). Over this sub-model, the
Reduced FC module reduces the dimension of the previous
results, and the compressed feature parameters can be obtained
by Maxpooling approaches, alternatively full connection high-
to-low mapping. We use F? to represent the feature map vector
of the middle layer obtained by the input image [;(i = 1,2, ..., n)
passing through the Reduced FC module in Figure 3. The
Ri(i = 1,2,..., p) in Figure 3 shows different path selections
of the network. In the initial learning stage, the algorithm only
selects the path R for model training.

After the training of this process, the parameters of the
path selection model can be learned. There is the fact we
can excavate that similar regression results are more consistent
with similar properties, as well as the similarity of the
feature parameters in the intermediate layer. We introduce a
refinement structure and process to adaptively select different
paths according to the hidden attribtues in features , which we
named as Adaptive Routing. Firstly, we cluster the features
Ff captured in the intermediate stage. To be more generally

extended, we choose GMM model and get p categories through
EM algorithm.

When choosing how to decide the size, our method chooses
the superior value of clustering category as hyperparameter in
the sense of considering both the parameter capacity and the
consistent experimental effectiveness. In the actual clustering,
the loss L, (F?) of equation (2) is defined to describe the relative
loss of middle layer features in parameter space of this layer. Fé
represents the geometric center vector of n training images. The
distribution normalized in (2) can be described as ratio of the
maximum geometric feature diameter in the parameter space.

i —Fe;

Ly(F}) = )

sz max, [ ~ FA];

In order to combine the feature prediction results with the
intrinsic correlation information of the feature layer, we put
forward a weight related loss value as the distance similarity
measure of the feature. Combining with equation (1) and (2),
we let L(F;‘) defined as the comprehensive loss value below
which needs to be normalized in the later processing.

LOFA) = uLy(P, P*) + (1 — ) Lo (FY) ©)

After clustering by EM algorithm, we can obtain FZ( j =
1,2,..,p) as p cluster centers of the subclass corresponding
to different network paths respectively. Taking advantage of
these clustering centers and the parameters of GMM model, the
similarity between input image i and the center of subclass j
can be calculated by formula (4).

. L 112 .
SN Fhy=aexp [ - F|| + (1 - p®FY @)

Meanwhile, we directly utilize the maximum of similitude
measure in equation (5) to acquire the best path selection
m. The above process is constructed with only R; existing.
After the initial training on path R;, we duplicate the complete
parameters of the subsequent connection layers to other
paths of the network, and then carry out further training in
the refinement stage. The training phase focuses on the
follow-up structure of the framework, neglecting the preamble
feature extraction part of the whole network, which will not
be changed. This process finds the network module with
the highest similarity corresponding to the input image for
corresponding training. In the prediction stage, the most
suitable path is obtained according to the above algorithm
to predict, so as to obtain more accurate keypoint prediction
results after optimization.

i

m = arg maxS (F, F.) 5)
J

3.3. Parametric Content Similarity NMS

We mentioned in Figure 1 that it was necessary to calibrate
the human boundary in the first stage through the pre-stage
detector. Generally, various front-end methods will bring in
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Figure 4: PCSNMS sub stage of the framework with regard to the info of the cropped images by the first phase.

more candidate redundant information. In order to eliminate
these redundant frames, NMS (Non Maximum Suppression)
algorithm is required to filter them. Most of typical and
classical NMS algorithms only utilize the confidence and the
overlapped IOU information of the frames as the selecting
factors, lacking the measurement of the actual content between
the proposals. Traditional criterions established on IOU value
cannot elaborate the correlation of internal information of
the image upon filtering, making it difficult to model more
effectively.

In order to characterize and make use of the above
nature, we have improved the antique NMS algorithm and
proposed a parameterized NMS algorithm for content similarity
measurement. It is applied to improve the performance of
candidate box deletion results alongside the stage of human
detection algorithm (in Figure 4). The algorithm ensues
the pipeline structure of NMS algorithm and selects the best
confidence frame as a reference. The borders closest to the
candidate box will be eliminated by newly constructed criteria.
The process is repeated on the candidate boxes until the
redundant proposals are screened out.

There are many approaches (such as SIFT, HoG, etc.)
depicting the feature of images prone to rotation, shift, resizing.
These methods are capable of probing the similar features
of images. In this paper, the effective statistical information
is established as the representation of features with small
amount of computation. Let H; = (hy, hy,...,h,) denote the
normalized histogram parameterization information over the
candidate frame of images (where v usually equals 256 on
the gray image), and the dimension for color images will
be selected as required. d(H;, H;) represents the statistical
measurement distance between images (as shown in formula

(6)).
(Hi\(D - Hy(1))’
! H(I)

The smaller the distance in formula (6) is , the higher the
similarity between two images is. Like many metric methods,

dy(H;,H;) = (6)

this measurement standard has non-directional attributes and
focuses on the actual content knowledge of the image. We
define deletion criteria functions matching with similarity
information about the above contents as follows,

JAL L) = 1[d1}, 15) < y] (7

If d(.) is less than vy, then f(.) equals to 1, indicating that
the resembling candidate boxes will be deleted. In order to
integrate the overlapping information IOU ratio of the border
and the beneficial information of content similarity, we propose
a more instructive distance function d(.) in formula (8),

®

Here 3 is the weight factor between the overlapping ratio and
similarity distance. The factor introduced here can be set in a
empirical way, rather than the traditional manual assignment,
which is more practical to be effect-oriented. In the actual
experiments, we use the superior results of Faster-CNN and
bounding boxes of the ground truth to optimize and select the
hyper-parametric values involved in the above process. We list
the process of our proposed algorithm as below.

d(I,I3) = | = IoU(I}, I) + d(H;, H )

Table 3: Hyperparameters in our method

Symbols Interpretation

Ai weighted ratio for i-th keypoint
o ratio of L, L, which is used to be calculate
the metric for feature map vector
a coefficient balancing the feature vector distance
and cluster center similarity
b% threshold for deleting the redundant proposals
B weight factor of IoU and similarity distance

measurement

On the methods proposed above, we use some
hyperparameters to optimize our model so as to achieve
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Algorithm 1 PCS (Parametric Content Similarity) NMS for
human detector
Il’lpllt! B = {b],bz, - ,bN}, S = {Sl,Sz,. ..

IoU ={011,012,...,0nN}Y, B
B stands for the list of proposals with faster-RCNN
detection boxes
S contains corresponding detection scores with B
v, 3 are the threshold and ratio respectively in formula

, SN}

(7) and (8)
IoU is the pairwise Intersection ratio of overlapping
for B

Begin:

1: P={}

2: forn = 1to N do

3 k < argmax S

4 R« by, P <« PUR

5: B «< BUR

6 for b; in B do

7 compute d; (R, b;), d(R,b;) by IoU, S value

8 if d(R,b;) <7y then

9: B«B-b,S «8§-3y

10: endif

11: end

12: end

13: return P

favorable results. We will specify more about the actual
processing and assignment of these parameters in the later
experiment section. Here, we supply the following Table 3
describing the illustration of these parameters so that readers
can be clearly instructed.

4. Experiments

4.1. Training Strategies and Details

Before training the available data, we adopt augmenting the
data to enhance the generalization ability of the model and
enormously accustom to the changes happening to the complex
distribution of samples. In the second stage of this framework,
that is, streaming the image into the framwork, we normalized
the training images in the groundtruth and adjusted their sizes
to a unified 256*192. Our data augmentation operations include
rotation (+/-30 degrees), random scale transformation (0.7-1.3)
and image flipping. Methods with poor effect on empirical data
(such as color enhancement and aspect ratio enhancement) are
not utilized. The whole training process is executed on NVIDIA
GTX 1080ti.

In the training process, we also adopt some skilled training
strategies to prevent falling into local optimal values. Our main
method is to use Adam optimizer to update relevant parameters.
The initial learning rate is set to le-3 (epoch = 1), which
decreases to le-4 (epoch =100) and le-5 (epoch=130) as the
number of iterations increases. There are 160 epochs in a
training phase. During the next round of training, we will adjust
the learning rate to le-3 again on the basis of the previous round

of training optimal model, and start up the training process
repeatedly.

The whole training process is constructed with two
procedures. The first procedure refers to the elementary training
of the network without the ARPN module assembled. The
model requires the testing on the parameters of the GA module
in CGAN to obtain the best downsampling coefficient in Global
Pooling. In order to extract more sensitive information, we
set the reduction factor r=2. The consequent procedure is
to calculate ARPN optimization using intermediate feature
map parameters, which accordingly obtains multiple adaptive
routes. We refined and learned the network parameters of
the back-end without changing the front-end module, so as to
achieve more accurate results.

Concerning the configuration of hyperparameters, we used
the normalized «;, the importance degree coefficient in the
COCO data, as the assignment source for A; of keypoints(as
shown in formula (10)). For the ARPN module, we have
performed grid division searching for the hyperparameters, and
obtained the optimal values of y and « as 0.1 and 0.4 through
many experimental tests. Over the independent experiment for
NMS, we optimized the parameters of PCSNMS, and acquired
the best performance upon y and 8 by depending on the Faster-
CNN algorithm and the groundtruth of the dataset. More
ablation studies are demonstrated in Section 4.5.

In order to verify the effectiveness of the whole framwork,
we conducted quantitative tests and evaluations on several
datasets: FLIC, MPII and MSCOCO. These datasets are typical
datasets about pose estimation in personnel monitoring scenes,
which can instrumentally measure the performance of different
models.

MSCOCO dataset is a gigantic and abundant dataset for
object detection, segmentation, image description, keypoint
detection, etc. The training, verification and testing datasets
contain totally more than 200K images and 250K instances
marked by annotations including up to 17 keypoints. The
labeling results of about 150k instances in the dataset are
utilized for public training and verification. These data are
captured images from diverse scenes, with congestion, scale
change, occlusion and contacting included. We selected the
MSCOCO dataset with 17 keypoints as the main dataset for
training, so as to be more generally significant and compatible
with situations that there are fewer keypoints in various
environments. As the testing set does not have accurately
marked keypoint annotation, we manually merged and re-
divided the training and verification set on MSCOCO. We
construct a large subset of the dataset randomly selected
from the training and verification set for model training and
validating (about 140k instances, 130K for training and 10K
for validating), and compare thoroughly the prediction results
on the datasets of FLIC, MPII and MSCOCO (8K remaining
selected instances) with other renowned counterparts.

4.2. Results on FLIC

FLIC dataset is composed of 5003 images (3987 for training
and 1016 for testing) extracted from 30 Hollywood movies.
Images within it are obtained by running the most advanced
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Figure 6: Results on MPII with different PCK ratios.

human detector every ten frames. Human beings in the scene
wear different clothes and present different body postures. For
each instance, 10 joints are accurately labeled (a total of 11
keypoints).

In terms of analyzing the prediction accuracy of keypoints,
we used the classical PCKh [20] (Percentage of Correct
Keypoints) evaluation for experimental comparison. We
supplied the calculation method, given with details in the
following formula (9).

%, o(% <7
% 7 9)
Zp 1

Where i, p means the ith keypoint of the pth pedestrian
respectively, and d; stands for the Euclidean distance between
the predicted value and the groundtruth. dzef represents the
scale factor of the pth person, which varies from calculation
methods used in different public datasets. T, denotes
the threshold defined manually and used for evaluation for
detection results over the distribution.

We have reproduced and completed some typical algorithms
and analyzed the performance on FLIC datasets, in which we
use the labeled torso size in the FLIC dataset as the coeffcient
of distance normalization as to formula (9). With different
thresholds, PCK indicator will increase with the increase of
the threshold. After a series of measurements on all examples,
we compared the results of various typical models on the
normalized thresholds from 0 to 0.5, as shown in Figure 5
and Table 4. It’s important to note our results are competitive
reaching 94.3AP and 94.7AP on shoulder and wrist joints. The
comprehensively measured experimental results expound that
our model outshines other models in the prediction results of
keypoints in statistical perspectives. These results are observer-
centric and comply with how others have assessed their output
on FLIC.

PCK* =

4.3. Results on MPII

MPII dataset comprises a set of 25K images captured from
video data on YouTube platform, with a total of 40K instance
samples labeled, including 28K instances for training and 12K
for testing. The annotation information of the testing set is not

Table 4: Comparison of Performance on FLIC (PCK@0.5) with typical and
classical models.

Method wrist elbow shoulder eye nose hip
Sappetal. [19] 605 756 703 69.5 65.3 70.1
Toshev et al. [5] 764 88.1 89.6 86.7 80.5 85.8
Carreira et al. [68] 83.9 902  93.1 88.4 87.6 86.5
Weietal. [4] 925 907 929 90.5 89.4 884

Our model 943 922 947 92.1 90.6 89.5

disclosed to the public. We randomly selected 20K examples
in the training set as testing used for the effective comparison
of the experimental methods. Each instance in the MPII dataset
has 16-keypoint annotation information. We have carried out
the corresponding configuration and annotation on the testing
images through prediction results, and part of the experimental
effect is illustrated below in Figure 7.

Besides, we also utilize PCK index to evaluate the results
of keypoint prediction, and are conducting comparative
experiments of diverse typical and classical methods. The
distance is normalized by head size in formular (9) for MPIIL.
The image collection contains challenging poses corresponding
to a large range of human activities, which can be used as
typical examples for behavior monitoring. The subset of MPII
training set we tested is well practicable to the real scenes. The
comparison results of different methods are provided in Table 5
and Figure 6, which edifies performance in our method achieves
detection precision peaking 87.2AP at shoulder locations and
falling 83.1AP at ankle positions (PCK@0.5). We can also
reasonably demonstrate our model outweighs other methods on
many threshold scales.

4.4. Results on MSCOCO

MSCOCO integrates a dataset created by Microsoft, rich
in content and including natural images and common target
pictures in life, and provides a large amount of annotation
information for pictures. There are five categories of annotation
in this dataset: object detection, key point detection, instance
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Figure 7: Keypoint annotation configuration for the MPII dataset predicted by our model.

Table 5: Comparison of performance on MPII (PCK@0.5) with different famed
methods mentioned above.

Method shoulder wrist elbow ankle knee hip
Sapp et al. [19] 659 689 70.7 683 67.8 71.0
Toshev et al. [5] 81.3 804 825 779 79.1 823

Carreiraetal. [68] 84.8  82.1 844 80.1 82.6 83.1
Wei et al. [4] 85.5 835 84.1 825 823 84.7
Our model 872 847 86.0 83.1 84.7 86.9

segmentation, panoramic segmentation, and image annotation.
The keypoints are mainly labeled for the 17 keypoints of
the personnel instance, which are represented by the keyword
"keypoints" in the dictionary file specified by the JSON file.

The MSCOCO dataset defines OKS (Object Keypoint
Similarity) [21] evaluating the similarity between keypoints,
and uses the mean Average Precision (AP) calculated based
on 10 OKS thresholds as the main evaluation scale. The
computation operation for OKS is supplied below in formular
(10).

OKS =3, exp(-d?/2562) 6 (vi > 0)] /Z; [6 (vi > 0)]  (10)
Where d; represents the Euclidean distance for ith keypoint,

similar to formular (9). v; are the visibility flags of the ground
truth. s indicates the object scale which can be computed
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by relating area and «; is a per-keypont constant that controls
falloff. The OKS acts as the role analogous to the IoU, taking
into account more information about statistical distribution of
the keypoints. For example, AP°° means that points with OKS
greater than 0.5 will be considered for computing.

We compare our CGARPN model with typical and latest
CNN-based ones related to both Top-down and Bottom-up
paradigms (in Table 6) consisting of Simplebaseline [7],
MultiPoseNet[48], CPN[46], CMU-Pose[9] and PRTR[69].
We perform relevant testing on 8K instances selected from
the remaining of all samples mentioned above, and some
marked results are illustrated in Figure 8. From the
all-round comparative results (as shown in Table 6), we
can demonstrate our model achieves 74.3AP, obviously
outperforming CMU-Pose [9] (+13.6AP), Simplebaseline[7]
(+1.4AP), MutliPoseNet[48](+7.8 AP), and CPN[46](+0.7AP).
It’s also very persuasive to note that our compact framework
is superior to other models concerning parameter capacity
and computation difficulty, requires less parameters and
computation operations compared with CMU-Pose[9] (63.7%,
26.1%), Simplebaseline[7] (50.4%, 41.3% ), MutliPoseNet[48]
(56.7%, 27.0% ), CPN[46] (59.1%, 50.3%), and PRTR[69]
(60.5%, 68.1% ). The average time of processing for our model
is ~33 frames per second. More details are uncovered in Table
6.

4.5. Ablation Studies

In order to efficiently evaluate the detection effects of various
proposed substructures in distinct scales and situations, we
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Table 6: Comparison of results with state-of-the-art CNN-based models on MSCOCO detection dataset. Our model achieves competitive performance with other

methods in view of precision, memory consumption and computation complexity.

Method Backbone Input Size #Params GFLOPs FPS AP AP° AP” APM AP“

Z. Cao. [9] CPM+PAF 204%224 54.3M 56.4 18 60.7 803 653 586 674
M. Kocabas [48] ResNet-101 480*480 61.0M 54.5 19 665 834 747 635 762
B. Xiao et al. [7] ResNet-152 384288 68.6M 35.6 16 729 881 805 70.8 79.6
Y. Chen et al. [46] ResNet-Inception ~ 384*288 58.8M 29.2 20 73.6 887 812 714 809
PRTR [69] HRNet-W32 384288 57.2M 26.1 25 745 895 8.1 723 819
Our model ResNet-152 256%192  34.6M 14.7 33 743 894 8.1 720 817

conduct corresponding ablation studies on alternatives, which
include the combination of how several molecular modules are
used. Besides, the performance of the backbone network at
different scales is also illustrated.

We conduct several ablation experiments on the application
of CGA, AR and PCSNMS modules. The backbone network
used is ResNet-50. According to experimental results, as
shown in Table 7, we can demonstrate that the network
with AR structure effectively improves the detection AP by
17.4% compared with that without it. Meanwhile, the CGA
module increases AP by 7.1% and the detection performance
of PCSNMS also is fine-tuned by nearly 3%.

Table 7: Results of Ablation study on MSCOCO dataset with different
circumstances. + stands for the situation with our PCSNMS. w/o X means
without X module in our pipeline.

Methods PCSNMS AP AP AP APM AP
w/o CGA, AR + 67.3 84.1 75.8 64.3 71.5
CGA, w/o AR + 614 81.5 65.9 59.2 68.3

CGA, AR wf/o 702 85.6 77.6 679 77.8

CGA, AR + 72.1 873 79.6 69.8 79.8

We execute related studies on the impact of various typical
network sizes in terms of detection performance on MSCOCO
dataset. The experimental results elucidate that with the
increase of network scale, the detection accuracy is refined.
CGARPN-L backbone obviously outperforms CGARPN-M
(+0.5 AP), CGARPN-S (+2.2 AP), as shown in Table 8.

Table 8: Results for our CGARPN model configured by different backbones
with optional scales. CGARPN-x Stands for Small, Middle and Large, which
corresponds to ResNet-50, ResNet-101, and ResNet-152 respectively. The
input size is 256%192.

Scales AP AP APP” APM AP
CGARPN-S 72.1 873 796 698 79.8
CGARPN-M 738 888 814 715 813
CGARPN-L 743 894 821 720 817
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5. Conclusion

This paper explores a CGARPN network, a novel design by
proposing CGAN and ARPN for pose estimation. The
framework is established fusing several significant advantages,
conducive to the reasonable simplification of parameter
calculation capacity concerning CGAN. We also combine the
attention mechanism to elaborate global association of
intermediate parameters in CGAN, integrating the
characteristics related geometrically and collaboratively.
ARPN  structure is introduced to efficiently optimize
determining the final prediction through dynamic paths
adaptively. Additionally, PCSNMS is also proposed reducing
redundant detection and improving the accuracy of the overall
hierarchy. Our qualitative analysis demonstrates our model
behaviors that are vigorous and competitive for posture
estimation tasks ranging from complex environments.
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Highlights:

® A novel compact framework with CGAN and ARPN fusion structure
incorporating global association relevance of learning features for behavior
understanding in complex scenarios.

® (Capable of Adaptively routing by modeling geometrically statistical distributing
info and hidden properties in intermediate parameters space for further
optimization.

® (Constructing PCS improved criterion excavating content similarity to facilitate
filtering the resembling outputs for proposals prediction during first stage of the
processing workflow.
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