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Abstract 
 

The paper presents a comparative study of various learning methods for 
artificial neural network. The methods are: the backpropagation BP, the 
recursive least squares RLS, the Zangwill’s method ZGW and the method 
based on evolutionary algorithm EA. The study consists of evaluating the 
learning effectiveness of these methods and selecting the most efficient 
one to be used in the designing of an adaptive neural voltage controller for 
a synchronous generator. 
 
Keywords: learning methods, artificial neural network (ANN), neural 
voltage controller. 
 
Badania porównawcze metod uczenia  
sieci neuronowej 

 
Streszczenie 

 
W artykule przedstawiono wyniki badań porównawczych metod uczenia 
sieci neuronowych takich jak: metoda propagacji wstecznej błędów, 
rekurencyjna metoda najmniejszych kwadratów, metoda Zangwill'a, 
metoda algorytmów ewolucyjnych. Celem tych badań jest dobieranie 
najefektywniejszej metody uczenia do projektowania adaptacyjnego 
neuronowego regulatora napięcia generatora synchronicznego. 
 
Słowa kluczowe: metody uczenia, sieć neuronowa, neuronowy regulator 
napięcia. 
 
1. Introduction 
 

The intensive development of neural network applications 
began after introducing so called backpropagation learning 
method [18, 19, 20], in the middle of the 80s. The method has so 
far been generally used in multilayer neural network learning, 
even though it has several drawbacks. Among the biggest con of 
that method is its low effectiveness-slow and local convergence. 
That disadvantage is especially significant with regard to the use 
of neural networks in the nonlinear control plants, where most 
frequently the calculations connected with neural network learning 
are made in the real time. Therefore intensive studies are 
conducted aiming at: 
• the improvement of the backpropagation method; 
• developing and testing new methods; 
• using simultaneously various methods, so called hybrid 

methods. 
The problem of the feedforward neural network learning with  

a supervisor comes down to optimization approach, in which 
independent variables are the weights of particular neurons,  
and the performance function is the learning error. Regarding  
the big multi-dimension of such a task and the complex 
dependence of the learning error on the weights of the neurons 
(numerous local minimum), solving it demands a high computing 
time. 

The paper presents the results of comparative study in order to 
select the more efficient learning method to be used in the 
designing of a neural voltage controller for synchronous generator. 
In these studies there has been analyzed the effectiveness of the 
following learning methods: 
• backpropagation (BP); 
• recursive least square (RLS); 
• evolutionary algorithm (EA); 
• Zangwill’s method as a non-gradient optimization method (ZGW). 

All the above mentioned methods were tested with reference to 
the feedforward artificial neural network (ANN) shown in fig. 1. 

It should be noticed, that gaining objective comparative results 
is very difficult. Each of the methods is characterized by certain 
parameters influencing its effectiveness. However, the selection of 
these parameters in the conducted investigations has been made 
only on the basis of a small number of tests. 

 
 

 

output layer
 

inputs
 

y

 

y1

...
1O

On
m

x

x
1

hidden layer

L

O2

 
 
Fig. 1.  Block diagram of  two-layer feedforward ANN 
Rys. 1.  Schemat blokowy dwuwarstwowej sieci neuronowej 

 
 

2. Learning methods 
 

The objective of the learning process is to find an optimal set of 
weights to minimize the error between the teaching signal (desired 
output) and the actual response of the neural network. The 
learning problem can usually be represented as a function 
minimization problem. 
 
2.1. Backpropagation method 
 

This method is most frequently used in the studies concerning 
multilayer feed-forward neural networks learning with  
a supervisor [18, 19].  

The minimized function is the following sum of square errors  
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and: p- current learning pair number; n- number of neurons in the 
output layer; dj- desired output of j-th neuron in the output layer; 
oj- current output of  j-th neuron in the output layer;  

- learnable bias weight of  j-th neuron in the output layer;  
Φ- neuron activation function. 

0jw

In the backpropagation method the minimization of the 
expression (1) towards the neural network weights is made on the 
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basis of the descent gradient method. The correction of the neuron 
weights is computed as [18, 19]: 
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where η is the learning rate, an important parameter of the 
method. 
 
2.2. Recursive least squares method 
 

The RLS method was derived from the signals processing 
theory [2, 19]. According to the data in the literature, the method 
is more effective than the classical backpropagation algorithm. In 
that method, the current learning error is defined as [19]: 
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where: λ - forgetting factor selected from the range [0, 1]. Its role 
consists of reducing the influence of previous errors on the value 
of the expression (4); wj- weight vector of the j-th neuron of the 
output layer; p- current learning pair number. 

In this method the weights are updated according to the 
following algorithm:  

 
1. After running the neural network the errors of the output signals 

are calculated: 
- for the output layer 
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- for the hidden layer 
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 where the linear output of the last layer neurons are: 
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where linear outputs of the hidden layer neuron are: 
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3. The change of each weight is given by the formula: 
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are updated as follows: 
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Initial matrices are selected from identity matrices  and : (1)I (2)I
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where >>0 and >>0. (1)δ (2)δ
Initial values for all weights are set zeros or are generated from 

given interval. 
 
2.3. Learning with the use of the evolutionary 

algorithm 
 

A simplified diagram of the used evolutionary algorithm (EA) 
is given in fig. 2. At the beginning it should be noticed that the 
classical genetic algorithm with a binary coding, with a big 
number of weights and required precision, would demand too long 
chromosomes. Therefore, in the presented algorithm the coding in 
real numbers, the deterministic tournament selection, the elitist 
strategy and the following genetic operators were used:  

- Averaging crossover [2] - for the following parent’s 
chromosomes  

x1 = [x11,x12,...,x1n],             (17) 
 

x2 = [x21,x22,...,x2n],             (18) 
  

the genes descendant chromosomes x’1 and x’2 are calculated 
according to the following relations: 
 

x1i’ = x1i + δxi,                               (19) 
 

                x2i’ = x2i - δxi,                                (20) 
 
for i=1,2,...,n and where δxi = ξu(x2i -  x1i), ξu – pseudo random 
number from range [0, 1] with unified distribution.  

The selection of individuals for crossing phase is made 
according with tournament method. However, the mutation of 
particular genes is realized with the probability pm according to 
the equation: 

                    xij’ = xij + zξN(0,1),              (21) 
 
where: xij – value of the gene before mutation, xij’ – value of the 
gene after mutation, ξN(0,1) – pseudo random number with 
Gaussian distribution, z – coefficient dependent on number of 
iteration k, calculated from the formula: 
 

                 z = 
10)log(k

1
+

            (22) 

 
In the application of the evolutionary algorithm the task of the 

neural network learning is defined as an optimization problem, 
where the optimization criterion is the sum of square errors in the 
whole learning cycle. The error is calculated with constant weights 
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and the genes values in particular chromosome result from the 
network weights. 
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Fig. 2.  System flow of EA operation 
Rys. 2.  Schemat blokowy algorytmu ewolucyjnego 

 
 
2.4. Zangwill’s method 
 

It has been based on methods developed by Zangwill [9] and it 
is one of the most effective determined, iterative non-gradient 
methods. It is One of the methods for minimizing a function of 
several variables based only on the values of the function to be 
minimized. The method is used when the function is not 
differentiable or if a calculation of the derivatives involves a large 
amount of computation. Below the use of the coordinate-wise 
descent method for minimizing a function  on a set [10, 11] )(xF
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where λ is the parameter of the method, 0<λ<1. Condition (25) 
means that if at least one of the conditions (23) and (24) is 
fulfilled in a single cycle of n iterations involving a selection of all 
coordinate vectors  with step nee ,...,1 kα , then the length of the 
step kα  is not reduced and is retained at least during the following 
cycle of n iterations; if on the other hand neither (23) nor (24) is 
ever fulfilled in the subsequent n iterations, the step kα  is 
reduced. 

Let   be convex and continuously differentiable on , let 
the set  

)(xF X

)}()(:{ 0xFxFXx ≤∈  
 
be bounded and let 0α  be a positive number. Then the methods 
(23)-(25) converge, i.e.  
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and the sequence  converges to the set of minima for  in }{ kx )(xF
X . If  is not differentiable on )(xF X , the method need not 
converge [10, 11]. 

Applying to the neural network learning, like with the 
evolutionary algorithm, we choose as optimization criterion 
(performance function) the total square learning error in the whole 
learning cycle (calculated with constant weights). However, the 
independent variables are all the weights present in the network. 
 
3. Simulation results 
 
3.1. Problem formulation 
 

As mentioned in the introduction, the main aim of the discussed 
studies was comparing the effectiveness of neural network 
learning algorithms in order to choose the appropriate method to 
design a neural controller for synchronous generator. The problem 
concerned the learning process of a neural controller, with an 
optimized conventional controller as a superviser. The simplified 
diagram scheme of the studied system is given in fig. 3. 
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Fig. 3.  Schematic diagram of the investigated Configuration 
Rys. 3.  Schemat blokowy badanego układu 

 
The neural controller works simultaneously with conventional 

controller, however its output signal is not applied on the plant but 
its value is compared with the output value of the conventional 
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controller. The difference between the values of these signals is 
used to update weights of the neural controller. 

The synchronous generator and the conventional controller 
were modeled as dynamic systems [13]. They are subject to 
disturbances, namely infinite bus voltage change, as it is shown in 
fig. 4. The infinite bus voltage is suddenly changed at time t0, at 
T1+ t0 and at 2T1+ t0.   
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Fig. 4.  Bus voltage disturbances in simulation cycle 
Rys. 4.  Zmiany napięcia systemu elektroenergetycznego podczas  

jednego cyklu symulacji 
 
As a minimized performance function in the learning process 

we used the average square error between the output of the neural 
controller value and the output of the conventional controller 
value in the simulation cycle. 
 
3.2. Results presentation 
 

Three basic aspects were considered in comparative study of the 
learning methods: 
• recognizing the character of the learning process convergence 

of the methods and selection of optimal parameters for these 
methods; 

• comparing the effectiveness of learning measured by the number 
of simulation cycles made; 

• comparing the calculating effectiveness defined by the time of 
the learning process. 
Simulation calculations were performed with the following 

main data: 
T = 15s - total simulation time (Fig. 4), 
T1 =5s – period of disturbances change, 
Δu = 0.05[pu] – value of disturbances change, 
ht = 0.0005s – sampling period for analog controller; 
lt =0.001s – sampling period for neural controller, 
l = 5 – number of neural controller inputs, 
m = 25 – number of neurons in the hidden layer of the neural network, 
n =1 – number of neurons in the output layer. 

Main performance characteristics of the methods BP, RLS and 
EA, in a form of the convergence graphs, are presented in the 
Fig.5-7 respectively.  

 
 

7,00E-04

7,50E-04

8,00E-04

8,50E-04

9,00E-04

9,50E-04

1,00E-03

1,05E-03

0 50 100 150 200Cycles

E

 
 
Fig. 5.  Convergence graph for RLS method 
Rys. 5.  Zbieżność metody RLS 
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Fig. 6.  Convergence graph for BP method 
Rys. 6.  Zbieżność metody BP 
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Fig. 7.  Convergence graph 
Rys. 7.  Zbieżność metody EA 

 
In ZGW method it was not possible to obtain intermediate 

results. The convergence graph for BP method has a minimum at 
300 cycles, and then learning error increases. The RLS method 
gives fast convergence at the beginning of the learning process 
and subsequently very low convergence. Convergence graph for 
EA method has similar shape. 

Comparative results referring to time of calculation are 
presented in Table 1. The total learning time in the table resulted 
from obtaining in the method the testing error of approximately 
Et=0.001. Testing process realized one simulation cycle without 
changing the values of the weights. For the BP method testing 
error (in testing process) was far bigger than error in last learning 
cycle. The cycle time significantly depends on the learning 
method. 

It is especially big for RLS method. Collective results of the 
learning processes for all methods comparing to the conventional 
controller output  are presented in Fig. 8.  cU
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Fig. 8.  Comparison results; Uc- output signal of conventional controller;  

UBP, URLS, UEA, UZGW- output signals of neural controller  
after BP, RLS, EA, and ZGW training respectively 

Rys. 8.  Porównanie wyników; Uc- wyściowy signał klasycznego regulatora;  
UBP, URLS, UEA, UZGW- wyściowe signały neuronowego regulatora  
po kolejno BP, RLS, EA, i ZGW uczenie 
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firmy specjalizujące się w tej problematyce do przygotowania materiałów do kolejnych numerów naszego miesięcznika.  

 
 

Redakcja czasopisma POMIARY AUTOMATYKA KONTROLA 
44-100 Gliwice, ul. Akademicka 10, pok. 30b,  

tel./fax: 032 237 19 45, e-mail: wydawnictwo@pak.info.pl 
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http://mostwiedzy.pl

