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Understanding the interaction mechanics between graphene layers and coaxial carbon nanotubes (CNTs) is
essential for modeling graphene and CNT-based nanoelectromechanical systems. This work proposes a new
continuum contact model to study interlayer interactions between curved graphene sheets. The continuum model
is calibrated and validated using molecular dynamics (MD) simulations. These are carried out employing the
reactive empirical bond order (REBO)+Lennard-Jones (LJ) potential to model the interactions within a sheet,
while the LJ, Kolmogorov-Crespi (KC), and Lebedeva potentials are used to model the interactions between
sheets. The continuum contact model is formulated for separation distances greater than 0.29 nm, when sliding
contact becomes nondissipative and can be described by a potential. In this regime, sheet deformations are suffi-
ciently small and do not affect the sheet interactions substantially. This allows to treat the master contact surface
as rigid, thus simplifying the contact formulation greatly. The model calibration is conducted systematically for
a sequence of different stackings using existing and newly proposed ansatz functions. The calibrated continuum
model is then implemented in a curvilinear finite-element (FE) shell formulation to investigate the pull-out and
twisting interactions between coaxial CNTs. The resisting pull-out forces and torques depend strongly on the
chirality of the considered CNTs. The absolute differences between FE and MD results are very small and can
be attributed to model assumptions and loading conditions.

DOI: 10.1103/PhysRevB.109.035435

I. INTRODUCTION

Graphene is a two-dimensional (2D) material with tightly
packed carbon atoms in a hexagonal lattice structure that
can be isolated from bulk graphite through micromechanical
exfoliation [1]. Experimental studies have shown that bi- and
multilayer graphene have remarkable thermomechanical and
tribological properties [2–4]. The strong in-plane covalent
bonds and weak nonbonded forces between the layers offer
tunability of properties through different stackings. In partic-
ular, interlayer twisting or stretching of bilayer graphene can
result in superlubricity and superconductivity [5–8]. Due to
these tunable properties, multilayered graphene has the po-
tential to be used in various engineering applications [9–11].

The interaction mechanics of graphene layers has been
studied using different techniques, viz., experiments [3,5,12],
theory [2,13–18], and atomistic simulations [19–25]. For
instance, Dienwiebel et al. [5] measured ultralow friction
or superlubricity between graphene layers due to incom-
mensurability obtained through the relative rotation between
the graphene layers using a frictional force microscope.
The superlubricity in twisted bilayer graphene and graphene
heterojunctions is governed by Moiré patterns formed be-
tween the mismatched layers [14,26,27]. In another work,

*roger.sauer@pg.edu.pl; sauer@aices.rwth-aachen.de

Dienwiebel et al. [12] reported anisotropic friction with an an-
gular periodicity of 60◦. Verhoeven et al. [2] investigated rigid
graphene flake interactions over a graphene surface employing
the modified Prandtl-Tomlinson model [28] and reported that
the frictional forces depend on the flake size and relative
rotation between the graphene flake and substrate. Further,
they have approximated the interaction energy using only the
first Fourier components with the wavelengths

√
3acc, 1.5acc,

and 3acc, where acc is the covalent C-C bond length. Using
the Lennard-Jones (LJ) potential, Xu et al. [20] investigated
the influence of the number of graphene layers on stick-slip
friction and reported that these forces reduce with a decrease
in the number of layers. Wang et al. [17] studied the size
effect on the interlayer shear behavior in bilayer graphene,
accounting for elastic deformation in the graphene sheets em-
ploying a nonlinear shear-lag model [29]. They reported that
the maximum shear force depends on the length and width
of the sheet. However, for a length beyond 20 nm, the shear
force is constant due to nonuniform relative displacement be-
tween the sheets. Using first-principles calculations, Sun et al.
[30] reported that bilayer graphene sliding friction reduces
with increasing sheet contact pressure1 and becomes zero at

1The common term contact pressure is used to denote the pressure
between two graphene sheets even though they always remain at a
nanoscale distance.
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a critical point due to the transition of the potential energy
surface from a corrugated to a flattened and to a counter-
corrugated state. Using the finite-element method, Xue et al.
[18] studied the dynamics of peeling and sliding graphene
nanoribbons on a graphene substrate and reported that adhe-
sive and shear interactions of graphene sheets influence the
sliding behavior. Afsharirad et al. [25] studied the interlayer
interactions between the walls of double-walled carbon nan-
otubes (DWCNT) using the LJ potential and reported that
zigzag CNTs2 show larger axial sliding resistance than other
kinds of CNTs. Arroyo and Belytschko [31–33] formulated
a continuum contact theory for curved monolayer lattices via
the exponential Cauchy-Born rule and implemented it in the
finite-element method to investigate the mechanics of CNTs.

The variation of the interaction energy with the rela-
tive displacement of two graphene sheets is dominated by
their π -orbital overlap at lower separation distances [34].
The corrugation amplitude of the potential relief at these
lower separation distances obtained from the LJ potential
underestimates the interactions. This lead to the develop-
ment of various new interaction potentials: the KC potential
[34], a registry-dependent interlayer potential, the potential of
Lebedeva et al. [35], a potential enriched with density-
functional theory (DFT) data, the potential of Jiang and Park
[36], a modification of the LJ potential by introducing Gaus-
sian terms, the potential of Wen et al. [37], a modification of
the KC potential by adding a dihedral-angle-dependent term
to the repulsive part, and the potential of Leven and Maaravi
et al. [38,39], a potential considering many-body dispersion
effects. These potentials are successful in predicting the bulk
properties of graphitic systems [40].

The general continuum description of anisotropic fric-
tion based on frame-invariant tensors goes back to the
works of Zmitrowicz [41–43]—covering both centrosymmet-
ric (forward/backward equivalent) and noncentrosymmetric
(forward/backward different) anisotropic friction. Tensorial
descriptions have become the basis for general nonlinear
finite-element (FE) formulations for frictional contact [44,45].
The first nonlinear FE formulations for centrosymmetric
anisotropic friction go back to the works of Park and Kwak
[46] and Buczkowski and Kleiber [47]. Subsequently, these
formulations have been extended to noncentrosymmetric fric-
tion [48], anisotropic sticking [49,50], boundary-element
methods [51] and isogeometric analysis [52], and they have
been used in the computational study of various applica-
tions, such as wear [53], contact homogenization [52,54], and
droplet sliding [55]. Recent works have also proposed general
coupling models for friction and adhesion for isotropic fric-
tion [56,57] and anisotropic friction [58].

Here we develop a new continuum contact model for
simulating and studying the nondissipative anisotropic inter-
action of curved graphene bilayers. The continuum model is
calibrated from near-zero Kelvin molecular dynamics (MD)
simulations within the range of their validity. The MD simu-
lations employ the reactive empirical bond order (REBO)+LJ

2Zigzag CNTs have zigzag circumference and armchair axis, while
it is the opposite for armchair CNTs.

potential to model the strong covalent interactions of car-
bon atoms within the sheets and employ various long-range
interaction potentials to model the interactions between the
two sheets. A nonlinear finite-element contact formulation
is then implemented using the calibrated continuum contact
model. The proposed model is validated from the pull-out and
twisting of DWCNTs. In summary, the novelties of the current
work are as follows:

(i) Formulation of a continuum contact model for curved
commensurate graphene sheets.

(ii) Calibration of the model from MD data across a wide
range of contact pressures.

(iii) Nonlinear finite-element implementation of the
model.

(iv) Application of the model to the pull-out and twisting
of CNTs from/within DWCNTs.

(v) Validation and verification of the model using MD data
and analytical results.

The remainder of the paper is organized as follows: The
atomic simulation procedure and their interatomic potentials
are described in Sec II. The description of the continuum
interaction model, contact kinematics, and tractions are given
in Sec. III. The model calibration and behavior for flat bilayer
graphene sliding are presented in Sec. IV. The finite-element
formulation and the numerical results of CNT pull-out and
twisting are then described in Secs. V and VI, respectively,
followed by conclusions in Sec. VII.

II. MOLECULAR SIMULATIONS

In order to calibrate the proposed continuum model, molec-
ular simulations of the interaction between two graphene
sheets are used. The simulated sheets are approximately
square with size 10.08 nm × 10.16 nm. The covalent and
long-range bond interactions between the carbon atoms within
graphene are modeled using the second generation REBO+LJ
[59] potential, while the long-range bond interactions be-
tween the sheets are modeled using the LJ [60], KC [34], or
Lebedeva [35] potentials (see Appendix A for details).

We relax the system before applying tangential sliding
between the layers. The bilayer graphene system is brought
to the minimum energy configuration using the Polak-Ribiere
conjugate gradient method [61]. Subsequently, the system is
thermally equilibrated at 0.1 K employing the Nosé-Hoover
thermostat [62] with three Nosé-Hoover chains. Once the
relaxed state is achieved, the lower layer is kept fixed by
constraining all the degrees of freedom of the atoms. The top
sheet is then pulled along the armchair or zigzag direction (ea

or ez in Fig. 1) parallel to the bottom layer by providing a
constant velocity of 0.01 Å/ps to all atoms lying on the four
edges. While sliding, the lateral movement of the edge atoms
of the top sheet is constrained. The resistance of the top sheet
to sliding, i.e., the tangential traction, is determined from

t t =
N∑

I=1

F I/A, (1)

where F I is the tangential component of the van der Waals
(vdW) force acting on atom I due to the bottom layer, A is
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FIG. 1. Different stackings of bilayered graphene: (a) AA, (b) AB, and (c) SP stacking. ga and gz specify the relative displacement between
the two sheets along the armchair and zigzag directions (denoted ea and ez), respectively.

the surface area of a relaxed sheet, and N = 4032 is the total
number of atoms of the top layer.

A timestep of 1 fs, suitable for the considered po-
tentials [63], is employed to integrate the equations of
motion by the velocity Verlet algorithm [64]. Periodic
boundary conditions are employed along the ea and ez di-
rections. All the MD simulations are performed using the
Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) [65].

III. CONTINUUM INTERACTION MODEL

This section presents the proposed continuum contact in-
teraction model for flat and curved graphene sheets following
classical nonlinear contact formulations.

A. Interaction potential for flat bilayer graphene

For moderate contact pressures, mechanical dissipation is
negligible and the surface interaction can be modeled us-
ing a surface potential. The interaction potential for two flat
graphene sheets is commonly written in the form [2,66,67]

�flat (g) = �1(gn) + �2(gn) �̄t (ga, gz ). (2)

It gives the energy per undeformed area of a graphene unit cell
interacting with an underlying graphene sheet. The gap vector
g with components gn, ga, and gz (see Fig. 2) admits any value,
but the unit cell has to be aligned with the underlying sheet.
An example for functions �1(gn), �2(gn), and �̄t (ga, gz ) is
given in Sec. IV. There ga = gz = 0 corresponds to the AA
stack. Integrating (2) over the undeformed surface gives the
total interaction energy

� =
∫
S

�flat dA. (3)

This has to be equal for integration over top and bottom
layer.

Remark III.1. �flat contains the atomic densities of the two
sheets. By choice the density of the unit cell is taken as the

initial density, such that �flat is the energy per initial area.
The density of the lower sheet, however, should be taken as
its current density, to account for the change in energy (and
forces) due to deformation. Thus �flat depends on the area
change of the neighboring sheet, J�, as described in Sauer
and Wriggers [68]. For commensurate sheets the deformation
in both sheets is equal, such that J2 = J1 and the integration
equivalence of Eq. (3) is ensured. For incommensurate sheets
potential (2) can be modified, see Remark IV.1. For small
deformations, the dependency of �flat on J� and a resulting
incommensurability can be neglected.

B. Interaction potential for curved bilayer graphene

Two curved graphene sheets, like the walls of two nested
CNTs, have different surface area. Hence integral (3) will not
be identical for both the walls unless the potential is modified.
Integrating Eq. (2) over a common reference surface S0 yields

� =
∫
S0

�flat dA0. (4)

FIG. 2. Gap vector g between slave point xs and master point xm

on Sm, and its components gn, ga, and gz. These are generally not
equal to the surface coordinates ξ 1 and ξ 2 that are usually aligned
with the surface geometry.
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The curved area element dA0 of the reference surface can
be related to an aligned curved area element dA located at
distance ξ0 by

dA0 = S(ξ0) dA, S(ξ0) = 1 − 2H0 ξ0 + κ0 ξ 2
0 , (5)

where H0 and κ0 are the mean and Gaussian curvature of dA,
respectively. Their sign is defined with respect to the direction
of positive ξ0. Equation (5) is a well-known result from shell
theory, e.g., see Başar and Ding [69] and Arciniega and Reddy
[70]. Choosing the imaginary midsurface S̄ of the bilayer as
the reference surface, which has the initial distance Gn/2 from
either graphene layer, then gives

� =
∫
S

�c dA, (6)

where

�c = S̄ �flat, S̄ := S

(
Gn

2

)
= 1 − H0 Gn + κ0

G2
n

4
, (7)

is the potential for a curved graphene unit cell above a
graphene sheet.

As an example, consider two CNTs with radii Rin = R̄ −
Gn/2 and Rout = R̄ + Gn/2, where R̄ is the radius of the mid-
surface. In this case Hin = −1/(2Rin ) and Hout = +1/(2Rout ),
while κin = κout = 0. Therefore, the value of S̄ with respect to
the outer and inner surfaces becomes S̄in = R̄/Rin and S̄out =
R̄/Rout, respectively, and the integration correctly yields

� =
∫
Sin

� in
c dAin =

∫
Sout

�out
c dAout =

∫
Sm

�flat R̄ dθ dL,

(8)

for � in
c = S̄in �flat and �out

c = S̄out �flat, since one can write
dAin = Rin dθ dL and dAout = Rout dθ dL, where L is the
length of the CNT.

C. Contact kinematics

In frictional contact, the interaction of two surfaces de-
pends on their relative normal and tangential displacement.
This leads to the notion of a gap vector g—with normal
and tangential components—defined at every surface point.
Following classical contact notation [44,45], the two interact-
ing surfaces are distinguished into slave and master surface
(see Fig. 2). Given the surface point xs on the slave surface
Ss, its counterpart xm on the neighboring master surface Sm

is determined, as described below. The current contact gap
then is

g := xs − xm. (9)

Given a parametrization of the master surface in the form

xm = xm(ξ 1, ξ 2), (10)

one can determine the closest projection point xp :=
xm(ξ 1

p , ξ
2
p ) and its corresponding gap vector gp := xs − xp by

solving the two equations (α = 1, 2),

gp · ap
α = 0, (11)

for the local coordinates ξ 1
p and ξ 2

p . Here

ap
α := ∂xp

∂ξα
p

, α = 1, 2, (12)

denote the two tangent vectors of master surface Sm at point xp

along coordinates ξ 1 and ξ 2. Generally this is done by a local
Newton-Raphson iteration for every xs [45]. But for simple
surfaces, such as cylinders, ξα

p can be determined in closed
form, as discussed below. Given xp the normal gap can then
be determined from

gn = gp · np, (13)

where np is the surface normal of Sm at xp. The tangential
gap, on the other hand, follows directly from the coordinates
ξ 1

p and ξ 2
p .

In the following examples the interaction of two nested
CNTs during pull-out and twisting is considered. As deforma-
tions are expected to be small, the master surface is taken to
be rigid (but movable), which simplifies the contact descrip-
tion greatly. The influence of this assumption on the sliding
examples considered here is very small, as is seen later. The
master surface thus is a rigid cylinder. The slave CNT and
its surface point xs, on the other hand, are still considered
general. The master CNT axis is denoted by vector e1, and
vectors e2 and e3 span the cylinder cross section, see Fig. 3(a).
Vectors ei (i = 1, 2, 3) are taken as unit vectors and form
a Cartesian basis. As Fig. 3(a) shows, coordinates ξ 1

p and
ξ 2

p are considered aligned with the axial and circumferential
direction, respectively. Either the inner CNT is the master
surface and the outer CNT serves as slave (shown in red), or
the outer CNT is the master surface and the inner CNT serves
as slave (shown in blue). The axial projection point coordinate
can then be written as

ξ 1
p = xs · e1 − um, (14)

where um describes an axial rigid body displacement of the
master surface. The circumferential projection point coordi-
nate can be written as

ξ 2
p = Rm ξ̄ 2

p , ξ̄ 2
p = sgn(np · e3) arccos(∓np · e2), (15)

where Rm is the master cylinder radius and ξ̄ 2
p is the circumfer-

ential angle. The upper sign in Eq. (15) corresponds to the case
where the master cylinder is inside, while the lower sign is for
the case where the master cylinder is outside, see Fig. 3(a).
Axial rigid body rotations of the master cylinder are captured
by a corresponding rotation of e2 and e3. The surface normal
np, needed for Eq. (15) can be determined from

np = ± P(xs − x0)

‖P(xs − x0)‖ , (16)

where x0 is some point on the cylinder axis and P := 1 −
e1 ⊗ e1 is a projection tensor. The sign in Eq. (16) follows the
previous convention. Accordingly, np always points towards
the other surface; see Fig. 3(a).

Given the quantities and sign convention in Eqs. (14)–(16),
the normal gap follows as

gn = ±[‖P(xs − x0)‖ − Rm], (17)

while the axial and circumferential gaps are

g1 = ξ 1
p − ξ 1

p0, (18)
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FIG. 3. Contact kinematics of interacting CNTs: (a) Coordinates ξα
p and master basis {ap

1, ap
2, np} on inner and outer CNT; normal vector

np is chosen to point towards the neighboring slave CNT; ξ 2
p and ap

2 thus point in opposite direction on both surfaces to ensure right-handed
bases; (b) initial interference between inner and outer CNT with respect to the AA stack: The location ξ̄ 2

p0 on the inner CNT is ahead of the
outer tube by the amount Gn ξ̄ 2

p0 (marked in blue), while the location ξ̄ 2
p0 on the outer CNT lags behind by the amount Gn ξ̄ 2

p0 (marked in red).

and

g2 = ξ 2
p − ξ 2

p0 ∓ Gn ξ̄ 2
p0, (19)

respectively. Here Gn and ξα
p0 are the initial values of gn and

ξα
p that follow from Eqs. (14)–(16) for the initial (unrelaxed)

location X s. The term ξα
p − ξα

p0 in Eqs. (18) and (19) describes
relative tangential motion with respect to the initial state. The
term ∓Gn ξ̄ 2

p0 in Eq. (19) is required in order to account for
the circumferential lattice mismatch (i.e., lattice interference)
between the two CNTs, as is illustrated in Fig. 3(b). Using
the initial gap Gn = Rout − Rin in Eq. (19) ensures that the
interference is an integer multiple of the unit cell size, which
in turn ensures periodicity in g2. Figure 4 shows the initial
tangential gaps g1 and g2 for CNT(15,15) inside CNT(20,20).
Here g1 arises due to the different stretching of the two
CNTs—the inner tube is stretched and the outer shortens due
to contact pressure—while g2 is caused by the lattice mis-
match term ∓Gn ξ̄ 2

p0. The former is negligible in comparison
to the latter.

In the chosen parametrization given above, the tangent
vector along ξ 1

p and g1 becomes

ap
1 = e1, (20)

while the tangent vector along ξ 2
p and g2 is

ap
2 = sin ξ̄ 2

p e2 ± cos ξ̄ 2
p e3. (21)

Of these, only ap
1 is constant. But both ap

1 and ap
2 are normal-

ized and orthogonal to each other. This implies that g1 and g2

measure the actual physical sliding distances. It also implies
that the surface metric ap

αβ = ap
α · ap

β is equal to the Kronecker
delta, i.e., the 2 × 2 matrix [ap

αβ] is the identity matrix.
In the above description, slave motions are captured

through the motion of xs, leading to changed ξα
p and hence

updated gα . Master motion, on the other hand, is captured by
changing ξα

p through changing um, e2, and e3.
The axial and circumferential gaps g1 and g2 are only

aligned with the graphene lattice for armchair and zigzag
CNTs. For general CNTs, described by the chirality parame-
ters n and m and denoted CNT(n, m), the armchair and zigzag
gaps are given by

ga = g1 cos θ + g2 sin θ,

gz = −g1 sin θ + g2 cos θ, (22)

FIG. 4. Contact kinematics of interacting CNTs: Color plot of initial tangential gaps g1 (a) and g2 (b) in (nm) for relaxed CNT(15,15)
inside relaxed CNT(20,20) with respect to the AA stack of the central cross-section. The initial CNT length is 9.9207 nm. g1 has opposite sign
on the two surfaces, as ξ 1

p runs in the same direction on the two surfaces, see Fig. 3. It is the other way around for g2.
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with [71]

cos θ := 2n + m

2
√

n2 + nm + m2
, sin θ :=

√
3 m

2
√

n2 + nm + m2
.

(23)

The special case m = 0 gives zigzag CNTs (ga = g1 and
gz = g2), while m = −2n gives armchair CNTs (ga = −g2

and gz = g1).
Introducing the matrices

[
gα

cc

]
:=

[
ga

gz

]
,

[
Qα

β

]
:=

[
cos θ sin θ

− sin θ cos θ

]
, (24)

and defining ξ̄ 1
p0 := 0 allows us to simplify Eqs. (18), (19),

and (22) into3

gα
cc = Qα

β gβ, gβ = ξβ
p − ξ

β

p0 ∓ Gn ξ̄
β

p0. (25)

Note that components Qα
β need to be distinguished from the

components Q α
β of the transpose matrix [Q α

β ] = [Qα
β]T ap-

pearing in

gα = Q α
β gβ

cc. (26)

For the derivation of the contact tractions (and their subse-
quent linearization) the kinematical quantities above need to
be differentiated with respect to surface changes. If only the
slave surface is deformable, as is considered here, then only
the gradients with respect to slave point xs are needed. From
Eqs. (13) and (25) follow

∂gn

∂xs
= np (27)

and

∂gα
cc

∂xs
= Qα

β

∂ξβ
p

∂xs
, (28)

since θ, Gn, and ξ̄
β

p0 are constant. From Eqs. (14), (20), (15),
and (16) follow after some steps,

∂ξ 1
p

∂xs
= ap

1,
∂ξ 2

p

∂xs
= Rm

Rm ± gn
ap

2, (29)

or

∂ξα
p

∂xs
= cαβ ap

β, [cαβ ] :=
⎡
⎣1 0

0
Rm

Rm ± gn

⎤
⎦. (30)

These expressions are consistent with standard contact formu-
las, e.g., see Wriggers [45] and Sauer and De Lorenzis [72].
Inserting (30) into (28) gives

∂gα
cc

∂xs
= Qαγ

c ap
γ , (31)

with

Qαγ
c := Qα

β cβγ . (32)

3Here and in the following, summation is implied on repeated
Greek indices according to the rules of index notation.

D. Contact tractions

The contact traction at slave surface point xs is given by

t s := −∂�c

∂xs
= −∂�c

∂gn

∂gn

∂xs
− ∂�c

∂gα
cc

∂gα
cc

∂xs
. (33)

Inserting Eq. (27) and Eq. (31), leads to

t s = p np + tγ ap
γ , (34)

with the contact pressure

p := −∂�c

∂gn
(35)

and tangential contact traction

tγ = t c
α Qαγ

c , (36)

based on

t c
α := − ∂�c

∂gα
cc

. (37)

Here t1 and t2 are the traction components in axial and circum-
ferential direction, while t c

1 and t c
2 are the traction components

in armchair and zigzag direction, respectively. According to
Eq. (34), all components of t s are expressed in the master basis
{ap

1, ap
2, np}. From Eq. (7) and Eq. (2) then follows

p = S̄ (p1 + p2�̄t ), (38)

for

p1 := −∂�1

∂gn
, p2 := −∂�2

∂gn
, (39)

and

t c
α = S̄ �2 t̄ c

α, (40)

for

t̄ c
α := − ∂�̄t

∂gα
cc

. (41)

Note that expression (36) can also be written as tγ = Qγα
cT t c

α

with [Qαβ
cT ] := [Qαβ

c ]
T

. Analogously to Eq. (24.1), we will
also use

[t̄ c
α] =:

[
t̄a
t̄z

]
. (42)

IV. CONTINUUM MODEL CALIBRATION

The continuum description in Sec. III is for general
�1(gn), �2(gn), and �̄t (ga, gz ). Now specific choices for these
functions are considered and calibrated from MD data for
moderate contact pressures, where dissipation is negligible.
At large contact pressures, mechanical energy is dissipated,
and the proposed model becomes insufficient, as is shown in
Sec. IV D.

A. Potential functions

Considering

�1(gn) = p01 g01

[
1

10

(
g01

gn

)10

− 1

4

(
g01

gn

)4
]

(43)
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FIG. 5. Calibrated potential functions �1(gn) (a) and �2(gn) (b) using the shown MD data. The MD data for �1 is obtained at ga = 3acc/8
and gz = √

3acc/4, while the MD data for �2 is averaged over several ga and gz values.

leads to

p1 = p01

[(
g01

gn

)11

−
(

g01

gn

)5
]
, (44)

according to Eq. (39.1), and

p′
1 := ∂ p1

∂gn
= − p01

g01

[
11

(
g01

gn

)12

− 5

(
g01

gn

)6
]
, (45)

while the ansatz

�2(gn) := p02 g02 exp

(
− gn

g02

)
(46)

gives

p2 = p02 exp

(
− gn

g02

)
, (47)

according to Eq. (39.2) and

p′
2 := ∂ p2

∂gn
= − p02

g02
exp

(
− gn

g02

)
. (48)

Here p01, g01, p02, and g02 are constants that are calibrated
from MD simulations, which is discussed subsequently. The
potential �1(gn) specifies the mean of the interaction energy.
The widely used surface-integrated LJ potential is chosen
for �1(gn) [18,73,74]. Our proposed potential �2(gn), on the
other hand, is solely motivated from the obtained MD data.

Further, the tangential potential [2,66,67]

�̄t (ga, gz ) = cos
4πga

�a
+ 2 cos

2πga

�a
cos

2πgz

�z
(49)

yields

t̄a = −∂�̄t

∂ga
= 4π

�a

(
sin

4πga

�a
+ sin

2πga

�a
cos

2πgz

�z

)
,

t̄z = −∂�̄t

∂gz
= 4π

�z
cos

2πga

�a
sin

2πgz

�z
, (50)

and

∂ t̄a
∂ga

= 8π2

�2
a

(
2 cos

4πga

�a
+ cos

2πga

�a
cos

2πgz

�z

)
,

∂ t̄a
∂gz

= ∂ t̄z
∂ga

= − 8π2

�a �z
sin

2πga

�a
sin

2πgz

�z
,

∂ t̄z
∂gz

= 8π2

�2
z

cos
2πga

�a
cos

2πgz

�z
. (51)

Here �a and �z are treated as constants that follow from the
graphene lattice, see Table I, and ga and gz are the relative
displacement components between two graphene layers along
the armchair and zigzag directions, respectively. Thus, func-
tion �̄t is fully specified and only �1 and �2 remain to be
calibrated.

Remark IV.1. If the neighboring graphene lattice deforms,
�a and �z are not constant anymore. Stretches along armchair
and zigzag direction can be accounted for in Eq. (49) by
writing

�a = λa La, �z = λz Lz, (52)

where La and Lz are the initial lattice periods. In the small
deformation regime, the stretches are related to the corre-
sponding infinitesimal strains by

λa = 1 + εa, λz = 1 + εz. (53)

Shear strains εaz are not accounted for in these expressions.
It can be expected that they require changes of the functional
form in Eq. (49).

TABLE I. Potential parameters.

Parameters Value

acc 0.1397 nm

l̄a 3

l̄z

√
3

la l̄a acc

lz l̄z acc

p01 5.8646 nN/nm2

g01 0.3376 nm

p02 4.404 × 106 nN/nm2

g02 1.875 × 10−2 nm
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FIG. 6. (a) Absolute and (b) relative error of �1 as a function of separation distance gn.

B. Potential calibration

To calibrate the potential parameters in Eq. (43), the top
layer is displaced by ga = 3acc/8 and gz = √

3acc/4, and the
interaction energy �flat between the two graphene sheets is
recorded for varying gn from MD simulations. For the selected
values of ga and gz, the tangential potential �̄t is zero such
that the interaction energy is equal to �1. The parameters of
Eq. (43) are then fitted to the obtained data using least-squares
curve fitting; see Fig. 5(a). The calibrated parameters thus
become g01 = 0.3376 nm and p01 = 5.8646 nN/nm2.

In order to determine the constants in Eq. (46), we choose
different combinations of ga and gz and determine �flat from
MD simulations for varying gn. The values of ga and gz are
varied over one period, respectively (see Fig. 1). The potential
�2 then follows as (�flat − �1)/�̄t , according to Eq. (2). For
each gn, the �2 data are averaged for all ga and gz values and
then used to calibrate the parameters of Eq. (46) using least-
squares curve fitting. This gives p02 = 4.404 × 106 nN/nm2

and g02 = 1.875 × 10−2 nm. The two calibrated functions �1

and �2 are shown in Fig. 5.
To check the accuracy of �1, the absolute and relative

errors of function �1(gn) with respect to the MD data �MD
1

are calculated from eabs
1 = |�MD

1 − �1| and erel
1 = eabs

1 /|�1|,
respectively, and shown in Fig. 6. As seen, the absolute differ-
ence is less than 3 × 10−2 N/m. The relative error approaches
one as gn increases, since �MD

1 reaches approximately zero
for gn > 1 nm. All potential parameters are summarized in
Table I.

C. Resulting interaction behavior

The continuum model has been calibrated by fitting func-
tions �1 and �2 for selected ga and gz values. We now show
that this is sufficient to describe energy �flat and its resulting
contact tractions t t and p over a wide range of separation
distances.

1. Potential energy

Figure 7 shows that the interaction energies determined
from the MD simulations and continuum model are in good
agreement across the entire range of ga and gz, with an average
absolute error of ≈3%. Here the MD results are based on the
LJ potential for the interaction between the graphene layers.
A comparison to other interaction potentials is discussed in
Appendix A. The three sliding paths shown in Fig. 7 are
examined next. They are kept straight in order to sample all
energy levels.4

Figure 8(a) shows the interaction energy �flat as a func-
tion of relative armchair displacement ga for gz = 0. The
separation distance between the two sheets is taken as gn =
0.3366 nm, which corresponds to the equilibrium separation
distance of the AB stacking. The maxima of �flat vs ga are
located at ga = 0 and multiples of �a, which all correspond

4If lateral motions are allowed, the sliding trajectory will follow the
minimum energy paths along the blue valleys [75].

FIG. 7. Variation of interaction energy �flat obtained from MD simulations and continuum model. Three sliding paths are investigated:
The armchair path at gz = 0 and two sliding paths at ga = 0 and ga = acc.
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FIG. 8. Variation of interaction energy �flat: Sliding along the (a) armchair path and (b) two zigzag paths shown in Fig. 7, all at gn =
0.3366 nm (∼ equilibrium separation distance of the AB stacking). The difference between (a) and (b) illustrates the sliding anisotropy.

to the AA stacking. The global minima and local maxima are
located at ga = ±acc, ga = ±2acc, and ga = ±1.5acc, which
are the AB and SP stackings, respectively. This is in agree-
ment with experimental studies [12]. The binding energy of
bilayer graphene at the equilibrium separation distance of the
AB stacking is −46.9 meV/atom,5 agreeing with the value
−45.6 meV/atom from Lebedeva et al. [35]. The slight dif-
ference can be attributed to the elastic nature of the sheet,
as well as the accuracy of the interatomic potential functions
and the constants used. Further, the amplitude of �flat, ob-
tained as ��AA

flat = �AA
flat − �AB

flat , is 6.129 × 10−3 N/m, and
the amplitude between the AB and SP stacking is ��SP

flat =
�SP

flat − �AB
flat = 6.770 × 10−4 N/m.

Figure 8(b) shows the interaction energy �flat as a function
of the relative zigzag displacement gz for ga = 0 (Path 1) and
ga = acc (Path 2). The maxima of �flat vs gz for Path 1 are
located at ga = 0 and multiples of �z, which all correspond
to the AA stacking, while the minima are at ga = ±�z/2,

5The binding energy of bilayer graphene in meV/atom is calculated
by normalizing the total interaction energy by the total number of
atoms. 1 J/m2 = 0.15758 eV.

which correspond to the SP stacking. For Path 2, the minima
correspond to the AB stacking.

2. Tangential traction

For flat graphene sheets, the expressions in Sec. III D sim-
plify to the tangential traction

t t = �2
(
t̄a ea + t̄z ez

)
, (54)

where t̄a and t̄z are given by Eq. (50) and �2 was calibrated
above. Figures 9(a) and 9(b) show the comparison of these
tractions with those determined from the MD simulations
considering sliding along the armchair direction (for gz = 0)
and zigzag direction (for Path 1 and Path 2), respectively. As
seen, the continuum tractions agree well with those obtained
from the MD simulations across the entire range of sliding
distances, with an average error of ≈3%.

The amplitude of the tangential traction, calculated as
tmax
s − tmin

s , where subscript s denotes the sliding direction,
is 0.1460 N/m for the path in Fig. 9(a), which reduces by
≈1.2% and ≈55% for the two zigzag paths shown in Fig. 9(b).
Further, the amplitude of the sticking limit, i.e., tmax

s − tmin
s

depends on the separation distance gn (or normal pressure),
as Fig. 10 shows. In all three cases, the sticking limit decays
exponentially with increasing separation gap.

-3 -2 -1 0 1 2 3
-0.1

-0.05

0

0.05

0.1

0.15

0.2

-1 -0.5 0 0.5 1
-0.1

-0.05

0

0.05

0.1

0.15

0.2
)b()a(

FIG. 9. Tangential traction: Sliding along the (a) armchair direction for gz = 0 and (b) zigzag direction for ga = 0 (Path 1) and ga = acc

(Path 2), all at gn = 0.3366 nm (∼ equilibrium separation distance of AB stacking). The difference between (a) and (b) illustrates the sliding
anisotropy.
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FIG. 10. Maximum tangential traction (= sticking limit) at different separation distances for sliding along the (a) armchair direction for
gz = 0 and (b) zigzag direction for ga = 0 (Path 1) and ga = acc (Path 2).

3. Normal traction

For flat graphene sheets, the expression in Eq. (47) simpli-
fies to the contact pressure (i.e., normal traction)

p = p1 + �̄t p2, (55)

which is specified through Eqs. (44), (47), and (49) and
Table I. The value of �̄t (ga, gz ) in Eq. (55) for the three
stackings is �̄AA

t = 3, �̄AB
t = −1.5, and �̄SP

t = −1. The
comparison of the continuum and MD results for p(gn) is
shown in Fig. 11(a), while Fig. 11(b) shows the absolute
error defined as eabs

p = |pMD − p|. The normal traction de-
pends not only on the separation distance between the two
layers but also on the type of stacking. At gn = 0.3 nm, p
equals ≈11.8 nN/nm2 for the AA stacking. At the same
gn, these values are ≈15.8% and ≈10.9% less for the AB
and SP stackings, respectively, compared to the AA stacking.
The equilibrium separation distances are 0.3394, 0.3366, and
0.3370 nm for the AA, AB, and SP stackings, and Eq. (55)
captures this behavior sufficiently well, as Fig. 11 shows.

D. High-pressure limitation

The calibration of the continuum model assumes small
in-plane deformations of the graphene layers, which is ac-
curate for separation distances larger than 0.29 nm. For
gn < 0.29 nm, the contact pressure becomes very large, lead-
ing to nonuniform tangential deformations in the graphene

layer as observed in MD simulations6 [see Fig. 12(a)]. As
a result, the bilayer graphene system attains different stack-
ings in different regions. As Fig. 12(a) shows, the center
of the sheet is in the AB stacking while the edges remain
in the AA stacking. This tangential deformation is solely
a result of the large contact pressure, as no tangential dis-
placements are applied to the boundary in this case. As a
consequence of the tangential displacements at the center,
energy is dissipated when additional tangential displacements
are applied to the boundary. Figure 12(b) therefore shows
the amount of heat exchanged with the thermostat, Q, as
a function of the sliding distance along the armchair direc-
tion (for gz = 0 and various values for gn). As seen in the
figure, for gn � 0.28 nm Q increases sharply for every 3acc

of sliding distance. The increase is constant for fixed gn.
Each increase corresponds to a sudden release of the strain
energy in the two layers. Since the energy remains constant
after each increase, it implies that energy is lost to the heat
bath. This mechanical dissipation mechanism is not accounted
for in the present continuum model. The present contin-
uum model, which is conservative, is therefore only valid
for gn � 0.29 nm.

6At each applied pressure level, the system is relaxed using the
Polak-Ribiere conjugate gradient method followed by thermal equi-
libration employing the Nosé-Hoover thermostat.

0.25 0.5 0.75 1 1.25 1.5
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FIG. 11. (a) Contact pressure or normal traction (tn) and (b) absolute error of tn as a function of separation distance for the three stackings.
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FIG. 12. Transition from dissipative to nondissipative sliding friction: (a) Bilayer configuration at ga = 0, gz = 0, and gn = 0.26 nm.
(b) Thermal energy exchange with the heat bath at different gn for sliding along the armchair direction (for gz = 0). The figure shows that
sliding contact becomes nondissipative at gn � 0.29 nm.

V. FINITE-ELEMENT FORMULATION

The calibrated continuum interaction model can be im-
plemented straightforwardly within a nonlinear finite-element
contact code. The contact traction from Eq. (34) and its gradi-
ent in Eq. (C11) enter the finite-element contact force vector

fe
c = −

∫
�e

0

NT
e t s dA, (56)

and its associated stiffness matrix,

ke
c = −

∫
�e

0

NT
e

∂t s

∂xs
Ne dA (57)

[68,76]. Vector fe
c acts on the FE nodes of the slave surface and

is integrated over the reference slave element domain �e
0 in

accordance to the integration defined in Eq. (6). Elemental ar-
ray Ne := [1N1, 1N2, . . . , 1Nne ], where 1 is the 3 × 3 identity
tensor, contains the ne nodal shape functions NI that discretize
the current and reference geometry according to

x ≈
ne∑
I

NI xI = Ne xe, X ≈
ne∑
I

NI X I = Ne Xe, (58)

and the displacement field,

u := x − X ≈
ne∑
I

NI uI = Ne ue, (59)

within each element e. Here

xe :=

⎡
⎢⎢⎣

x1

x2
...

xne

⎤
⎥⎥⎦, Xe :=

⎡
⎢⎢⎣

X 1

X 2
...

X ne

⎤
⎥⎥⎦, ue :=

⎡
⎢⎢⎣

u1

u2
...

une

⎤
⎥⎥⎦,

uI = xI − X I , (60)

denote the arrays of all ne nodal positions and displacements
of element e. The elemental contributions fe

c and ke
c are assem-

bled in the global arrays fc and kc that enter the discretized
weak form and its linearization, which is required for a global
Newton-Raphson solution procedure. In the present formula-
tion the master surface is treated rigidly (but movable). Hence
only the deformation of the slave surface is discretized and
computed by FE. Alternating the designation of master and
slave surface then allows to asses the error of treating the mas-
ter surface rigidly. For the following examples, the preceding
equations have been implemented in the isogeometric shell
finite-element formulation of Duong et al. [77] and Ghaffari
et al. [78] using the contact interaction formulation of Sauer
and De Lorenzis [72,79].

VI. APPLICATION EXAMPLES: CNT PULL-OUT
AND TWISTING

We now turn to a set of application examples for validating
the proposed continuum model. Considered is a CNT that is
either pulled-out from or twisted within a second CNT.

TABLE II. Geometric parameters of inner and outer CNTs of DWCNTs before relaxation.

Inner CNT Outer CNT Radial gap Length (L)

Case Chirality Ri (nm) Chirality Ro (nm) (Gn) (nm) Unit cells (nm)

1 (26,0) 1.0013 (35,0) 1.3479 0.3466 24 10.0584
2 (15,15) 1.0005 (20,20) 1.3340 0.3335 42 10.1626
3 (21,9) 1.0269 (28,12) 1.3691 0.3423 3 11.1751
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TABLE III. Geometric parameters of inner and outer CNTs of DWCNTs after individual and combined relaxation. The geometry
parameters after relaxation are denoted with lowercase letters.

Individual CNT relaxation Combined DWCNT relaxation

Case ri (nm) ro (nm) gn (nm) (�i+�o)
2 (nm) ri (nm) ro (nm) gn (nm) � (nm)

1 1.0026 1.3487 0.3461 10.0611 1.0036 1.3466 0.3430 10.0573
2 1.0014 1.3345 0.3331 10.1694 0.9997 1.3362 0.3366 10.1638
3 1.0279 1.3698 0.3419 11.1803 1.0281 1.3689 0.3410 11.1766

A. CNT geometry and loading

1. Initial CNT geometry

The following three cases of DWCNTs are considered for
pull-out and twisting:

(1) CNT (26,0) inside CNT(35,0)
(2) CNT (15,15) inside CNT(20,20)
(3) CNT (21,9) inside CNT(28,12)
The initial geometry parameters of these three cases, such

as inner and outer CNT radii (Ri and Ro), radial separation gap
Gn, and length L are listed in Table II. The initial radius [71]
of an undeformed CNT is given by

R = (
√

3acc/2π )
√

n2 + m2 + nm, (61)

where n and m are the chirality indices [71]. A schematic
representation of the setup is shown in Fig. 13.

Initially, the CNTs are relaxed following the approach de-
scribed in Sec. II. The geometry parameters of three cases of
CNTs after individual and combined relaxation are given in
Table III. As discussed earlier, the equilibrium separation dis-
tance between two graphene layers depends on their stacking.
Due to the curvature, DWCNTs possess various stackings,
which implies that the contact pressure between the CNTs is
not constant, and the CNT radii thus vary across the surface.
Table III reports the average radii. Table III also shows that
the average gap gn = ro − ri is either in a state of attrac-
tion (for Case 1 and 3) or in a state of repulsion (for Case
2). The three cases thus cover negative and positive contact
pressures between the walls. Comparison between Tables II
and III shows that the inner radius increases and the outer

FIG. 13. Schematic representation of the pull-out and twisting of
an inner CNT from/within an outer CNT. Shown here are CNT(26,0)
and CNT(35,0).

radius decreases for Case 1 and 3, while it is the other way
around for Case 2. This is due to the positive Poisson ratio of
graphene (see Appendix B): Positive contact pressure leads to
circumferential strains that are positive in the outer tube and
negative in the inner tube. These circumferential strains lead
to axial strains that are negative for the outer tube and positive
for the inner tube. For negative contact stresses, the effect is
reversed.

2. Load application in MD

After obtaining the relaxed DWCNTs, the inner CNT is
pulled quasi-statically by assigning the velocity 0.001 Å/ps to
the right edge atoms (see Fig. 13). For twisting, the right edge
atoms of the inner CNT are rotated with an angular velocity
of 6.28 × 10−4 rad/ps. During pull-out or twisting, atoms on
the left edge of the outer CNT and those on the right edge
of the inner CNT are constrained in the tangential direction
employing a torsional spring with stiffness 16.02 nN-nm/rad.
Thus, a radial expansion of the CNTs is allowed. The resisting
pull-out force is then calculated as the total vdW force in axial
direction acting on the inner CNT due to the outer CNT. The
torque is calculated as

∑N
I=1[F y

I cos(φ) − F x
I sin(φ)]r, where

F x
I and F y

I are the inter-CNT vdW force components acting
on atom I along the x and y directions, respectively. Here r is
the radius, φ is its angle of twist, and N is its total number of
atoms of the CNT.

3. Load application in FE

For pull-out, a constant displacement is prescribed to all
FE nodes of the central cross-section of the CNT, while the
rotation is constrained, but lateral motions are allowed, such
that the lateral forces on the tubes remain zero. The tubes
therefore do not remain exactly concentric during pull-out.
For twisting, a constant rotation is applied by moving all
atoms of the central cross section in circumferential direction,
while keeping the radial direction free. The longitudinal di-
rection remains fixed during the rotation.

The FE simulations show that enforcing concentricity of
the inner and outer tubes during CNT pull-out leads to a
small horizontal force (in e2 direction) and a twisting moment.
Those are absent if the concentricity is not enforced. The
FE simulations further show that it makes a difference where
the displacements are prescribed. For the subsequent results,
the displacements are applied at the center, and the forces
are measured there. If the ends are used instead, then the
forces and moments are offset slightly on the horizontal axis
in Figs. 14 and 21.
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FIG. 14. Pull-out force for (a) Case 1, (b) Case 2, and (c) Case 3 in dependence of the axial sliding distance. The corresponding contact
tractions for the 12 locations marked by blue squares in (a) and (b) are illustrated in Figs. 15–18.

B. CNT pull-out

Next, the pull-out results are presented and discussed. The
FE results are compared to analytical results (derived in Ap-
pendix D) and MD results.

1. General observations

The length of the axial unit cell of each CNT is defined
by its two chiral indices (n, m) and is given by � = √

3Lc/dR,
where Lc is the circumference of the CNT and dR is the great-
est common divisor (GCD) of 2n + m and 2m + n [71]. This
implies that the pull-out force has a periodicity equal to its
unit cell length along the axial direction. For the three cases of
CNTs considered here, the unit cell lengths are, respectively,
�1 = 3acc = 0.4191 nm, �2 = √

3acc = 0.2420 nm, and �3 =
3
√

79acc = 3.7250 nm.
The FE simulations are carried out using two sets of ma-

terial properties: Determined from (1) DFT [80] and (2) MD
using REBO+LJ potential (see Appendix B and Table VII for
details). Further, the FE simulations based on the contact for-
mulation of Sec. III assume that the neighboring CNT (outer
or inner, respectively) is treated rigidly, while deformations
are accounted for in the considered CNT itself. Still, the initial
deformation of the neighboring CNT is accounted for by using
the relaxed radii from Table III. Comparison plots of the pull-
out forces determined from FE, MD, and analytical results
are shown in Fig. 14. The periodicity obtained from these
approaches agrees well with the theoretical predictions. Also,
the amplitude agrees well for the FE and MD results. This is
also seen in Table IV, which compares the absolute difference
between the maximum pull-out force. The amplitude of the

pull-out force, defined as Pmax
s − Pmin

s during the sliding for
Case 1 obtained from the MD simulations, is 4.091 nN. These
amplitudes are 0.132 and 9.6486 × 10−4 nN, respectively, for
Cases 2 and 3, which are ≈96.77% and ≈99.98% less than
that for Case 1. Thus, the pull-out force amplitudes are sen-
sitive to the chirality of the CNTs, with the maximum for
zigzag and the minimum for chiral CNTs. While the relative
differences between MD and FE results increase from Case 1
to 3, their absolute difference decreases, as seen in Table IV.

2. Case 1: Pull-out of CNT(26,0) from within CNT(35,0)

Figures 15 and 16 show the FE contact pressure and axial
contact traction during pull-out for Case 1 using the DFT pa-
rameters. The contact forces vary in circumferential direction
as a consequence of the circumferential interference noted in
Sec. III. Only at ga = �a/4 and ga = 3�a/4 is the pressure
uniform, while the axial traction is zero at ga = 0 and ga =
�a/2. As noted in Table III, the CNTs in Case 1 are in
a state of attraction. As a consequence, there are circum-

TABLE IV. Absolute differences in the maximum pull-out force
between MD and FE.

Case
Pmax

s (MD) − Pmax
s (FE-DFT)

(nN)

Pmax
s (MD) − Pmax

s (FE-
REBO+LJ)

(nN)

1 95.0626 × 10−3 70.9569 × 10−3

2 4.6490 × 10−3 14.7392 × 10−3

3 0.4739 × 10−3 0.4740 × 10−3
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FIG. 15. Pull-out of CNT(26,0) from within CNT(35,0) (Case 1): Color plot of contact pressure p in GPa at ga ∈ [0, 1, 2, . . . , 11] · �a/12
(clockwise, starting top left).

ferential stresses in the tubes, leading to the axial strains
εout = 3.616 × 10−4 and εin = −3.887 × 10−4 in the initially
relaxed configuration of the outer and inner tube, respectively.
As seen in Fig. 14(a), the periodicity and amplitude of the
pull-out force determined from the FE simulations using the
DFT parameters agree well with those obtained from the MD
simulations. There is no error in the period, while the ampli-
tudes differ by ≈5% in relative and ≈95.0626 × 10−3 nN in
absolute terms. The FE results with the REBO+LJ parameters
are even more accurate as Fig. 14(a) and Table IV show.
The accuracy of the FE results can be further assessed by
examining the difference of the pull-out forces acting on the
inner and outer CNT. In theory, these forces should be in exact
equilibrium. But due to the rigid master assumption made in
Sec III, a slight difference can appear. Here this difference is
below 2.82% compared to the average pull-out force shown in
Fig. 14(a). This difference is very small and thus justifies the
rigid master CNT assumption.

3. Case 2: Pull-out of CNT(15,15) from within CNT(20,20)

Figures 17 and 18 show the contact pressures and axial
contact tractions for Case 2 determined from the FE simu-
lations using the DFT parameters. Again, the contact tractions
vary in circumferential direction during sliding. The axial
traction is zero at gz = 0 and gz = �z/2. The CNTs for this
case are in a state of repulsion, which leads to positive contact
pressures. As a consequence, the axial strain of the outer
and inner CNT are εout = −1.996 × 10−4 and εin = 2.189 ×
10−4, respectively, in the initially relaxed configuration. The
maximum pull-out force from FE simulations compares well

with that determined from MD simulations, with an absolute
error of 4.6490 × 10−3 nN (see Table IV), which is much
smaller than for Case 1. Relative errors, however, have in-
creased as Fig. 14(b) shows. Also, the relative difference of
the FE pull-out force on inner and outer CNT has increased,
and is now below ≈18.42% compared to the average pull-out
force shown in Fig. 14(b). The rigid master assumption thus
introduces a significant inaccuracy in Case 2. Furthermore, the
FE pull-out force based on the elasticity parameters computed
from the REBO+LJ potential is significantly smaller than that
based on the elasticity parameters computed from DFT.

4. Case 3: Pull-out of CNT(21,9) from within CNT(28,12)

Figures 19 and 20 show the contact pressures and ax-
ial tractions for Case 3 determined from FE using the DFT
parameters. Again, the contact pressure and axial tractions
vary circumferentially during axial sliding. Case 3 is in a
state of attraction; therefore, there is adhesion between the
tubes, leading to the axial strains εout = 2.107 × 10−4 and
εin = −1.982 × 10−4 in the initially relaxed configuration for
the outer and inner tube, respectively. The periodicity of the
pull-out force determined from FE is �3 = 3

√
79acc, which is

exactly the same as that obtained from the MD and theoretical
calculations [see Fig. 14(c) and Sec. VI B 1]. The maximum
amplitude of the pull-out forces determined from MD and
FE using DFT and REBO+LJ parameters are, respectively,
4.7 × 10−4, 1.4 × 10−7, and 8.4 × 10−8 nN. The maximum
pull-out forces obtained from FE differ with respect to MD
by 0.4739 × 10−3 and 0.4740 × 10−3 nN for the two material
parameters considered, see Table IV. These small differences

FIG. 16. Pull-out of CNT(26,0) from within CNT(35,0) (Case 1): Color plot of axial contact traction t1 in GPa at ga ∈ [0, 1, 2, . . . , 11] ·
�a/12 (clockwise, starting top left). The axial tractions in these 12 configurations sum up to the pull-out forces marked in Fig. 14(a).
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FIG. 17. Pull-out of CNT(15,15) from within CNT(20,20) (Case 2): Color plot of contact pressure p in GPa at gz ∈ [0, 1, 2, . . . , 11] ·
�z/12 (clockwise, starting top left).

can be attributed to several small discrepancies between MD
and FE. One is the rigidity assumption of the contact master
surface, which introduces the relative difference of ≈3.35 ×
10−4 compared to the maximum MD force, which seems
insignificant. A second are the differences between the chosen
continuum ansatz (2) and the MD data. But also those are very
small as seen in Sec. IV C. A third are the boundary condi-
tions: In the FE simulations, the rotation of the CNT about its
axis is constrained, which is a displacement boundary condi-
tion. On the other hand, due to the limitation in LAMMPS,
this boundary condition cannot be applied directly, and is
mimicked by applying torsional springs to the circumferen-
tial atoms, which corresponds to a force boundary condition.
As a result, the reaction torques during pull-out cause small
rotational oscillations leading to fluctuations in the pull-out
forces. The MD data plotted in Fig. 14 is filtered using a mov-
ing average approach with window/sample length 5, 20, and
100 for cases 1, 2 and 3, respectively. These fluctuations are
minute for Case 1. However, at smaller pull-out forces, these
fluctuations become much more significant, particularly for
Case 3. Thus, the differences in the pull-out forces determined
from FE and MD may be due to the rotational oscillations in
the MD simulations.

5. Pull-out summary

For all three cases, the FE simulations predict pull-out
behavior very similar to that of MD. The amplitudes are found
to be sensitive to the continuum material properties used,
as seen in Fig. 14 and Table IV. Those material parameters

are based on decoupled membrane and bending models. In
MD simulations, on the other hand, the bending stiffness of
graphene is calculated by computing the potential energies
of relaxed CNTs with respect to the ground-state potential
energy of graphene. In such cases, the energy of relaxed CNTs
is not just associated with the curvature of the CNTs but also
the membrane strain energy.

In contrast to MD and FE simulations, the analytical re-
sults shown in Fig. 14 and derived in Appendix D are for
rigid CNTs. Therefore, the differences in the pull-out forces
determined from the FE/MD and analytical expression show
the contribution of the elastic nature of CNTs. Case 1 is the
only case where a pull-out force is generated independent of
the CNT deformation (i.e., corresponding to the analytical
result). In all other cases the pull-out force is a higher-order
effect coming solely from the CNT deformation. This is seen
through the analytical solution as it does not capture this
higher-order effect.

C. CNT within CNT twisting

Finally, the twisting results are presented and discussed.
As before, the FE results are compared to analytical results
(derived in Appendix D) and MD results.

1. Rotational symmetry

Similar to the axial symmetry, the rotational symmetry of
DWCNTs also depends on the chiral indices of each CNT.
According to the elementary number theory, the inter-wall
interaction energy due to inner CNT rotation and thus their re-

FIG. 18. Pull-out of CNT(15,15) from within CNT(20,20) (Case 2): Color plot of axial contact traction t1 in [GPa] at gz ∈
[0, 1, 2, . . . , 11] · �z/12 (clockwise, starting top left).
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FIG. 19. Pull-out of CNT(21,9) from within CNT(28,12) (Case 3): Color plot of contact pressure p in GPa at u = [0, 1, 2, . . . , 11] ·
�3/200 (clockwise, starting top left).

sisting torque has periodicity of GCD (n1, n2)/(n1n2) × 360◦,
where the inner and outer CNTs have n1-fold and n2-fold
symmetries, respectively [81]. For Case 1, the inner CNT
thus has 26-fold rotational symmetry, while the outer one
has 35. Therefore, the resisting torque must have a 0.3956◦
periodicity. Similarly, for Cases 2 and 3 the inner CNTs have
15- and 3-fold rotational symmetries, while outer ones have
20- and 4-fold, respectively. Therefore, the resisting torque in
Cases 2 and 3 must have a rotational periodicity of 6◦ and 30◦,
respectively.

2. Twisting results

The comparison of the resisting torque as a function of the
rotation angle of the inner CNT between FE, MD, and ana-
lytical expression is shown in Fig. 21. The FE and analytical
torques are zero, while for MD, the amplitude of the torques,
defined as Mmax

T − Mmin
T , are 1.7051 × 10−4, 6.6415 × 10−3,

and 1.3077 × 10−3 nN nm for Cases 1, 2, and 3, respectively.
As in the case of pull-out, the periodicity and amplitude of
the resisting torques of CNT within CNT twisting depend
on the chirality of the CNTs. The periodicity of the resisting
torque determined from the MD simulations agrees well with
the theoretical calculations. Figures 22–24 show the contact
pressures and circumferential tractions during twisting for the
three cases determined from the FE simulations using the
DFT parameters. In all three cases, due to the circumferential

interference the contact forces and pressures vary in circum-
ferential direction.

3. Twisting summary

As seen in Fig. 21, the torques from FE and analytical
integration vanish. The MD torques are nonzero, but they are
much smaller than what could have been expected from the
pull-out forces observed in Fig. 14: Multiplying the pull-out
force amplitudes by the DWCNT radii gives 2.052 nN-nm,
0.102 nN-nm, and 0.035 nN-nm for the three cases, which
is much higher than the torques observed for Cases 1 and 2.
The reason for the difference between MD and FE torques
is expected to lie in the insufficient MD boundary conditions
and/or the approximate FE contact master surface treatment
noted earlier. The analytical result are based on the assump-
tion that all deformations are negligible. As a consequence,
their interaction integrates to zero.

VII. CONCLUSION

This work proposes a new continuum contact model to
describe the interlayer interactions of curved graphene sheets
in continuum formulations such as the finite-element method.
The interaction between two flat graphene layers shows non-
dissipative sliding behavior when the separation gap between
the two layers is larger than 0.29 nm. Thus, the interaction
energy can be modeled using a surface potential that is then
calibrated for various separation gaps between the sheets. The

FIG. 20. Pull-out of CNT(21,9) from within CNT(28,12) (Case 3): Color plot of axial contact traction t1 in GPa at u = [0, 1, 2, . . . , 11] ·
�3/200 (clockwise, starting top left).
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FIG. 21. CNT within CNT twisting: Variation of the resisting torque for (a) Case 1, (b) Case 2, and (c) Case 3 with rotation angle φ.

FIG. 22. Twisting CNT(26,0) inside CNT(35,0) (Case 1): Color plot of contact pressure p in GPa (top row) and circumferential traction t2

in GPa (bottom row) at 0◦, 6◦, 12◦, 18◦, 24◦, and 30◦ twist of the inner CNT, from left to right. The inner CNT is twisted counterclockwise.
The pressure and traction patterns move counterclockwise on both CNTs, and they are faster than the twisting rate.

FIG. 23. Twisting CNT(15,15) inside CNT(20,20) (Case 2): Color plot of contact pressure p in GPa (top row) and circumferential traction
t2 in GPa (bottom row) at 0◦, 6◦, 12◦, 18◦, 24◦, and 30◦ twist of the inner CNT, from left to right. The inner CNT is twisted counterclockwise.
The pressure and traction patterns move counterclockwise on both CNTs, and they are faster than the twisting rate: three times faster on the
outer CNT and four times faster on the inner CNT.
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FIG. 24. Twisting CNT(21,9) inside CNT(28,12) (Case 3): Color plot of contact pressure p in GPa (top row) and circumferential traction
t2 in GPa (bottom row) at 0◦, 6◦, 12◦, 18◦, 24◦, and 30◦ twist of the inner CNT, from left to right. The inner CNT is twisted counterclockwise.
The pressure and traction patterns move counterclockwise on both CNTs, and they are faster than the twisting rate.

calibrated continuum model captures the sliding anisotropy
of bilayer graphene for general sliding distances, both for the
interaction potential and the resulting contact traction. The
proposed continuum model is then implemented in a curvilin-
ear finite-element shell formulation to study the interactions
of DWCNTs. Zigzag CNTs, whose axis is along the arm-
chair direction, show maximum resistance to sliding, while
the minimum is for chiral CNTs. The periodicity of pull-out
forces and torques also depends on the chirality of DWCNTs.
The FE simulations capture these CNT pull-out and twisting
interactions sufficiently well.
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APPENDIX A: COMPARISON OF INTERLAYER
INTERACTION POTENTIALS

Here we describe the interatomic potentials used and com-
pare the calibration results of Sec. IV with those obtained from
different interaction potentials available in the literature, such
as the Kolmogorov and Crespi [34] and Lebedeva et al. [35]
potentials.

The REBO potential is given by

EREBO =
∑

I

∑
J=I+1

[ER(rIJ ) + bIJ EA(rIJ )], (A1)

where rIJ is the distance between the pair of atoms I and
J , and bIJ is an empirical bond-order term. ER and EA are,
respectively, the repulsive and attractive terms taken from
Stuart et al. [59]. The LJ term is given by

ELJ = 4εc

[(
σc

rIJ

)12

−
(

σc

rIJ

)6
]
, (A2)

where σc = 3.4 Å and εc = 2.8437 meV are the LJ parame-
ters for carbon. In the REBO+LJ potential, the REBO part
describes the short-range interactions, whereas the LJ part de-
scribes the nonbonded vdW interactions (see Stuart et al. [59]
for details and the potential parameters). The KC potential is

given by [34]

EKC = e−λ̃(rIJ−z0 )[C + f (ρIJ ) + f (ρJI )] − A

(
z0

rIJ

)6

,

ρ2
IJ = r2

IJ − (nI · rIJ )2,

ρ2
JI = r2

IJ − (nJ · rIJ )2, and

f (ρ) = e−(ρ/δ)2
2∑

n=0

C2n(ρ/δ)2n,

(A3)

where the vector nk (k = I, J ) is normal to the sp2 plane in
the vicinity of atom k, and z0 = 3.33 Å, C0 = 21.84 meV,
C2 = 12.06 meV, C4 = 4.711 meV, C = 6.678 × 10−4 meV,
δ = 0.7718 Å, λ̃ = 3.143 Å−1, and A = 12.66 meV are the
potential constants, taken from Ouyang et al. [75].

The Lebedeva potential function is given by [35]

ELebedeva

= B e−α(rIJ −z0 ) + C(1 + D1 ρ2
IJ + D2 ρ4

IJ )e−λ̃1 ρ2
IJ−λ̃2(z2

IJ−z2
0 )

− A

(
z0

rIJ

)6

, (A4)

where A = 10.510 meV, B = 11.652 meV, C = 35.883 meV,
z0 = 3.34 Å, α = 4.16 Å−1, D1 = −0.86232 Å−2, D2 =
0.1005 Å−4, λ̃1 = 0.487 Å−2, and λ̃2 = 0.46445 Å−2 are the
potential constants [35].

In the MD simulations, the interlayer interactions are now
defined using these potentials. Figure 25 shows that their nor-
mal contact and tangential sliding behavior are qualitatively
the same. Therefore, the same potential ansatz functions for
�flat, �̄t , �1, and �2 are used and the same procedure de-
scribed in Sec. IV is followed to determine the constants in
Eqs. (43) and (46). These values are listed in Table V.

TABLE V. Fitting constants of Eq. (43) and Eq. (46) for different
interaction potentials.

Potential p01 (nN/nm2) g01 (nm) p02 (nN/nm2) g02 (nm)

LJ 5.8646 0.3376 4.404 × 106 1.875 × 10−2

KC 5.6448 0.3410 3.306 × 104 3.140 × 10−2

Lebedeva 4.9625 0.3460 3.985 × 104 3.160 × 10−2
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FIG. 25. Comparison of the interaction energy for (a) sliding along the armchair path at gn = 0.3366 nm and (b) for ga = 0 and gz = 0
(AA stacking) as a function of separation distance gn. For better comparability, the results in (a) are plotted relative to the global minimum and
the LJ results are scaled by a factor of 10.

The potential relief characteristics, such as the relative
energy between AA and AB stacking (��AA

flat ), the relative
energy between AB and SP stacking (��SP

flat), and equilibrium
distances of different stackings are listed in Table VI. The
separation distance is set to the equilibrium distance of the
AB stacking. The potential relief characteristics obtained from
the Lebedava potential agree better with the DFT data [35]
than the other two interaction potentials. As noted already, the
interaction behavior is qualitatively the same. Therefore, ac-
cording to Eq. (54), the tangential tractions only differ by the
factors �KC

2 /�LJ
2 and �Lebedeva

2 /�LJ
2 for the KC and Lebedeva

interaction potentials, respectively.

APPENDIX B: ELASTIC CONSTANTS FOR GRAPHENE

Here we calculate the elastic properties of a single layer
graphene sheet (SLGS). The SLGS is stretched along the
armchair direction to calculate these elastic properties while
applying constraints to the lateral edge atoms. The stress along
the stretch direction (σ11) and perpendicular to the stretch
direction (σ22) is shown in Fig. 26. Within the small strain
regime, the SLGS behaves like an isotropic material [82],
described by Hooke’s law,

σi j = 2 μεi j + λ δi j εkk, (B1)

where σi j and εi j are the stress and strain components, respec-
tively, δi j is the Kronecker delta, and λ and μ are the Lamé
constants. The 2D Young’s modulus (E2D) and Poisson’s ra-
tio (ν) are then determined through μ = E2D/[2(1 + ν)] and
λ = 2 μν/(1 − ν). The bending stiffness cb is calculated by
computing the potential energy of relaxed CNTs of different

radii with respect to the ground-state graphene sheet [83].
The potential energies as a function of curvatures are fitted
by quadratic functions. The bending stiffness is then obtained
taking double derivatives with respect to the curvature.

The elastic properties determined from the REBO+LJ po-
tential and DFT simulations available in the literature [80] are
given in Table VII. The REBO+LJ potential underestimates
the 2D Young’s modulus and Poisson’s ratio by ∼10.5% and
∼15.8% compared to DFT, respectively. On the other hand,
it overestimates the bending stiffness by 46.3% compared
to DFT.

APPENDIX C: CONTACT LINEARIZATION

For a rigid master surface, the linearization of contact trac-
tion t s from Sec. III D is characterized by the increment

�t s = ∂t s

∂xs
�xs. (C1)

Applying the product rule to Eq. (34) gives

∂t s

∂xs
= np ⊗ ∂ p

∂xs
+ p

∂np

∂xs
+ ap

γ ⊗ ∂tγ

∂xs
+ tγ ∂ap

γ

∂xs
, (C2)

where

∂ p

∂xs
= ∂ p

∂gn

∂gn

∂xs
+ ∂ p

∂gδ
cc

∂gδ
cc

∂xs
,

∂tγ

∂xs
= ∂tγ

∂gn

∂gn

∂xs
+ ∂tγ

∂gδ
cc

∂gδ
cc

∂xs
, (C3)

TABLE VI. Interaction energy of the AB stacking (�AB
flat ), relative energies between AA and AB stacking (��AA

flat ) and between SP and
AB stacking (��SP

flat) at equilibrium separation distance of the AB stacking, and equilibrium distances (d0) obtained from different interaction
potentials. The DFT results are from Lebedeva et al. [35].

Potential �AB
flat (meV/atom) ��AA

flat (meV/atom) ��SP
flat (meV/atom) dAA

0 (nm) dAB
0 (nm) dSP

0 (nm)

LJ −45.60 1.00 0.095 0.3394 0.3366 0.3370
KC −48.90 15.40 1.600 0.3580 0.3307 0.3343
Lebedeva −47.20 19.90 2.100 0.3667 0.3326 0.3373
DFT −50.60 19.50 2.070 — 0.3325 —
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TABLE VII. Elastic properties of SLGS obtained from MD and
DFT simulations.

Method/potential λ (N/m) μ (N/m) E2D (N/m) ν cb (nN-nm)

REBO+LJ 48.27 131.42 304.89 0.16 0.354
DFT [80] 69.01 143.05 340.46 0.19 0.242

follow from the chain rule. From this, Eq. (27) and Eq. (31)
then follows

np ⊗ ∂ p

∂xs
= ∂ p

∂gn
np ⊗ np + ∂ p

∂gδ
cc

Qδμ
c np ⊗ ap

μ,

ap
γ ⊗ ∂tγ

∂xs
= ∂tγ

∂gn
ap

γ ⊗ np + ∂tγ

∂gδ
cc

Qδμ
c ap

γ ⊗ ap
μ. (C4)

Further,
∂np

∂xs
= ± 1

Rm ± gn
ap

2 ⊗ ap
2 (C5)

[72], and

∂ap
1

∂xs
= 0,

∂ap
2

∂xs
= ∓ 1

Rm ± gn
np ⊗ ap

2, (C6)

which follow from Eq. (21) and Eq. (30) and the chain rule

∂ap
α

∂xs
= ∂ap

α

∂ξ
γ
p

⊗ ∂ξ
γ
p

∂xs
. (C7)

Equations (C5) and (C6) can also be written as

∂np

∂xs
= Mγμ ap

γ ⊗ ap
μ,

∂ap
γ

∂xs
= −Mμ

γ np ⊗ ap
μ, (C8)

with

[Mαβ] = −[Mβ
α ] =

⎡
⎣0 0

0
±1

Rm ± gn

⎤
⎦. (C9)

Inserting Eq. (C4) and Eq. (C8) into Eq. (C2) then yields the
gradient

∂t s

∂xs
= ∂ p

∂gn
np ⊗ np +

(
∂ p

∂gδ
cc

Qδμ
c − tγ Mμ

γ

)
np ⊗ ap

μ,

+ ∂tγ

∂gn
ap

γ ⊗ np +
(

∂tγ

∂gδ
cc

Qδμ
c + p Mγμ

)
ap

γ ⊗ ap
μ,

(C10)

or
∂t s

∂xs
= Cnn np ⊗ np + Cα

na np ⊗ ap
α + Cα

an ap
α ⊗ np

+Cαβ
aa ap

α ⊗ ap
β, (C11)

with

Cnn := ∂ p

∂gn
,

Cα
na := ∂ p

∂gδ
cc

Qδα
c − tγ Mα

γ ,

Cα
an := ∂tα

∂gn
,

Cαβ
aa := ∂tα

∂gδ
cc

Qδβ
c + p Mαβ. (C12)

FIG. 26. Variation of the stress along the stretch direction, σ11,
and perpendicular to the stretch direction, σ22, with the strain.

Equations (36)–(40) yield

∂ p

∂gn
= S̄

(
p′

1 + p′
2 �̄t

)
,

∂ p

∂gδ
cc

= −S̄ p2 t̄ c
δ , (C13)

with p′
i := ∂ pi/∂gn, i = 1, 2, and

∂tγ

∂gn
= −S̄ p2 t̄ c

α Qαγ
c ,

∂tγ

∂gδ
cc

= S̄ �2 Qγα
cT

∂ t̄ c
α

∂gδ
cc

. (C14)

Since

∂ t̄ c
γ

∂gδ
cc

= − ∂2�̄t

∂gγ
cc ∂gδ

cc

= ∂ t̄ c
δ

∂gγ
cc

, (C15)

Equations (C12)–(C14) result in

Cnn = S̄ (p′
1 + p′

2 �̄t ),

Cα
na = −S̄ p2 t̄ c

γ Qγα
c ,

Cα
an = Cα

na,

Cαβ
aa = S̄ �2 Qαγ

cT

∂ t̄ c
γ

∂gδ
cc

Qδβ
c + p Mαβ. (C16)

Since Cα
an = Cα

na and Cαβ
aa = Cβα

aa , the tangent is fully symmet-
ric as it should be.

APPENDIX D: ANALYTICAL EXPRESSIONS FOR CNT
PULL-OUT AND TWISTING

The axial pull-out force along e1 follows from integrating
the traction t1 over the slave CNT surface spanned by ξ 1

p0 ∈
[−L, L]/2 and ξ 2

p0 ∈ [−π, π ]Rs, i.e.,

P = −
∫ L

2

− L
2

∫ π

−π

t1(ga, gz ) Rs d ξ̄ 2
p0 dξ 1

p0. (D1)

The axial twisting moment (along e1) follows from integrating
the moment Rs t2 over the slave CNT surface, i.e.,

MT = −
∫ L

2

− L
2

∫ π

−π

t2(ga, gz ) R2
s d ξ̄ 2

p0 dξ 1
p0. (D2)
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The minus signs appear since P and MT resists the tractions
t1 and t2. According to Eqs. (36), (40), (42), (32), (24.2), and
(30.2) the latter are given by

t1 = S̄ �2(t̄a cos θ − t̄z sin θ ),

t2 = S̄ �2(t̄a sin θ + t̄z cos θ )
Rm

Rm ± gn
. (D3)

For rigid CNTs, the slave and master radii Rs and Rm are
constant, and Rm ± gn = Rs. Expressions (D1)–(D3) can then
be integrated analytically as is shown below. As noted in
Sec. III B, integral type (D1) integrates equivalently over the
inner CNT surface, the outer CNT surface, or the midsurface,
since S̄ = R̄/Rs, where R̄ is the average radius. Only the sign
of P differs on the outer and inner surface due to the sign
difference of t1 on those surfaces. Integral type (D2) integrates
differently over both surfaces due to the factor Rm in front that
is different on both surfaces. Equilibrium can therefore only
be satisfied if MT integrates to zero (for rigid CNTs).

1. Pull-out of CNT(26,0) from within CNT(35,0)

In this case the cylinder axis is aligned with the arm-
chair direction (cos θ = 1, sin θ = 0), such that t1 = S̄ �2 t̄a
according to Eq. (D3.1). The initial gap is Gn = Rout − Rin =
9�z/(2π ) and the length is denoted L = La. For rigid cylinders
with u := ξ 1

p − ξ̄ 1
p0, φ := ξ̄ 2

p − ξ̄ 2
p0 and ξ̄ 2

p0 ∈ [−π, π ], the ax-
ial and circumferential gaps now becomes

ga = u, gz = φ Rm ∓ 9�z

2π
ξ̄ 2

p0 (D4)

according to Eq. (18) and Eq. (19), respectively. The rear
term of gz lies in the interval [−9, 9]�z/2. That is, gz spans
exactly nine periods of the interaction potential, irrespective
of rotation angle φ. Therefore the rear term in Eq. (50.1)
integrates to zero in Eq. (D1), while the front term leads to
the analytical pull-out force (for all φ)

Pa(u) = −S̄ �2 La R̄
∫ π

−π

t̄a(ga, gz ) d ξ̄ 2
p0 = −Pmax sin

4π u

�a
,

(D5)

with the amplitude

Pmax = 8π2

�a
�2 La R̄. (D6)

For 2π R̄ = 30.5�z, �z = √
3acc, and La = 24�a follows

Pmax = 2928
√

3π �2 acc. The value acc = 0.1397 nm then
gives Gn = 0.3466 nm and �2 = 7.7435 × 10−4 nN/nm and
Pmax = 1.7235 nN, which is the result shown in Fig. 14(a).

2. Pull-out of CNT(15,15) from within CNT(20,20)

In this case the cylinder axis is aligned with the zigzag
direction (cos θ = 0, sin θ = 1), such that t1 = −S̄ �2 t̄z ac-
cording to Eq. (D3.1). The initial gap is Gn = Rout − Rin =
5�a/(2π ) and the length is denoted L = Lz. For rigid cylin-
ders, ξ 1

p − ξ 1
p0 corresponds to their relative axial motion

u, while ξ̄ 2
p − ξ̄ 2

p0 corresponds to their relative rotation
angle φ. Both are constant across the surface. Further,
ξ̄ 2

p0 ∈ [−π, π ]. The axial and circumferential gaps thus

become

gz = u, ga = φ Rm ∓ 5�a

2π
ξ̄ 2

p0 (D7)

according to Eq. (18) and Eq. (19), respectively. The rear
term of ga lies in the interval [−5, 5]�a/2. That is, ga spans
exactly five periods of the interaction potential, irrespective of
φ. Therefore the analytical pull-out force

Pz(u, φ) = �2 Lz R̄
∫ π

−π

t̄z(ga, gz ) d ξ̄ 2
p0 (D8)

from Eq. (D1) integrates to zero for all u and φ according to
Eq. (50.2).

3. Pull-out of CNT(21,9) from within CNT(28,12)

In this case cos θ = 17/(2c̄) and sin θ = 3
√

3/(2c̄), with
c̄ := √

79, such that

t1 = S̄ �2

2c̄
(17 t̄a − 3

√
3 t̄z ), (D9)

according to Eq. (D3.1). Inserting Eq. (50) then leads to

t1 = 2π S̄ �2

�u
[17 sin 2ĝa + 13 sin(ĝa − ĝz ) + 4 sin(ĝa + ĝz )],

(D10)

where

ĝa := 2π ga

�a
= 17π

u

�u
+ 3π Rm

�φ

φ ∓ 3

2
ξ̄ 2

p0,

ĝz := 2π gz

�z
= −9π

u

�u
+ 17π Rm

�φ

φ ∓ 17

2
ξ̄ 2

p0 (D11)

follows from Eqs. (22), (18), and (19) and Gn =√
3 c̄ acc/(2π ) with u := ξ 1

p − ξ 1
p0, φ := ξ̄ 2

p − ξ̄ 2
p0 and

�u := c̄ �a, �φ := c̄ �z. The front terms in Eq. (D11) do
not change the fact that the three sine-terms in Eq. (D10)
contain exactly 3, 7, and 10 full periods within ξ̄ 2

p0 ∈ [−π, π ],
respectively. Integral Eq. (D1) therefore vanishes, and the
pull-out force becomes zero for all u and φ.

4. Twisting CNT(26,0) inside CNT(35,0)

In this case the cylinder axis is aligned with the armchair
direction (cos θ = 1, sin θ = 0). The circumferential traction
on the slave surface is therefore t2 = S̄ �2 t̄z Rm/Rs accord-
ing to Eq. (D3.2). As noted in Sec. D 1, the initial gap is
Gn = 9�z/(2π ) such that gz spans exactly 9 periods of the
interaction potential, see Eq. (D4). Therefore the analytical
twisting moment

MT (φ, u) = −�2 Lz R̄ Rm

∫ π

−π

t̄z(ga, gz ) d ξ̄ 2
p (D12)

from Eq. (D2) integrates to zero for all φ and u according to
Eq. (50.2).

5. Twisting CNT(15,15) inside CNT(20,20)

In this case the cylinder axis is aligned with the zigzag
direction (cos θ = 0, sin θ = 1). The circumferential traction
on the slave surface is therefore t2 = S̄ �2 t̄a Rm/Rs, with S̄ =
R̄/Rs, according to Eq. (D3.2). As noted in Sec. D 2, the
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initial gap is Gn = 5�a/(2π ) such that ga spans exactly five
periods of the interaction potential, see Eq. (D7). Therefore
the analytical twisting moment

MT (φ, u) = −�2 Lz R̄ Rm

∫ π

−π

t̄a(ga, gz ) d ξ̄ 2
p (D13)

from Eq. (D2) integrates to zero for all φ and u according to
Eq. (50.1).

6. Twisting CNT(21,9) inside CNT(28,12)

In this case cos θ = 17/(2c̄) and sin θ = 3
√

3/(2c̄), c̄ =√
79, such that

t2 = S̄ �2 Rm

2c̄ Rs
(3

√
3 t̄a + 17 t̄z ), (D14)

according to Eq. (D3.2). Inserting Eq. (50) then leads to

t2 = 2π S̄ �2 Rm

�φ Rs
[3 sin 2ĝa − 7 sin(ĝa − ĝz )

+ 10 sin(ĝa + ĝz )], (D15)

with ĝa and ĝz given in Eq. (D11). From Eq. (D11) again
follows that the three sine-terms in Eq. (D15) contain exactly
3, 7, and 10 full periods within ξ̄ 2

p0 ∈ [−π, π ], respectively.
Integral Eq. (D2) therefore vanishes, and the twisting moment
again becomes zero for all φ and u.
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