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Abstract. Self-Balancing Electric Motorcycle (SBEM) is a dynamic and nonlin-

ear electromechanical system. In this paper, the process of mathematical model-

ling and linearization of SBEM is presented. The model of the control system in 

Matlab environment is implemented. The control system using the PID controller 

is designed. The operation of particular structures of the PID controller on the 

simulation model is compared. Due to simulation research, the most appropriate 

structure and parameters of the PID controller are chosen.  

Keywords: PID controller, control system, mathematical modelling, self-balanc-

ing electric motorcycle 

1 Introduction 

 Electric vehicles use electric power to work. These vehicles are usually powered 

by electric motors which can drive each wheel separately or the whole axle. Electric 

vehicles such as cars, trucks, trains, bikes and bicycles are mainly used to transport 

people and to travel. An electric vehicle has its own power source like a battery to 

provide electric power. It can be recharge using solar energy or a charging station. It 

can also have systems that recover energy from braking to recharge the battery. The 

advantages of electric vehicles compared to combustion vehicles are: quiet and clean 

work, environmentally friendly, relative long drive distances, cheaper usage and they 

can be used indoors. 

Self-Balancing Electric Motorcycle (SBEM) can be used to transport people in the 

desired direction. The advantage of SBEM is that it is possible to stand in a vertical 

position without using an additional kickstand. 

Control and modelling of SBEM can be an interesting subject of research. It has a 

nonlinear and complex mathematical model shown in [1]. The position stabilization 

system can be realized by means of various algorithms. The PI controller is applied in 

[2]. Control algorithm using LQR is introduced in [3]. Self-balancing similar vehicles 

are common projects. The motorcycle using a flywheel to stabilize its position is shown 

in [4] and an autonomous bicycle is designed in [5]. 
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The mathematical model is an abstract, simplified, mathematical construct related 

to a part of reality and created for a particular purpose [6]. The model allows for a better 

understanding of the process and predicts certain actions under certain conditions and 

defined input signals. It also can be used to define dangerous states of the process and 

critical values of signals. 

The main purpose of modelling SBEM is to better understand its principle of oper-

ation. The mathematical model is used to implement a control system which uses a PID 

controller in Matlab environment [7]. The final structure of the PID controller and val-

ues of its parameters are indicated during the simulation test. 

The paper is organized as follows. Section 2 presents the process of mathematical 

modelling and linearization of SBEM. In this section, the simulation results of a non-

linear and linearized model of SBEM are presented. Section 3 presents the structure of 

the control system and modelling of the DC motor. In this section, two methods of 

tuning the PID controller are described. In Section 4 the simulation tests and results 

analysis are conducted. Concluding remarks are listed in the last section. 

2 Modelling of SBEM 

2.1 Operating principle 

The SBEM principle of operation is derived from the inverted reaction wheel pen-

dulum (Fig. 1). The main element that stabilizes the structure vertically is the reaction 

wheel, driven by the DC (Direct Current) motor. It uses the change of its angular mo-

mentum to bring the structure to a vertical position. 

 

Fig. 1. Inverted reaction wheel pendulum 
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where m1 – mass of the construction without mass of the reaction wheel, m2 – mass of 

the reaction wheel, l1 – distance of the centre of the mass m1 from the coordinate system 

origin, l2 – distance of the centre of the mass m2 from the coordinate system origin, J1 – 

moment of inertia of the mass m1, J2 – moment of inertia of the mass m2, r1 – length of 

the gravity force arm acting on the mass m1, r2 – length of the gravity force arm acting 

on the mass m2, α – angle of the pendulum, β – angle of the reaction wheel, τ – torque 

applied on reaction wheel by DC motor. 

 

The stabilization mechanism is based on Newton’s second law for rotational mo-

tion. According to this principle, the derivative of the angular momentum of a rigid 

body equals the torque acting on it. It is given by equation (1). 

𝑑𝐿(𝑡)

𝑑𝑡
= 𝐽 ∙

𝑑𝜔(𝑡)

𝑑𝑡
=  𝜏(𝑡) (1) 

where  L(t), J, ω(t), τ(t) are the angular momentum, the moment of inertia, the angular 

velocity and the torque, respectively. 

 

When the equilibrium of the system is disturbed, voltage is applied to the DC motor 

and the torque of the motor is applied to the reaction wheel causing it to accelerate. 

According to equation (1), the torque acting on the reaction wheel is created. The reac-

tion wheel in turn according to Newton’s third law applies the equal amount of the 

torque to the DC motor, but in the opposite direction. Because it is mounted to motor-

cycle body, the torque acts on the whole construction, bringing it back to the vertical 

position [1]. 

By controlling this reaction torque the motorcycle body can be balanced. The torque 

of the reaction wheel DC motor should correspond to the moment of gravitational force 

acting on the vehicles center of mass when deflected from equilibrium point [3]. 

2.2 Nonlinear model of SBEM 

For the mathematical model of SBEM Euler-Lagrange equations are applied [8]. A 

description of the total kinetic and potential energy is required. It is given by the fol-

lowing equations: 

 𝐸𝑡𝑝(𝑡) = 𝑔 ∙ 𝑐𝑜𝑠𝛼(𝑡) ∙ (𝑚1 ∙ 𝑙1 +𝑚2 ∙ 𝑙2) (2) 

 

 𝐸𝑡𝑘(𝑡) =  
1

2
∙ (𝑚1 ∙ 𝑙1

2 +𝑚2 ∙ 𝑙2
2 + 𝐽1 + 𝐽2) ∙ (

𝑑𝛼(𝑡)

𝑑𝑡
)
2

 
(3) 

 + 𝐽2 ∙
𝑑𝛼(𝑡)

𝑑𝑡
∙
𝑑𝛽(𝑡)

𝑑𝑡
+
1

2
∙ 𝐽2 ∙ (

𝑑𝛽(𝑡)

𝑑𝑡
)
2

 

where Etp (t), g, Etk (t) are the total potential energy, the gravity constant and the total 

kinetic energy of the system, respectively. 
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Euler-Lagrange equations use Lagrangian given by equation (4). It is a difference 

between the total kinetic energy and the total potential energy. 

 
𝐿 [𝛼(𝑡), 𝛽(𝑡),

𝑑𝛼(𝑡)

𝑑𝑡
,
𝑑𝛽(𝑡)

𝑑𝑡
, 𝑡] =  𝐸𝑡𝑘(𝑡) − 𝐸𝑡𝑝(𝑡) (4) 

where L is Lagrangian and t is time. 

 

Euler-Lagrange equations are given by the following equation: 

 
𝜕𝐿

𝜕𝑦𝑖(𝑥)
−
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�𝑖(𝑥)
) = 𝜏𝑖(𝑡) (5) 

where yi(x) is the function depended on variable x and τi(t) is the generalized torque in 

the yi(x) direction. 

 

Lagrangian is given by equation (6). 

𝐿 =
1

2
∙ (𝑚1 ∙ 𝑙1

2 +𝑚2 ∙ 𝑙2
2 + 𝐽1 + 𝐽2) ∙ (

𝑑𝛼(𝑡)

𝑑𝑡
)

2

+ 𝐽2 ∙
𝑑𝛼(𝑡)

𝑑𝑡
∙
𝑑𝛽(𝑡)

𝑑𝑡
+ 

+
1

2
∙ 𝐽2 ∙ (

𝑑𝛽(𝑡)

𝑑𝑡
)
2

− 𝑔 ∙ 𝑐𝑜𝑠𝛼(𝑡) ∙ (𝑚1 ∙ 𝑙1 +𝑚2 ∙ 𝑙2) 

(6) 

Euler-Lagrange equations are given by the following equations: 

 

{
 
 

 
 𝜕𝐿

𝜕𝛼(𝑡)
−
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�(𝑡)
) = 0 

𝜕𝐿

𝜕𝛽(𝑡)
−
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�(𝑡)
) =  𝜏(𝑡)

 (7) 

where τ(t) is the torque provided by DC motor. 

 

Using equations (6) and (7) the mathematical model of SBEM is derived: 

{
 

 𝑔 ∙ 𝑠𝑖𝑛𝛼(𝑡) ∙ (𝑚1 ∙ 𝑙1 +𝑚2 ∙ 𝑙2) − (𝑚1 ∙ 𝑙1
2 +𝑚2 ∙ 𝑙2

2 + 𝐽1 + 𝐽2) ∙
𝑑2𝛼(𝑡)

𝑑2𝑡
− 𝐽2 ∙

𝑑2𝛽(𝑡)

𝑑2𝑡
 = 0 

𝐽2 ∙
𝑑2𝛼(𝑡)

𝑑2𝑡
+𝐽2 ∙

𝑑2𝛽(𝑡)

𝑑2𝑡
=  𝜏(𝑡)

 (8) 

The system of equations (8) can be reduced to a single equation of the following 

form: 

𝑑2𝛼(𝑡)

𝑑𝑡2
= − 

1

𝑚1 ∙ 𝑙1
2 + 𝑚2 ∙ 𝑙2

2 + 𝐽1
 ∙  𝜏(𝑡) +

𝑔 ∙  (𝑚1 ∙ 𝑙1 +𝑚2 ∙ 𝑙2)

𝑚1 ∙ 𝑙1
2 +𝑚2 ∙ 𝑙2

2 + 𝐽1
∙ sin𝛼(𝑡) (9) 
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2.3 Linearization of SBEM model 

The mathematical model of SBEM is nonlinear due to trigonometric function 

sinα(t). Because of that, it is difficult for a wide operating range using a PID controller. 

The process of linearization is needed [9]. 

The first step is to determine the static duty point that sets out values of system 

parameters in a steady-state. The static duty point is described as follows: 

 𝑆0 = (𝛼0,
𝑑2𝛼0
𝑑𝑡2

, 𝜏0) = (0,0, 𝜏0) (10) 

where S0 is the static duty point, α0 is the angle of the pendulum in the steady-state and 

τ0  is the torque applied by DC motor in the steady-state. 

 

The value of the torque in the steady-state can be derived from equation (9) using 

values of parameters from equation (10): 

𝑓(0,0, 𝜏0) = −
1

𝑚1 ∙ 𝑙1
2 +𝑚2 ∙ 𝑙2

2 + 𝐽1
∙  𝜏0 + 

𝑔 ∙ (𝑚1 ∙ 𝑙1 +𝑚2 ∙ 𝑙2)

𝑚1 ∙ 𝑙1
2 +𝑚2 ∙ 𝑙2

2 + 𝐽1
 ∙  sin0

= 0 

(11) 

where  f  is the function which describes the equation of static characteristic.  

 

The value of the torque in a steady-state equals zero. The next step is to expand 

equation (9) into a Taylor series with the operating point and neglect higher-order 

terms. The linearized equation of SBEM mathematical model is given by equation (12). 

(
𝑑2𝛼(𝑡)

𝑑𝑡2
− 0) = − 

1

𝑚1 ∙ 𝑙1
2 + 𝑚2 ∙ 𝑙2

2 + 𝐽1
 ∙  (𝜏(𝑡) − 𝜏0) + 

(12) 

+ 
𝑔 ∙  (𝑚1 ∙ 𝑙1 +𝑚2 ∙ 𝑙2)

𝑚1 ∙ 𝑙1
2 +𝑚2 ∙ 𝑙2

2 + 𝐽1
∙ (𝛼(𝑡) − 𝛼0) 

The final step is to use increment variables to describe equation (12). It is given by 

equation (13). 

𝛥
𝑑2𝛼(𝑡)

𝑑𝑡2
= − 

1

𝑚1 ∙ 𝑙1
2 + 𝑚2 ∙ 𝑙2

2 + 𝐽1
 ∙  ∆𝜏(𝑡) +

𝑔 ∙  (𝑚1 ∙ 𝑙1 +𝑚2 ∙ 𝑙2)

𝑚1 ∙ 𝑙1
2 +𝑚2 ∙ 𝑙2

2 + 𝐽1
∙ ∆𝛼(𝑡) (13) 

The nonlinear (9) and linearized (13) mathematical model of SBEM was imple-

mented in Matlab environment. 

2.4 Simulation of SBEM model 

The models implemented in Matlab were tested to determine the accuracy of the 

linearized model of SBEM. For this purpose, the unit-step responses of derived models 

were examined and the linearization errors were calculated. The linearization error is 

the difference between nonlinear and linearized model response.  D
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All values of models parameters are: m1 = 0.59 kg, m2 = 0.11 kg, l1 = 0.06 m, l2 = 

0.12 m, J1 = 3.26e-3 kg∙m2, J2 = 403e-6 kg∙m2, g = 9.81 m/s2. 

 

The unit-step responses of the models are shown in Fig. 2. 

 

Fig. 2. Unit-step responses of nonlinear and linearized models (NL – nonlinear model, L – line-
arized model, u – unit-step input) 

In Fig. 2 an angle of -90° indicates a situation in which the motorcycle is completely 

tilted to one side. Linearization error is illustrated in Fig. 3. 

 

Fig. 3. Linearization error 
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The linearization errors are due to the fact that the linearized model is only an ap-

proximation of a nonlinear model in the specified area of a duty point. This means that 

it will only behave like a nonlinear model within a certain range of deviations from the 

duty work point. The further away from the duty point, the greater the linearization 

error. 

3 Design of control system 

3.1 Structure of the control system 

The control structure of the vertical position of the SBEM is illustrated in Fig. 4. 

 

Fig. 4. SBEM control system 

where αref (t) – reference angle, e(t) – error signal, u(t) – voltage signal, τr(t) – reaction 

torque, αd (t) – equilibrium disturbance, α(t) – angle, αm(t) – measured angle. 

 

The reference value is the vertical angle of SBEM. In this case, the reference value 

equals 0°. The error signal is created by subtracting the reference angle and the meas-

ured angle. Next, the PID controller generates a control signal fed to the reaction wheel 

DC motor. When the reaction wheel starts spinning, the reaction torque is generated 

and the electric bicycle is balanced. The actual angle of SBEM is measured by an angle 

sensor. The equilibrium disturbance is an external force which causes deviation from 

the vertical axis of SBEM. Two types of disturbances were considered: impulse and 

constant. The first corresponds to the application of the force for a short time. It is an 

equivalent of a short push. The second type corresponds to the application of force for 

a long time. It can be regarded as placing the mass on one side of SBEM. 

3.2 Model of reaction wheel DC motor 

To design a control system in Matlab the DC motor mathematical model is needed. 

To obtain the mathematical model the equivalent scheme of the DC motor is used (Fig. 

5). 
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Fig. 5. DC motor equivalent scheme 

where U(t) – rotor power supply voltage, i(t) – motor current, R – rotor winding re-

sistance, L – rotor winding inductance, E(t) – electromotive force of induction, Ms(t) –

rotor torque, J – rotor shaft moment of inertia, B – viscous friction coefficient, ML(t) –

load torque, ωs(t) – angular velocity. 

 

Mathematical model adequate to DC motor scheme (Fig. 5) is given by equations 

(14). 

 {
𝑈(𝑡) =  𝑅 ∙ 𝑖(𝑡) +  𝐿 ∙

𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑘𝑒 ∙ 𝜔𝑠(𝑡) 

𝑘𝑚 ∙ 𝑖(𝑡) = 𝐽 ∙
𝑑𝜔𝑠(𝑡)

𝑑𝑡
+ 𝐵 ∙ 𝜔𝑠(𝑡) +𝑀𝐿(𝑡)

 (14) 

where ke is the electromotive constant and km is torque constant. 

 

To implement the model of the DC motor in Matlab the Laplace transform is ap-

plied. By using the Laplace transform in equations (14) and reorganizing the output 

equation, the DC motor model is obtained. 

 Ω𝑠(𝑠) =  
1

 𝐽 ∙ 𝑠 + 𝐵
 ∙ (

𝑈(𝑠) − 𝑘𝑒 ∙ Ω𝑠(𝑠)

𝑅 + 𝐿 ∙ 𝑠
∙ 𝑘𝑚 −𝑀𝐿(𝑠)) (15) 

The equation (15) was implemented in Matlab environment. All values of DC motor 

parameters are: R = 5.71 Ω, L = 380e-6 H, km = 0.80 N∙m/A, ke = 0.13 V∙s/rad, J = 3.6e-

6 kg∙m/s2, B = 3.69e-4 N∙m∙s/rad, ML = 0.0 N∙m. 

3.3 Tuning of PID controller 

To tune the PID controller the second Ziegler-Nichols tuning method is used. The 

required parameters to calculate the PID controller such as critical gain Kcr and period 

of sustained oscillation Tcr are indicated. Using these two parameters, the parameters 

of  the PID controller are computed and presented in Table 1. 
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Table 1. Parameters for PID controller 

Controller 

structure 
Kp Ti Td 

P 7.0 - - 

PI 6.3 0.63 - 

PID 8.4 0.38 0.09 

where Kp, Ti, Td are proportional gain, integral time and derivative time, respectively. 

 

The second method of tuning the PID controller is based on simulation tests. To 

determine controller parameters, the following quality control indicators were 

considered: 

 permissible control error < 1% of disturbance amplitude, 

 settling time ts below < 1s – it is the time required by the response to reach and 

steady below |ε| = 1°, 

 permissible overshoot < 10% – calculated as a ratio of the absolute value of 

second peak A2  to the absolute value of first peak A1 in percentages: 

 𝑂𝑆% = |
𝐴2
𝐴1
| ∙ 100% (16) 

All parameters needed to calculate quality control indicators are shown in Fig. 6.  

 

Fig. 6. Parameters of step response needed to calculate quality control indicators 

On the basis of the simulation tests, the parameters of the PID controller that meet 

the mentioned requirements were determined. These values are shown in Table 2. 
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Table 2. Parameters for PID controller 

Controller 

structure 
Kp Ti Td 

P 31.8 - - 

PI 32.2 0.04 - 

PID 32.0 0.06 0.1 

4 Simulation tests and results analysis 

In this section, simulation tests were carried out. By analyzing simulation results 

the most appropriate structure of the PID controller was chosen. The PID structure was 

determined on the basis of tests. 

Simulation tests of the control system of the nonlinear and linearized model of 

SBEM using two sets of PID controller parameters were conducted. Two types of dis-

turbances: step and impulse were examined. The amplitude of 15° was taken as the 

maximum deviation. The control results of the second Ziegler-Nichols tuning method 

are shown in Fig. 7. 

 

Fig. 7. Control results of the second Ziegler-Nichols tuning method 

The system was found to be stable on the basis of the research conducted. However, 

the required control quality indicators are not met. All values of the mentioned quality 

indicators are shown in Table 3. 

The results of experimental PID controller tuning method are shown in Fig. 8. D
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Fig. 8. Control results of the experimental tuning method 

The system was found to be stable on the basis of the research conducted. The re-

quired control quality indicators are achieved. The shape of the reaction torque τr wave-

forms is caused by upper and lower limits of its value. These are the maximum torque 

values provided by the reaction wheel DC motor. All values of the mentioned quality 

indicators are shown in Table 3.  

Table 3. Values of control quality indicators 

Tuning method of PID II Ziegler-Nichols Experimental 

Input signal Step Impulse Step Impulse 

Permissible control error 

[°] 
0.08 0.01 0.05 0.02 

Settling time [s] 1.53 0.23 0.31 0.27 

Permissible overshoot 

[%] 
64.23 13.78 7.46 8.33 
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5 Conclusions 

In this paper, the processes of mathematical modelling and linearization of SBEM 

were presented. The implementation of the control system and control results analysis 

were done. Two methods of tuning the PID controller were verified. The operation of 

particular structures of the PID controller were compared. The most appropriate 

structure of the PID controller and values of its parameters were obtained. All quality 

control indicators were achieved using an experimental tuning method of the PID 

controller. 
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