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Expansion of a wave function in a basis of eigenfunctions of a differential eigenvalue
problem lies at the heart of the R-matrix methods for both the Schrödinger and Dirac
particles. A central issue that should be carefully analyzed when functional series
are applied is their convergence. In the present paper, we study the properties of
the eigenfunction expansions appearing in nonrelativistic and relativistic R-matrix
theories. In particular, we confirm the findings of Rosenthal [J. Phys. G 13, 491
(1987)] and Szmytkowski and Hinze [J. Phys. B 29, 761 (1996); J. Phys. A 29,
6125 (1996)] that in the most popular formulation of the R-matrix theory for Dirac
particles, the functional series fails to converge to a limit claimed by other authors.
C© 2012 American Institute of Physics. [doi:10.1063/1.3679763]

I. INTRODUCTION

Convergence of expansions of a one-component function into a series of eigenfunctions of a
Sturm–Liouville problem was a subject of many studies. In some physical situations,1, 2 of particular
interest are expansions of a function defined only on a finite and closed interval. The classical results
on convergence of such series can be found, for instance, in Refs. 2–6 and for modern studies on
this type of problems, including the equiconvergence method, the reader is referred to Refs. 7 and
8, and references therein.

A similar problem for a two-component function was addressed by a number of mathemati-
cians at the beginning of the 20th century9–14 and later reviewed in numerous textbooks (see, e.g.,
Refs. 4–6). However, very few articles and textbooks deal with the development of an arbitrary
function on a closed interval. Usually, either the expansion on an open interval is studied only10, 14

or some additional conditions are imposed on the expanded function at the boundary points.9–11, 13

To the best of the author’s knowledge, the only classical paper discussing the general situation is the
one by Birkhoff and Langer.12 A more recent analysis of this kind of problems can be found, e.g., in
Ref. 15. A generalization of the equiconvergence method7 to a vector case should be also possible.

In the present paper, we apply the general results concerning convergence of eigenfunction
expansions in the context of the R-matrix theory of scattering processes. This theory was first
developed for low-energy collisions that could be described with the Schrödinger equation1 (see
Refs. 16–18 for reviews on the subject). The R-matrix theory for the Dirac equation19 was formulated
soon after the nonrelativistic one, with nuclear applications in view. Only later it was realized that
the electron–atom collisions involving targets with large atomic numbers require a Dirac description,
due to the increasing role of relativistic effects. The R-matrix theory was reinvestigated in this context
in Ref. 20.
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The central idea in the formulation of the R-matrix methods for scattering from spherically
symmetric potentials is to divide the whole space into two regions, a finite reaction volume r
< � and the outer region r ≥ �, and to expand a wave function in the inner region in a series of
eigenfunctions of the Hamiltonian governing the scattering process augmented, however, by artificial
boundary conditions at the sphere r = �. This procedure allows one to express the R-matrix as a limit
r → �− of an infinite functional series. In both nonrelativistic and relativistic theories the critical
issue, the convergence of the series on the boundary, was not properly analyzed by the originators and
only presumed to hold. The convergence question was first recognized by Rosenthal,21 however his
conclusions were incorrect. Later Szmytkowski and Hinze22–24 realized that while the development of
the solution in the Schrödinger formulation converges in the whole interval to an expanded function,
the analogous series appearing in the relativistic case has a discontinuity at the crucial boundary
point. In this way, in the most popular formulation of the method, the solution depends on the
artificial boundary condition imposed on the basis functions. Taking this into account, Szmytkowski
and Hinze developed the correct Dirac R-matrix theory. Their conclusion caused much controversy25

and was not widely recognized by the community.26, 27 We present here a theorem confirming their
results22–24 as well as the general result on convergence obtained by Szmytkowski.28

The paper is organized as follows. In Sec. II, we recall basic facts from both nonrelativistic and
relativistic R-matrix theories to highlight the problem of convergence appearing in both of them. In
Sec. III, we give the general convergence theorems concerning the eigenfunction expansions.3, 12 The
main result of the paper, a solution to the Dirac R-matrix puzzle based on the theorem by Birkhoff
and Langer,12 can be found in Sec. III. We finish the paper with conclusions and point out some
open problems.

II. EXPANSIONS APPEARING IN THE R-MATRIX THEORIES

The nonrelativistic and relativistic theories share many similarities, however in one essential
point they are very different, i.e., the eigenfunction expansion of the solution of a nonrelativistic
wave equation converges to a continuous function, whereas an analogous series in the relativistic
theory has a discontinuity at the crucial boundary point.22, 23, 28 As a result, the relativistic R-matrix is
not appropriately expressed by a functional series. To highlight this difference, we shortly introduce
both methods in a single-channel scattering from spherically symmetric potentials. The notation
used in the following sections is based on the monograph on the R-matrix methods in scattering.18

A. Nonrelativistic R-matrix theory

A nonrelativistic elastic scattering process of spinless particles with mass m and energy E
> 0 from a spherically symmetric potential V(r) is governed by the stationary Schrödinger equation.
We assume that the potential V(r) affects the particle only in a finite spherical volume of radius �

centered at r = 0, denoted further by V�. Outside this (inner) region the particle is free and its wave
function satisfies the free-Hamiltonian stationary Schrödinger equation. Obviously, the solution in
the inner region must pass smoothly into the solution in the outer region. We denote by �(E, r)
the wave function being the solution of the respective Schrödinger equations in the inner and outer
regions.

Since the potential is spherically symmetric, it is enough to consider only the radial part of the
function �(E, r) corresponding to the multi-index γ = (l, ml). For a general function f (r), it is
defined as

Fγ (r ) =
∫

4π

dr̂r2ϒγ (r) f (r), r̂ = r
r
, (1)

where ϒγ (r) = (1/r )ilYγ (r̂), and Yγ are normalized spherical harmonics defined as in Ref. 29. We
denote by P(E, r ) a vector of radial functions of �(E, r) with elements Pγ (E, r), and by D(E, r ) a
vector of radial functions of r̂ · ∇�(E, r) with elements Dγ (E, r). Let us assume that there exists a
matrix Rb(E, �) connecting P(E, r ) and D(E, r ) on the boundary of V� (which on the radial grid
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corresponds to r = �) in the following way:

P(E, �) = Rb(E, �)[D(E, �) − bP(E, �)], (2)

where b is an arbitrary square matrix. The above relation defines the R-matrix Rb(E, �). In what
follows, it will be assumed that b is a diagonal, energy-independent, real matrix. Then the R-matrix is
also diagonal, and its elements will be denoted by (Rb)γ γ ≡ Rbγ . Finding the R-matrix is equivalent
to solving the scattering problem since Rb(E, �) is simply connected to the scattering matrix.18

To determine the eigenfunction expansion of the R-matrix, we consider the radial part of the
Schrödinger equation in the inner region V�,(

− �
2

2m

d2

dr2
+ �

2l(l + 1)

2mr2
+ V (r ) − E

)
Pγ (E, r ) = 0, r ∈ [0, �). (3)

We emphasize that here we do not make any restrictions on the function, except that it vanishes at
r = 0 as rl + 1. Our aim is to expand the unknown radial function Pγ (E, r) in the basis {P (γ )

i (r )}
generated by the same Hamiltonian, but augmented by the artificial boundary condition at r = �,
that is (

− �
2

2m

d2

dr2
+ �

2l(l + 1)

2mr2
+ V (r ) − Ei

)
P (γ )

i (r ) = 0, r ∈ [0, �], (4)

lim
r→0

r−l−1 P (γ )
i (r ) = const,

d

dr
P (γ )

i (r )
∣∣∣
r=�

=
(

bγ γ + 1

�

)
P (γ )

i (�). (5)

The set of eigenvalues Ei is countably infinite, and eigenfunctions corresponding to different eigen-
values are orthogonal under the standard scalar product in L2([0, �]). The formal expansion of an
arbitrary function on [0, �] is

Pγ (E, r ) =
∞∑

i=0

Ci (E)P (γ )
i (r ), Ci (E) =

∫ ρ

0
dr P (γ )

i (r )Pγ (E, r ), (6)

where we assume that the functions {P (γ )
i } are normalized to unity. The choice of the boundary

conditions (5) for the basis functions allows us to write the coefficient Ci(E) in a form that reveals
the proportionality to Dγ (E, �) − bγ γ Pγ (E, �) [compare to Eq. (2)]. In the case that we consider it
holds that Dγ (E, r) = r∂r(1/r)Pγ (E, r). Using Eqs. (3) and (4) and the boundary conditions fulfilled
by P (γ )

i (r ), we obtain

Pγ (E, r ) = �
2

2m
[Dγ (E, �) − bγ γ Pγ (E, �)]

∞∑
i=0

P (γ )
i (�)

Ei − E
P (γ )

i (r ), r ∈ [0, �). (7)

Taking the limit r → �− on both sides leads to

Pγ (E, �) = Rbγ (E, �)[Dγ (E, �) − bγ γ Pγ (E, �)], (8)

where

Rbγ (E, �) = �
2

2m
lim

r→�−

∞∑
i=0

P (γ )
i (�)P (γ )

i (r )

Ei − E
. (9)

Comparing Eqs. (8) and (2) we see that Eq. (9) defines a diagonal element of the R-matrix Rb. One
notices that the R-matrix is expressed as a continuous extension of a functional series to the point r
= �. The main question that we are going to answer in Sec. III is: Can one interchange the symbols
of limit and sum, and still obtain the same result? In other words, does the series on the right-hand
side of Eq. (9) converge to a continuous function in [0, �]?
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B. Relativistic R-matrix theory

The relativistic description of an elastic scattering process for particles of spin 1
2 with rest mass

m and total energy E (|E| > mc2) is governed by the stationary Dirac equation. Similarly as we have
done in the nonrelativistic case, we assume that the potential V(r) vanishes outside the spherical
volume V� bounded by a spherical shell, corresponding on the radial grid to r = �, and that the wave
functions �(E, r) in the inner and outer regions pass smoothly one into the other on the boundary
of V�. To define the relativistic R-matrix, we fix the following notation:

	(+)
γ (r) = 1

r

(
il	κm j (r̂)

0

)
, 	(−)

γ (r) = 1

r

(
0

il+1	−κm j (r̂)

)
, (10)

where the multi-index γ is defined as (κ , mj), with κ ∈ Z \ {0} and mj = {− |κ| + 1/2, − |κ|
+ 3/2, . . . , |κ| − 1/2}, l = |κ + 1/2| − 1/2, and 	±κm j (r̂) are the spherical spinors.30 We define
two radial functions of a four-component vector f(r), denoted by the superscripts ± . For a fixed
multi-index γ they are given by

F (±)
γ (r ) =

∫
4π

dr̂r2	(±)†
γ (r)f(r). (11)

We denote by P(E, r ) and Q(E, r ) vectors of “ + ” and “ − ” radial functions of �(E, r), respec-
tively, with elements Pγ (E, r) and Qγ (E, r). Let us define the R-matrix R(+)

b (E, �) connecting P(E, r )
and Q(E, r ) on the surface of V� in the following way:

P(E, �) = R(+)
b (E, �)

[(
2mc

�

)
Q(E, �) − bP(E, �)

]
, (12)

where b is some square matrix. Henceforward, we will assume b to be diagonal, energy-independent,
and real. In this case the R-matrix will be diagonal as well.

To find the R-matrix, we consider the radial part of the Dirac equation in the internal region V�,(
mc2 + V (r ) − E c�(−d/dr + κ/r )

c�(d/dr + κ/r ) −mc2 + V (r ) − E

) (
Pγ (E, r )

Qγ (E, r )

)
= 0, r ∈ [0, �). (13)

Since the solution must fulfill some unknown boundary condition, given by (12), at the point r = �,
we do not make any assumptions on the functions Pγ (E, r) and Qγ (E, r), except for that they vanish
for r = 0. Note that Eq. (13) is a homogeneous differential equation in which E is a parameter,
and not an eigenvalue problem. We will expand the unknown solution in the basis generated by the
eigenproblem consisting of the Dirac Hamiltonian of the previous equation and boundary conditions
that, though unphysical, will allow us to develop the R-matrix into a functional series. Let us consider
the eigenproblem(

mc2 + V (r ) − Ei c�(−d/dr + κ/r )

c�(d/dr + κ/r ) −mc2 + V (r ) − Ei

) (
P (γ )

i (r )

Q(γ )
i (r )

)
= 0, r ∈ [0, �], (14)

lim
r→0

r−ν P (γ )
i (r ) = const, Q(γ )

i (�) = (2mc/�)−1bγ γ P (γ )
i (�), (15)

where ν = l + 1 if V(0) = const, and ν =
√

κ2 − (αZ )2 for the Coulomb potential (α is the fine-
structure constant and Z the atomic number). The set of real eigenvalues {Ei} is infinitely countable.
Moreover, the eigenfunctions corresponding to different eigenvalues are orthogonal in the sense∫ �

0
dr

(
P (γ )

i (r ), Q(γ )
i (r )

) (
P (γ )

j (r )

Q(γ )
j (r )

)
= N 2

i δi j . (16)
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We will further assume the eigenfunctions to be normalized to unity; then the formal expansion of
the functions Pγ (E, r) and Qγ (E, r) is given by(

Pγ (E, r )

Qγ (E, r )

)
=

∞∑
i=−∞

Ci (E)

(
P (γ )

i (r )

Q(γ )
i (r )

)
, r ∈ [0, �), (17)

Ci (E) =
∫ �

0
dr

(
P (γ )

i (r ), Q(γ )
i (r )

)(
Pγ (E, r )

Qγ (E, r )

)
. (18)

The coefficients Ci(E) can be written in the form revealing the connection to the R-matrix. Using
Eqs. (13) and (14) and the boundary conditions fulfilled by P (γ )

i (r ), we obtain(
Pγ (E, r )

Qγ (E, r )

)
= �

2

2m

[
2mc

�
Qγ (E, �) − bγ γ Pγ (E, �)

] ∞∑
i=−∞

P (γ )
i (�)

Ei − E

(
P (γ )

i (r )

Q(γ )
i (r )

)
, r ∈ [0, �).

Taking the limit r → �− on both sides we obtain for the upper component

Pγ (E, �) = R(+)
bγ

(E, �)

[
2mc

�
Qγ (E, �) − bγ γ Pγ (E, �)

]
, (19)

where

R(+)
bγ

(E, �) = �
2

2m
lim

r→�−

∞∑
i=−∞

P (γ )
i (�)P (γ )

i (r )

Ei − E
. (20)

Comparing Eq. (19) to Eq. (12), we see that (20) defines the diagonal elements of the R-matrix R(+)
b .

Exactly as in the case of the nonrelativistic R-matrix (compare Eq. (9)), the relativistic R-matrix is
expressed by a functional series whose convergence is directly related to the convergence properties
of the series (17). In the relativistic case the same question arises: Does the interchange of the limit
and the infinite sum in Eq. (20) still give the same result? In other words, does the following identity
hold:

lim
r→�−

∞∑
i=−∞

P (γ )
i (�)P (γ )

i (r )

Ei − E
?=

∞∑
i=−∞

P (γ )
i (�)P (γ )

i (�)

Ei − E
? (21)

The expression on the right-hand side of the above equation is traditionally called the R-matrix.
However, in Sec. III we show that in the case of relativistic scattering it is not allowed to exchange
the two operations. Therefore, the “R-matrix” as defined on the right-hand side of Eq. (21) cannot
connect the upper and lower component as in Eq. (12).

III. CONVERGENCE THEOREMS

In Sec. II, we have reviewed the R-matrix theories for the Schrödinger and Dirac particles.
In both cases the R-matrix has been defined as a limit of a certain eigenfunction expansion. In
the nonrelativistic theory it is given by Eq. (9), whereas in the relativistic theory by Eq. (20). The
problem of convergence of these two functional series is equivalent to convergence of expansions (6)
and (17), respectively. Let us then recall the convergence theorems for these two problems starting
with the one for the Schrödinger problem.3

Theorem 1 (adapted from Ref. 3): Consider the set of solutions of the following Sturm–
Liouville problem: [

− d2

dx2
+ q(x) − λn

]
yn(x) = 0, a ≤ x ≤ b, (22)

{
yn(a) cos α + y′

n(a) sin α = 0

yn(b) cos β + y′
n(b) sin β = 0

, (23)

 22 M
ay 2024 09:30:39

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl
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where q is assumed to be a real continuous function, and α, β ∈ [0, π ). Suppose now that f is a
real, continuous function of bounded variation in the interval [a, b]. Then the expansion of f in the
eigenfunctions of the eigenproblem (22)+(23) reads:

f̄ (x) =
∞∑

n=0

cn yn(x), (24)

with

cn =
∫ b

a
dx yn(x) f (x), (25)

where the eigenfunctions yn are assumed to be normalized to unity in L2([a, b]). The series f̄ (x)
converges uniformly to f(x) in the open interval (a, b) [i.e., on each closed interval contained in
(a, b)]. Moreover, for x = a and x = b the following relations are true:

f̄ (a) =
{

f (a), if α 	= 0

0, if α = 0
, f̄ (b) =

{
f (b), if β 	= 0

0, if β = 0.
(26)

The above theorem can be applied to the nonrelativistic expansion, indicating that in Eq. (9) the
limit can be exchanged with the infinite sum, giving

Rbγ (E, �) = �
2

2m

∞∑
i=0

P (γ )
i (�)P (γ )

i (�)

Ei − E
. (27)

In what follows, we present a theorem concerning the expansion of a two component function
appearing in the Dirac R-matrix definition.

Theorem 2 (adapted from Ref. 12): Consider the following boundary value problem:

d

dx

(
u(x)

v(x)

)
=

[
λA(x) + B(x)

] (
u(x)

v(x)

)
, a ≤ x ≤ b, (28)

Wa

(
u(a)

v(a)

)
+ Wb

(
u(b)

v(b)

)
= 0, (29)

where A(x), B(x) are 2 × 2 matrices of functions continuous with their first derivatives, A(x) being
diagonal, and Wa, Wb are constant 2 × 2 square matrices. Let us assume that:

(i) the eigenvalues of A(x), denoted by ϑ j(x) (j = 1, 2), are continuous functions fulfilling the
following conditions for all x ∈ [a, b]:

ϑ j (x) 	= 0

ϑ1(x) 	= ϑ2(x)

Arg[ϑ1(x) − ϑ2(x)] = const

Arg ϑ j (x) = const (30)

Further, let us divide the complex plane of the parameter λ into sectors in which the sign of the
expressions 
 j = Re(λ

∫ b
a dtϑ j (t)) (j = 1, 2) is fixed. If one takes into account the conditions

(30), there are two possibilities of dividing the complex plane of λ corresponding to situations
when either Arg[ϑ1(x)] 	= Arg[±ϑ2(x)] or Arg[ϑ1(x)] = Arg[±ϑ2(x)]. Both divisions are
visualized in Figure 1, where the aforementioned sectors are denoted by σ k, k = 1, 2, . . . . For
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022101-7 Convergence of expansions in eigenfunctions J. Math. Phys. 53, 022101 (2012)

FIG. 1. Two possible ways of dividing a complex plane of the parameter λ into sectors in which the value Rj has a fixed
sign. In figure (a) the two eigenvalues fulfill the condition Arg[ϑ1(x)] 	= Arg[±ϑ2(x)] while in (b) the two eigenvalues have
phases differing by π , i.e., Arg[ϑ1(x)] = Arg[−ϑ2(x)]. The same division is given by the situation Arg[ϑ1(x)] = Arg[ϑ2(x)],
but it is not depicted in the figure to avoid repetition. The continuous halflines mark the rays on which the values of ϑ j(x)
lie, whereas the dashed lines—the rays on which the functions Rj are equal to zero. The dashed lines are the borders of the
sectors σ k, k = 1, 2, . . . .

each sector σ k we define the 2 × 2 matrices I
k

and I k with elements

( I
k
)i j =

{
δi j , 
 j ≤ 0 in sector σk

0, 
 j > 0 in sector σk
,

( I k)i j =
{

0, 
 j ≤ 0 in sector σk

δi j , 
 j > 0 in sector σk
. (31)

(ii) Let the matrices Wa and Wb be such that in each sector σ k the following matrix is invertible:

	k ≡ Wa I
k + Wb I k . (32)

Then, (1) the set of eigenvalues λn and respective normalized eigenfunctions (un, vn)T of the
problem (28)+(29) is infinitely countable; the orthonormality relation is the following:∫ b

a
dx(ûn(x), v̂n(x))A(x)

(
um(x)

vm(x)

)
= δmn, (33)

where
(
ûn(x), v̂n(x)

)
is the eigenvector of the adjoint boundary value problem,33 corresponding

to the eigenvalue λn. (2) The development of any two-component function F = (F1, F2)T, real
and continuous with the first derivative in the interval [a, b], in the eigenfunctions of the
boundary problem (28)+(29) is given by

F̄(x) =
∞∑

n=−∞
Cn

(
un(x)

vn(x)

)
, (34)

with

Cn =
∫ b

a
dx

(
ûn(x), v̂n(x)

)
A(x)

(
F1(x)

F2(x)

)
. (35)

The expansion (34) has the following properties:

F̄(x) = F(x), for a < x < b, (36a)

F̄(a) = Ha F(a) + Ja F(b), (36b)
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F̄(b) = Hb F(a) + Jb F(b), (36c)

where the 2 × 2 matrices Ha, Ja, Hb, Jb are fully determined by the matrix A(x) and boundary
conditions, and given by the expressions

Ha = 1

2
12 +

∑
k

[
− ωk

2π
I

k
	−1

k Wa I k
]
, (37a)

Ja =
∑

k

[
− ωk

2π
I

k
	−1

k Wb I
k
]
, (37b)

Hb =
∑

k

[
− ωk

2π
I k	−1

k Wa I k
]
, (37c)

Jb = 1

2
12 +

∑
k

[
− ωk

2π
I k	−1

k Wb I
k
]
. (37d)

In the above, the parameter ωk is an angle between the boundary rays of a sector σ k (dashed
lines in Fig. 1) and 	k is the invertible matrix defined in Eq. (32).

The above theorem is the special case of a more general eigenfunction expansion problem considered
in Ref. 12. The reader may find there the proof of the above facts. We will present here in more
details the situation directly applicable to the R-matrix expansion. Let us then state and prove the
following corollary.

Corollary 1: Consider the boundary value problem(
p(x) − λρ(x) −d/dx + t(x)

d/dx + t(x) q(x) − λρ(x)

)(
f (x)

g(x)

)
= 0, a ≤ x ≤ b, (38)

(
cos α sin α

0 0

) (
f (a)

g(a)

)
+

(
0 0

cos β sin β

) (
f (b)

g(b)

)
= 0, (39)

with p, q, t, ρ being real functions continuous with first derivatives, ρ(x) > 0 for all x ∈ [a, b] and
α, β ∈ [0, π ). Then the set of eigenvalues λn and eigenfunctions ( fn, gn)T is discrete. The expansion
of a two-component function F = (F1, F2)T, continuous with the first derivative in [a, b], in the set
{( fn, gn)T} is given by

F̄(x) =
∞∑

n=−∞
Cn

(
fn(x)

gn(x)

)
,

Cn =
∫ b

a
dx ρ(x)

(
fn(x), gn(x)

) (
F1(x)

F2(x)

)
, (40)

and has the following properties:

F̄(x) = F(x), for a < x < b, (41a)

F̄(a) = 1

2

(
1 − cos 2α − sin 2α

− sin 2α 1 + cos 2α

)
F(a), (41b)

F̄(b) = 1

2

(
1 − cos 2β − sin 2β

− sin 2β 1 + cos 2β

)
F(b). (41c)
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Proof: To prove the corollary, let us rewrite Eq. (38) in such form that the results from
Ref. 12, recalled in Theorem 2, apply directly, i.e. we would like to have the differential equa-
tion and boundary conditions in the form (28)+(29). To achieve this, we multiply Eq. (38) on the
left-hand side by the unitary matrices U and Ũ given by

U = 1√
2

(
i 1

1 i

)
, Ũ =

(
i 0

0 −i

)
, (42)

obtaining

d

dx

(
u(x)
v(x)

)
=

[
λ

(
iρ(x) 0

0 −iρ(x)

)
+ B(x)

] (
u(x)

v(x)

)
, (43)

where u = (i f + g)/
√

2 and v = ( f + ig)/
√

2, the diagonal matrix on the right-hand side corre-
sponds to the matrix A, and the matrix B contains the functions p, q, t, and fulfills the assumptions
of Theorem 2. At the same time, we have to adjust the boundary conditions to the functions u and
v. These become (

eiα ie−iα

−ieiα e−iα

)(
u(a)

v(a)

)
+

(
−ieiβ e−iβ

eiβ ie−iβ

) (
u(b)

v(b)

)
= 0. (44)

Comparing Eqs. (44) to (29), we can see that the 2 × 2 matrices on the left-hand side can be
identified with Wa and Wb, respectively. Let us then check if Eq. (43) with boundary conditions (44)
satisfy the assumptions (i) and (ii) of Theorem 2.

First, we will find the division of the complex plane of the parameter λ into sectors, as described
in Theorem 2. The matrix A(x) has two complex eigenvalues ϑ1(x) = iρ(x) and ϑ2(x) = − iρ(x).
Note that since ρ(x) is strictly greater than zero and continuous for all x ∈ [a, b], they satisfy the
condition (i) of Theorem 2. Note, in particular, that Arg[ϑ1(x)] = Arg[−ϑ2(x)], which leads to the
division of the complex plane of the type shown in Figure 1(b), i.e., we have the following two
sectors:

σ1 = {λ : 
1 < 0 ∧ 
2 > 0} = {λ : Im λ ≥ 0}, (45)

and

σ2 = {λ : 
1 > 0 ∧ 
2 < 0} = {λ : Im λ < 0}. (46)

This implies that the matrices defined in (31) are

I
1 =

(
1 0

0 0

)
, I 1 =

(
0 0

0 1

)
, (47)

I
2 =

(
0 0

0 1

)
, I 2 =

(
1 0

0 0

)
.

Now the condition (32) can be checked easily. Let us write out explicitly the matrices 	1 and 	2 for
Wa and Wb as defined in (44), since we are going to use them in further calculations:

	1 =
(

eiα e−iβ

−ieiα ie−iβ

)
, 	2 =

(−ieiβ ie−iα

eiβ e−iα

)
. (48)

Clearly, they are invertible for all values of α, β ∈ R, so the condition (ii) from Theorem 2 is fulfilled.
We have checked that all assumptions of Theorem 2 are satisfied, therefore, the set {(un, vn)T} of

eigenfunctions of the problem (43)+(44) [and at the same time the set {(fn, gn)T} of eigenfunctions
of the problem (38)+(39)] is countably infinite. Moreover, part 2 of the theorem applies to the
expansion (40). To show explicitly that formulas (41a)–(41c) are valid, we premultiply Eq. (40) by√

2U obtaining the series of (un, vn)T representing a complex two-component function G = (G1,
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G2)T = (F2 + iF1, F1 + iF2)T:

Ḡ(x) =
∞∑

n=−∞
Cn

(
un(x)

vn(x)

)
. (49)

Although part 2 of the theorem was formulated for real functions, the generalization to complex
functions is straightforward if the real and imaginary parts are considered separately. Therefore, we
will proceed with the complex function G. Notice that coefficients Cn can be written as

Cn =
∫ b

a
dx ρ(x)

(
fn(x), gn(x)

)
U †Ũ †ŨU

(
F1(x)

F2(x)

)

=
∫ b

a
dx

(
ûn(x), v̂n(x)

)
A(x)

(
G1(x)

G2(x)

)
, (50)

where
(
ûn, v̂n

)T = (1/2)Ũ (un, vn)T is the solution of the eigenproblem adjoint to (43)+(44). The
obtained formula for coefficients is in agreement with Eq. (35). Consequently, the series (40) modified
with U converges to expressions (36a)–(36c). Let us then determine the matrices Ha, Ja, Hb, Jb in
this particular case. The angles ω1 and ω2 are equal to π since the sectors σ 1(2) are half-planes (see
Figure 1(b)), so exploiting Eqs. (37a)–(37d) we obtain

Ha = 1
2

(
1 −ie−2iα

ie2iα 1

)
, Hb =

(
0 0

0 0

)
,

Ja =
(

0 0

0 0

)
, Jb = 1

2

(
1 −ie−2iβ

ie2iβ 1

)
.

(51)

Taking into account the above results and Eqs. (36b) and (36c), we obtain the following expressions
for the sum of series (49) at the points x = a and x = b:

Ḡ(a) = HaG(a), Ḡ(b) = JbG(b). (52)

We recover the formulas for the original function F premultiplying Eq. (52) with (1/
√

2)U †:

F̄(a) = U † HaU F(a), F̄(b) = U † JbU F(b). (53)

Finally, we insert the matrices (51) into the above equations and obtain slightly modified formulas
(41b) and (41c):

F̄(a) = 1

2

(
2 sin2 α − sin 2α

− sin 2α 2 cos2 α

) (
F1(a)

F2(a)

)
, (54a)

F̄(b) = 1

2

(
2 sin2 β − sin 2β

− sin 2β 2 cos2 β

)(
F1(b)

F2(b)

)
. (54b)

Summarizing, in the open interval (a, b) the series (40) converges to the function F(x), whereas at the
boundary points x = a and x = b, the sum of the expansion is given by (54a) and (54b), respectively.
This finishes the proof of Corollary 1. �

The corollary reveals that the series (40) converges to the function F(x) in the whole interval
[a, b] if and only if the following two equalities hold simultaneously:

1

2

(
2 sin2 α − sin 2α

− sin 2α 2 cos2 α

)(
F1(a)

F2(a)

)
=

(
F1(a)

F2(a)

)
, (55)

1

2

(
2 sin2 β − sin 2β

− sin 2β 2 cos2 β

)(
F1(b)

F2(b)

)
=

(
F1(b)

F2(b)

)
, (56)
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which is equivalent to the condition

F1(a) cos α + F2(a) sin α = 0, F1(b) cos β + F2(b) sin β = 0. (57)

One recognizes in this formulas the boundary conditions (39). Consequently, the sum of the series
is continuous if and only if a function to be expanded fulfills the same boundary conditions as the
basis functions.

We demonstrated in this section that the properties of the developments into eigensolutions of
first-order differential systems (Theorem 2) and the expansions in the eigenfunctions of the Sturm–
Liouville problem (Theorem 1) are dramatically different. This fact, not realized by the originators
of the relativistic R-matrix method, has far-reaching consequences for the theory. Although the
assumptions in Corollary 1 are restrictive, i.e., the functions p, q, t, ρ, being elements of the matrices
appearing in the eigenproblem, are assumed to be continuous with their first derivative, its conclusion
still can be applied to expansion (17) at the point r = �. This can be done, because the boundary con-
ditions are separated and, consequently, the convergence of the eigenfunction expansion at the point
r = � is independent of the behaviour at the point r = 0. In fact, one can consider the boundary-value
problem (14)+(15) on the interval [ε, �] with the boundary condition P (γ )

i (ε) = 0 and show that the
solution at the point r = � remains the same for an arbitrarily small ε. Taking this into account, we
immediately see that the expansion (17) for r = � does not, in general, converge to the solution of
(13). It does only if the functions Pγ (E, r) and Qγ (E, r) satisfy the second of the boundary conditions
(15). This, however, cannot be assumed since this particular condition does not have any physical
meaning and is chosen in this way only to obtain the expansion of the R-matrix. As a result, the
commonly used definition of the R-matrix contains an error, since in general it holds that

lim
r→�−

∞∑
i=−∞

P (γ )
i (�)P (γ )

i (r )

Ei − E
	=

∞∑
i=−∞

P (γ )
i (�)P (γ )

i (�)

Ei − E
. (58)

The way to correct this mistake was found by Szmytkowski and Hinze for a general multichannel
case.18, 22–24 They introduced the correction which should by subtracted from the common and faulty
expression for the R-matrix in order to obtain the correct one.

IV. CONCLUSION

Summarizing, we have provided theorems concerning the convergence of eigenfunction expan-
sions of a two-component function into eigenfunctions of a Dirac operator on a finite closed interval
augmented by separated boundary conditions. In particular, we have shown that such expansions
have discontinuities at the boundary if the expanded function does not fulfill the same boundary
conditions as the basis functions. This confirms the result of Szmytkowski28 and has far-reaching
consequences for the relativistic R-matrix method. Moreover, the fact that the functional series
does not, in general, converge to a continuous function in the closed interval may affect the rate of
convergence and cause the Gibbs-like phenomenon31, 32 to occur.

The issue left as an open problem is the proof of convergence of (40) in the case when the
functions p(x), q(x), t(x) have a singularity at one of the boundary points, e.g., at x = a. This
is directly related to convergence of expansion (17) since the functions have discontinuities for
r = 0. However, due to the separated character of the boundary conditions (39) and the fact that both
the expanded function and the basis functions vanish at r = 0, the conclusions (41a) and (41c) of
Corollary 1, which concern the point r = �, should hold in this case, as well.
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û(a)

v̂(a)

)
+ Ŵb
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