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Abstract

One of important factors influencing the accuracy of the numerical solution of
1D unsaturated flow equation (Richards’ equation) is the averaging method
applied to compute hydraulic conductivity between two adjacent nodes of
the computational grid. A number of averaging schemes have been proposed
in the literature for homogeneous soil, including arithmetic, geometric, up-
stream and integrated means, as well as more sophisticated approaches, based
on the local solution of steady state flow between the neighboring nodes (Dar-
cian means). Another group of methods have been developed for the case
when a material interface is present between the nodes. They range from
simple arithmetic averaging to more complex schemes using the pressure-
and flux-continuity conditions at the interface. In this paper we compare
several averaging schemes for a number of steady and unsteady flow prob-
lems in layered soils. The first group of methods is applied in the framework
of the vertex-centered approach to spatial discretization, where the nodes are
placed at the material interfaces, while the second group is used with the cell-
centered approach, where the material interfaces are located between com-
putational nodes. The resulting numerical schemes are evaluated in terms
of accuracy and computational time. It is shown that the averaging schemes
based on Darcian mean principle (Szymkiewicz, 2009) used in the frame-
work of either vertex-centered or cell-centered approach compare favourably
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to other methods for a range of test cases.

Keywords: Richards’ equation, Layered soil, Internodal conductivity

1. Introduction

Water flow in partially saturated porous medium is commonly described
with a nonlinear partial differential equation, known as the Richards’ equa-
tion (RE). Its one-dimensional form is often used in hydrological and agri-
cultural engineering to predict changes of water content and fluxes in the
soil profile, which in turn can be used as input in larger scale hydrological
models or contaminant transport models. The same equation can be also
used to simulate moisture transport in building materials or other industrial
porous materials. For the case of one-dimensional flow in an arbitrary spatial
direction it can be written in the following form:

∂θ(h)

∂t
−

∂

∂z

[

K(h)

(

∂h

∂z
− γ

)]

= 0 (1)

where t is time, z – spatial coordinate, h – water potential head (due to
capillary and adsorption forces), θ – volumetric water content, K(h) – hy-
draulic conductivity and γ represents the component of mass force acting in
the direction of z, normalized with respect to the gravitational force. For
horizontal flow γ = 0, for vertical flow with z oriented positively downwards
γ = 1 and for flow in an inclined column 0 < γ < 1 (values larger than
one are also possible, for example for flow in a centrifuge). Eq. (1) can be
extended by adding terms representing water and soil skeleton compressibil-
ity or source/sink terms, but such modifications do not affect the analysis
presented in this paper. The unsaturated flow is characterized by highly
nonlinear relations between h, θ and K, known as the hydraulic functions.
The conductivity can be expressed as a product of the hydraulic conductiv-
ity at saturation Ks and the relative conductivity, depending on the water
potential head Kr(h). The hydraulic functions are often described by analyt-
ical formulas of Brooks and Corey [1] or van Genuchten–Mualem [3, 2], but
many other models have been proposed. The nonlinearity of RE has impor-
tant implications for its numerical solution, requiring appropriate time and
space discretization schemes. Here we focus on the issues related to spatial
discretization.
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Spatial discretization of Eq. (1) is usually performed with low order finite
difference method (FDM) or finite element method (FEM) [e.g. 4, 5, 6, 7, 8],
although mixed-hybrid FEM [9] and discontinuous Galerkin FEM [10, 11]
schemes were also proposed. Since in the FEM discretization mass-lumping
must be applied to avoid oscillations [4], standard low-order FEM leads to
essentially the same discrete equations as FDM. In each case it is necessary
to estimate the average value of the hydraulic conductivity between adjacent
nodes in order to compute the corresponding water flux. The most popular
averaging schemes include arithmetic, geometric, upstream and integrated
means. As shown by numerous studies [12, 13, 14, 15, 9, 16, 17, 18, 19] the
accuracy of the numerical solution is sensitive to the choice of the averaging
method, especially on coarser grids. The error can be significantly reduced
by using adaptive grid refinement [e.g. 20, 21, 11] or by using a transformed
variable instead of the water potential head in Eq. (1) [e.g. 22, 23], however
such approaches imply additional algorithmic complexity. Thus, there is still
some interest in developing improved averaging schemes that can be used in
the framework of standard fixed-grid numerical algorithms.

Previous research showed that a significant improvement in accuracy can
be obtained by using the so-called Darcian means approach, proposed by
Warrick [24]. According to this method the average conductivity is chosen in
such a manner that the resulting flux is equal to the flux obtained from the
solution of steady state flow equation between the two nodes. Consequently,
the internodal conductivity depends on the distance between the nodes, ex-
cept for the case of horizontal flow. For most K(h) functions the computation
of ”true” Darcian means require numerical solution of steady state problem,
which makes this method unsuitable for practical application. It can be used,
however, as a starting point for the development of approximate averaging
formulas, which can be more readily implemented in practice. Such formulas
were proposed by Baker [25], Baker et al. [16], Baker [26], Gastó et al. [18]
and more recently by Szymkiewicz [19]. The latter one was shown to provide
relatively accurate results for a wide range of conductivity functions and grid
sizes.

An additional level of complexity is added when the porous material under
consideration has layered structure. In such a case two basic approaches to
spatial discretization can be distinguished. Adopting the framework of the
finite volume method (FVM), we can call them vertex-centered (VC) and
cell-centered (CC), respectively. In the first case, nodes are placed at the
material interfaces and between them, so that the medium between neigh-
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boring nodes is always homogeneous [e.g. 18, 7]. Consequently, the averaging
schemes developed for homogeneous media can be applied. On the other hand
the discontinuity in θ(h) function has to be taken into account when the stor-
age term in Eq. (1) is evaluated at the interfacial node [27]. In the second
approach the nodes are located at the centers of homogeneous grid cells [e.g.
28, 6, 23], which means that a unique θ(h) relation is associated with each
node, but the material heterogeneity must be taken into account when com-
puting the average conductivity between two neighboring cells which belong
to different layers. Each discretization scheme can be used in conjunction
with various conductivity averaging methods.

The objectives of this work are: first – to evaluate the accuracy of four
selected averaging schemes used with the CC approach by comparing them
to the Darcian means obtained from the steady state solution of RE for a
two-layer medium, and second – to compare the performance of several VC
and CC schemes for unsteady flow problems. To our knowledge no such
analysis has been undertaken before, since previous papers focused on either
vertex-centered or cell-centered schemes, but did not compare them directly
to each other.

2. Spatial discretization and conductivity averaging schemes

2.1. Vertex-centered discretization

In both approaches to spatial discretization the solution domain is first
divided into a number of cells, in such a way that each cell is homogeneous.
In the VC approach (Fig. 1) the computational nodes are placed at the ver-
tices (which in 1D are equivalent to cell edges), including the outer bound-
aries of the domain and then a dual mesh of control volumes is build in
such a way that the boundaries of the control volumes are located mid-
way between neighboring nodes. Consequently, control volumes built around
material interfaces are heterogeneous and consist of two sub-volumes with
different material properties. On the other hand, the medium between each
pair of neighboring nodes is homogeneous. The resulting semi-discrete form
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of Eq. (1) is as follows:

L
(1)
i

dθ(1)(hi)

dt
+ L

(2)
i

dθ(2)(hi)

dt

−K
(2)

i+ 1

2

(hi, hi+1) ·

[

hi+1 − hi
∆zi+ 1

2

− γ

]

+K
(1)

i− 1

2

(hi−1, hi) ·

[

hi − hi−1

∆zi− 1

2

− γ

]

= 0 (2)

where L
(1)
i and L

(2)
i denote the lengths of the parts of grid cell i occupied

by porous materials (1) and (2) respectively, ∆zi+ 1

2

is the distance between

node i and i + 1 and ∆zi− 1

2

– the distance between node i − 1 and i (see

Fig. 1).
The average conductivity between each pair of nodes, say between i and

i+1, can be computed using one of the methods developed for homogeneous
media:

• arithmetic mean (VC-ARIT)

K
(2)

i+ 1

2

=
1

2

(

K(2)(hi) +K(2)(hi+1)
)

(3)

• geometric mean (VC-GEOM)

K
(2)

i+ 1

2

=
√

K(2)(hi) ·K(2)(hi+1) (4)

• upstream mean (VC-UPS)

K
(2)

i+ 1

2

=











K(2)(hi) if
∆h

i+1
2

∆z
i+1

2

− γ ≤ 0

K(2)(hi+1) if
∆h

i+1
2

∆z
i+1

2

− γ > 0
(5)

where ∆hi+ 1

2

denotes the difference of the water potential head between
node i+ 1 and i, ∆hi+ 1

2

= hi+1 − hi,
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• integrated mean

K
(2)

i+ 1

2

= K
(2)
INT (hi, hi+1) =

=
1

∆hi+ 1

2

∫ hi+1

hi

K(2)(h)dh =
Φ(2)(hi+1)− Φ(2)(hi)

∆hi+ 1

2

(6)

where Φ(2) denotes the flux potential function (also known as Kirchhoff

transformed variable) for material (2), Φ(2)(hi) =
∫ hi

−∞
K(2)(ψ)dψ.

Numerical experiments published in the literature show that none of the
methods listed above is really universal, because their performance depends
on the shape of the conductivity function, initial-boundary conditions of the
problem under consideration and grid size ∆z [12, 13, 14, 15, 16, 18, 9, 19].
A more accurate averaging technique is based on the assumption that the
average conductivity should reproduce the steady-state flow rate between the
two considered nodes, with the water potential values hi and hi+1 taken as
the boundary conditions. This approach, introduced by Warrick [24] is called
Darcian mean, because it implies the equivalence between the discrete and
differential (continuous) forms of the Darcy’s law:

qst = −K
(2)

i+ 1

2

(

∆hi+ 1

2

∆zi+ 1

2

− γ

)

= −K(2)(h)

(

dh

dz
− γ

)

(7)

where qst is the uniform steady flux between nodes. The differential form of
Darcy’s law can be integrated as follows:

∫ zi+1

zi

dz = −

∫ hi+1

hi

K(2)(h)dh

qst − γK(2)(h)
(8)

For horizontal flow with γ = 0 one obtains:

∆zi+ 1

2

= −
1

qst

∫ hi+1

hi

K(2)(h)dh (9)

Comparing this result with the discrete form of Darcy’s law appearing in
Eq. (7) gives:

K
(2)

i+ 1

2

=
1

∆hi+ 1

2

∫ hi+1

hi

K(2)(h)dh = K
(2)
INT (hi, hi+1)
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Thus, the integrated mean corresponds to the Darcian mean for horizontal
flow. In a general case of γ > 0 the Darcian mean is different from any of
the simple averages listed above.

For exponential conductivity function integration of the steady flow equa-
tion can be carried out analytically, leading to an exact formula [25], but in
the case of more complicated K(h) functions the integration must be done
numerically, which requires exceedingly large effort when solving unsteady
flow problems. However, the concept of Darcian mean can be used to develop
approximate averaging schemes which are more accurate than the standard
formulas, and on the other hand relatively easy to implement. For exam-
ple Baker [26] proposed an approximation for arbitrary conductivity func-
tion based on the exact result for the exponential function [25]. Since this
method requires inverting the conductivity function to obtain h(K) it can-
not be readily applied to the standard van Genuchten–Mualem model. Gastó
et al. [18] suggested a weighted arithmetic average of the nodal conductivi-
ties, where the weighting coefficient is calculated from an analytical formula
depending on the nodal conductivities, internodal distance and parameters
of the conductivity function according to Brooks–Corey or van Genuchten–
Mualem models. The application of this approach is limited to those two
conductivity models and to ∆z smaller than the parameter which scales the
water potential head in the respective function (i.e. the air-entry pressure
for BC and 1/α for VGM).

In this paper we focus on the approximation proposed by Szymkiewicz
[19], which can be applied to an arbitrary conductivity function. It consists
of three formulas, the choice depending on the relation between the gradient
of capillary and gravity potential:

• if
∆h

i+1
2

∆z
i+1

2

< 0 both capillary and gravity gradients are directed downward

(infiltration in dry soil):

K
(2)

i+ 1

2

= max

(

K
(2)
INT (hi, hi+1),

γ ·K(2)(hi)

γ −∆hi+ 1

2

/∆zi+ 1

2

)

(10)

• if γ >
∆h

i+1
2

∆z
i+1

2

> 0 the flow is in downward direction, but the capillary

gradient acts oppositely to the gravity (drainage or infiltration towards
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water table):

K
(2)
i+1/2 = min

(

K(2)(ha),
γ ·K(2)(hi)

γ −∆hi+ 1

2

/∆zi+ 1

2

)

(11)

where ha = hi+1 −
(∆hi+ 1

2

)2

γ∆zi+ 1

2

;

• if
∆h

i+1
2

∆z
i+1

2

> 1 the flow is in upward direction (evaporation or capillary

rise):

K
(2)

i+ 1

2

=
∆zi+ 1

2

·Ka ·Kb

(∆zi+ 1

2

− δz) ·Ka + δz ·Kb
(12)

where Ka = K
(2)
INT (hi, hb), Kb = K(2)(hb), hb = hi+1 −∆zi+ 1

2

and

δz =
−∆hi+ 1

2

+
√

(∆hi+ 1

2

)2 + 4(Kb/Ka − 1)γ(∆hi+1/2 − γ∆zi+1/2)∆zi+ 1

2

2γ(Kb/Ka − 1)

The above approximations ensure that when
∆h

i+1
2

∆z
i+1

2

approaches 0 or γ from

either side, the average conductivity K
(2)

i+ 1

2

tends to the value at the upper

node K(2)(hi), which is consistent with the Darcian averaging principles [16,
26]. The combination of this averaging technique with VC discretization will
be referred to as VC-SZYM.

2.2. Cell-centered discretization

An alternative approach to spatial discretization is to use homogeneous
cells of the primal grid as the control volumes (Fig. 2), and to place nodes
at their centers. In this case, a unique capillary function is associated with
each node, but whenever the boundary between control volumes coincides
with a material interface, a discontinuity of the conductivity function should
be taken into account when averaging is applied. For example, the following
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semi-discrete equation results for the control volume around node i:

Li
dθ(1)(hi)

dt
−K

(1,2)

i+ 1

2

(hi, hi+1) ·

[

hi+1 − hi
∆zi+ 1

2

− γ

]

+K
(1)

i− 1

2

(hi−1, hi) ·

[

hi − hi−1

∆zi− 1

2

− γ

]

= 0 (13)

In the above equation K(1) denotes the average conductivity value in the
homogeneous layer of material (1), computed with one of the schemes listed
above, while K(1,2) is the average value in the heterogeneous layer. One
straightforward option to approximate K(1,2) is to use the arithmetic mean
of the nodal conductivities, by analogy to the homogeneous case:

K
(1,2)

i+ 1

2

=
1

2

(

K(1)
s ·K(1)

r (hi) +K(2)
s ·K(2)

r (hi+1)
)

(14)

This approach is used for example in the well known HYDRUS-1D numerical
code [8], and will be referred to as CC-ARIT.

Another possible method is to use the harmonic averaging of the saturated
conductivities and upstream-weighted relative conductivity:

K
(1,2)

i+ 1

2

= K
(1,2)

s,i+ 1

2

·K
(1,2)

r,i+ 1

2

(15)

K
(1,2)

s,i+ 1

2

=
[

∆z
(1)

i+ 1

2

+∆z
(2)

i+ 1

2

]

·





∆z
(1)

i+ 1

2

K
(1)
s

+
∆z

(2)

i+ 1

2

K
(2)
s





−1

(16)

K
(1,2)

r,i+ 1

2

=











K
(1)
r (hi) if

∆h
i+1

2

∆z
i+1

2

− γ ≤ 0

K
(2)
r (hi+1) if

∆h
i+1

2

∆z
i+1

2

− γ > 0
(17)

where ∆z
(1)

i+ 1

2

and ∆z
(2)

i+ 1

2

refer to the parts of the internodal distance at each

side of the material interface (Fig. 2). This scheme will be referred to as

CC-UPS. It gives the correct value of K
(1,2)

i+ 1

2

for saturated flow. On the other

hand the use of upstream mean of relative conductivity prevents the rise of
unphysical oscillations in the solution of advection dominated flow [29, 30].

Yet another approach was proposed by Romano et al. [28]. It makes use
of the physically based assumption that the water potential head and flux
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should be continuous across the interface. Romano et al. [28] proposed to
introduce two ”ghost nodes” (Fig. 3). One of them is located above the
interface and extrapolates the pressure profile from the lower layer, while
the other one is located below the interface and extrapolates the pressure
profile from the upper layer. Assuming that the interface is located mid-way
between the nodes, Romano et al. [28] proposed to write the potential head
and flux continuity conditions in the following form:

1

2
· (hi + h̄i+1) =

1

2
· (h̄i + hi+1) (18)

−K
(1)

i+ 1

2

(hi, h̄i+1) ·

[

h̄i+1 − hi
∆zi+ 1

2

− γ

]

= −K
(2)

i+ 1

2

(h̄i, hi+1) ·

[

hi+1 − h̄i
∆zi+ 1

2

− γ

]

(19)

where h̄i and h̄i+1 denote the potential head values at the ghost nodes, and
the average conductivity for each of the materials is equal to the geometric
mean of the nodal values:

K
(1)

i+ 1

2

(hi, h̄i+1) =
√

K(1)(hi) ·K(1)(h̄i+1)

K
(2)

i+ 1

2

(h̄i, hi+1) =
√

K(2)(h̄i) ·K(2)(hi+1)

The nonlinear system of equations (18)–(19) have to be solved iteratively for
each material interface. The internodal conductivity is then computed as the
harmonic average of the conductivities in the two sub-layers:

K
(1,2)

i+ 1

2

=
2 ·K

(1)

i+ 1

2

(hi, h̄i+1) ·K
(2)

i+ 1

2

(h̄i, hi+1)

K
(1)

i+ 1

2

(hi, h̄i+1) +K
(2)

i+ 1

2

(h̄i, hi+1)
(20)

This approach will be referred to as CC-ROM. While it was shown to be
more accurate than standard arithmetic and geometric weighting in the test
cases considered by Romano et al. [28] and Brunone et al. [6], it raises two
questions. First, it is not clear, why the authors decided to introduce the
ghost values of the potential, which do not have any physical interpretation,
instead of using the interface potential directly (see below). Second, geomet-
ric averaging of conductivities in some cases leads to significant errors, for
example when simulating infiltration in dry sand [e.g. 18, 19].
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Finally we can consider a more general approach, based on the flux con-
tinuity condition given by Eq. (19), where the average conductivities in the
sub-layers are computed using the interfacial value of the potential head hc,
instead of ”ghost” nodes (Fig. 3):

−K
(1)

i+ 1

2

(hi, hc) ·





hc − hi

∆z
(1)

i+ 1

2

− γ



 = −K
(2)

i+ 1

2

(hc, hi+1) ·





hi+1 − hc

∆z
(2)

i+ 1

2

− γ



 (21)

The average conductivities between the node i and interface, K
(1)

i+ 1

2

(hi, hc),

and between the interface and node i + 1, K
(2)

i+ 1

2

(hc, hi+1), can be approxi-

mated with any scheme suitable for homogeneous medium. The nodes can
be positioned asymmetrically with respect to the interface. The resulting
nonlinear equation has to be solved iteratively for each interface, similarly to
the method of Romano et al. [28]. Once the value of the interfacial potential

head hc and the corresponding values of K
(1)

i+ 1

2

(hi, hc) and K
(2)

i+ 1

2

(hc, hi+1) are

obtained, the average conductivity between the nodes i and i + 1 can be
calculated as the weighted harmonic mean:

K
(1,2)

i+ 1

2

=
[

∆z
(1)

i+ 1

2

+∆z
(2)

i+ 1

2

]

·





∆z
(1)

i+ 1

2

K
(1)

i+ 1

2

(hi, hc)
+

∆z
(2)

i+ 1

2

K
(2)

i+ 1

2

(hc, hi+1)





−1

(22)

In this work we apply this approach in conjunction with the Darcian aver-
aging method proposed by Szymkiewicz [19], and denote it as CC-SZYM.

3. Evaluation of cell-centered conductivity averaging schemes for

steady flow

The conductivity averaging schemes for homogeneous medium used in the
framework of VC discretization were compared with exact Darcian means in
a number of previous papers [16, 26, 19]. Here we focus on the case of
heterogenous medium consisting of two layers, which arises in CC discretiza-
tion scheme. To this end, we first computed the fluxes between two nodes
placed symmetrically at both sides of the material interface using the CC-
ARIT, CC-UPS, CC-ROM and CC-SZYM schemes. Those values were then
compared to the flux obtained from the steady-state solution of RE for the
domain between the two nodes. The steady state solution was obtained with
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VC-ARIT scheme, but in order to make sure that it is not affected by the
spatial discretization error the grid was refined iteratively, until the rela-
tive difference between the fluxes at two subsequent refinement levels was
smaller than 0.1%. Two sets of simulations were performed – one using the
Brooks–Corey–Burdine hydraulic functions:

θ(h) =

{

θr + (θs − θr) · (h/he)
−λ if h < he

1 if h ≥ he
(23)

K(h) =

{

Ks (h/he)
−2−3λ if h < he

Ks if h ≥ he
(24)

and the other one using van Genuchten–Mualem functions:

θ(h) = θr + (θs − θr) · [1 + (h/hg)
n]

−m
(25)

K(h) =
Ks

[1 + (h/hg)
n]

m/2

[

1−
(h/hg)

n−1

(1 + (h/hg)n)m

]2

(26)

In the above equations θr is the residual water content, θs is the water content
at saturation, he is the air-entry pressure head in the Brooks–Corey model,
hg is the pressure scaling parameter in the van Genuchten model, λ and n are
parameters depending on the pore size distribution and m = 1 − 1/n. The
soils characterized by these functions are referred to as BC-sand, BC-clay,
VG-sand and VG-clay, respectively. Their parameters are listed in Table 1.
They were taken from the database implemented in HYDRUS-1D software
[8]. For each set of hydraulic functions a large number of simulations was per-
formed, with varying sequence of the layers (sand over clay, clay over sand),
distance between nodes, ∆z = {1, 2, 5, 10, 20, 50, 100, 200, 500} cm, and po-
tential head values at the nodes, h = {10, 0,−1,−10,−100,−1000} cm (for
Brooks–Corey model the potential values were modified by adding negative
value corresponding to hb, as listed in Table 1 for respective soils).

For a given combination of parameters the error of any averaging scheme
was defined as follows:

EK = log10
K

Kref
(27)

where K was computed with the considered averaging scheme and Kref was
obtained from the steady state solution. In order to compare a large num-
ber of results, some representative error measures were introduced for each
method of approximation:
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• root-mean square error, RMS(EK)

• maximum error value (largest overestimation), max(EK)

• minimum error value (largest underestimation), min(EK)

The values of these parameters are listed in Table 2 for soils characterized
by Brooks-Corey functions and in Table 3 for the van Genuchten–Mualem
functions. Moreover, for the schemes CC-ROM and CC-SZYM the values of
the potential head at the interface can be compared with the values obtained
from the fine-grid steady state simulation. The corresponding root mean
square errors, denoted as RMS(Ehc) are also reported.

It can be seen that the averaging scheme CC-SZYM, based on approxima-
tion of the Darcian means, is much more accurate in predicting the value of
steady-state average conductivity than the other three methods. CC-ROM
is second best, but still can lead to over- or underestimation of the conduc-
tivity by several orders of magnitude. It can be also noted, that all methods
are less accurate for van Genuchten–Mualem model than for Brooks–Corey
model.

4. Unsteady flow examples

4.1. Introduction

The discretization in time of Eqs. (2) and (13) was carried out with the
first order fully implicit scheme. At each time step the resulting set of non-
linear algebraic equations was solved using Newton method with line search.
As the convergence criterion we assumed that at the current time step j the
residual of Eq. (2) or (13) at any node i should not exceed (10−12+10−6 ·θji ).
This criterion ensured excellent mass balance for all simulations, with rela-
tive errors below 10−3%. Adaptive time stepping algorithm was used, based
on the number of Newton iterations required to achieve convergence. If more
than 7 iterations were required, the next time step was reduced by 0.8, while
for the number of iterations smaller than 3 it was multiplied by 1.25. This
approach was consistently used in all simulations, in order to obtain compa-
rable simulation times.

The five test cases presented below were chosen in such a way that they
represent all flow types covered by the approach of Szymkiewicz [19], i.e. infil-
tration in dry soil, infiltration towards water table and capillary uptake. The
examples also differ in the number of layers (from 2 to 5), and in the model
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used for conductivity function (Gardner, Brooks–Corey and van Genuchten-
Mualem).

For each case we performed simulations using five grid sizes. The finest
one was either 0.5 cm or 1 cm, which is sometimes suggested as sufficiently
fine to obtain accurate results when arithmetic averaging of conductivity is
used [5]. The coarsest grid always corresponded to the minimum possible
number of grid cells, i.e. one cell per soil layer. The reference solutions
were obtained on very fine grid with ∆z = 1 mm, and their reliability was
checked by comparing several runs with different averaging schemes. For each
test case we provide tables with information about the runs for three selected
discretizations, including errors, computational times (wall-clock time), and
number of time steps (note that the errors are defined differently from case
to case, depending on the formulation of the problem). Moreover, we show
plots of error versus computational time based on the results for all five grid
sizes.

In Test Cases C, D and E the hydraulic functions (including the flux
potential function Φ) were interpolated from a look-up table generated at
the preprocessing stage. This allowed for fast computation of the integrals
of van Genuchten–Mualem conductivity function required in formulas (10)
and (12). Linear interpolation was used and in each case the table consisted
of 100 irregularly spaced potential head values. The reference solutions in
each case were obtained using direct evaluation of the hydraulic functions.
In the first and second example, where Gardner and Brooks–Corey functions
are used, the integrals can be easily evaluated analytically.

We evaluated performance of eight schemes applicable to any type of
soil. These are VC-ARIT, VC-GEOM, VC-UPS, VC-SZYM, CC-ARIT, CC-
ROM, CC-UPS and CC-SZYM. Moreover, we included the combination of
VC discretization with the Darcian averaging scheme of Baker [25] (Test
Cases A and B, VC-BAKER) and that of Gastó et al. [18] (Test Cases B,C,D
and E, VC-GASTO).

4.2. Test case A

The first example is adapted from Brunone et al. [6] and represents infil-
tration towards water table. The solution domain consists of two equal layers
(Fig. 4a). Each of them is characterized by Gardner hydraulic functions of
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the following form:

θ(h) = θr + (θs − θr) · exp(−
h

hg
) (28)

K(h) = Ks · exp(−
h

hg
) (29)

Parameters of the hydraulic functions are listed in Table 1. Note that the ma-
terials differ only in the value of the conductivity at saturation Ks. Brunone
et al. [6] assumed as the initial condition the water potential profile corre-
sponding to a steady downward flux of 0.001 cm/h, and then ran the simu-
lation with boundary flux increased to 0.9 cm/h. In our example we started
with hydrostatic pressure distribution as the initial condition, ran the simu-
lation for 120 h with the boundary flux equal to 0.001 cm/h to reach steady
state, and then instantaneously increased the flux to the value 0.9 cm/h, and
ran the simulation for another 10 h . The time step varied in the range 10−6

to 0.1 h. The reference solution profile for the final time shown in Fig. 6a
closely corresponds to the profile for t = 10 h shown by Brunone et al. [6].
The simulations were carried out for ∆z = 1, 4, 20, 50, and 100 cm.

As the error measures we used the root mean square error of the water
potential head values at computational nodes and the root mean square error
of the water content values. In each case values from two time levels were
included: t = 120 h and t = 130 h.

ERRh =

√

√

√

√

1

2M

[

M
∑

i=1

(

ht=120h
i − ht=120h

i,ref

)2
+

M
∑

i=1

(

ht=130h
i − ht=130h

i,ref

)2

]

ERRθ =

√

√

√

√

1

2M

[

M
∑

i=1

(

θt=120h
i − θt=120h

i,ref

)2
+

M
∑

i=1

(

θt=130h
i − θt=130h

i,ref

)2

]

whereM is the number of nodes in the computational grid, and the subscript
ref denotes the values from the reference solution. In the case of VC schemes
the volumetric water content at the interface node was computed as the
arithmetic average of the values for the two materials. The values of ERRh

and ERRθ for three selected grid sizes are listed in Table 4 along with the
number of time steps and and time required to complete each simulation.

It can be seen that the relative accuracy of various schemes is different
with respect to the water potential and water content, due to the nonlinear
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relations between those two parameters. For the finest discretization, the best
results are obtained with VC-BAKER, while CC-ROM, VC-GEOM and VC-
ARIT are also very accurate. This is in agreement with the results reported
by Brunone et al. [6] for a relatively fine grid of 0.25 cm, where their scheme
was superior to the CC-ARIT approach, as used by HYDRUS-1D. However,
at the coarsest discretization level CC-ROM, VC-GEOM and VC-ARIT are
relatively inaccurate with respect to the water potential, although CC-ROM
retains high accuracy in terms of water content. In contrast, the VC schemes
based on Darcian means, i.e. VC-SZYM and VC-BAKER are the most ac-
curate with respect to the water potential, but relatively inaccurate in terms
of water content. In Fig. 5 the relation between ERRθ and computational
time can be seen. For coarse discretizations the most efficient method is
CC-ARIT, but it converges slowly. On the other hand for finer discretiza-
tions VC-ARIT seems to outperform all other methods, since it is fast and
accurate. It should be noted, however, that this example is not very challeng-
ing with respect to the numerical solution, due to relatively smooth hydraulic
functions. Water content profiles obtained with various averaging schemes
for ∆z = 20 cm (Fig. 6) show good qualitative agreement with the refer-
ence solution (profile obtained with VC-BAKER, not shown here, is virtually
indistinguishable from the profile given by VC-SZYM).

4.3. Test Case B

In this example we used the same geometry and spatial discretizations as
in Test Case A, but the two soil layers were characterized by Brooks–Corey
functions (upper layer – BC-sand, lower layer – BC-clay, parameters listed
in Table 1). The initial and boundary conditions ((Fig. 4b) were chosen in
such a way that a saturated zone develops near the interface. Parameters of
the numerical simulations are listed in Table 5. This example was more chal-
lenging and the schemes based on geometric averaging performed poorly in
some cases. VC-GEOM did not converge for the two coarsest discretizations,
while CC-ROM required a large number of iterations to converge for ∆z = 20
and 50 cm. Due to strong nonlinearity of the hydraulic functions the errors
in water potential show non-monotonic behavior, unrelated to the errors in
water content (the results for grid sizes ∆z = 4 and 50 cm, not shown in
Table 5 support this conclusion also for VC-SZYM and VC-BAKER). The
errors in water content decrease monotonically for most schemes except VC-
GEOM, CC-ROM and VC-SZYM at coarser grids (Fig. 7). From the latter
figure it can be seen that the schemes VC-SZYM and VC-BAKER outper-

16

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


form other methods except for the coarsest grids where CC-UPS is slightly
better. Good results are also obtained with VC-GASTO, but this scheme can
be used only for the two finest levels of discretization. The final profiles of
the water content for ∆z = 20 cm are plotted in Fig. 8. It can be seen
that both VC-SZYM and CC-SZYM closely follow the reference profile (the
same is true for VC-BAKER, not shown here, which closely coincides with
VC-SZYM). The methods based on arithmetic and upstream averaging show
qualitative agreement with the reference solution, but predict more diffused
wetting fronts. The profiles obtained with VC-GEOM and CC-ROM differ
significantly from the reference, showing large saturated zone in the upper
part of the sand layer. This is caused by the underestimation of the hydraulic
conductivity when geometric averaging is used for infiltration in dry soil.

4.4. Test Case C

This example is taken from the paper by Hills et al. [27] and was ex-
amined previously by Gastó et al. [18]. It concerns infiltration in dry soil
profile (Fig. 4c), consisting of alternating layers of Berino loamy fine sand
and Glendale clay loam, both characterized by van Genuchten –Mualem hy-
draulic functions (see Table 1 for the actual values of the parameters). The
initial pressure distribution is uniform and corresponds to relatively dry con-
ditions. At the top a constant water head is imposed, while at the bottom
the free drainage condition is applied. The simulation time is 48 h, the time
step varied in the range 10−6 to 0.1 h. Following Gastó et al. [18] we used
the relative error in the amount of water that infiltrated in the domain as
the error measure:

RELINF =
W −Wref

Wref
100%

where Wref =
∫

(θref − θinit)dz is the cumulative infiltration predicted by
the reference solution, equal to 14.11 cm, W =

∫

(θ − θinit)dz is the amount
of infiltrated water predicted by the considered model and θinit is the water
content corresponding to the initial water potential distribution. Simulations
were performed for grid sizes of 0.5, 1, 5, 10, and 20 cm. The details of
simulations for three selected discretizations can be seen in Table 6.

The plots of error versus computational time are shown in Fig. 9. The
irregular convergence pattern for some methods can be partially explained by
the fact that the reference solution was obtained using direct evaluation of
hydraulic functions while in other simulations linear interpolation from pre-
processed table was used. Thus, even for very fine discretisation an error
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of the order of a few percent can be expected due to linear interpolation.
Nevertheless, it can be seen that the methods based on Darcian averaging (VC-
GASTO, VC-SZYM and CC-SZYM) outperform other methods on coarser
grids. On finer grids, comparable or better results can be achieved with VC-
GEOM and CC-ROM, but these two schemes become very inaccurate as the
spatial step increases. The water content profiles in Fig. 10 show that schemes
based on geometric averaging produce unreliable results for ∆z = 10, due to
underestimation of the infiltration rate. For coarser discretizations the errors
are even larger, however it should be noted that CC-ROM was more accurate
than VC-GEOM.

4.5. Test Case D

The next example concerns upward flow in a two-layer medium (Fig. 4d).
The initial condition is hydrostatic potential distribution. At the bottom
constant potential head h = 0 is maintained, while at the surface the poten-
tial head is lowered to −1000 cm. The simulation was run for t = 240 h and
the time step varied in the range 10−6 to 0.5 h. According to the reference
solution, the cumulative amount of evaporated water was Qtop,ref = 0.38 cm.
The relative error in the amount of evaporated water was defined as:

RELEV =
Qtop −Qtop,ref

Qtop,ref
100%

In contrast to the previous case, here the integral of the water content at the
final time is not a convenient measure, because of the possible influence of
water inflow from the lower boundary. Simulations were performed for grid
sizes of 0.5, 1, 5, 25, and 50 cm. The parameters of selected simulations are
listed in Table 7 and the plots of error versus time are shown in Fig. 11.

Similarly to the previous example, the plots show non-monotonic conver-
gence for VC-SZYM and CC-SZYM schemes, due to the influence of er-
rors related to the interpolation of hydraulic functions. Schemes based on
arithmetic and upstream averaging show good convergence, but the errors for
coarse discretizations are unacceptably large, with the cumulative evaporation
overpredicted by several orders of magnitude. This can be explained by the
fact that both approaches produce average conductivity of the same order of
magnitude as the conductivity of the more wet node. Thus, the limiting influ-
ence of the dry layer at the soil surface is neglected. On the other hand, the
schemes based on geometric averaging (VC-GEOM and CC-ROM) largely
underestimate the amount of evaporated water, regardless of the grid size.
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Apparently, when the internodal conductivity is computed as the geometric
mean too much weight is assigned to the conductivity of the weakly permeable
node at the soil surface. Note also that, in contrast to Test Cases B and C,
here VC-GASTO has no advantage over simple averaging methods.

Additional insights can be obtained from the analysis of the final profiles
of water potential head as shown in Fig. 11. It can be seen that the profiles
produced by VC-SZYM and CC-SZYM are very close to the reference one.
The methods based on geometric averaging tend to underestimate the intern-
odal conductivity when one of the nodes is very dry, as it is the case in the
uppermost part of the profile. As the system tends to steady state low con-
ductivity must be compensated for by a larger gradient of the water potential
head. Conversely, when arithmetic or upstream averaging is used, the con-
ductivity near surface is overpredicted, because more weight is associated with
the conductivity of the lower (more wet) node. Smaller differences between
conductivities in the upper and lower parts of the domain lead to smaller
differences in water potential gradients when steady state is approached.

4.6. Test Case E

The final example also concerns upward flow with similar initial and
boundary conditions, but this time three soil layers are present (Fig. 4e).
A very long process was considered, with the final time t = 50000 h and the
time step varying in the range 10−6 to 1000 h. Simulations were performed
for grid sizes of 0.5, 1, 4, 10, and 40 cm. The parameters of selected sim-
ulations are listed in Table 8, while Fig. 13 shows the plots of error versus
time.

The performance of various averaging schemes is generally similar to the
previous example, except for CC-UPS which has better accuracy, comparable
to VC-SZYM and CC-SZYM. Again, arithmetic averaging tends to overes-
timate the amount of evaporation, while geometric averaging results in an
underestimation. The profiles of water potential head ∆z = 10 cm are shown
in Fig. 14. In dry conditions the permeability of sand is much smaller than
that of clay, and consequently the water potential gradient in the central sand
layer is larger than the gradients in the upper and lower clay layers. Similarly
to the previous case, VC-GEOM and CC-ROM produced gradients in the sand
layer larger than the reference solution, while VC-UPS, VC-ARIT and CC-
ARIT overestimated the conductivity of sand and underestimated the poten-
tial gradients. Both VC-SZYM and CC-SZYM show remarkable agreement
with the fine scale solution. At finer grids these two schemes required more
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time steps and consequently longer computational times than other methods,
but this was compensated for by significantly better accuracy. Thus, they have
advantage in efficiency over other methods for the whole range of discretiza-
tion. It should be noted that comparable efficiency is achieved with CC-UPS.
On the other hand, VC-GASTO is relatively inaccurate and requires consid-
erable computational time.

5. Discussion and conclusions

Numerical results presented above show that the conductivity averaging
schemes based on approximation of Szymkiewicz [19] perform generally bet-
ter than the other considered methods. This does not mean that VC-SZYM
and CC-SZYM outperform all other methods in all test cases. For exam-
ple in Test Case A their performance was average related to other schemes.
However in other examples, which were more challenging numerically, they
consistently provided solutions close to the reference for the whole range of
discretizations. In contrast, schemes based on simple averaging approaches
(arithmetic, geometric or upstream) often produced excessively large errors
in cumulative fluxes or unrealistic water content profiles. VC-SZYM and
CC-SZYM also compare favorably to other schemes based on Darcian averag-
ing principle, i.e. VC-BAKER and VC-GASTO. The former one performed
similarly or slightly better than VC-SZYM, but cannot be easily applied to
van Genuchten–Mualem conductivity functions. The latter one is not appli-
cable for coarser grids and was shown to be significantly less accurate in Test
Cases D and E, dealing with evaporation.

It can be shown that the Darcian mean, which represents accurate value
of internodal conductivity for steady-state flow, assumes values between the
integrated mean of the nodal conductivities and the conductivity of the upper
node [26], depending on the form of relative conductivity function and in-
ternodal distance. Consequently, no simple averaging method can be accurate
for a wide range of soil types and discretizations. In the presented examples
the performance of simple methods varied significantly. For downward infil-
tration in dry soil or for upward flow upstream averaging overestimates the
internodal conductivity. In our examples CC-UPS was more accurate than
VC-UPS. The differences were particularly large in examples with multiple
interfaces (C and E), where the accuracy of CC-UPS was often comparable to
VC-SZYM and CC-SZYM. It seems that this differences come from the fact
that in VC scheme the change in water content at highly permeable side of
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the interface results in an immediate change in the part of the control volume
located at the weakly permeable part of the interface, due to the assumption of
the equilibrium of water potential across the interface. If the control volumes
at the interface are large, considerable amounts of water can be transferred
with unphysically high speed across the interface. In the CC-UPS scheme
the interface coincides with the boundary between control volumes and har-
monic averaging of the saturated conductivity (which gives more weight to
the weakly permeable medium) partly compensates for the acceleration caused
by upstream weighting of the relative conductivity.

The arithmetic mean often overestimates the internodal conductivity, al-
though for very coarse discretizations it can actually underestimate it, leading
to oscillations in the solution [25, 19]. In the examples presented here both
VC-ARIT and CC-ARIT were more accurate than VC-UPS and showed good
convergence properties in nearly all cases, i.e. the error clearly diminished
with increasing number of nodes. However, the overprediction of infiltration
and evaporation rates was significant, especially in Test Cases D and E on
coarse grids. Here CC-ARIT clearly outperformed VC-ARIT, but in general
the relative accuracy of those two schemes was highly problem-dependent.
While accurate results can be obtained with arithmetic average using suffi-
ciently refined grid near the boundaries and material interfaces [5], the use
of averaging schemes based on Darcian mean can be advantageous, as it al-
lows to obtain the same accuracy on coarser discretizations. This can be
important especially when the solution domain contains a large number of
interfaces and local refinement would lead to excessively large grid size. On
the other hand, it is difficult to define a priori what grid size is fine enough
to avoid significant errors in the solution.

The schemes based on geometric mean (VC-GEOM and CC-ROM) showed
the largest variation in performance. They were very accurate in Test Case
A for all discretizations and in Test Cases B and C for finer discretizations.
However in the latter two cases their accuracy quickly deteriorated as the
spatial step increased, sometimes leading to convergence problems. The re-
sulting profiles of water content were far away from the reference solution.
In the examples dealing with evaporation (D and E) both methods severely
underestimated the evaporation rate. It can be shown that geometric mean
is a good approximation of the integrated mean for fine-textured soils with
parameter n in van Genuchten–Mualem function close to 1 [14]. On the
other hand, the integrated mean is a good estimation of Darcian mean if the
flow is dominated by capillary forces at the scale of a single gridblock, which
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generally holds for small gridblock size [25]. As a result, the applicability of
geometric mean is limited to relatively fine discretizations and finely textured
soils. For coarse discretizations and/or coarse-textured soils the geometric
mean severely underestimates the internodal conductivity, leading to unreal-
istic results and poor convergence. These shortcomings are also present in the
scheme CC-ROM, although it is generally more accurate than VC-GEOM.
Thus, geometric averaging cannot be considered as a robust approach.

All the presented schemes can be applied for 2D problems on rectangular
grids, on condition that all porous materials within the solution domain are
isotropic or orthotropic (characterized by diagonal conductivity tensor). The
extension of cell-centered discretization to 2D is straightforward, while for
vertex-centered approach additional consideration is necessary when com-
puting flux between two nodes located along the material interface. In such
a case one has to compute separately the fluxes at each side of the interface,
using different material properties, and add them together in the balance
equation. On the other hand, VC-SZYM scheme can be used to estimate
the average conductivity between pairs of nodes arbitrarily oriented in space
(0 < γ < 1), as long as the soil between them is homogeneous and isotropic.
Thus it can be potentially applied in the framework of vertex centered finite
volume schemes on unstructured grids. In control-volume finite element or
box schemes, the water fluxes are computed for the faces of sub-control vol-
umes using the average value of conductivity for the two nodes which are
endpoints of the edge adjacent to the considered face. Integration of im-
proved averaging schemes in such type of discretization will be the subject
of future research by the authors.
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Table 1: Parameters of soils used in numerical simulations

Soil θR θS he or hg λ or n KS

[−] [−] [cm] [−] [cm · s−1]

BC-sand 0.020 0.417 7.25 0.592 5.83 · 10−3

BC-clay 0.056 0.423 34.25 0.127 2.50 · 10−5

VGM-sand 0.043 0.430 6.90 2.68 8.25 · 10−3

VGM-clay 0.007 0.360 200.0 1.09 5.56 · 10−6

Berino 0.0286 0.3658 35.7 2.239 6.26 · 10−3

Glendale 0.106 0.4686 96.2 1.3954 1.52 · 10−4

GAR-coarse 0.06 0.4 10.0 · · · 2.78 · 10−3

GAR-fine 0.06 0.4 10.0 · · · 2.78 · 10−4

Table 2: Errors of various averaging schemes for soils characterized by BCM functions –
steady state problems

Scheme RMS(EK) max(EK) min(EK) RMS(Ehc)
[−] [−] [−] [cm]

CC-ARIT 1.91 6.18 −0.24 −
CC-ROM 0.66 2.32 −2.77 18.15
CC-UPS 1.56 5.46 −2.55 −
CC-SZYM 0.08 1.34 −0.32 0.41

Table 3: Errors of various averaging schemes for soils characterized by VGM functions –
steady state problems

Scheme RMS(EK) max(EK) min(EK) RMS(Ehc)
[−] [−] [−] [cm]

CC-ARIT 3.21 10.37 −0.28 −
CC-ROM 1.78 5.58 −7.30 23.42
CC-UPS 1.94 7.88 −3.71 −
CC-SZYM 0.10 0.07 −0.51 1.31
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Table 4: Error, number of time steps and computational time in simulations for Test Case A

Scheme ∆z = 1 cm ∆z = 20 cm ∆z = 100 cm
ERRh) ERRθ N∆t Time ERRh ERRθ N∆t Time ERRh ERRθ N∆t Time
[cm] [-] [-] [s] [cm] [-] [-] [s] [cm] [-] [-] [s]

CC-ARIT 1.19E–1 9.37E–4 1490 2.04 1.67E+0 6.33E–3 1418 1.20 6.00E+0 1.04E–2 1441 0.990
CC-ROM 1.21E–2 4.37E–5 1488 2.90 6.70E–1 3.17E–3 1477 1.30 1.24E+1 1.32E–2 1441 1.10
CC-UPS 2.18E–1 7.56E–4 1435 1.90 2.70E+0 1.22E–2 1489 1.22 1.04E+1 2.01E–2 1432 1.15
CC-SZYM 2.91E–2 9.19E–5 1488 2.18 9.10E–1 3.45E–3 1457 1.32 6.67E+0 2.19E–2 1432 1.20

VC-ARIT 1.16E–2 3.14E–5 1490 1.88 1.03E+0 5.78E-3 1477 1.14 2.72E+1 8.10E–2 1417 1.00
VC-GEOM 1.40E–2 3.76E–5 1488 2.96 7.58E–1 4.73E–3 1463 1.23 1.69E+1 7.17E–2 1511 1.08
VC-UPS 2.22E–1 7.83E–4 1433 1.86 2.39E+0 1.40E–2 1444 1.22 5.84E+0 6.62E–2 1459 1.09
VC-SZYM 2.98E–2 8.86E–5 1488 1.95 9.34E–1 6.26E–3 1482 1.25 5.45E+0 6.75E–2 1447 1.11
VC-BAKER 9.30E–3 2.44E–5 1488 2.01 9.39E–1 7.62E–3 1438 1.14 5.44E+0 6.75E–2 1447 1.11
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Table 5: Error, number of time steps and computational time in simulations for Test Case B

Scheme ∆z = 1 cm ∆z = 20 cm ∆z = 100 cm
ERRh ERRθ N∆t Time ERRh ERRθ N∆t Time ERRh ERRθ N∆t Time
[cm] [-] [-] [s] [cm] [-] [-] [s] [cm] [-] [-] [s]

CC-ARIT 7.60E+2 6.58E–3 27339 108 3.79E+3 4.99E–2 2634 2.67 6.91E+3 8.15E–2 928 0.982
CC-ROM 2.46E+2 3.51E–3 25453 141 3.24E+3 1.58E–1 12019 38.5 3.21E+1 5.59E–2 1033 1.58
CC-UPS 9.04E+2 7.78E–3 23020 92.3 3.00E+3 2.72E–2 2599 2.71 5.80E+3 3.97E–2 966 0.983
CC-SZYM 5.55E+1 1.13E–3 28965 174 1.78E+3 8.85E–3 3017 6.69 4.67E+3 4.18E–2 981 1.96

VC-ARIT 7.88E+2 5.81E–3 27521 112 2.63E+3 4.02E–2 2914 2.93 4.63E+1 9.29E–2 1116 1.06
VC-GEOM 7.73E+1 1.85E–3 23272 116 4.09E+3 1.20E–1 13710 21.9 did not converge
VC-UPS 1.16E+3 1.29E–2 22986 92.7 3.03E+3 5.30E–2 2765 2.81 5.79E+1 1.01E–1 1027 1.01
VC-SZYM 2.69E+2 8.95E–4 28969 148 9.88E+1 2.05E–2 3534 3.89 2.00E+1 5.50E–2 1284 1.37
VC-BAKER 2.70E+2 8.71E–4 28966 153 8.81E+1 2.02E–2 3403 3.91 1.96E+1 5.41E–2 1366 1.31
VC-GASTO 2.56E+2 8.49E–4 29017 179 not applicable not applicable
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Table 6: Error, number of time steps and computational time in simulations for Test Case C

Scheme ∆z = 1 cm ∆z = 10 cm ∆z = 20 cm
RELINF N∆t Time RELINF N∆t Time RELINF N∆t Time
[%] [-] [s] [%] [-] [s] [%] [-] [s]

CC-ARIT 4.75 3004 3.82 30.4 749 0.902 42.7 651 0.640
CC-ROM 0.142 4376 10.3 −67.3 540 0.671 −67.7 547 0.671
CC-UPS 4.75 2728 3.58 9.99 736 0.748 5.60 606 0.499
CC-SZYM 1.91 1812 4.19 0.142 689 1.34 −1.77 616 0.998

VC-ARIT 3.19 2967 4.55 13.5 730 1.31 20.9 595 0.515
VC-GEOM 0.709 3265 6.72 −75.7 530 0.640 −85.3 530 0.468
VC-UPS 5.95 2796 3.57 24.7 758 0.751 17.6 617 0.702
VC-SZYM 1.91 1766 2.89 −0.425 595 0.640 −3.69 535 0.515
VC-GASTO 2.48 4834 12.8 2.48 849 1.73 4.96 637 0.624
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Table 7: Error, number of time steps and computational time in simulations for Test Case D

Scheme ∆z = 1 cm ∆z = 5 cm ∆z = 25 cm
RELEV N∆t Time RELEV N∆t Time RELEV N∆t Time
[%] [-] [s] [%] [-] [s] [%] [-] [s]

CC-ARIT 21.98 555 0.89 114.30 542 0.530 733 539 0.404
CC-ROM −85.23 536 0.81 −96.35 537 0.593 −98.4 537 0.381
CC-UPS 46.22 564 0.64 207.95 544 0.478 2320 542 0.347
CC-SZYM 1.81 553 0.80 −7.19 538 0.756 −18.4 537 0.488

VC-ARIT 25.92 555 0.97 150 541 0.655 8200 540 0.358
VC-GEOM −91.87 537 0.54 −97.9 537 0.414 −99.7 537 0.337
VC-UPS 51.36 563 0.65 268 544 0.546 16200 540 0.318
VC-SZYM 0.10 548 0.78 −6.98 538 0.702 −39.0 537 0.484
VC-GASTO −30.80 537 0.89 −61.9 534 0.812 not applicable
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Table 8: Error, number of time steps and computational time in simulations for Test Case E

Scheme ∆z = 1 cm ∆z = 10 cm ∆z = 40 cm
RELEV N∆t Time RELEV N∆t Time RELEV N∆t Time
[%] [s] [%] [s] [%] [s]

CC-ARIT 19.7 631 0.827 400 274 0.255 2220 171 0.125
CC-ROM −58.9 687 1.55 −59.1 331 0.403 −59.1 223 0.234
CC-UPS 2.11 673 0.952 −9.63 306 0.579 14.3 211 0.187
CC-SZYM 3.09 1020 2.51 −2.33 280 0.404 −9.60 208 0.249

VC-ARIT 16.4 623 0.952 237 265 0.436 15300 156 0.125
VC-GEOM −59.3 636 1.39 −63.9 313 0.343 −78.2 188 0.187
VC-UPS 29.1 673 1.25 469 262 0.269 30500 155 0.171
VC-SZYM 3.07 1011 2.14 −5.25 263 0.296 −37.6 175 0.156
VC-GASTO −43.0 682 1.88 not applicable not applicable
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Figure 1: Vertex-centered spatial discretization.
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Figure 2: Cell-centered spatial discretization.
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Figure 3: Spatial discretization at the material interface in the cell-centered approaches
CC-ROM and CC-SZYM.
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Figure 4: Geometry and initial-boundary conditions used in numerical examples.
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Figure 5: Test Case A: error vs. computational time for various schemes.
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Figure 6: Test Case A: water content profiles obtained with VC (a) and CC (b) schemes
(t = 130 h, ∆z = 20 cm).
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Figure 7: Test Case B: error vs. computational time for various schemes.
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Figure 8: Test Case B: water content profiles obtained with VC (a) and CC (b) schemes
(t = 32 h, ∆z = 20 cm).

39

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.5  0  0.5  1  1.5  2

lo
g 

|R
E

L I
N

F
 [%

]|

log (time [s])

VC-ARIT
VC-GEOM

VC-UPS
VC-SZYM

VC-GASTO
CC-ARIT
CC-ROM
CC-UPS

CC-SZYM

Figure 9: Test Case C: error (RELINF ) vs. computational time for various schemes.
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Figure 10: Test Case C: water content profiles obtained with VC (a) and CC (b) schemes
(t = 48 h, ∆z = 10 cm).
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Figure 11: Test Case D: error (RELEV ) vs. computational time for various schemes.
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Figure 12: Test Case D: water potential head profiles obtained with VC (a) and CC (b)
schemes (t = 240 h, ∆z = 5 cm).
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Figure 13: Test Case E: error (RELEV ) vs. computational time for various schemes.
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Figure 14: Test Case E: water potential head profiles obtained with VC (a) and CC (b)
schemes (t = 50000 h, ∆z = 10 cm).
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