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4Department of Modelling and Optimization of Dynamical Systems, Systems Research Institute, Warsaw, Poland

Corresponding author: Efklidis Katsaros (e-mail: efkleidis.katsaros@pg.edu.pl).

This work was supported in part by The National Centre for Research and Development, Poland, under grant agreement
POIR.01.01.01-00-0076/19.

ABSTRACT Dynamic scene video deblurring is a challenging task due to the spatially variant blur inflicted
by independently moving objects and camera shakes. Recent deep learning works bypass the ill-posedness
of explicitly deriving the blur kernel by learning pixel-to-pixel mappings, which is commonly enhanced
by larger region awareness. This is a difficult yet simplified scenario because noise is neglected when it
is omnipresent in a wide spectrum of video processing applications. Despite its relevance, the problem of
concurrent noise and dynamic blur has not yet been addressed in the deep learning literature. To this end,
we analyze existing state-of-the-art deblurring methods and encounter their limitations in handling non-
uniform blur under strong noise conditions. Thereafter, we propose a first-to-date work that addresses blur-
and noise-free frame recovery by casting the restoration problem into a multi-task learning framework.
Our contribution is threefold: a) We propose R2-D4, a multi-scale encoder architecture attached to two
cascaded decoders performing the restoration task in two steps. b) We design multi-scale residual dense
modules, bolstered by our modulated efficient channel attention, to enhance the encoder representations
via augmenting deformable convolutions to capture longer-range and object-specific context that assists
blur kernel estimation under strong noise. c) We perform extensive experiments and evaluate state-of-the-
art approaches on a publicly available dataset under different noise levels. The proposed method performs
favorably under all noise levels while retaining a reasonably low computational and memory footprint.

INDEX TERMS deblurring, denoising, multi-task learning, video enhancement

I. INTRODUCTION

V IDEOS aim at faithfully reflecting the motion in dy-
namic scenes but concurrent motion blur and noise can

severely obscure scene perception. Vision sensors are reach-
ing new and complex environments ranging from medicine,
marine and robotics to night vision. However, hardware
typically bears application-specific limitations and poses
challenges for video enhancement. Improving visual out-
puts finds applications in visualization environments where
the user can assess the scene more accurately and react.
Moreover, enhanced video processing facilitates downstream
computer vision tasks and improves performance in general
video understanding. Although algorithms should address
hardware limitations and account for adversarial physical

phenomena by enhancing the video output, satisfying the
objectives of a real-world application is a demanding task in
practice.

Proper calibration of the sensor requires adjustment of the
exposure time. While a longer time of exposure increases
the number of photons and thus allows the sensor to cap-
ture scenes with less noise, it increases the risk of motion
blur when the camera shakes and objects move. However, a
small exposure time causes noise. Numerous methods have
been proposed to address the deblurring task, ranging from
spatially invariant [1]–[6] to spatially variant blur [7]–[12].
Meanwhile, many approaches have been proposed for de-
noising with remarkable results [13]–[16]. However, deeply
learnt, dynamic scene video denoising and deblurring have
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been addressed only as independent tasks. Severe noise has
been recently addressed in video enhancement, but only for
static scenes, that is without motion blur, for example in the
context of low-light imaging [17]. The problem of spatially
variant motion blur, related to independently moving objects
in the presence of noise, has not yet been addressed in
the deep learning literature. Not only is it an intrinsically
challenging problem, but relevant research is also limited
by the difficulty in constructing such labeled datasets [17],
[18]. For instance, [12] used a beam splitter to construct
real blurry-sharp frames, whereas [18] emulated motion by
manually moving objects and used a fixed tripod to capture
multiple frames of the same scene before generating real
noisy-clean pairs of frames by averaging the noisy instantia-
tions of the same scene. In this study, we rely on the realistic
blurry dataset of [12] and the realistic Poisson-Gaussian
noise model [18], [19].

The problem at hand raises questions. Should different
models be tailored to individually address denoising and
deblurring tasks? How robust are deep video deblurring
methods with increasing noise levels? To answer our ques-
tions, we first developed a deep learning system for video
deblurring under strong noise. We demonstrate that the se-
quential utilization of off-the-shelf state-of-the-art video de-
noising and deblurring algorithms is ineffective. The former
oversmooths the output since it is not constrained to retain the
blur kernel. Moreover, such a configuration would be subop-
timal because individual methods require individual feature
extraction modules, while motion estimation and local frame
features between the two tasks are essentially shareable.

Contributions: To address the aforementioned limita-
tions, we propose R2-D4, the first-to-date deeply learned
network that leverages the feature-sharing potential of multi-
task learning (MTL) to increase model efficiency and jointly
address dynamic video denoising and deblurring. Our main
contributions are summarized as follows: R2-D4: We pro-
pose R2-D4, a novel, MTL-inspired, cascaded convolutional
architecture utilizing two decoders to denoise and deblur
input frames in stages. R2-D4 employs a tailored feature
alignment module that leverages deformable convolutions at
the feature level. MS-RDM: We propose multiscale residual
dense modules to learn coarse-to-fine, dense representations,
enhanced by MECA, a novel extension of the efficient chan-
nel attention module [20] to further modulate deformable
convolutions and increase restoration performance while re-
taining the number of FLOPs. Experiments: We extensively
benchmark existing deblurring approaches under different
levels of noise on a real, publicly available dataset and show
that state-of-the-art deblurring networks bear noise-removing
capacity, yet R2-D4 performs consistently better.

II. RELATED WORK
A. DEBLURRING IN THE PRESENCE OF NOISE
Image deblurring in the presence of noise is a fundamental,
widely studied subject. Traditionally, a convolution model
has been employed for spatially invariant blur and addi-

tive Gaussian noise [21] or more realistic Poisson-Gaussian
noise [19]. To solve the corresponding ill-posed inverse prob-
lem, some studies have resorted to variational methods that
incorporate prior information on the unknown clean image,
such as promoting sparsity [22], or some prior learned from
data [1]–[4]. The other strategy combines the advantages of
deep neural networks and variational approaches by linking
each layer of a deep network to one iteration of the baseline
iterative algorithm, and learning the algorithm hyperparam-
eters from data by using deep unfolding methods [5], [6],
[23]. Although the aforementioned methods produce very
good results, they are typically limited to simplistic sce-
narios, which are spatially invariant blur kernels. Moreover
they hardly scale to videos because of their relatively high
computational complexity. More realistic scenarios with both
noise and unknown spatially variant blur have not been
extensively addressed in the literature. Existing optimization-
based methods require knowledge of the noise level and rely
on relatively simple priors assuming a piece-wise constant
change of the blur kernel in space [24], [25] or deal with a
simplified blur model [26], [27]. The more general space-
variant blur model is well studied in the context of deep
learning.

B. DEEP VIDEO DEBLURRING
Deep video deblurring methods rely on the expressiveness
of stacked convolution filters to deal with dynamic scenes,
where blur is due to both camera shakes and independently
moving objects. Su et al. [28] proposed an encoder-decoder
architecture to align the input frames via its intrinsic mul-
tiscale property and showed that warping the input frames
with optical flow introduces negligible performance gains
but significant warping artifacts. Similarly, Zhou et al. [10]
performed implicit frame alignment on the feature level by
learning alignment kernels to overcome inaccurate optical
flow estimation via a recurrent design. Wang et al. [29]
proposed EDVR, a general-purpose reconstruction network
for video restoration tasks, including deblurring, denoising,
and super-resolution. The authors performed feature-level
alignment with a multi-scale cascaded module, comprising
deformable convolutions, before spatio-temporal attentive
fusion followed a reconstruction module to restore the cor-
rupted input. Zhong et al. [12] introduced a recurrent network
that extracts the features frame-wise and pre-processes them
with a spatio-temporal attention module that emphasizes the
important ones to be passed to the reconstruction decoder
that generates the output image. Pan et al. [30] proposed
a cascaded algorithm that relies on optical flow estimation
to restore the latent frame. However, despite the number of
successful studies on dynamic video deblurring, no study has
yet addressed this task in the presence of noise.

C. CHANNEL ATTENTION
Channel attention mechanisms have become a prevalent
building block in vision since they enable enhanced channel-
wise feature learning by highlighting informative features
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Skip  Connection Summation Channel Partition

FIGURE 1. The proposed R2-D4 architecture restores the reference frame (R2) via cascaded denoising and deblurring (D2) after aligning its features with the
neighboring ones via the dense deformable (D2) alignment module.

and suppressing irrelevant ones at low cost. Hu et al. [31]
performed channel-wise global average pooling and em-
ployed linear projections with fully connected layers to first
reduce and then redeem the channel dimensionality. The
features were rescaled using learned weights. Similarly, Woo
et al. [32] augmented linear projections with both the global
average and max pooling. More recently, Wang et al. [20] ar-
gued that dimensionality reduction impairs channel relation-
ships and performs projection directly on the input channel
dimension with efficient 1D convolutions. Motivated by the
efficiency of channel attention modules, we incorporate them
into our work by extending the ECA to further enrich the
attentive representations while retaining its efficacy.

D. MULTI-TASK LEARNING
Multi-task Learning constitutes the paradigm where different
tasks are learnt simultaneously [33], typically through hard-
parameter sharing. MTL is an especially desirable setup
under a synergic task configuration. With minor gradient
conflicts, it increases the model efficiency by restraining
the computational budget and leverages the underlying data
structure more effectively by utilizing joint signals from
different labels [34]. With regard to the problem at hand, both
denoising and deblurring benefit from end-to-end, accurate
alignment. Inspired by the success of cascaded restoration in
stages [29], [30], [35], we cast the restoration problem on an
MTL framework that shares features between the cascaded
decoders.

E. DATASETS
Many video deblurring datasets [8], [28], [36] have been
introduced to facilitate research in the field. Earlier works [8],
[28] utilized high-fps cameras to approximate spatially vari-
ant blur via frame averaging over a temporal window. De-

spite their wide adoption, their use comes at the expense
of consistent artifact generation incurred by excessive frame
averaging to increase blur. As a result, the frames from [8]
exhibit ghosting artifacts. In contrast, [28] used a smaller
temporal window at the expense of adequate blur generation.
Most recently, the beam splitter dataset [12] (BSD) has been
constructed using cameras with different exposure times that
record the same scene through a beam splitter. The authors
introduced three different exposure configurations, yielding
datasets of three different blur levels. However, the datasets
captured the outdoor scenes. Obtaining sharp and blurry
pairs of frames for low-light scenes remains unaddressed.
For instance, the recently published ARID [37] is a low-light
dataset that motivates the proposed problem, exhibiting both
noise and blur, but lacks the respective paired clear frames.

III. PROBLEM FORMULATION
Let x ∈ RQ be a vector of observations related to an original
signal y ∈ [0,+∞)N through the model

x = αz(y/α) + w (1)

where α ∈ (0,+∞) is a scaling parameter, z(y) =(
zi(y)

)
1≤i≤Q and w = (wi)1≤i≤Q are the realiza-

tions of mutually independent random vectors Z(y) =(
Zi(y)

)
1≤i≤Q and W = (Wi)1≤i≤Q with independent com-

ponents. It is further assumed that, for every i ∈ {1, . . . , Q},
Zi(y) ∼ P([Hy]i) and Wi ∼ N (0, σ2), where P,N
denote the Poisson and Gaussian distributions respectively,
σ ∈ (0,+∞) is the standard deviation of the Gaussian noise
component, and H ∈ [0,+∞)Q×N is a matrix modeling the
degradation process, i.e. a heterogeneous motion blur kernel
map with different blur kernels for each pixel in y. Let hi

represent the kernel from H that operates on a region of the
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image centered at location i such that

ki = [Hy]i (2)

Thus, for each i, we have P(ki) = P
(∑

j h
i
jyi+j

)
. In the

context of deep learning, the original video signal can be re-
covered by some networkF with parameters Θ. Hence, given
T consecutive, corrupted frames

(
xt)1≤t≤T , the optimal set

of Θ is derived by minimizing the criterion:

L(Θ) = L
(
FΘ(xt−Ni , . . . , xti), y

t
i , k

t
i

)
(3)

where L denotes some quality measure function e.g. `2
squared norm or `1 norm. More recently, perceptually moti-
vated strategies [8], [10], [38] have been considered to restore
realistic image structures by augmenting the optimization
criterion via either GAN-based [39] adversarial training [8],
[38] or perceptual loss terms [40]. Here, FΘ(xt−Ni , . . . , xti)
yields two outputs of k̂t and ŷt.

IV. PROPOSED METHOD
Given N consecutive corrupted frames x[t−N :t] and N − 1
previously restored frames ŷ[t−N :t−1], our method obtains ŷt

via a cascaded, two-stage restoration. The proposed R2-D4
network consists of a shared, dense, deformable (D2) feature
alignment module, followed by a convolutional feature fu-
sion and two decoders performing denoising and deblurring
sequentially (D2) to restore the frames via a two-stage (R2)
cascaded process, as illustrated in Fig. 1. The shared D2
module processes the current xt and previous {xt−N , ŷt−N}
frames to extract features at each time step. Subsequently,
the asymmetric offsets are estimated to align the neighboring
frame features with the reference frame features. Thereafter,
the aligned features are fused before the two decoders lever-
age the shared features to denoise and deblur the current
frame sequentially in a cascaded manner.

The D2 alignment module, described in Sec. IV-B1,
employs modulated deformable convolutions [41] to align
frames at the feature level and does not estimate the optical
flow that is harder under strong noise. Common issues arising
from optical flow include computational inefficiency and
generation of motion artifacts. Feature alignment is further
improved via our multiscale residual dense modules (MS-
RDMs), described in Sec. IV-A2, which leverage dilated
convolutions to capture a longer-range context. MS-RDBs
essentially serve as a pre-processing step before deformable
convolutions, aggregating features with increased effective
receptive fields, thus facilitating the known deformable offset
estimation issue [29], [42]. MS-RDBs are further enhanced
with our modulated efficient channel attention blocks, as
explained in Sec. IV-A1.

The R2 two-stage cascaded restoration process utilizes
decoders to denoise and deblur corrupted frames sequentially
under an efficient MTL framework. Accurate feature align-
ment benefits both denoising and deblurring. Moreover, the
features are expanded channel-wise upon fusion, increasing
the model capacity at the lowest resolution to accommo-
date both tasks sufficiently. Finally, the two-stage cascaded

process has been shown to yield increased performance on
many restoration tasks and is therefore integrated into R2-
D4 through the two decoders under the proposed feature-
sharing scheme. As illustrated in Fig. 1, additional residual
connections from xt to the first-stage output k̂t, and from the
latter to the second-stage ŷt are used to facilitate the training.

A. PROPOSED BLOCKS
1) Modulated Efficient Channel Attention
Self-supervised channel attention blocks have become ubiq-
uitous since they highlight informative and suppress non-
relevant features. Wang et al. [20] proposed an efficient 1D
convolution (ECA) on globally averaged input channels to
determine the attentive weights, as illustrated in the top half
of Fig. 3. Formally, ECA is denoted as follows:

ECAk = σ ◦ Cc,1×k ◦GAP (4)

where GAP is the global average pooling operation, σ is the
sigmoid function, and Cc,1×k is a 1D convolutional operation
with c output channels and a kernel of size k, where the latter
is typically determined adaptively as a function of the input
channels. Formally, assuming a feature cube fc ∈ RH×W×C ,
the channel-wise attention weights are then derived as fol-
lows:

f̃c = ECAk(fc) (5)

Then, f̃c is multiplied by the input features f to obtain the
attended f̃ .

Despite the success of channel attention modules, they
are often difficult to optimize and converge to uniform dis-
tributions of the channel weights. To alleviate such issues
and facilitate the gradient flow during the backward pass,
we propose to complement globally averaged features with
max-pooled features as in CBAM [32], under the efficient 1D
convolution configuration of [20]. The modulated efficient
channel attention module, termed MECA, is illustrated in
the bottom half of Fig. 3. In contrast to ECA, we perform
both global average and max pooling (MP) on the features f
channel-wise to obtain f ′c, and we denote the concatenation
of GAP and MP channels as MGAP. By adopting the notation
in Eq. 4, MECA is defined as:

MECAk = σ ◦ Cc,2×k ◦MGAP (6)

The attended weights are derived similarly to Eq. 5 and mul-
tiplied by the input features to obtain the attented features.
Notably, MECA retains the efficiency of 1D convolution in
capturing the local cross-channel interactions but learns an
essentially more effective projection, utilizing two channels
of informative cues instead of solely the globally averaged
ones. MECA is an easy-to-plug module that can be integrated
into all standard architectures for any vision task.

2) Multiscale Residual Dense Module
Residual blocks [43] have been a popular choice [10], [16],
[38], [44] in image and video restoration. More recently,
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FIGURE 2. The proposed Multiscale Residual Dense Module learns enhanced hierarchical representations via its coarse-to-fine design. The MS-RDB (a) block
mines coarser features with increasing dilation rates whereas the second RDB (b) block learns finer details.
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FIGURE 3. Proposed modulated efficient channel attention.

residual dense blocks (RDBs) [45] exploited dense connec-
tions between layers to extract richer hierarchical features
while instantiating a contiguous memory (CM) mechanism
to further enhance the learned representations.

Residual dense blocks (RDBs) typically consist of l con-
volutional kernels and a ‘growth factor’ hyperparameter g.
As shown in Fig. 2b, each layer receives the feature maps
from the previous stage, convolves them with a 3 × 3 kernel
that yields g additional channels and concatenates them with
the previous ones before passing them to the next layer. Each
block is then followed by a 1 × 1 convolution to aggregate
the signal and stabilize the training before the residual sum-
mation. Formally, a single RDB with 3 layers can be denoted
as follows:

RDB = Cc,1×1 ◦ CAT c+3g ◦ Cg,3×3

◦CAT c+2g ◦ Cg,3×3 ◦ CAT c+g ◦ Cg,3×3 (7)

where Cc,k×k, R and CAT c are the k × k convolution oper-
ation, the activation function and the concatenation function
respectively. The subscript c denotes the number of output
channels after each convolution and concatenation. Stacking
b such residual dense blocks gives rise to RDB cells [12],
where the output of each block is sequentially processed
by the next block. For clarity, we term them residual dense
modules (RDMs). In RDMs, all subsequent RDB outputs are
concatenated and fed into another 1 × 1 convolution before
the residual summation at the module level.

In this work, we introduce multiscale residual dense mod-
ules (MS-RDMs) to efficiently increase the effective recep-
tive field by spatially augmenting the hierarchical features in
a coarse-to-fine manner. As illustrated in Fig. 2, MS-RDMs
are designed via an MS-RDB that captures a hierarchically
coarser context via kernel dilation followed by a simple non-
dilated RDB to complement hierarchical features with fine
details. Regarding the MS-RDB, layers are progressively
enhanced with larger dilation rates to hierarchically capture
a longer-range context. As depicted in Fig. 2a, the MS-RDB
block is defined as:

RDBMS = Cc,1×1,0 ◦ CAT c+3g ◦ Cg,3×3,2

◦ CAT c+2g ◦ Cg,3×3,1 ◦ CAT c+g ◦ Cg,3×3,0 (8)

where Cc,k×k,d denotes, again, the convolution, but dilated
with a rate of d. Upon concatenation of the coarse and fine
block features and before the 1 × 1 convolutional aggre-
gation, we perform channel-wise attention via the proposed
MECAk. Similarly, the resultant RDMMS is defined as:

RDMMS = Cc,1×1 ◦MECA7

◦CAT 2c ◦ RDB ◦ RDBMS (9)

The proposed MS-RDM reformulation enlarges the effective
receptive field, which in turn renders the CM mechanism
spatially more aware. The coarse-to-fine hierarchical features
mine spatially aware representations and serve as a prepro-
cessing step for deformable offset estimation.

B. RESTORATION EN CASCADE
1) Dense Deformable Alignment
At each time step t, the network receives the current frame
xt and previous corrupted and restored {xt−N , ŷt−N} ones.
Leveraging previously restored frames encourages temporal
coherence by reducing flickering and has been shown to yield
improved performance [10]. At each time step, the respective
features are computed using the following block:

F = RDMMS32◦C32,3×3,2◦RDMMS16◦C16,3×3,1 (10)

where Cc,k,s denotes a k × k convolution with a stride of
s, and c output channels and RDMMSg is the multiscale
residual dense block with a growth factor g. As illustrated
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in Fig. 1, R2-D4 contains two sets of weights: one for the
current xt and one for each past {xt−N , ŷt−N}. Likewise,

f t = F (xt), f t−N = F (xt−N , ŷt−N ) (11)

where N is set to 2. Weight sharing for past frame features
increases the training efficiency and accelerates inference by
reusing f t−2 at each time step.

The current and previous frames are then aligned using de-
formable convolutional layers. A deformable module enables
the modeling of geometric transformations through asym-
metric kernels so that output features can capture object-
specific contexts that assist blur kernel estimation. The
leveraging of deformable convolutions under the proposed
scheme has three advantages. First, it discards the necessity
for erroneous and computationally expensive optical flow
estimations. Second, it performs alignment on the deeper
feature levels instead of the image level. This has been shown
to improve performance [10], [29] because the layers prior to
the deformable modules encode features that are tailored to
the alignment. Third, estimating deformation offsets on the
coarse-to-fine features extracted from MS-RDMs assists in
modulated offset estimation and improves performance.

Each modulated deformable layer consists of two convo-
lutions. The first layer learns the offset displacements and the
modulating scalars that determine the amplitude of the output
features. The second layer employs the modulated offsets
and learns the filter weights, as in ordinary convolution. The
deformable convolution is denoted as

DC = CD128,3×3,1 ◦ C27,3×3,1 (12)

where C3k2,k×k,s is the k × k convolutional kernel with
a stride of s, estimating the 2k2 offsets and respective k2

modulation scalars from the concatenated c frame features
and CDc,k×k,s denotes the actual deformable convolution with
c output channels. Correspondingly, the aligned features are
defined as follows:

f t−Na = DC(f t, f t−N ) (13)

The fusion of the aligned features is then performed via:

Ffuse = RDB32 ◦ RDB32 ◦ C128,3×3,2

◦RDB32 ◦ RDB32 ◦ C128,3×3,1 (14)

Note that simple RDBs without dilation rates are em-
ployed for fusion because a spatially wider context does
not strengthen the feature representations at smaller scales.
Because the number of past frames is N = 2, the output and
shared features are defined as

fshared = Ffuse(f
t−1
a , f t−2

a ) (15)

2) Cascaded Decoders
The decoders share identical architectures. They are opti-
mized to upsample the shared features and yield denoised and
deblurred outputs (D2) sequentially. As shown in [46], trans-
posed convolutions often generate checkerboard artifacts. To
overcome these problems during feature upsampling, many

studies have resorted to bilinear upsampling followed by
convolution [35], [47]. Although we confirm that bilinear
upsampling eliminates artifacts, it leads to a loss of spatial
information. Therefore, we resort to convolutional channel-
wise expansion followed by pixel shuffling [48] to reduce
gridding artifacts and preserve spatial details. Denoting the
upsampling layers as PS, each decoder can be expressed as
follows:

D = C3,3×3,1 ◦ RDB16 ◦ PS32 ◦ C128,3×3,1

◦RDB32 ◦ PS64 ◦ C256,3×3,1 (16)

Assuming two such instantiations for denoising and de-
blurring as Dden and Ddeb, the intermediate denoised and
restored output frames are defined as:

k̂t = Dden(fshared) (17)
ŷt = Ddeb(fshared) +Dden(fshared) (18)

We utilize skip connections from the encoder to the de-
coders to preserve spatial information and facilitate train-
ing, as is common in UNet-based [49] methods. Instead of
concatenating the encoding channels with both decoders, we
restructure the gradient flow by dissecting the former, say
f ∈ RH×W×C , in two groups fden, fdeb ∈ RH×W×C/2,
each specialized for the decoder’s task, as illustrated in Fig. 1.
Likewise, fden and fdeb receive task-specific gradients in
addition to the shared gradients. As a result, fden focuses on
the global noise distribution, whereas fdeb is specialized in
recovering the blur-free frame.

(a) Bright (b) Dark (c) Low-light

FIGURE 4. Examples from the BSD dataset under different illumination
configurations. The bright, dark, and low-light data correspond to α values of
0.5, 1.9 and 7.1 and are used to generate low, moderate and severe noise,
respectively.

V. EXPERIMENTS
In this section, we present the experiments that (i) compare
the performance of R2-D4 with state-of-the art video de-
blurring methods and investigate their robustness at different
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Method N Par (M) GFLOPs Low Moderate Severe
STFAN 2 5.4 188.9* 29.23 29.06 28.57

0.875 0.868 0.858
ESTRNN 3 2.3 142.9 30.52 29.90 29.07

0.905 0.892 0.872
CDVD (1) 5 16.2 - 30.40 29.92 29.06

0.906 0.894 0.875
CDVD (2) 5 16.2 - 30.53 30.12 29.17

0.911 0.900 0.880
R2-D3 3 4.4 216.9 30.82 30.19 29.17

0.905 0.886 0.870
R2-D4− 3 5.1 270.7 30.93 30.22 29.18

0.907 0.890 0.870
R2-D4 3 5.1 270.7 31.10 30.32 29.33

0.910 0.894 / 0.876

TABLE 1. PSNR (top) and SSIM (bottom) results at three noise levels.
GFLOPs* for STFAN did not include their FAC layers. The bold and underlined
results indicate the first and second rank, respectively.

FIGURE 5. Mean PSNR vs. GFLOPs for three R2-D4 variants compared to
ESTRNN and STFAN.

noise levels, (ii) assess the impact of the proposed blocks on
R2-D4 architecture and (iii) assess the impact of the MTL
configuration. All experiments use the “3ms24ms" version
of BSD that has the strongest level of blur. The evaluation
protocol contains 60 training (30K pairs), 20 validation (10K
pairs) and 20 test (15K pairs) sequences with a resolution
of 640 × 480. Poisson-Gaussian noise was generated using
Eq. (1) on the blurry frames, with the noise parameters
{α, σ} equal to {0.5, 0.9}, {1.9, 1.7} and {7.1, 3.3} for
low, moderate, and severe noise, respectively. Note that
the choice of α parameters in Eq. (1) simulates different
illumination conditions ranging from brighter to low-light
images to increase the values of α (see Fig. 4). In the model
considered in Eq. (1), the corrupted data z(y/α) are further
normalized back to the common range by multiplying with
α. The generated shot noise distribution is typical for bright,
dark, and low-light images for α equal to 0.5, 1.9, and 7.1,
respectively.

A. LOSS FUNCTIONS

The R2-D4 parameters are derived by optimizing Eq.(3),
where L is a weighted sum of `2 squared norms, i.e.

L = Lblur + λ1Lnoise + λ2Lperceptual, (19)

where

Lblur =
1

CHW
||yt − ŷt||2, (20)

Lnoise =
1

CHW
||kt − k̂t||2, (21)

and

Lperceptual =
1

CφHφWφ
||φV GG(yt)− φV GG(ŷt)||2.

(22)

The definition of Lperceptual is adopted from [40], where
φV GG denotes the VGG-19 features [50] extracted from the
3th layer and Cφ, Hφ,Wφ denote the corresponding feature
dimensions. The scalar values C, H , and W refer to the im-
age channel, height, and width, respectively, and the weights
are set to λ1 = 0.6 and λ2 = 0.01.

B. METHODS
First, we examine the performance of a naive system in
which two methods operate sequentially. We trained Fast-
DVDNet [13] for denoising, followed by STFAN [10] for
deblurring. Second, we compare R2-D4 with state-of-the-
art models: STFAN [10], ESTRNN [12] with 15 blocks
and only past frames, and CDVD-TSP [30]. In our ablation
study, we investigated the effectiveness of our MTL setup by
comparing it to R2-D3, which uses only a single decoder.
Subsequently, we verify the impact of the proposed blocks
on our feature alignment module by R2-D4−, defined as:
(i) MECA substituted with ECA; (ii) MS-RDB modules sub-
stituted with simple RDB modules, thus retaining GFLOPs.
Next, we reduce the number of channels in the decoders
and the fusion module, thereby obtaining the reduced but
more computationally efficient “small" and “medium" R2-
D4 variants.

C. SETUP
Our experiments are performed with PyTorch on an Nvidia
Tesla V100 for 250 epochs. Adam [51] was used as the
optimizer with a learning rate of 1.5 × 10−4 decayed to
10−6 via the cosine annealing strategy [52]. The networks
are trained with sequences of 30 frames and a batch size of
1. The frames are randomly augmented with horizontal and
vertical flips. Experiments for state-of-the-art methods follow
the official, publicly available implementations.

D. RESULTS
The naive approach is not trained end-to-end and thus over-
smooths the input frames achieving a PSNR of 28.40 and an
SSIM of 0.850 for the severe noise setting. The results of
the end-to-end methods are listed in Table 1. Interestingly,
our experiments show that deblurring methods bear some
noise-removal capacity, although R2-D4 performs better than
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(a) Corrupted frame (b) Lighting (c) Patch (d) STFAN (e) ESTRNN (f) CDVD (g) R2-D4 (h) GT

FIGURE 6. Qualitative Results. The frames were normalized to the same range. In zoomed areas, red and green rectangles highlight artifacts and more accurate
reconstructions, respectively. The first, second, third and fourth rows were generated with severe, severe, moderate and low noise respectively. Column (b)
demonstrates varying illumination conditions under which noise was generated whereas column (c) shows patches that are normalized to the common image scale.

(a) Corrupted frame xt−2 (b) Corrupted frame xt (c) Restored frame ŷt (d) Offsets at t− 2 (e) Offsets at t

FIGURE 7. Visualization of deformable offsets. R2-D4 adapts the offsets for independently moving or uniform motion scenarios.
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STFAN and ESTRNN in both PSNR and SSIM. Moreover,
it performs higher in PSNR and on par in SSIM with the
computationally expensive, cascaded version of CDVD-TSP
(2), which performs two passes over the corrupted frames and
uses five input frames. As shown in Table 1, the performance
increased over the compared methods across all levels of
noise. The second decoder and the proposed blocks clearly
contribute to performance gains, increasing mean PSNR by
0.19 dB and 0.15 dB compared to R2-D3 and R2-D4−,
respectively. Last, Fig. 5 shows that while the small R2-D4
variant has 30% fewer GFLOPs in comparison to ESTRNN,
it performs better than both STFAN and ESTRNN.

R2-D4 benefits from accurate feature alignment under
strong noise and recovers fine-grained frame details (see
Fig. 6). One can observe that STFAN often fails to align
features producing hallucinations, as seen in the gas tube (top
row) and in the fence (middle row). For the same examples,
the ESTRNN tends to oversmooth the output. CDVD-TSP
performs better but tends to yield piecewise constant artifacts
despite its larger complexity, which is visible in the fence
example. R2-D4 performs implicit feature alignment and
dynamically adapts offsets over time, as illustrated in Fig. 7.
The top row illustrates the scenario of independently moving
objects, whereas the bottom row depicts the uniform motion
caused by camera movement. The offset variance is higher
for the former; R2-D4 mines the spatio-temporal boundaries
and aggregates the object-specific context. The spatial re-
sponses for the second case show a smaller variance as the
learned offsets exhibit similar directions. R2-D4 dynamically
adapts offsets in the case at hand.

VI. CONCLUSION
In this paper we study dynamic scene video deblurring un-
der strong noise. Although such acquisition settings arise
frequently in practice, the problem is challenging and new
in the deep learning literature. We demonstrate that state-of-
the-art deblurring methods have some denoising capacity, but
the proposed R2-D4 method outperforms them owing to an
MTL-inspired, cascaded yet efficient architecture, enhanced
with MS-RDM modules. Future research aims to bridge the
gap between synthetically generated and real datasets with
raw video sequences of dynamic scenes with natural noise.
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