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Highlights

 Different local stress-strain approaches in multiaxial notch fatigue are compared

 Cyclic plasticity at the notch root is accounted for using linear-elastic stresses

 Multiaxial fatigue life better estimated using energy-based models

Abstract

This paper aims to compare the predictive capabilities of different one-parameter damage 

laws and local stress-strain approaches to assess the fatigue lifetime in notched components 

subjected to proportional bending-torsion loading. The tested fatigue damage parameters are 

defined using well-known stress-based, strain-based, SWT-based and energy-based 

relationships. Multiaxial cyclic plasticity at the notch-controlled process zone is accounted for 

within a 3D-FE linear-elastic framework using three local stress-strain approaches, namely 

Neuber’s rule, equivalent strain energy density rule (ESED) and the modified ESED rule. 

Regarding the local stress-strain approaches, irrespective of the fatigue damage parameter, 

Neuber’s rule always led to more conservative results, and the modified ESED rule resulted in 

slightly better fatigue life predictions when compared to the original ESED rule. As far as the 

fatigue damage parameters are concerned, energy-based models were more accurate, 

irrespective of the local stress-strain approach. 
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1. Introduction

Fatigue life assessment of mechanical components experiencing multiaxial loading is a complex 

challenge. In part, this is because there is a myriad of variables involved in the analysis, namely  

the shape of the stress raiser, the normal stresses to shear stresses ratio, the loading 

orientation with respect to the notch configuration, among others [1-3]. The unlimited number 

of possibilities associated with the above-mentioned variables increases the difficulty and 

introduces some degree of unpredictability. Thus, there is a need for unified models capable of 

accounting for the fatigue damage at the critical points in an accurate manner [4-5]. 

The development of a universal multiaxial fatigue model remains an important goal for the 

scientific community. Nevertheless, despite the long debate over the last decades, there is no 

consensus regarding a unique criterion. Within the most successful approaches to assess the 

multiaxial fatigue lifetime, there are many criteria grounded on the idea of reducing the 

multiaxial state to an equivalent uniaxial state [6-8]. In this line of thought, a representative 

fatigue damage parameter, which can be expressed in terms of stress-based, strain-based, or 

energy-based relationships, is determined and then compared to the uniaxial fatigue response 

of the material to estimate the life expectancy [9-10]. 

Different approaches can be engineered to define a representative fatigue damage quantifier. 

It can be defined simply by an average parameter estimated at a specific distance from the 

notch tip, or by using more sophisticated approaches, namely weighted methods [11-12]. The 

Theory of Critical Distances is one of the most popular average stress methods [13]. Its 

proliferation has been associated with the balance between simplicity and accuracy. Another 

very popular group of methods formalised using energy considerations are those based on the 

Strain Energy Density concept [14-19]. The possibility to deal with a large variety of problems 

and loading scenarios makes them very attractive [20].   

Regarding the cyclic plasticity response at the notch root, the current strategies are usually 

materialised by means of experimental techniques, numerical methods, or approximate 

solutions [21]. Experimental techniques, due to their intrinsic nature, have some limitations, 

such as the difficulty to assess complicated geometric details or the impossibility to evaluate 
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the stress-strain fields inside the body [12]. With the advent of computer technology, 

numerical methods have been a strong ally in the analysis of complex geometries, providing 

precise results not only at the surface, but also in depth.   

As far as the numerical methods are concerned, local stress-strain histories are generally 

computed considering elastic-plastic simulations or pseudo-elastic analyses [12,22]. Although, 

in theory, the former are more precise, the latter have the advantage of being faster and 

simpler, because they do not require complex constitutive models, nor too much 

computational time, while providing high efficiency. In this ambit, we mention the so-called 

Neuber’s rule, the equivalent strain energy density rule, and the modified strain energy density 

rule [23-25]. Previous research focused on the accuracy of the two first techniques has 

reported that the ESED rule tends to underestimate the notch root strains, while the other 

tends to overestimate them [21]. The modified ESED rule is believed to be closer to the real 

stress-strain histories [12,25]. 

 

This paper aims to investigate the accuracy of various multiaxial fatigue models for notched 

components, developed by the combination of different well-known one-parameter damage 

laws and local stress-strain approaches. To the best of our knowledge, there are no systematic 

studies dealing with this subject. In the beginning, we briefly address the basic concepts of the 

tested models and the main governing equations. Then, the experimental fatigue program and 

the simulation details are described. Further, we estimate the fatigue lifetime for each 

multiaxial model and compare the predictive capabilities based on a statistical evaluation. The 

paper ends with some concluding remarks. 

2. Fatigue life assessment models

The fatigue life assessment models considered in this research aim at comparing the predictive 

capabilities of different uniaxial one-parameter damage laws and local stress-strain 

approaches defined from pseudo-elastic stress-strain fields. The employed procedure is 

schematically shown in Figure 1. The modus operandi, presented in Figure 1, consists of four 

main steps: 

(1) reduction of the multiaxial stress-strain state to an equivalent uniaxial stress-strain state 

based on the von Mises stress (Figure 1(a)); 
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(2) definition of an average stress range at the notch-controlled process zone using the Line 

Method of the Theory of Critical Distances (TCD) (Figure 1(b)); 

(3) generation of a uniaxial stress-strain hysteresis loop representative of the loading case via 

a local pseudo-elastic stress-strain approach (Figure 1(c)); 

(4) determination of fatigue lifetime by inserting the associated value of the damage 

parameter into a uniaxial one-parameter damage law (Figure 1(d)). 

In this analysis, it is assumed that the fatigue lifetime needed to initiate a macro-crack in a 

notched component or a smooth specimen is the same if the local stress-strain behaviour at 

the notch-controlled zone is similar in both the notched component and the smooth specimen.  

The next sections present the background of the models, namely the Line Method of TCD as 

well as the local stress-strain approaches and the one-parameter damage laws considered in 

the paper.  

2.1 Theory of Critical Distances

The Theory of Critical Distances (TCD), a unifying theory introduced by Taylor, represents a 

group of average stress methods which are based on the idea that fatigue failure takes place if 

a critical volume of the material at the notch component is subjected to a critical stress 

[11,13]. The TCD gathers four main methods, more specifically the Point Method, Line Method, 

Area Method, and Volume Method [11,13]. 

Here, for the sake of clarity, only the Line Method is addressed. First proposed by Neuber, as 

schematised in Figure 1(b), this method postulates that the effective stress range ( ) is Δσeff

determined along a straight line emanating from the notch bisector over a distance equal to 

2a0, i.e.  

Δσeff =
1

2a0∫
2a0

0
Δσ(r) dr

Eq. (1)

where  represents the material characteristic length which can be defined as follows:𝑎0

a0 =
1
π(ΔKth

Δσ0 )2 Eq. (2)
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being  the threshold value of the stress intensity factor range, and  the material plain Δ𝐾𝑡ℎ Δ𝜎0

fatigue limit. The two-above mentioned variables are determined under the same stress ratio 

of the notched component. More details about the Theory of Critical Distances can be found in 

the recent papers published by Taylor [13,23].

2.2 Local stress-strain approaches

Within the current methods to deal with the notch plasticity effect, numerical approaches 

have been successfully used. Among other reasons, the possibility to extract precise 

information, not only at the notch surface, but also inside the body, make them extremely 

advantageous. In addition, with the advent of computer technology and the development of 

advanced numerical methods, pseudo-elastic approaches are particularly attractive, because 

of their simplicity of implementation, speed of simulation, and high efficiency [12]. In this 

paper, we implement and compare three well-established approaches, namely the Neuber’s 

rule, the equivalent strain energy density rule, and the modified equivalent strain energy 

density rule [24-26].

The so-called Neuber’s rule, which was initially derived from the analysis of prismatic bodies 

with hyperbolic notches subjected to monotonic shear loading, states that the geometric mean 

value of both the stress concentration factor and the strain concentration factor is constant at 

any load state and equals the elastic stress concentration factor [24]. Under monotonic loading 

(see Figure 1(c)), it leads to: 

𝜎2 + E σ (𝜎
𝑘)

1
𝑛

= 𝑘2
𝑡  𝑆2

Eq. (3)

and under cyclic loading (see Figure 1(c)), we may write:

Δ𝜎2 + 2 E Δσ (𝜎
𝑘′)

1
𝑛′

= 𝑘2
𝑡  Δ𝑆2

Eq. (4)

where  and  are the strain hardening coefficient and the cyclic strain hardening coefficient, 𝑛 𝑛′

 and are the strain hardening exponent and the cyclic strain hardening exponent,  is the 𝑘 𝑘′ 𝑘𝑡

stress concentration factor,  is the Young’s modulus,  and  are the nominal stress and the 𝐸 𝑆 Δ𝑆

nominal stress range, and  and  are the local stress and the local stress range. 𝜎 Δ𝜎
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Proposed by Molski and Glinka [25], the equivalent strain energy density (ESED) rule is an 

alternative approach to deal with local stress-strain history. The main hypothesis behind this 

concept is that the elastic-plastic strain energy density of the material in the yielded zone is 

theoretically the same as the pseudo-strain energy assuming the material is in an elastic state. 

Under monotonic loading, it results as:

𝜎2

𝐸 +
2 σ

𝑛 + 1 (𝜎
𝑘)

1
𝑛

=
𝑘2

𝑡  𝑆2

𝐸

Eq. (5)

and under cyclic loading, we may use Eq. (6). 

Δ𝜎2

4 𝐸 +
Δσ

𝑛′ + 1
 (Δ𝜎

2𝑘′)
1
𝑛′

=
𝑘2

𝑡  Δ𝑆2

4 𝐸

Eq. (6)

Ye et al. [23] have found a physical relationship between the two above-mentioned methods. 

Neuber’s rule can be interpreted as a particular case of the ESED rule, i.e. it corresponds to the 

special cases in which the energy dissipated during the plastic deformation process at the 

notch region can be ignored. Based on the real physical stress-strain behaviour at the notch 

root, these researchers proposed a modified version of the ESED rule, which assumes that 

both the local stresses and the local strains are associated with the stored energy and that 

heat energy is considered as the dissipation [23]. Under monotonic loading, it leads to:

𝜎2

𝐸 +
(2 ― 𝑛) σ

𝑛 + 1  (𝜎
𝑘)

1
𝑛

=
𝑘2

𝑡  𝑆2

𝐸

Eq. (7)

and under cyclic loading, we may obtain Eq. (8). 

Δ𝜎2

4 𝐸 +
(2 ― 𝑛′) Δσ

2 (𝑛′ + 1)  (Δ𝜎
2𝑘′)

1
𝑛′

=
𝑘2

𝑡  Δ𝑆2

4 𝐸

Eq. (8)

2.3 One-parameter damage laws

From an engineering point of view, the life to initiate a macro-crack in a one-parameter 

damage representation, assumed here as the fatigue life criterion, can be defined as follows 

[27]:
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                                                                                                                                         𝜓 = 𝑓(2𝑁𝑓) Eq. (9)

where  is the fatigue damage parameter and 2Nf is the number of reversals to failure, or in a 𝜓

broader sense, the fatigue lifetime. This relationship, represented on a log-log scale by the full 

line of Figure 1(d), can be written in the form:

                                                                                                                           𝜓 = κ(2𝑁𝑓)𝛼 + 𝜓0 Eq. (10)

here  and  are material constants, 2Nf is the number of reversals to failure, and  is the κ 𝛼 𝜓0

fatigue limit. In the cases where the fatigue limit does not exist, setting , the previous 𝜓0 = 0

equation leads to the following formula:

𝜓 = κ(2𝑁𝑓)𝛼 Eq. (11)

which is plotted in Figure 1(d) by the dashed straight line. In this study, as referred to above, 

we consider different well-known uniaxial fatigue damage parameters defined using stress-

based, strain-based, and energy-based phenomenological laws. The selected parameters are 

briefly addressed below.  

Stress-based approaches were the first attempts to study the fatigue phenomenon in a 

systematic approach. Based on the Basquin’s relation, and the correction introduced by 

Morrow to account for the mean stress effect, the stress amplitude (a) can be defined as the 

damage parameter. Thus, the correlation between a and the fatigue life ( ) can be written 2𝑁𝑓

as follows:

𝜎𝑎 = (𝜎′𝑓 ― 𝜎𝑚) (2𝑁𝑓)𝑏 Eq. (12)

where  is the fatigue strength coefficient, b is the fatigue strength exponent, and  is the 𝜎′𝑓 𝜎𝑚

mean stress. 

Strain-based relationships are alternative approaches to evaluate the fatigue lifetime. Here, it 

is considered the Coffin-Manson model, whose fatigue damage parameter is the total strain 
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amplitude (a). Introducing the correction of the elastic term proposed by Morrow to account 

for the mean stress effect, we get the following equation [28-30]: 

𝜀𝑎 =
(𝜎′𝑓 ― 𝜎𝑚)

𝐸  (2Nf)𝑏 + 𝜀′𝑓 (2Nf)𝑐
Eq. (13)

where  is the fatigue strength coefficient,  is the mean stress, b is the fatigue strength 𝜎′𝑓 𝜎𝑚

exponent,  is the fatigue ductility coefficient,  is the fatigue strength exponent, and  is 𝜀′𝑓 𝑐 𝐸

Young’s modulus. 

Energy-based approaches assume that strain energy dissipated per cycle is the main 

contributor to the fatigue damage process. In this study, we consider the total strain energy 

density  which has the ability to unify both the low-cycle and the high-cycle fatigue (Δ𝑊𝑡)

regimes and is capable of accounting for the mean stress effect [24]. The relationship between 

 and the fatigue life ( ) can be established via the following formula [31]:Δ𝑊𝑡 2𝑁𝑓

ΔW𝑡 = 𝜅𝑡 (2Nf)𝛼𝑡 + Δ𝑊0𝑡 Eq. (14)

where  and  are material constants, and  is the tensile elastic energy at the material 𝜅𝑡 𝛼𝑡 Δ𝑊0𝑡

fatigue limit. 

The Smith-Watson-Topper (SWT) damage parameter [32], which also has an energy-based 

nature, is another very popular approach to account for the mean stress effect [33]. It is 

defined by the product of maximum stress (  and the strain amplitude ( ), i.e. 𝜎𝑚𝑎𝑥) 𝜀𝑎 

𝜀𝑎 𝜎𝑚𝑎𝑥 =
(𝜎′𝑓)2

𝐸  (2Nf)2𝑏 + 𝜎′𝑓 𝜀′𝑓 (2Nf)𝑏 + 𝑐
Eq. (15)

where  is the fatigue strength coefficient, b is the fatigue strength exponent,  is the fatigue 𝜎′𝑓 𝜀′𝑓

ductility coefficient,  is the fatigue strength exponent, and  is Young’s modulus. 𝑐 𝐸D
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3. Material and methods

3.1 Material 

The material of this study is the 34CrNiMo6 high-strength steel, supplied in the form of a 

20mm-diameter round bar. Its chemical composition and its main mechanical properties for 

the quenched and tempered (Q&T) grade are presented in Table 1 and Table 2, respectively. 

Both the cyclic strain hardening coefficient and the cyclic strain hardening exponent were 

obtained under fully-reversed strain-control mode [34], while the fatigue stress range ( ) ∆σ0

and the stress intensity factor range threshold ( ) were determined for pulsating loading ∆Kth0

conditions under stress-control and load-control modes, respectively [35].     

3.2 Low-cycle fatigue tests 

Low-cycle fatigue tests were performed in strain-control mode, according to ASTM E606-19 

standard, using symmetrical loading scenarios (R = -1) and a constant strain rate (d/dt = 8×10-

3 s) with strain amplitudes in the interval 0.5-2.0% [35]. The specimen geometry (see Figure 

2(a)) had a cylindrical gauge section with a length of 15 mm and a diameter of 8 mm. Data 

were acquired using an extensometer with a gauge length of 12.5 mm connected directly to 

the specimen. Tests were interrupted when the specimens reached the total failure. Table 3 

presents a brief overview of the loading cases tested in this research and the main variables 

registered for the half-life cycle.

3.3 Multiaxial fatigue tests

Multiaxial fatigue tests were done using cylindrical specimens with a lateral U-shaped notch 

(see Figure 2(b)), under in-phase constant-amplitude pulsating loading conditions, assuming 

two ratios of the bending moment to the torsion moment (B/T), i.e. B/T=2 and B/T=1; and 

three orientations ( ) of the bending moment with respect to the notch root, i.e. =0º, 45º 𝜃 𝜃

and 90º [36]. For each loading case, at least three nominal normal stress amplitudes (σa) were 

applied. The notch root was monitored in-situ using a high-resolution digital camera to detect 

the crack initiation sites and to track the crack paths. The number of cycles to fatigue crack 

initiation (Ni) was calculated for a crack length equal to a0 (see Eq. (2)). A summary of the 

loading scenarios and nominal stress levels applied in the tests is exhibited in Table 4. More 

details about these tests can be found in a former paper of the authors [35,36].   
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3.4 Numerical modelling and simulation 

The evaluation of the stress and strain fields at the notch root was carried out using a three-

dimensional finite element model representative of the experimental tests. The assembled 

model, displayed in Figure 3, assumed a homogeneous, linear-elastic, and isotropic material, 

and was created in a parametric manner with 8-node hexahedral elements. At the notch 

region, an ultra-dense mesh was introduced in order to better characterise the stress-strain 

gradients. The final mesh density (76,608 elements and 99,823 nodes) was obtained through a 

careful optimisation study, in a step-wise manner, by increasing the number of finite elements, 

based on the principle that the stress field tends to stabilise with mesh refinement. Bending 

moments and torsion moments were generated by two pairs of forces (FB and FT, respectively) 

applied at one end of the specimen, while the other end was fixed. 

4. Results and discussion

This section is organised into three sub-sections. Firstly, we analyse the cyclic stress-strain 

response of the tested material under uniaxial low-cycle fatigue loading and compute the 

associated one-parameter damage laws. Then, we briefly describe the multiaxial fatigue 

behaviour of the notched round bar under proportional bending-torsion loading. Finally, we 

compute the multiaxial fatigue lifetime for the different models and compare the predictive 

capabilities based on a statistical study.   

4.1 Uniaxial low-cycle fatigue response

Figure 4 plots the uniaxial low-cycle fatigue response of the tested material at different strain 

amplitudes evaluated with different dependent parameters, namely stress amplitude, plastic 

strain amplitude, total strain energy density, and SWT damage parameter. Regardless of the 

strain amplitude or the dependent parameter, we can distinguish three main stages for each 

test. At the beginning, i.e. for a dimensionless life about 5-10%, there is a rapid change, 

followed by a saturated region which occupies most of the test. In a final stage, whose extent 

is about 5-10% of the dimensionless life, the cyclic response exhibits a sudden change, which 

culminates with the total failure. This behaviour is in line with that reported in the literature 

for this steel when subjected to strain-control mode [34].

From the analysis of Figure 4(a) we can identify a cyclic strain-softening response for the entire 

range of strain amplitude studied in this research [34]. At a fixed strain amplitude, we can see 

a clear reduction of stress amplitude, with the increase of number of cycles, until a stable stage 
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is reached. Furthermore, this reduction of stress amplitude during the test corresponds to a 

reduction of elastic strain amplitude and, consequently, an increase of plastic strain amplitude, 

which agrees with the trends shown in Figure 4(b). Based on the same reasoning, it is expected 

that the total strain energy density decreases over time (see Figure 4(c)) because both the area 

of the hysteresis loops and the area of the elastic components tend to be smaller. Regarding 

the SWT parameter, under fully-reversed strain-controlled conditions, the reduction of stress 

amplitude leads to smaller values, as exhibited in Figure 4(d). 

In a wider perspective, all the above parameters are quite stable throughout the lifetime and 

strongly depend on the loading level. This fact may explain why many engineering models use 

them to link the fatigue damage with the expected durability. Based on these findings, and as 

usual for engineering steels, the functions relating the loading level to the fatigue lifetime 

were developed from the mid-life hysteresis loops, which are assumed to be representative of 

the saturated stage. Figure 5 plots the fitted functions for the different dependent parameters 

selected in this research. The constants of Eqs. (12)-(15) are compiled in Table 5. In any case, 

there is an excellent correlation between the fatigue damage parameters and the number of 

reversals to failure, as demonstrated by the coefficients of correlation (R2) which are relatively 

similar in the four cases.   

4.2 Multiaxial fatigue behaviour

In this notch geometry, the multiaxial fatigue behaviour is governed by both the bending-

torsion ratio (B/T) and the orientation of the bending moment with respect to the notch root 

(). The two main effects on the crack initiation sites and the surface crack paths are 

summarised in Figure 6. Regarding the crack initiation sites, experimental observations are 

identified by the white circles. For a fixed value of  it can concluded that the decrease of B/T 

ratio, which corresponds to a reduction of the normal stress level, moves the crack initiation 

site to locations closer to the curved edge of the geometric discontinuity (see, for instance, the 

cases of Figure 6(a) and Figure 6(d)). If we fix the B/T ratio (let us consider, for example, the 

cases of Figures 6(a)-(c)), it is clear that the higher is the value of , the closer is the crack 

initiation site to the curved edge of the notch [36].   

As far as the surface crack paths are concerned, there are substantial differences in the 

trajectories, which can be explained by the complex stress triaxial state at the notch surface 

resulting from the normal stress to shear stress ratio, the loading orientation, and the shape of 
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the geometric discontinuity [5, 10, 36-37]. Figures 6(a) and 6(d) show the surface crack paths 

for two B/T ratios (respectively, B/T = 2 and B/T = 1) and the same loading orientation (i.e.  = 

0º). We can observe that the trajectories tend to be straighter, as the ratio of the bending 

moment to the torsion moment increases. In relation to the effect of the loading orientation, 

the results indicate that the higher the value of , the higher the curvate of the surface crack 

path (see, for example, Figures 6(d)-(f)). 

The crack initiation sites and the crack paths can be successfully predicted via the first principal 

stress field at the notch surface. The former variable was determined a priori from the surface 

node with the maximum value of the first principal stress. The predicted locations are 

identified by the white square symbols in Figure 6. As can be seen, both the experimental 

observations and the numerical predictions are quite close, irrespective of the loading 

scenario. Concerning the surface crack paths, the most likely trajectories, represented by the 

white dashed lines, were computed from the crack initiation site following the nodes with 

higher values of the first principal stress along the notch surface. A close look at Figure 6 shows 

that both the experimental observations and the predicted surface crack paths are in good 

agreement [35,36]. More details about the numerical predictions of crack initiation sites and 

surface crack paths can be found in the paper by Branco et al. [36].

The fracture surfaces, acquired via optical three-dimensional non-contact focus-variation 

microscope equipped with a 10× magnification lens, may provide important clues on the 

complex nature of the fatigue process in this geometry when subjected to bending-torsion 

loading. The increase of , irrespective of the B/T ratio, increases the degree of out-of-plane-

propagation and makes the crack fronts more curved (see Figures 7(a)-(c) or Figure 7(d)-(e)). In 

addition, it can be also seen significant differences regarding the crack front shapes marked on 

facture surfaces. For  =0º, see Figures 7(a) and 7(d), the cracks initiate as surface cracks, and 

then propagate as through cracks. Nevertheless, for  =45º (see Figure 7(b) and Figure 7(e)), 

the cracks also initiate as surface cracks but then evolve to corner cracks and only at a final 

stage become through cracks. Regarding the case of =90º (see Figure 7(c) and Figure 7(f)), 

although the initial stage is similar to the others, the crack propagates mostly as a corner crack.  

4.3 Fatigue life assessment

The fatigue life assessment, as explained in Section 2, starts with the reduction of the 

multiaxial stress state to an equivalent uniaxial stress state (see Figure 1(a)), which is done 
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through the von Mises stress. Then, an averaged stress range (  is computed using the ∆𝜎𝑒𝑓𝑓)

Line Method of the Theory of Critical Distances (see Figure 1(b)). In this study, the stress profile 

at a line emanating from the crack initiation site in a direction normal to the geometric 

discontinuity is used for TCD analysis. 

The typical von Mises stress profiles found for the different B/T ratios and loading orientations 

are displayed in Figure 8. For the sake of comparability, the analysis is conducted in a 

dimensionless form: von Mises stress range (  is divided by the maximum value (  ∆𝜎𝑒𝑞) ∆σ𝑒𝑞,𝑚𝑎𝑥)

and the distance from the initiation site is divided by the critical distance of the Line Method (

. An interesting outcome is that the stress functions are quite similar, particularly 𝐷𝐿𝑀 = 2𝑎0)

in the region bounded by the critical distance, irrespective of the loading case. This means that 

the effective stress range (represented by the dot-dashed line for B/T=2 (0º)) is approximately 

equal to 83-85% of the maximum von Mises stress range. 

The effective von Mises stress range may be used to compute a uniaxial stress-strain curve 

representative of the loading scenario. As referred to above, in this research, three different 

approaches are employed (see Section 2.2). An example of the final hysteresis loop computed 

for B/T=1 (0º) with a nominal normal stress equal to 298.4 MPa (see Table 4) using the ESED 

rule is presented in Figure 9. Point A  was calculated through Eq. (5) along with the (𝜎𝑚𝑎𝑥,𝜀𝑚𝑎𝑥)

Ramberg-Osgood relationship. Point B  was determined with respect to a coordinate (∆𝜎,∆𝜖)

system centred at Point A using Eq. (6) and the Masing model. From the generated hysteresis 

loop, the required values of the fatigue damage parameters were calculated. Then, the 

procedure was repeated for the various loading cases and the three local stress-strain 

approaches. 

Fatigue life can be assessed by inserting the values of the fatigue damage parameters 

previously calculated into the uniaxial functions obtained in the low-cycle fatigue tests (see 

Section 4.1). Figure 10 plots the experimental lives (Ni) against the predicted results (NP) 

determined via the Neuber’s rule. For the sake of clarity, scatter bounds with factors of two 

(i.e. Ni = 2Np and Np = 2Ni) were drawn. It is clear that energy-based predictions are more 

accurate than the others. In this method, all points are correlated, either for shorter lives or 

longer lives. On the contrary, stress-based predictions are too conservative, particularly at 

higher strain levels. Both the strain-based and the SWT-based models led to intermediate 

results, reasonably correlated in the entire range, but tendentially conservative.  
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Regarding the ESED rule, the experimental lives (Ni) and the predicted results (Np) for the 

different fatigue models are displayed in Figure 11. Overall, the general trends are relatively 

similar to those described in the previous case. Nevertheless, although the stress-based model 

also shows a great scatter, both the strain-based and the SWT-based predictions are more 

balanced, exhibiting more points within the bounds. As far as the energy-based model is 

concerned, predictions maintain an excellent correlation with the experimental lives. The 

better results associated with the ESED rule can be explained by the fact that Neuber’s rule 

tends to overestimate the strain field at the notch root, which is likely to lead to shorter lives. 

The fatigue life predictions determined with the modified ESED rule for the four one-

parameter damage laws selected in this paper are shown in Figure 12. In this case, there are 

no obvious differences regarding the original ESED rule. Similarly, the stress-based model leads 

to an identical scatter, with most points out of the bounds, particularly in the low-cycle fatigue 

regime. Strain-based and SWT-based predictions also maintain the same trends, with most 

points at the conservative side. Finally, the energy-based results continue to be the most 

accurate, strongly agreeing with the experimental observations. 

In order to better evaluate the predictive capabilities of the tested methods, a comparative 

analysis of the fatigue error, computed in the form of a probability density function was 

carried out. The fatigue error (EN) was defined by the following equation: 

𝐸𝑁 = log10(𝑁𝑖

𝑁𝑝) Eq. (16)

and the probability density function (Z(x)) was defined by the formula:

𝑍(𝑥) =
1

ρ 2𝜋e ― (𝑥 ― 𝜇)2/(2α2) Eq. (17)

where  is the standard deviation and  is the mean value.𝜌 𝜇

Figure 13 shows the probability density functions of the fatigue errors for the three local 

stress-strain approaches and the four one-parameter damage laws tested here. More accurate 

models are generally associated with lower standard deviations and mean errors closer to 

zero. The errors associated with the energy-based calculations, irrespective of the local stress-
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strain approach, are much closer to zero than the others, which is confirmed by the smaller 

mean values and the lower standard deviations. The other three models are tendentially 

displaced towards the safe area. Both the strain-based and the stress-based results are quite 

similar. Nevertheless, the former leads to smaller mean values and lower standard deviations. 

Concerning the stress-based model, the predictive capabilities are clearly less reliable than the 

others.   

It can also be noted an important improvement of fatigue life predictions when the ESED and 

the modified ESED rules are applied, independently of the fatigue damage parameter 

considered in the calculations. Furthermore, although the differences are not significant, the 

modified ESED rule led to smaller standard deviations, in all cases, than the original ESED rule. 

In a macro perspective, we can also conclude that the energy-based formulation is reliable to 

estimate the fatigue lifetime in U-shaped notches subjected to proportional bending-torsion 

loading when combined with any of the three local stress-strain approaches studied here. Both 

the strain-based and the SWT-based methods are also capable of predicting the fatigue life 

expectancy for this geometry and the tested loading scenarios. It is worth to note that the 

three approaches require similar computational cost, which is another interesting outcome. 

The present approach can be easilsy extended to more complex geometries that can be 

obtained by additive processes [38-40] and more complex loading conditions [41-42]. Future 

developments will include the possibility to fully compute three-dimensional effects [43-44], 

which sometimes play a fundamental role in the final fatigue life.

5. Conclusions

This paper aimed at comparing the predictive capabilities of different fatigue models 

developed by combining various uniaxial damage parameters and various local stress-strain 

approaches in notched components subjected to bending-torsion loading. Four well-known 

models (stress-based, strain-based, SWT-based, and energy-based) were selected to correlate 

the loading level and the fatigue durability using uniaxial low-cycle fatigue results. Cyclic 

plasticity at the notch-controlled process zone was accounted for numerically, within a linear-

elastic framework, by reducing the multiaxial stress state to an equivalent uniaxial stress state 

(von Mises stress range) using a local stress-strain approach (Neuber’s rule, ESED rule, or 

modified ESED rule) and the Theory of Critical Distances. The following conclusions can be 

drawn: 
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(1) regardless of the strain amplitude, the cyclic response of the tested steel was quite stable 

throughout the entire lifetime, enabling the definition of stress-based, strain-based, SWT-

based, and energy-based functions with high correlation coefficients between the above 

parameters and the fatigue lifetime;  

(2) irrespective of the local stress-strain approach, the stress-based method tended to be too 

conservative, particularly for lower lives; on the contrary, the other three methods led to 

good correlations between the experimental observations and the predicted lifetime; 

(3) the energy-based model showed the best predictive capabilities, regardless of the rule 

introduced to account for the cyclic plasticity effect at the notch-controlled region. Errors 

were relatively balanced, sometimes conservative, other times non-conservative, but 

much closer to zero and with lower standard deviations;

(4) Neuber’s rule led to more conservative results which was associated with the 

overestimation of strain fields at the notch root. Concerning the rules based on the strain 

energy density, although the differences were not significant, the modified ESED rule was 

slightly more accurate than the original ESED rule.
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Nomenclature

2Nf number of reversals to failure

material characteristic lengtha0

b fatigue strength exponent

B/T bending moment to torsion moment ratio

fatigue strength exponent𝑐

critical distance of the Line Method𝐷𝐿𝑀

Young’s modulusE

EN fatigue error

strain hardening coefficient𝑘

cyclic strain hardening coefficient𝑘′

stress concentration factor𝑘𝑡

strain hardening exponent𝑛

cyclic strain hardening exponent𝑛′

Ni number of cycles to fatigue crack initiation

Nf number of cycles to failure
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Np predicted fatigue life

r distance from the crack initiation site

R2 coefficient of determination

nominal stress𝑆

probability density function𝑍(𝑥)

material constant𝛼𝑡

material constant𝛼

threshold value of the stress intensity factor rangeΔ𝐾𝑡ℎ

tensile elastic energy at the material fatigue limitΔ𝑊0𝑡

elastic positive strain energy densityΔ𝑊𝑒 +

plastic strain energy densityΔ𝑊𝑝

total strain energy densityΔ𝑊𝑡

nominal stress range∆𝑆

local strain range∆𝜀

local stress range∆𝜎

material plain fatigue limitΔ𝜎0

effective stress rangeΔσeff

equivalent von Mises stress rangeΔσeq

maximum value of the equivalent von Mises stress rangeΔσeq,max

local strain𝜀

strain amplitude𝜀𝑎 

fatigue ductility coefficient𝜀′𝑓

mean strain𝜀𝑚

maximum strain𝜀𝑚𝑎𝑥

bending moment angle 𝜃

 material constantκ

material constant𝜅𝑡

standard deviation𝜌

mean value𝜇

local stress𝜎

stress amplitude𝜎𝑎

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


22

fatigue strength coefficient𝜎′𝑓

mean stress𝜎𝑚

maximum stress𝜎𝑚𝑎𝑥

Poisson’s ratioυ

fatigue damage parameter𝜓

fatigue limit𝜓0

Figure 1. Overview of fatigue life assessment approaches: (a) reduction of multiaxial stress 

state to an equivalent uniaxial stress state; (b) calculation of an effective stress range; (c) 

generation of a cyclic stress-strain hysteresis loop; and (d) estimation of fatigue lifetime.
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Figure 2. Specimen geometries of the: (a) uniaxial low-cycle fatigue tests; and (b) multiaxial 

bending-torsion fatigue tests (unit: mm).
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Figure 3. Finite element model developed to assess the stress-strain fields at the notch root for 

the bending-torsion tests. FB represents the pair of forces applied to generate the bending 

moment and FT represents the pair of forces to generate the torsion moment. 
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Figure 4. Uniaxial low-cycle fatigue response under strain-controlled conditions at different 

strain amplitudes: (a) stress amplitude against dimensionless life; (b) plastic strain amplitude 

against dimensionless life; (c) total strain energy density against dimensionless life; and (d) 

SWT parameter against dimensionless life.
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Figure 5. One-parameter damage laws computed from low-cycle fatigue tests using the half-

life cycles: (a) stress amplitude versus number of reversals to failure; (b) strain amplitude 

versus number of reversals to failure; (c) total strain energy density versus number of reversals 

to failure; and (d) SWT parameter versus number of reversals to failure.
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(a) (b) (c) (d) (e) (f)

Figure 6. Surface crack paths and crack initiation sites observed in the experiments and 

predicted numerically: (a) B/T=2 (0º); (b) B/T=2 (45º); (c) B/T=2 (90º); (d) B/T=1 (0º); (e) B/T=1 

(45º); and (f) B/T=1 (90º). The white circles represent the experimental crack initiation sites; 

the white squares represent the predicted initiation sites; and the dashed lines represent the 

predicted crack paths. 
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Figure 7. Fracture surfaces acquired via optical focus-variation microscopy: (a) B/T=2 (0º); (b) 

B/T=2 (45º); (c) B/T=2 (90º); (d) B/T=1 (0º); (e) B/T=1 (45º); and (f) B/T=1 (90º). Pseudo-colour 

views represent the height from the lowest point of fracture surface measured in the z-axis 

direction.  
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Figure 8. Dimensionless von Mises stress range against the dimensionless distance from the 

initiation site for the different loading scenarios.
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Figure 9. Stress-strain hysteresis loop computed using the ESED rule for B/T =1 (0º) with =  

298.4 MPa. 
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Figure 10. Fatigue life predictions obtained by combining the Neuber’s rule and the: (a) stress-

based; (b) strain-based; (c) energy-based; and (d) SWT-based models.
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Figure 11. Fatigue life predictions obtained by combining the ESED rule and the: (a) stress-

based; (b) strain-based; (c) energy-based; and (d) SWT-based models.
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Figure 12. Fatigue life predictions obtained by combining the modified ESED rule and the: (a) 

stress-based; (b) strain-based; (c) energy-based; and (d) SWT-based models.
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Figure 13. Comparative analysis of the predictive capabilities of the different one-parameter 

damage laws combined with the: (a) Neuber’s rule; (b) ESED rule; and (c) modified ESED rule.
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Table 2. Mechanical properties of the 34CrNiMo6 high-strength steel [35].

Mechanical property Value
Yield strength, YS (MPa) 967
Tensile strength, UTS (MPa) 1035
Young’s modulus, E (GPa) 209.8
Poisson’s ratio,  0.296
Cyclic strain hardening coefficient, k’ (MPa) 1361.6
Cyclic strain hardening exponent, n’ 0.1041
Fatigue limit stress range, 0 (MPa) 353
Stress intensity factor range threshold, Kth0 (MPa∙m0.5) 7.12
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Table 3. Summary of low-cycle fatigue tests (half-life cycle).

Test reference (MPa)𝜎𝑎  (MPa)𝜀𝑎  (MJ/m3)∆𝑊𝑡  (reversals)2𝑁𝑓  
2.00% 891.8 2.003 45.04 262
1.50% 869.0 1.503 29.83 480
1.25% 831.6 1.254 22.23 642
1.00% 796.8 1.004 14.89 1534
0.80% 750.6 0.806 9.83 2438
0.60% 726.6 0.607 5.26 5046
0.50% 697.5 0.512 3.37 10,280
0.40% 675.3 0.413 1.59 26,756
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Table 4. Summary of multiaxial fatigue tests.

Test reference B/T 𝜃  (MPa)𝜎𝑎  (MPa)𝜎𝑚  (MPa)𝜏𝑎  (MPa)𝜏𝑚  (cycle)𝑁𝑖

2(0)-1 2 0º 179.1 194.0 44.9 48.5 102,386
2(0)-2 2 0º 223.8 238.7 56.0 59.7 49,103
2(0)-3 2 0º 298.4 313.3 74.6 78.3 24,207
2(45)-1 2 45º 208.9 223.8 52.2 56.0 64,754
2(45)-2 2 45º 253.7 268.6 63.4 67.2 39,331
2(45)-3 2 45º 328.3 343.2 82.1 85.8 11,422
2(90)-1 2 90º 343.0 365.3 85.8 91.3 68,010
2(90)-2 2 90º 356.4 383.1 89.1 95.8 72,072
2(90)-3 2 90º 364.1 379.0 91.0 94.8 51,878
1(0)-1 1 0º 179.1 194.0 89.6 97.0 92,544
1(0)-2 1 0º 179.1 194.0 89.6 97.0 83,278
1(0)-3 1 0º 179.1 194.0 89.6 97.0 56,749
1(0)-4 1 0º 223.8 238.7 112.0 119.4 26,420
1(0)-5 1 0º 223.8 238.7 112.0 119.4 21,225
1(0)-6 1 0º 223.8 238.7 112.0 119.4 31,306
1(0)-7 1 0º 298.4 313.3 149.2 156.7 8314
1(45)-1 1 45º 208.9 223.8 104.5 111.9 67,160
1(45)-2 1 45º 223.8 238.7 111.9 119.4 46,822
1(45)-3 1 45º 238.7 253.7 119.4 126.9 25,276
1(90)-1 1 90º 282.9 298.5 141.5 149.3 63,105
1(90)-2 1 90º 283.5 298.4 141.8 149.2 88,655
1(90)-3 1 90º 311.8 334.1 155.9 167.0 28,730
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Table 5. Constants of Eq.s (12)-(15) computed from the low-cycle fatigue tests.

 (MPa)𝜎′𝑓 b  𝜀′𝑓 c  (MJ/m3)𝜅𝑡 𝛼𝑡  (MJ/m3)∆𝑊𝑡0

1183.7 -0.0545 0.4697 -0.6059 2165.37 -0.6854 0.7049
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