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ABSTRACT Design of contemporary microwave devices predominantly utilizes computational models,
including both circuit simulators and full-wave electromagnetic (EM) evaluation. The latter constitutes
the sole generic way of rendering accurate assessment of the system outputs that considers phenomena
such as cross-coupling or radiation and dielectric losses. Consequently, for reliability reasons, the final
tuning of microwave device parameters is commonly performed utilizing EM simulation software. As EM
analysis is computationally heavy, parametric optimization entails significant costs, also for local algorithms.
The expenses generated by global search procedures are incomparably higher, and often prohibitive. Still,
global optimization is more and more often necessary, for example, when re-designing a structure over
extended ranges of operating conditions, if more than a single local optimum exists, or simply due to
the absence of quality initial design. A possible workaround is surrogate-assisted optimization, yet a
construction of accurate replacement models is a challenge by itself. This paper offers an innovative approach
to a rapid globalized optimization of passive microwave components. It combines a machine learning
procedure, specifically, an iterative construction and refinement of fast surrogates (with infill criterion being
a minimization of the predictor-yielded objective improvement) with a response feature technology, where
themetamodel targets suitably appointed characteristic points of the circuit outputs. These so-called response
features are in a nearly linear relationship with the geometry parameters, which facilitates the search process
and reduces the expenditures associated with surrogate model construction. Identification of the infill points
is executed using a particle swarm optimization algorithm. Numerical experiments carried out using two
microstrip circuits demonstrate the capability for a global search of the proposed algorithm, and its superior
performance over direct nature-inspired-based optimization and surrogate-assisted search at the level of
complete circuit characteristics. The original contributions of this work can be summarized as follows: (i) the
development and implementation of the machine learning procedure that operates at the level of response
features, (ii) the development of parameter space pre-screening stage employed to narrow down the region
to be explored in the search process, (iii) demonstration of superiority of the proposed framework (including
its remarkable computational efficiency) over a range of benchmark methods, both direct and surrogate-
assisted ones.

INDEX TERMS EM-driven design, global optimization, microwave engineering, nature-inspired algo-
rithms, response features, surrogate-assisted optimization.
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I. INTRODUCTION
The needs of emerging areas of high-frequency electronics,
such as wireless communications [1], internet of things (IoT)
[2], remote sensing [3], or wearable/implantable devices [4],
[5], result in stringent performance demands imposed on
microwave components designed for such applications.
The required functionalities include reconfigurability [6],
broadband [7] and multi-band applications [8], harmonic
attenuation [9], non-standard phase responses [10], and—
more and more often—limited physical dimensions [11],
[12], [13], [14]. Meeting these demands lead to complex
circuit geometries characterized by substantial numbers of
parameters. In particular, miniaturization is often achieved
by meandering the transmission lines [15] or incorporating
compact microstrip resonant cells (CMRCs) [16], whereas
harmonic suppression is achieved by employing additional
filtering components or resonators [17], all of which have to
be properly dimensioned. Furthermore, accurate evaluation
of electrical characteristics of microwave devices calls for
full-wave electromagnetic (EM) analysis to accommodate
EM cross-coupling effects, radiation and dielectric losses,
and the existence of connectors or other components (e.g.,
housing or installation fixtures in the case of antennas [18]).
Thus, simulation-driven design optimization has become a
must in the design of high-performance circuits. This includes
the final stages of the design process (also referred to
as design closure [19]), which involve refining geometry
parameters, necessary to ensure the best attainable system
performance.

EM-driven design is a practical necessity, yet it is a chal-
lenging process due to high computational expenditures it
entails. Tuning of geometry parameters is associated with
many system simulations, which can easily exceed a few
hundred also for a local optimization (e.g., with numerical
gradients) [20]. This translates into execution time reach-
ing even up to several days. On the other hand, interactive
approaches such as supervised parameter sweeping, continue
to be extensively utilized both in academia and industry [21].
While formally cheaper, they are only capable of handling
one or two parameters at a time, and, therefore, lead to
sub-optimal results. Furthermore, an increasing number of
design scenarios require global optimization, the cost of
which is incomparably higher, and, in the case of microwave
components, may be as high as over a week. The exam-
ples are plenty and include multimodal tasks (i.e., those
featuring multiple local optima) such as optimization of
coding metasurfaces [22], frequency selective surfaces [23]
(as well as other metamaterial-based structures [24]), syn-
thesis of radiation patterns of antenna arrays [25], [26],
optimization of sparse [27] or conformal arrays [28], multi-
criterial design [29]. Global search is also required if a
sufficiently good starting point is unavailable (e.g., re-design
of a filter or a compact coupler across a broad range of
operating frequencies [30] or substrate parameters [31]),
or the relationships between circuit dimensions and electrical

characteristics are unintuitive (e.g., CMRC-based miniatur-
ized circuits [32]).

The most employed techniques for global optimization
constitute nature-inspired routines [33], [34], [35], commonly
dubbed as metaheuristics [36]. Their operating principle is to
mimic either biological [37] or social [38] processes, such as
natural evolution [39], hunting or feeding strategies of vari-
ous species [40], [41], etc. Nature-inspired methods process
the sets of candidate solutions (populations, swarms, packs,
etc.) [42], [43], which are referred to as individuals (parti-
cles, agents, etc.) [44]. These exchange information, which
either affect their composition (crossover, mutation [45]),
or their relocation in the parameter space (e.g., through
randomized bias towards the individual/global best [46]).
This arguably enables a global search capability, although
at high computational costs, typically measured in thou-
sands of objective function evaluations, and often rather
poor repeatability of solutions. Some of the algorithms that
fall into this this category include genetic [47] and evo-
lutionary algorithms (GAs, EAs) [48], ant systems [49],
differential evolution (DE) [50], particle swarm optimization
(PSO) [51], firefly algorithm [52], grey wolf optimiza-
tion [53], and numerous variations [25], [54], [55], [56],
[102], [103], [104], [105], [106], [107], [108], [109], [110],
[111]. However, the recent developments seem to be rather
incremental, and novel algorithms often resemble some of the
older techniques (e.g., PSO). One of the attractive features
of nature-inspired routines is their straightforward handling
and implementation. They are widely adopted for solving
optimization tasks in the application areas, where evalua-
tion of the objective function is given analytically or cheap
to evaluate, e.g., mechanical structures described by low
numbers of design variables [57], [58], [59], [60], [61],
[62], [63], [64]. As mentioned earlier, due to poor com-
putational efficiency, direct EM-driven metaheuristic-based
optimization is normally prohibitive. The exceptions include
cases where full-wave simulation is relatively cheap (up to
10-30 seconds per system evaluation), or analytical models
are available. A flagship example of the latter is an ana-
lytical array factor model utilized for antenna array pattern
synthesis [28].
Practical incorporation of population-based methods into

EM-driven design can be realized using surrogate mod-
elling techniques [65], [66]. This typically leads to iterative
procedures where the metamodel serves as a predictor
(to facilitate identifying the most propitious parts of the
design space), and it is enhanced by adding EM simu-
lation data acquired thus far [67]. Those additional data
points are obtained using different infill criteria designed,
e.g., to improve the model accuracy (e.g., maximization of
mean squared error [68]), or to seek the optimum design
(e.g., minimization of the merit function yielded by the
predictor [69]). Procedures like these are often referred to
as machine learning approaches [70], [71], [72], and some
of the utilized modelling methods involve kriging [73],
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Gaussian process regression (GPR) [74], artificial neural net-
works [75], [76], but also polynomial chaos expansion [77].
The major problem of surrogate-based nature-inspired meth-
ods is a rendition of the metamodel itself. Microwave
components feature highly nonlinear (and multiple) fre-
quency characteristics, representing of which requires large
numbers of training data samples. Consequently, most algo-
rithmic frameworks of this class are demonstrated using
systems described by a few parameters, or problems defined
over narrow parameter ranges [78], [79]. Some recent and
computationally efficient surrogate-assisted approaches in
high-frequency design can be found in [112], [113], [114],
and [115]. Other recent studies concerning model- and
optimization-based design have been reported in [116], [117],
[118], [119], [120], [121], [122], [123], [124], and [125].
The issues associated with conventional data-driven mod-
eling can be alleviated by means of performance-driven
modelling methodologies [80], [81], [82], exploitation of
multi-fidelity EM simulations [83], or a response feature
technology [84]. The latter strategy relies on reformulating
the design problem within the auxiliary space of character-
istic points derived from the circuit’s output. These points
typically exhibit a weakly nonlinear relationship with the
geometry parameters of the circuit [85]. This approach
enables the creation of precise models using smaller training
datasets.

In this study, we introduce an innovative algorithmic
framework for limited-cost global optimization of passive
microwave circuits. The search process is delegated to the
response feature space spanned by the coordinates of key
locations in the output curves, identified based on EM simula-
tion data. The initial metamodel model is based on randomly
allocated observables pre-selected to contain extractable fea-
tures, and to ensure its sufficient accuracy. The additional
points (frequently referred to as infill samples) are gen-
erated to minimize the predicted objective function (also
formulated in terms of response features); the underlying
search algorithm is a particle swarm optimizer. Operating
in the domain of response features significantly reduces the
CPU expenses of the search event and enhances its depend-
ability as demonstrated using two microwave components.
The average cost of global search is only about 140 EM
simulations of the respective structure. This remarkably
low cost, nearly ten times lower than that of population-
based algorithms, has been attained through leveraging
the problem-related knowledge, in particular, the charac-
teristic points of the system outputs: both for observable
pre-screening and generation of infill samples. Further-
more, the algorithm exhibits excellent success rate with
satisfactory results produced during all algorithm runs. Thor-
ough benchmarking against direct EM-driven nature-inspired
optimization and a machine learning approach targeting
circuit frequency characteristics demonstrates the superior-
ity of the proposed technique in terms of both cost and
reliability.

II. GLOBAL OPTIMIZATION OF MICROWAVE PASSIVES
BY MEANS OF RESPONSE-FEATURE SURROGATES AND
PROJECTED OBJECTIVE FUNCTION IMPROVEMENT
In this section of the paper, we delve into the specifics of
the proposed optimization framework. We begin with the
formulation of themicrowave design problem in Section II-A,
followed by an overview of the fundamentals of response
features, or characteristic points, in Section II-B. The pro-
cess of creating the initial surrogate model is discussed
in Section II-C, while Section II-D elaborates on the core
aspect of the algorithm: the infill point rendition by min-
imizing the projected objective function. In this step, the
current surrogate model is optimized using a particle swarm
optimization routine (as an example of a nature-inspired
algorithm). The operation of the complete framework is sum-
marized in Section II-E.

A. MICROWAVE DESIGN OPTIMIZATION
In this paper, we consider optimization of microwave compo-
nents understood as the adjustment of parameters (typically,
circuit dimensions) encapsulated in a vector x, so that the
operating parameters of the circuit are aligned with their tar-
get values, represented by a vector Ft . The relevant notation
has been gathered in Table 1. Table 2 provides examples
of specific design tasks and defines the objective function
U (x, Ft ), which quantifies the design quality regarding the
vector Ft . For microwave circuits, the electrical characteris-
tics of interest are scattering parameters Sij(x, f ) (cf. Table 1)
[86], as well as other quantities whichmay be estimated based
on them, such as the phase response.

It should be noted that most of design problems feature
several objectives, which are typically treated in different
ways, either directly, or as design constraints [87]. Cast-
ing some of the goals into constraints is a convenient way
of simplifying the problem and defining a scalar objective
function. An alternative method is to combine design goals

TABLE 1. Design optimization of microwave components: Terminology.
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TABLE 2. Design optimization of microwave components: Terminology.

(e.g., a weighted sum method [88]), or explicit handling
(multi-criterial design [89], [90], [91]), which are not con-
sidered in this work.

Having defined the objective function U (x, Ft ), the prob-
lem is posed as a non-linear task of the form

x∗
= argmin

x
U (x,Ft ) (1)

In (1), x∗ is the optimum design to be identified.

B. RESPONSE FEATURES
Microwave parameter tuning is routinely conducted at the
level of full-wave EM simulation models. On the one hand,
this ensures adequate accuracy of evaluating the electrical
characteristics. On the other hand, it is likely to inflate compu-
tational expenditures, which becomes a major problem when
global optimization is of interest.

Global search allows for identification of the best pos-
sible design but requires exploring the entire design space.
Needless to say, handling highly nonlinear characteristics
of microwave components is a challenging endeavor. Con-
sider Fig. 1 presenting an example of a branch-line coupler,

as well as its responses (scattering parameters vs. frequency)
at many randomly assigned designs. Clearly, global search
is indispensable for optimization of the circuit to center
its operation at, e.g., the exemplary target operating fre-
quency of 0.6 GHz, because initiating local parameter tuning
from majority of the points presented in Fig. 1(b) would
fail.

A possible way of mitigating this problem offers a
response feature approach [83] being found on refor-
mulating the design task using appositely defined and
extracted key (feature) points of the circuit outputs [85].
The dependence between dimensions and material param-
eters and the coordinates of feature points exhibits lower
nonlinearity than an analogous dependence for the entire
electrical responses, which has been extensively demon-
strated in the literatures [84], [92], [93], and [94]. Conse-
quently, the said reformulation effectively regularizes the
design problem and enables achieving a faster convergence;
thus, improves computational efficiency of the optimiza-
tion processes [93]. In addition, it enables a reduction
of the training dataset sizes when constructing surrogate
models [94].
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FIGURE 1. Exemplary branch-line coupler: (a) circuit geometry,
(b) scattering parameters corresponding to random designs allocated
over the assumed design space. Local optimization executed using the
objective function such as those presented in Table 2 launched from most
of designs of (b) would fail, thus global search is required.

The feature points are relevant to a specific problem at
hand [82]. The main prerequisite is that the characteristic
point set should enable to quantify the design objectives.
If we consider, for example, a design of coupling structures
for best matching and port isolation along with the target
power split ratios, the feature points should account for the
above operating parameters as well as the circuit’s operating
frequency. Figure 2 shows example definitions of the feature
points that permit estimating the circuit’s operational fre-
quency, its power division ratio, along with –20 dB frequency
band for the matching and isolation responses. Figure 2(b)
demonstrates the less-nonlinear relationships between the
coordinates of features and the selected component dimen-
sion (cf. [92], [93] for a more detailed discussion). These
simple relationships greatly facilitate the parameter tuning
process as well as a construction of a possible surrogate
model that might be exploited to accelerate global optimiza-
tion of the device. Both are the critical factors explored by the
design framework proposed in this work.

We refer to the feature points of the considered device as
fP(x) = [fF (x)T fL(x)T ]T , where fL(x) = [fL.1(x) . . . fL.k (x)]T

is the vector of level coordinates, and the vector fF (x) =

[ff .1(x) . . . ff .k (x)]T comprises their frequency counterparts.
For example, assuming four feature points for the coupler,

FIGURE 2. Branch-line coupler (see Fig. 1) and its response features:
(a) exemplary choices of characteristic point: o – minimal levels of
matching and isolation responses, ∗ – coordinates utilized for power
division ratio assessment, □ – points referring to –20 dB values of |S11|

and |S41|; (b) interrelationship between power split ratio KP (extracted
from the response features) and one of the circuit’s parameter rendered
using randomly-generated designs.

two pertinent to the power division ratio (values of |S31| and
|S21| at devices’ operating frequency), and two pertinent to
the minimum levels of the |S11| and |S41| characteristics,
we would have

f f (x) =
[
ff .1(x) ff .2(x) ff .3(x) ff .4(x)

]T (2)

f L(x) = [fL.1(x) fL.2(x) fL.3(x) fL.4(x)]T (3)

where ff .1 and ff .2 are frequencies of the minimal values of
reflection |S11| and isolation |S41| responses, whereas fL.1 and
fL.2 are the respective minima levels; further, ff .3 = ff .4 =

[ff .1 + ff .2]/2 = f0 is the roughly estimated coupler’s operat-
ing frequency, fL.3 and fL.4 are the values of |S31| and |S41|
for f0. Then we have KP = fL.3 – fL.4 (the estimated value of
the power division ratio).

Further, Fo(x) = Fo(fP(x)) will refer to the vector of
device’s operating parameters assessed based on response
features fP(x). Using this vector, the design problem refor-
mulated regarding response features can be stated as

x∗
= argmin

x
UF (x, f P(x),Ft ) (4)

with the merit function UF expressed analogously as pre-
sented in Table 2; however, using Fo(x), we may write
compactly

UF (x, f P(x),Ft ) = U0(f P(x)) + β||Fo(f P(x)) − Ft ||2 (5)

where U0 encodes the primary objective. As an illustra-
tion, if the aim is to relocate the operating frequency of
a coupler structure to the target frequency ft , achieve the
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assumed power split error, and enhance matching and iso-
lation at ft, then, the primary objective would be to reduce
fL.1 and fL.2, cf. (2), (3), i.e., we would define U0(fP(x)) =

max{fL.1(x), fL.2(x)}. The coefficient β controls the signifi-
cance of the alignment of the operating parameters with the
target as compared to the primary objective. Typically, we
set β = 100.

C. CONSTRUCTING INITIAL SURROGATE MODEL
The proposed global optimization framework introduced in
this work is based on a surrogate-assisted framework. The
first step of the optimization process involves constructing an
initial surrogate model. To minimize the number of training
data samples required while ensuring adequate predictive
capability, the model returns response features, as discussed
in Section II-B. This surrogate, denoted as s(0)(x), aims to
capture the amplitude and frequency features’ coordinates
defined for the device under consideration

s(0)(x) =

[[
s(0)f .1(x) . . . s(0)f .K (x)

]T [
s(0)L.1(x) . . . s(0)L.K (x)

]T]T
(6)

In this work, we use kriging interpolation [95] as the mod-
elling method of choice. The training dataset consists of
samples x(j)B , j = 1, . . . , Ninit , and the vectors comprising
features fP(x

(j)
B ), which are identified based on EM simula-

tion data at the selected locations. The number Ninit is not
set beforehand, but it is adjusted so that the following two
conditions are satisfied:

• It is possible to extract the feature points at all designs
x(j)B , j = 1, . . . , Ninit (see Fig. 3);

• The accuracy of the model (here, the relative RMS
error [80]) is sufficiently low, i.e., below the user-defined
threshold, usually set to a few percent.

It should be noted that for certain designs featuring dis-
torted responses (cf. Fig. 3), extraction of the response
features is not possible, in which case the design would not
be included into the training dataset. This procedure also acts
as a pre-selection mechanism, which allows us to pinpoint
the propitious parts of the parameter space and exclude other

FIGURE 3. Sequential generation of training data points for constructing
the initial metamodel: the operating frequencies of the accepted samples
belong to the simulation frequency range.

parts thereof by considering the knowledge identified from
the system outputs expressed as the response features.

The dataset obtained under the two conditions mentioned
earlier will be the basis of constructing an accurate meta-
model, which can be applied to optimize the circuit at hand.
Figure 4 summarizes the formal procedure of generating the
sample points. Owing to the low-nonlinear dependence of
the coordinates of features on geometry parameters of the
device being optimized, the actual number of samples Ninit
is typically low, between fifty and a hundred. Moreover, the
number of random observables that allow for obtaining Ninit
‘‘good’’ samples will be larger, by a factor of 1.5 to perhaps
up to three, depending on the problem complexity.

D. GENERATING INFILL POINTS THROUGH
NATURE-INSPIRED OPTIMIZATION
The infill points are generated using the subsequent surrogate
models, starting from the initial one, s(0) (obtained as dis-
cussed in Section II-C), and the refined ones s(j), j= 1, 2, . . . .
The surrogates act as predictors yielding the expected loca-
tions of the optimum design. The candidate vectors x(i+1),
i = 0, 1, 2, . . . , are yielded by solving

x(i+1)
= argmin

x∈X
UF (x, s(i)(x),Ft ) (7)

Problem (7) is formulated in the same way as (5); how-
ever, the characteristic points are predicted by means of the
metamodel s(i). The underlying search routine is the particle
swarm optimizer (PSO) [97], the flagship bio-inspired proce-
dure. It should be emphasized, however, that (7) can be solved
using any global optimization method.

FIGURE 4. Generating the training dataset for building initial surrogate
model.
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FIGURE 5. Pseudocode of the developed algorithm for global microwave
design optimization.

The problem itself is straightforward to solve owing to
response feature formulation, and the employment of the
regularization term in the cost function (cf. (5)). Meanwhile,
massive evaluations of the cost function UF (x, s(i)(x), Ft )
can be carried out at negligible cost, therefore, utilization
of the population-based methods would not deteriorate the
computational efficacy of the optimization procedure.

Formally speaking, the infill criterion employed here lever-
ages the predicted objective function improvement [98]. This
means that we are not as much interested in improving the
predictive power the metamodel but rather in exploitation of
the region containing the optimum design (which was estab-
lished beforehand through pre-screening). The EM-evaluated
points accumulated during the optimization course is utilized
to enhance the surrogate. More specifically, model s(j)(x)
constructed for the ith procedure’s iteration is built using the
dataset {x(k)B , fP(x

(k)
B )}k=1,...,Njnit+j. Here, x

(Nijit+j)
B = x(j) for

j = 1, 2, . . . .
The stopping condition of the search process consist in

converging w.r.t. argument, i.e., ||x(j+1) – x(j)|| < ε or when
the cost function did not improve across the last Nno_improwe
iterations. In the verification experiments of Section III,
we use Nno_improve = 10 and ε = 10−2.

E. OPTIMIZATION ALGORITHM
The procedure for rendering the first metamodel, and the infill
strategy of Section II-D are combined into an optimization
framework summarized below. Table 3 gathers the control
parameters. One can notice that solely three parameters exist:
two related to the stopping criteria (i.e., allowing to modify

FIGURE 6. Flow chart of the developed algorithm for global optimization
of microwave passive devices.

TABLE 3. Control parameters and their explanation.

the resolution of the search procedure). The third parameter
imposes the requirements pertinent to the predictive power of
the metamodel. Here, it is set to ten percent, which is a mild
condition. Also, it is not tuned to the specific problem at hand,
which is to demonstrate that the same algorithm setup can be
used to solve a variety of design tasks.

The pseudocode outlining the optimization process is pre-
sented in Fig. 5, and the flow chart of the framework is
shown in Fig. 7. The first stage is a generation of random
samples and their pre-selection, leading to a rendition of the
initial surrogate model (Steps 2 and 3). The infill points are
obtained by optimizing the initial (for i = 0), and subsequent
surrogates (for i > 0), as in Step 5. The refinement of the
surrogate model is executed in Step 8 after updating the
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training dataset (Step 6). The termination condition is deter-
mined in Step 9.

III. DEMONSTRATION EXAMPLES
For verification, we examine two microstrip devices, a com-
pact rat-race coupler (RRC), and a dual-band power divider.
Both structures are optimized using the algorithm intro-
duced here, as well as several comparison techniques: (i) a
multi-start local search, (ii) a particle swarm optimization
routine (PSO), and (iii) a machine-learning-based proce-
dure operating on the entire frequency responses of the
circuits. Our primary focus is the dependability of the
search procedure, described in terms of a relative number
of algorithm executions that produce satisfactory designs
(success rate), design quality, along with computational
efficiency.

This part of the paper is commenced by introduction of the
test circuits in Section III-A. Section III-B elaborates on the
setup of the experiments. Section III-C discusses the results
and summarizes our findings on the algorithm performance.

A. VERIFICATION CIRCUITS
The optimization procedure described in Section II is val-
idated here with the use of two microstrip circuits: a
compact rat-race coupler (RRC) with folded transmission
lines (referred to as Circuit I) [99], and an equal-split dual-
band power divider (Circuit II) [100]. The geometries of both
circuits are depicted in Figs. 7(a) and 8(a), while Figs. 7(b)
and 8(b) provide details about the relevant parameters (such
as substrate and design variables) as well as the designable
objectives. The EM evaluations of Circuits I and II are per-
formed using CST Microwave Studio.

Circuit I is to work at the target frequency f0, at which its
impedance matching, and port isolation are to be improved
as much as possible. Further, the power division ratio |S31| –
|S21| [dB] is to reach the target value KP. For Circuit II, the
purpose relies in minimization of matching and port isolation
at the two centre frequencies f1 and f2, while ensuring equal
power division. In this case, the second condition is satisfied
due to the circuit symmetry, therefore, it is not explicitly tack-
led in the optimization event. For each circuit, we consider
two design scenarios as specified in Table 4. The same table
indicates the search space for both circuits in the form of the
geometry parameter bounds. Note expansive variable ranges:

FIGURE 7. Rat-race coupler using folded transmission lines (Circuit I)
[99]: circuit topology and importand details.

FIGURE 8. Dual-band equal-division power divider (Circuit II) [100]:
circuit topology and importand details.

TABLE 4. Parameter spaces and design objectives for Circuits I and II.

the mean ratio between upper and lower limits equals 13 Cir-
cuit I and it is 5 for Circuit II.

B. SETUP AND RESULTS
The control parameters of the developed procedure were
adjusted as indicated in Table 3 (Emax = 10%, ε = 10−2, and
Nno_improve = 10). The same setup is used for both circuits
and all design scenarios. Table 5 summarizes the benchmark
procedures that our method is compared to. These include
three algorithms:

• A nature-inspired algorithm (here, PSO), which is to
directly compare our framework with population-based
approaches. Here, PSO is set with low computational
budgets (two versions, with 500 and 1,000 objective
function evaluations). This is to ensure that the optimiza-
tion process does not incur excessive costs;

• A multiple-start gradient optimization, which allows us
to showcase that the employed design problems are
truly multi-modal, and, therefore, require global search
approaches;

• A machine-learning-based algorithm, which is the pro-
cedure of Section II (kriging-based surrogate with
infill criterion involving predicted objective function
improvement), working with complete frequency char-
acteristics of the circuit of interest. This method is
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TABLE 5. Benchmark algorithms.

TABLE 6. Circuit I: Results and benchmarking.

considered to directly prove the advantages coming from
employing the response feature technology.

Tables 6 and 7 display the numerical outcomes, while
Figs. 9 through 12 depict the circuit responses at the ulti-
mate designs acquired through the proposed algorithm. These
figures also exhibit the dependence of the objective function
value on the iteration index. Furthermore, Figures 13 and 14
illustrate the progression of the circuit design in the feature
space, highlighting the changes in the power split ratio and
operating frequency for Circuit I, and the operational fre-
quencies for Circuit II. It can be noted that upon identifying
the propitious region of the design space, the search process
is focused on exploitation of that region, which was to be
expected given the assumed infill criterion.

C. DISCUSSION
Here, we analyze the results provided in Table 6 and Table 7
and articulate our findings pertinent to the performance of the

TABLE 7. Circuit II: Results and benchmarking.

FIGURE 9. Circuit I: S-parameters at the optimal designs rendered by the
developed procedure (top), along with objective function evolution
(bottom). The results obtained in the representative algorithm instances
for Case 1 are shown: (a) run 1, (b) run 2. The algorithm iterations are
counted once the initial metamodel has been set up. Vertical line marks
the intended operating frequency, here, 1.8 GHz.

developed optimization procedure. The factors we are inter-
ested include dependability, the quality of the final designs
rendered by the algorithms, their computational efficiency,
as well as the benefits brought in by the response feature
approach.

• Optimization process reliability: The results indicate
that the developed procedure yields satisfactory designs
(i.e., such that the resultant operating figures are close
to the intended targets) in all algorithmic runs con-
ducted during our experiments. In Tables 6 and 7, this
is referred to as a success rate, which is 10/10 for
the proposed method. As expected, the success rate
for the multi-start gradient algorithm is significantly
lower (about fifty percent on the average, but as low as
2/10 in Case 1 for Circuit II), which indicates that the
test cases under consideration are multimodal, and their
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FIGURE 10. Circuit I: S-parameters at the optimal designs rendered by the
developed procedure (top), along with objective function evolution
(bottom). The results obtained in the representative algorithm instances
for Case 2 are shown: (a) run 1, (b) run 2. The algorithm iterations are
counted once the initial metamodel has been set up. Vertical line marks
the intended operating frequency, here, 1.2 GHz.

FIGURE 11. Circuit II: S-parameters at the optimal designs rendered by
the developed procedure (top), along with objective function evolution
(bottom). The results obtained in the representative algorithm instances
for Case I are shown: (a) run 1, (b) run 2. The algorithm iterations are
counted once the initial metamodel has been set up. Vertical line mark
the intended operating frequencies, here, 3.0 GHz and 4.8 GHz.

successful handling does require global search meth-
ods. The reliability of the particle swarm optimizer is
significantly higher with the success rate of 8/10 if the
assumed computational resources equal 500 objective
function evaluations, and 9/10 for 1,000. These numbers
indicate that to achieve perfect success rate, the CPU
budget would have to be increased, perhaps to 2,000
objective function evaluations or beyond. These levels
of costs, however, are rather impractical. Finally, the
machine learning algorithm directly operating on fre-
quency responses of the circuits performs well in terms
of design quality. The success rate is 10/10 for both
circuits; yet, the CPU cost is much higher than for the
proposed feature-based version.

FIGURE 12. Circuit II: S-parameters at the optimal designs rendered by
the developed procedure (top), along with objective function evolution
(bottom). The results obtained in the representative algorithm instances
for Case 2 are shown: (a) run 1, (b) run 2. The algorithm iterations are
counted once the initial metamodel has been set up. Vertical line mark
the intended operating frequencies, here, 2.0 GHz and 3.3 GHz.

FIGURE 13. Circuit I: history of the optimization in the space of response
features: (a) Case 1 (plot corresponding to the algorithm run shown in
Fig. 9), (b) Case 2 (plot corresponding to the algorithm run shown in
Fig. 10). Initial and infill samples are marked using black and blue dots,
respectively; optimal solution shown using larger circle; optimization
path represented by line segments illustrate the optimization path.
Adjustment of the operating frequency range permitted capturing the
optimization history near the optimal design.

• Design quality: The proposed procedure delivers solu-
tions of similar or better objective function values to
those produced by the benchmark methods. The num-
bers (way below –20 dB for Circuit I, and around –20 dB
or so for Circuit II), indicate that the circuit matching and
isolation characteristics are at satisfactory levels from
the standpoint of practical applications, and (for Circuit
I) the power split ratio reaches the target value (–3 dB
for Case 1 and 0 dB for Case 2).

• Computational complexity: Apart from the local
algorithm, which is considered to corroborate the
necessity for global search for the test cases under con-
sideration, the algorithm developed in this study exhibits
the best computational efficiency. The average number
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FIGURE 14. Circuit I: history of the optimization in the space of response
features: (a) Case 1 (plot corresponding to the algorithm run shown in
Fig. 11), (b) Case 2 (plot corresponding to the algorithm run shown in
Fig. 12). Initial and ifill samples are marked using black and blue dots,
respectively; optimal solution shown using larger circle; optimization
path represented by line segments illustrate the optimization path.
Adjustment of the operating frequency range permitted capturing the
optimization history near the optimal design.

of circuit simulations is only 140, which is 86 percent
lower than PSO, and almost seventy percent less than
the machine learning procedure directly handling the
frequency characteristics.

• The computational efficacy of the introduced algorithm
is mainly achieved due to the incorporation of response
features. This is particularly visible by comparing the
number of training data points indispensable to establish
the initial surrogate model, which is 76 and 81 for Cir-
cuit I (cases 1 and 2, respectively), and 69 and 73 for
Circuit II. At the same time, constructing surrogates
of similar predictive power at the level of complete
frequency responses (as in the machine learning pro-
cedure), requires about 400 samples. As a matter of
fact, the numbers would be higher, but 400 was set as
the maximum computational cost of this phase of the
optimization procedure.

The numerical results corroborate suitability of the pro-
posed procedure as a low-cost substitution of the existing
global optimization methods. It delivers consistent and
repeatable results at the cost considerably lower than nature-
inspired procedures, as well as machine learningmethods that
directly handle circuit responses. A potential limitation of
our approach is associated with handling excessively large
search spaces. More specifically, in such cases, the number
of random observables necessary to identify a training dataset
suitable for constructing the initial surrogate may be signif-
icant, as most of the samples would be rejected because of
their poor quality (so that it would not be possible to extract
their response features). On the other hand, in typical sce-
narios, the parameter spaces are set up based on engineering
experience, which limits the likelihood of the these issues.
It should also be recalled that the search spaces for the circuits
of Figs. 7 and 8 are indeed large: the ratio of the upper to lower
limits is around twelve on the average.

IV. CONCLUSION
This paper introduced a novel algorithmic framework for
low-cost surrogate-based global optimization of microwave
components. The proposed technique capitalizes on
response-feature metamodels (here, kriging interpolation
ones), built to represent the coordinates of suitably defined
characteristic points of the device outputs, instead of the
complete frequency responses. This does not only reduce the
quantity of training data points necessary to render reliable
surrogates, but also regularizes the functional landscape the
optimization process operates on. The first stage of the search
process is oriented towards a construction of the initial meta-
model, using a collection of pre-selected random observables
featuring extractable characteristic points. The second stage
is iterative and consists of surrogate-based predictions and
model refinement using the infill points accumulated along
the optimization path. The criterion for allocating infill points
consists in minimizing the modelled merit function, and we
use the particle swarm optimizer (PSO) as the optimization
routine of choice. Thus, the proposed algorithm falls into
the category of machine learning frameworks. Comprehen-
sive numerical validation, involving two microstrip circuits
optimized for two sets of design specifications each, cor-
roborates the excellent performance of the technique, better
than that of a selection of benchmark methods. The latter
include multi-start local search, population-based algorithms,
and machine learning algorithm targeting entire frequency
characteristics of the circuit at hand. The results indicate low
computational cost of 140 EM analyses of the circuit per
run on the average, perfect success rate (designs meeting the
specs rendered by each run of the procedure), and high quality
of the final designs as compared to the benchmark. An impor-
tant benefit of incorporating the response feature technology
is an excellent accuracy of the surrogate models constructed
with the use of a limited number of training samples. Given
the mentioned advantages, the developed methodology may
be considered a feasible alternative for currently used global
search techniques in the context of high-frequency design.
One of the objectives of the future endeavors will be to
extend the applicability range of our procedure to other types
of microwave components (e.g., filters), and alternative the
system outputs (e.g., phase characteristics), as well as EM-
driven miniaturization.

The results obtained in this work can also suggest avenues
for further research. An interesting topic would be investi-
gation of possibilities of enhancing global search procedures
in highly dimensional parameter spaces using the algo-
rithmic tools developed in this study. The findings of our
research, specifically very low cost of global search as com-
pared to benchmark methods, are indicative of a potential
of feature-based approaches in handling real-world prob-
lems associated with large number of parameters, which
might be facilitated by inherent regularization offered by
the feature-based methodologies. This would alleviate the
major issue of machine learning frameworks, which is a
construction of reliable surrogate model (hindered by both
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the dimensionality issue and the extensive range of design
variables). Another promising research direction is extend-
ing the concept of response features and their range of
applicability to other types of microwave components, such
as filters, resonator-based sensors, or metamaterial unit
cells.
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