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Abstract: A variety of surrogate modeling techniques has been utilized in high-frequency design
over the last two decades. Yet, the curse of dimensionality still poses a serious challenge in set-
ting up reliable design-ready surrogates of modern microwave components. The difficulty of the
modeling task is only aggravated by nonlinearity of circuit responses. Consequently, constructing
a practically usable surrogate model, valid across extended ranges of material, geometry, and op-
erational parameters, is far from easy. As a matter of fact, conventional modeling techniques are
merely capable of building models for microwave structures featuring a relatively small number of
designable parameters within reduced ranges thereof. One possible way of mitigating these obstacles
may be the employment of the recently proposed two-stage performance-driven modeling approach.
Therein, the surrogate model domain is narrowed down to the section of the space where the vectors
of adequate quality are located, thereby permitting significantly reducing the cost of acquiring the
training data. Seeking even further cost reduction, this work introduces a novel modeling framework,
which exploits problem-specific knowledge extracted from the circuit responses to achieve substan-
tial cost-savings of training data acquisition. In our methodology, the modeling procedure targets
response features instead of the complete responses. The response features are the characteristic
locations of the circuit response, such as relevant minima or maxima over selected frequency bands.
The dependency of the coordinates of the said features on circuit dimensions is considerably less
nonlinear than is observed for the complete characteristics, which enables sizable reduction of the
data acquisition cost. Numerical validation of our procedure involving three microwave structures
corroborates its remarkable efficiency, which allows for setting design-ready surrogates using only a
handful of samples.

Keywords: microwave modeling; surrogate modeling; knowledge-based surrogates; domain
confinement; response features

1. Introduction

The use of full-wave electromagnetic (EM) simulation software is a standard practice
in microwave design today. EM analysis is being used throughout the entire design cycle
of microwave devices and systems, starting from topology development [1–4] through
parametric studies [5], to the final refinement of circuit dimensions [6–11]. This is primarily
because EM analysis is able to accurately account for various phenomena exerting signif-
icant effects on circuit responses, such as EM cross-coupling [12–17]. Furthermore, the
incorporation of size reduction techniques of various kinds (e.g., use of the slow-wave
phenomenon [18–21], transmission line folding [22,23], defected ground structures [24,25],
or multi-layer realizations [26–28]) makes the topologies of microwave devices increasingly
intricate. Another important factor affecting their geometries is the implementation of addi-
tional functionalities, e.g., wide-band [29–31] or multi-band operation [32–34] or harmonic
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attenuation [35–37]. Devices featuring complex geometries have to be evaluated using EM
analysis, which is accurate yet tends to be computationally expensive. Consequently, the
designers face a situation in which they are in possession of powerful simulation tools, yet
the cost of their repetitive usage within simulation-based design procedures might be im-
practical. In particular, multitudinous simulations, indispensable when solving such tasks
as local optimization [38–40], global search [41–43], or multi-objective optimization [44–47],
may last far too long.

Not surprisingly, alternative ways of rendering accurate responses of microwave
components have been sought. A popular approach is to replace costly EM simulations
with surrogate models. Numerous surrogate modeling techniques have been devised and
applied in microwave design. There exist two primary categories of surrogates: data-driven
and physics-based models. The former come in many variations (e.g., kriging [48–50], neu-
ral networks [51–55], radial basis functions [56,57], and Gaussian process regression [58,59]
to name just a few). They are exploited by global search procedures [60] and multi-criterial
optimization [61] and frequently combined with sequential sampling routines [62,63]. Their
advantages are simplicity of implementation, flexibility, and abundance of the available
techniques [64–67]. Disadvantages are associated with the curse of dimensionality having
a strong adverse effect on the modeling process in terms of the number of designable
variables that may be taken into consideration, as well as their ranges.

The surrogates of the second class, i.e., physics-based ones, make use of the problem-
relevant knowledge encoded as an auxiliary low-fidelity model (e.g., an equivalent cir-
cuit [68,69]). As a consequence, physics-based models feature enhanced generalization
capability [70]. The most popular modeling technique utilizing physics-based surrogates
is arguably space mapping (SM) [71–76] along with its numerous variations such as ag-
gressive [77], implicit [78], or frequency SM [79]. Still, the necessity to devise a problem-
dependent low-fidelity model significantly narrows down the application areas in which
physics-based models may be utilized.

A remedy for the aforementioned problems is the employment of the recently de-
veloped performance-driven modeling techniques [80–82]. Therein, the surrogate model
domain is constricted to the section of the design space enclosing superior-quality designs
according to the assumed performance specifications. In contrast to the conventional
domain, typically delineated by the lower and upper limits of circuit dimensions, the
volume of the domain constrained in line with the performance-driven modeling concept is
dramatically smaller. This begets a considerably lower cost of training data collection. Yet,
the cost-effectiveness of triangulation-driven confined modeling [80] and the nested kriging
modeling technique [81], the initial versions of performance-driven modeling techniques,
has been seriously limited by the fact that surrogate model domain is identified with the
use of database designs. The said designs (also referred to as reference points) have to be
optimized beforehand according to the pre-selected values of the design specifications,
incurring hefty computational cost. Several attempts to improve the efficacy of the nested
kriging modeling technique have been made starting from enhanced sampling [83], through
variable-fidelity setup [84], dimensionality reduction [85], and adopting variable-thickness
domain [86], up to gradient-enhanced nested kriging [87]. In the latter, sensitivity data
derived from the reference designs have been exploited, which made it possible to cut
down the number of the database designs by half.

A more recent development, i.e., no-reference-design (or observable based) constrained
modeling [82], allowed for a substantial reduction of these expenditures by delimiting the
confined domain based on a collection of pre-selected random observables, a gathering
of which did not involve any optimization problems whatsoever. In [82], the process
of accepting and rejecting the observables exploits the knowledge gathered from the ob-
servables themselves allowing for a cost-efficient surrogate domain definition. Recently,
several advancements of the technique of [82] have been reported that aimed at improving
the surrogate accuracy or decreasing the training data acquisition cost. These include
dimensionality reduction using principal component analysis [88], modeling the responses
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of microwave components using neural networks [89] (instead of kriging interpolation
as in [82]), or incorporation of variable-fidelity models [90]. Still, in all the aforemen-
tioned techniques, the modeling process has been carried out on the entire component’s
characteristics.

To push the efficacy of the modeling process further, this work introduces a novel
technique, which integrates the no-reference-design confined modeling methodology with
the response feature technology [91]. In our approach, the confined domain of the surrogate
model is assessed cost-efficiently as in [82], yet, instead of constructing the surrogate that
renders the entire frequency characteristics of a microwave component at hand, here, the
modeling process is carried out solely at the level of the response features. The coordinates
of the features depend weakly and nonlinearly on the structure geometry parameters.
Exploiting the problem-specific knowledge embedded in the circuit responses allows for
achieving an additional reduction of the expenses associated with acquiring training data
that may be obtained versus that of the modeling routine processing the complete re-
sponses, without degrading the modeling accuracy. Another advantage of our approach is
that it allows for handling wide ranges of both circuit dimensions and material/operating
parameters spread over the constructed surrogates. The comprehensive validation of the in-
troduced procedure includes benchmarking against five conventional modeling techniques
(kriging [48], radial basis functions [56], artificial neural networks [51], convolutional neural
networks [92], and ensemble learning [93]), as well as two constrained modeling techniques:
nested kriging [81] and no-reference-design constrained modeling [82]. The verification
structures include three microstrip circuits. The outcome of the conducted experiments
corroborates the remarkable efficiency of our procedure: reliable surrogates have been
rendered at an average cost of merely one hundred training data samples. The technical
contributions and the originality of the work include (i) the introduction of the response
feature technology into the recent observable-based performance-driven modeling tech-
nique; (ii) implementation of a complete framework for modeling of passive microwave
components, which capitalizes on the mentioned algorithmic tools; (iii) demonstrating the
ability of constructing reliable behavioral models across a wide range of geometric variables
and operational conditions with a small number of training points; and (iv) demonstrating
enhanced performance of the developed technique with respect to the predictive power of
the constructed surrogates and computational efficiency over a wide selection of state-of-
the-art benchmark techniques. More importantly, the presented approach demonstrated a
possibility of predicting the operating parameters of the microwave circuits in an extremely
reliable manner (a fraction of a percent for the operating frequencies, and a small fraction
of dB for power split ratios) using datasets containing a few dozens of samples, which is
far beyond the capability of any other technique available in the literature.

2. Two-Stage Feature-Based Modeling

This section outlines the developed modeling framework, in which the surrogate
model domain confinement conforms with the performance-driven modeling paradigm [82],
and the modeling process itself targets the response features [91]. Section 2.1 recalls the
concepts of the domain confinement based on the pre-selected observables. The basics of
the response feature technology and employing the problem-specific knowledge to enhance
the efficacy of the developed modeling procedure are delineated in Section 2.2, which also
provides the description of the proposed modeling routine.

2.1. Two-Stage Performance-Driven Modeling

Constrained modeling methods [80–82] share the same underlying concept of re-
straining the modeling process to the encouraging segment of the design space, where the
designer expects that designs satisfying the assumed specs likely reside. The paramount
difference between the techniques [80–82] consists in the way the location of this section
of the design space is assessed. Both the triangulation-based modeling technique [80] and
the nested kriging modeling technique [81] require a database of pre-optimized parameter
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vectors for delimiting the surrogate domain. Clearly, this may call the efficiency of the
entire modeling process into question, as the associated computational expenditures might
be equal to several hundred or even thousands of EM analyses of the component of interest.
As mentioned in Section 1, the development of the no-reference-design modeling tech-
nique [82] rendered the cost of setting up a constrained modeling framework practically
acceptable. The basic concepts behind this approach are briefly outlined in this section.

Table 1 presents the notation shared by performance-driven modeling techniques.
There exist two spaces: the design space X, along with the space of design objectives F.
The components of vector F represent the design objectives such as intended operating
frequency (or frequency band) of a microwave component of interest, target power division,
or permittivity of a substrate the device is realized on. The ranges of design objectives
delimit the intended surrogate’s region of validity.

Table 1. Basic notation used by performance-driven modeling methods.

Description Notation

Vector of geometry parameters x = [x1 . . . xn]T

Conventional design space X = [l, u]
Lower bounds on parameters l = [l1 . . ., ln]T

Upper bounds on parameters u = [u1 . . ., un]T

Performance figures fk, k = 1, . . ., N
Space of design objectives F: fk.min ≤ fk(j) ≤ fk.max, k = 1, . . ., N

Vector of objectives F = [f 1 . . . fN]T

In this work, the model domain is defined according to the procedure proposed in [82].
Let us denote as {xr

(j), f r
(j)}, j = 1, 2, . . ., a set of pairs: observables xr

(j) allocated in the
design space X according to uniform probability distribution, along with the associated
objective vectors Fr

(j) (extracted from the responses at xr
(j)). The observables undergo

a selection procedure (until the assumed number of observables Nr is acquired): points
whose performance figure vector Fr

(j) belongs to F are accepted, and others are discarded.
In practice, Nr should be set at around 10n (n being the parameter space cardinality). The
accepted pairs {xr

(j), Fr
(j)}, j = 1, . . ., Nr, form a training set for building the inverse surrogate

sr, which plays a crucial role in the domain definition process. (The details can be found
in [82]).

Ultimately, the forward surrogate s(x) is put together within the domain XS as a kriging
interpolation surrogate [86]. The training dataset for constructing s(x) includes the pairs
{xB

(k), RB
(k)}k = 1, . . ., NB, where xB

(k) ∈ XS are the data points, and RB are the corresponding
EM-evaluated circuit responses.

2.2. Two-Level Modeling Using Feature-Based Surrogates

As announced in Section 1, the proposed modeling technique operates on the ap-
propriately selected characteristic points of circuit characteristics, instead of the entire
responses. This permits smoothening of the functional dependencies to be represented by
the surrogates, as the dependency of the characteristic points on the component dimensions
is to a lesser extent nonlinear compared to a similar dependence for complete frequency
characteristics of microwave components. As a consequence, due to exploiting the problem-
specific knowledge, a radical reduction of the training samples’ acquisition cost may be
obtained when conducting the modeling process on the layer of features. Furthermore, in
the context of design optimization, response feature technology often enables quasi-global
search capability while using formally local optimizers [94].

Notwithstanding, the prerequisite for employing the response feature technology is a
suitable shape of the component responses with easily discernible characteristic locations
(features). In practice, the response features are obtained by scanning the EM-evaluated
component responses. Clearly, for some designs, certain the characteristic points are
indistinguishable. This issue needs to be properly tackled during the modeling process.
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Moreover, from a practical standpoint, the response features are to be chosen to reflect the
assumed design goals. For a detailed exposition of response feature technology see [91].
Interested readers may find an extended discussion of response feature technology along
with various applications, limitations, and possible generalizations in the rich literature on
the subject, e.g., [95,96].

Figure 1 shows the microwave structures employed in this work to be the verification
case studies (a rat-race coupler (RRC), a branch-line coupler (BLC), and a dual-band power
divider), along with their exemplary responses and characteristic points. The relevant data
concerning the devices of Figure 1 are gathered in Table 2, including geometry parameters,
substrate, and the parameter space, as well as the figures of interest, design objectives,
and the objective space. As for RRC (Circuit I) and BLC (Circuit II), the feature points are
defined as the minima of the coupler’s characteristics |S11| and |S41|, f min.S11 and f min.S41 ,
respectively. These are employed to estimate the circuit operating frequency f 0 as follows:

f 0 = (f min.S11 + f min.S41 )/2 (1)

whereas the level coordinates lmin.S21 and lmin.S31 of the characteristic points |S21(f 0)| and
|S31(f 0)| are utilized to assess the device’s power split at f 0 as:

K = |lmax.S21 − lmax.S31 | (2)

Thus, the aforementioned feature points suffice to handle the design objectives of
Table 2, which are defined as minimization of matching and isolation at f 0, and also
maintain the required value of the power split factor (equal in the case of BLC).

For a dual-band power divider (Circuit III), the sets of frequencies f 1.min.S21 , f 1.min.S22 ,
and f 1.min.S32 and f 2.min.S21 , f 2.min.S22 , and f 2.min.S32 corresponding to the first and the second
minima, respectively, of the divider’s responses |S21|, |S22|, and |S32| serve to estimate
the circuit’s lower and upper band operating frequencies f 1 and f 2 as follows:

f 1 = (f 1.min.S21 + f 1.min.S22 + f 1.min.S32 )/3 (3)

and
f 2 = (f 2.min.S21 + f 2.min.S22 + f 2.min.S32)/3 (4)

Next, the ratio between these frequencies is assessed as Kf = f 2/f 1. For the power di-
vider, the requirement for equal power division is enforced by the symmetry of its structure.
In the discussed approach, the forward surrogate s(x) is built at the response feature level
(in contrast to the nested kriging [81] and no-reference-design modeling [82] techniques or
the techniques proposed in [88–90], where complete component’s characteristics have been
handled during the modeling process).

The training dataset for constructing s(x) consists of pairs {xB
(k), FR(xB

(k))}k = 1, . . ., NB,
with the designs xB

(k) randomly distributed over the confined domain XS, whereas
FR(xB

(k)) = [f 1(xB
(k)) f 2(xB

(k)) . . . fp(xB
(k)) l1(xB

(k)) l2(xB
(k)) . . . lp(xB

(k))]T represents the fea-
ture vector for a given design xB

(k). The vector FR comprises the frequencies fj and levels
lj, j = 1, . . ., p, of the response features of the designer’s choice. Moreover, the observables
and their respective features, i.e., ({xr

(l), FR(xr
(l))}l = 1, . . ., Nr.), are also incorporated into the

training set.
Observe that the forward surrogate s(x) only renders the feature point coordinates,

contrarily to the standard procedures where the entire component’s frequency characteris-
tics are modeled (as in [82] or [88–90]). This, clearly, may cause a partial loss of information,
which is unavoidable in any feature-based modeling framework. Nevertheless, the in-
formation lost is not relevant from the standpoint of design objectives. This is because
the features are intentionally selected to permit quantification of the design goals in an
unambiguous manner.
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Figure 1. Microwave structures utilized as verification examples along with their exemplary character-
istics with marked response features and operating parameters estimated based on them: (a) rat-race
coupler (RRC) [97]; (b) RRC response: blue circles mark the minima of |S11| and |S41| (which
serve for estimating the operating frequency f 0), whereas blue squares mark the points |S21(f 0)|
and |S31(f 0)| (based on which the power split K is estimated); (c) branch-line coupler (BLC) [98];
(d) BLC response: see description for RRC; (e) dual-band power divider [99]; and (f) ∈ divider
response: blue circles mark the minima of |S21|, |S22|, and |S32| (which serve for estimating the
operating frequencies f 1 and f 2). The circuits ports are indicated by the numbers (a) and numbered
circles (c,e).
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Table 2. Essential data of verification circuits.

Parameter
Circuit Structure

Circuit I [97] Circuit II [98] Circuit III [99]

Substrate RO4003
(εr = 3.38, h = 0.76 mm)

εr—operating parameter
h = 0.76 mm

AD250
(εr = 2.5, h = 0.81 mm)

Design
parameters $ x = [l1 l2 l3 d w w1]T x = [g l1r la lb w1 w2r w3r w4r wa wb]T x = [l1 l2 l3 l4 l5 s w2]

Other
parameters $

d1 = d + |w − w1|, d = 1.0, w0 = 1.7,
and l0 = 15

L = 2dL + Ls, Ls = 4w1 + 4g + s + la + lb, W = 2dL
+ Ws, Ws = 4w1 + 4g + s + 2wa, l1 = lbl1r,

w2 = waw2r, w3 = w3rwa, w4 = w4rwa

w1 = 2.2 mm, g = 1 mm

Conventional
parameter space X

l = [2.0 7.0 12.5 0.2 0.7 0.2]T,
u = [4.5 12.5 22.0 0.65 1.5 0.9]T

l = [0.4 0.43 5.9 7.7 0.68 0.28 0.1 0.1 2.0 0.2]T,
u = [1.0 0.86 14.0 16.5 1.5 0.99 0.65 0.25 5.5 0.8]T

l = [14.5 1.1 13.0 0.5 1.6 0.19 3.9]T,
u = [37.0 16.6 35.0 15.0 5.6 1.5 5.8]T

Figures of interest
• Operating frequency f 0
• Power split ratio K

• Operating frequency f 0
• Substrate permittivity εr

• Lower band operating
frequency f 1

• Ratio Kf = f 2/f 1 between
upper operating frequency
f 2 and f 1

Design objectives

• Minimize matching and
isolation at the target
operating frequency f 0

• Maintain the required power
split ratio K

• Minimize matching and isolation at the
target operating frequency f 0

• Maintain equal power split ratio K

• Minimize matching and
isolation at both target
frequencies f 1 and f 2

• Maintain equal power
division ratio

Objective space 1.0 GHz ≤ f 0 ≤ 2.0 GHz
−6.0 dB ≤ K ≤ 0 dB

1.0 GHz ≤ f 0 ≤ 2.0 GHz
2.0 ≤ εr ≤ 5.0

1.25 GHz ≤ f 1 ≤ 4.0 GHz
1.4 ≤ Kf ≤ 1.8

$ Dimensions in mm, except for those with subscript “r”, which are relative and unit-less.

As mentioned earlier, the situation in which some of the feature points are indiscernible
may occur, for example, when the operating frequency of the circuit does not belong to
the simulation frequency range. In constrained modeling, however, this is not likely to
occur, as the confined domain by definition encompasses superior-quality designs whose
responses features are all relevant characteristic points.

The step-by-step diagram of the introduced feature-based modeling procedure is de-
picted in Figure 2. The input data to be delivered by the user includes definitions of design
and objective spaces (in particular, the lower and upper limits on designable parameters
and objectives). Moreover, the designer needs to set the number of the observables Nr to be
used for delimiting the surrogate domain, as well as the number NB of training data points
for establishing the ultimate feature-based surrogate. In practice, it suffices to use Nr equal
to several dozen or so, whereas NB is set so as to ensure the required modeling accuracy.
The following steps are performed in our modeling procedure:

1. Generation of random vectors xr
(j) ∈ X until acquiring Nr samples whose objective

vectors f r
(j) belong to the assumed objective space F and assessment of supplementary

performance vectors pr
(j) for these samples;

2. Rendition of the inverse surrogate sr with {xr
(j), f r

(j)}j = 1, . . ., Nr, serving as the training
data;

3. Surrogate model domain XS definition;
4. Design of experiments (DoE): acquisition of {xB

(k), R(xB
(k))}k = 1, . . ., NB, (i.e., NB data

samples are gathered);
5. Retrieval of response feature: {FR (xB

(k))}k = 1, . . ., NB, from the samples xB
(k);

6. Rendition of the ultimate surrogate model s as a kriging interpolation model using
{xB

(k), FR(xB
(k))}k = 1, . . ., NB.
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Figure 2. Flow chart of the proposed two-level modeling procedure with feature-based surrogates
set up in a confined domain.

3. Results

This section presents the results of applying the introduced procedure to construct
surrogate models of microwave structures depicted in Section II. Benchmarking is carried
out using both conventional modeling techniques (kriging, radial basis functions, RBF,
artificial neural networks, ANN, convolutional neural networks, CNN, and ensemble
learning), along with the recently developed performance-driven modeling frameworks:
the nested kriging technique and the observable-based modeling technique. A summary of
the benchmark methods is provided in Table 3.

As mentioned earlier, our verification examples include a compact microstrip rat-race
coupler (RRC, Circuit I) [97], a miniaturized branch-line coupler (BLC, Circuit II) [98], and
a dual-band power divider (Circuit III) [99]. All structures have already been presented in
Figure 1. Table 2 gathers the relevant details, which include material data of the substrates
the circuits are to be implemented on; design variables, along with fixed parameters; design
space; figures of interest; and design objectives, as well as the objective space the surrogate
model is to cover.

In this work, we use a relative RMS error, which is defined as ||f (x) − s(x)||/||f (x)||,
where f (x) and s(x) stand for the response vectors of the EM model and the surrogate
model. In the case of multiple responses, e.g., S11, S21, S31, and S41, which are evaluated for
a number of discrete frequencies, the response vectors are constructed by concatenating
individual responses (i.e., serializing them). The error is evaluated using 100 independent
testing points uniformly allocated in the respective model domain. It should be noted
that relative RMS error is a convenient error metric because it agrees well with visual
assessment of the alignment between the EM and surrogate-predicted circuit characteristics.
In particular, an error level of less than ten percent can be considered as sufficient from
the perspective of the design utility of the model, whereas a level of five percent or less
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corresponds to a very good surrogate in most cases. In the case of feature-based models,
the RMS error is calculated for selected feature point coordinates, as specified in Tables 4–6.

Table 3. Benchmark techniques.

Modeling
Technique Domain Comments

Kriging
interpolation

Conventional
(parameter space X)

Gaussian correlation function with the trend
function being a second-order polynomial

Radial basis
functions (RBF)

Conventional
(parameter space X)

Gaussian correlation function:
cross-validation used to determine a scaling

coefficient

Artificial neural
networks (ANN)

Conventional
(parameter space X)

Feedforward network with two hidden
layers, model training using

backpropagation

Convolutional
neural networks

(CNN)

Conventional
(parameter space X)

Model with four filters with the filter sizes of
(64 128 256 512) trained with the ADAM

algorithm, miniBatchSize = 1000, activation
function: reluLayer, loss function: MAE,

Maximum number of epochs = 900, gradient
decay factor = 0.8, initial learning
rate = 1 × 10−2, learning rate drop

factor = 0.5, learning rate drop period = 50.

Ensemble learning Conventional
(parameter space X)

Least-squares boosting with 500 learning
cycles, learning rate optimized through

Bayesian optimization, number of learning
cycles = 500, number of bins = 100, learning

rate = 0.01.

Nested kriging [81] Confined domain XS

Circuit I: 12 reference designs,
acquisition cost 779 EM analyses

Circuit II: 9 reference designs,
acquisition cost 1014 EM analyses

Circuit III: 9 designs,
acquisition cost 923 EM analyses

Reference-design-free
modeling [82] Confined domain XS

Circuit I: 100 accepted observables,
acquisition cost 116 EM analyses

Circuit II: 100 accepted observables,
acquisition cost 226 EM analyses

Circuit III: 50 accepted observables,
acquisition cost 78 EM analyses

Table 4. Circuit I: Modeling results and benchmarking.

Modeling Method
Number of Training Samples

20 50 100 200 400 800

Kriging
Modeling error & 34.7% 25.7% 17.9% 13.5% 9.9% 8.0%

Cost 20 50 100 200 400 800

RBF
Modeling error & 42.1% 28.3% 19.1% 13.9% 10.3% 8.9%

Cost 20 50 100 200 400 800

ANN
Modeling error & 34.9% 18.2% 12.2% 8.0% 7.8% 6.5%

Cost 20 50 100 200 400 800
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Table 4. Cont.

Modeling Method
Number of Training Samples

20 50 100 200 400 800

CNN
Modeling error & 35.8% 22.9% 12.7% 8.0% 5.5% 4.5%

Cost 20 50 100 200 400 800

Ensemble learning
Modeling error & 38.8% 32.7% 28.1% 25.0% 22.8% 19.1%

Cost 20 50 100 200 400 800

Nested kriging [81]
Modeling error & 17.7% 6.9% 5.7% 3.8% 3.5% 3.1%

Cost $ 799 829 879 979 1179 1579

No-reference-design
modeling [82]

Modeling error & 6.1% 4.8% 4.2% 3.3% 3.2% 2.6%

Cost # 136 166 216 316 516 916

Feature-based
no-reference-design
modeling (this work)

Modeling error *

f 0 2.38% 1.34% 1.09% 0.87% 0.66% 0.55%

S21(f 0) 1.11% 0.77% 0.68% 0.60% 0.55% 0.38%

S31(f 0) 1.70% 1.46% 1.14% 0.99% 1.02% 0.72%

Cost # 136 166 216 316 516 916
& The relative RMS error. * The relative RMS error of the relevant coordinate of the response features. $ The cost
includes reference design acquisition cost (779 EM analyses). # The cost includes observable generation (116 EM
analyses).

Table 5. Circuit II: Modeling results and benchmarking.

Modeling Method
Number of Training Samples

20 50 100 200 400 800

Kriging
Modeling error & 66.8% 52.3% 38.3% 31.0% 27.3% 23.3%

Cost 20 50 100 200 400 800

RBF
Modeling error & 64.2% 51.8% 40.5% 37.4% 32.8% 27.2%

Cost 20 50 100 200 400 800

ANN
Modeling error & 51.4% 29.9% 22.2% 15.2% 10.5% 9.8%

Cost 20 50 100 200 400 800

CNN
Modeling error & 70.6% 51.9% 39.9% 30.7% 19.7% 11.5%

Cost 20 50 100 200 400 800

Ensemble learning
Modeling error & 72.1% 53.1% 44.4% 41.6% 38.7% 33.3%

Cost 20 50 100 200 400 800

Nested kriging [81]
Modeling error & 16.8% 10.0% 7.4% 6.8% 5.1% 4.8%

Cost $ 1034 1064 1114 1214 1414 1814

No-reference-design
modeling [82]

Modeling error & 12.8% 7.6% 6.2% 4.7% 4.5% 3.4%

Cost # 246 276 326 426 626 1026

Feature-based
no-reference-design
modeling (this work)

Modeling error *

f 0 3.66% 1.07% 1.00% 0.57% 0.50% 0.42%

S21(f 0) 0.92% 0.84% 0.70% 0.66% 0.55% 0.51%

S31(f 0) 1.39% 0.96% 0.77% 0.70% 0.65% 0.61%

Cost # 246 276 326 426 626 1026
& The relative RMS error. * The relative RMS error of the relevant coordinate of the response features. $ The cost
includes reference design acquisition cost (1014 EM analyses). # The cost includes observable generation (226 EM
analyses).
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Table 6. Circuit III: Modeling results and benchmarking.

Modeling Method
Number of Training Samples

20 50 100 200 400 800

Kriging
Modeling error & 77.0% 63.6% 53.8% 45.2% 40.0% 35.1%

Cost 20 50 100 200 400 800

RBF
Modeling error & 79.2% 68.9% 55.2% 43.9% 40.8% 37.2%

Cost 20 50 100 200 400 800

ANN
Modeling error & 44.1% 36.7% 33.2% 24.6% 20.8% 20.3%

Cost 20 50 100 200 400 800

CNN
Modeling error & 102.8% 89.6% 44.7% 26.0% 17.8% 15.8%

Cost 20 50 100 200 400 800

Ensemble learning
Modeling error & 63.5% 47.8% 40.6% 38.1% 36.2% 33.6%

Cost 20 50 100 200 400 800

Nested kriging [81]
Modeling error & 41.6% 32.3% 19.2% 18.1% 15.2% 12.9%

Cost $ 943 973 1023 1123 1323 1723

No-reference-design
modeling [82]

Modeling error & 63.8% 23.7% 15.7% 10.8% 7.2% 6.1%

Cost # 98 128 178 278 478 878

Feature-based
no-reference-design
modeling (this work)

Modeling error *
f 1 2.38% 0.78% 0.49% 0.30% 0.35% 0.27%

f 2 2.00% 0.63% 0.29% 0.23% 0.18% 0.17%

Cost # 98 128 178 278 478 878
& The relative RMS error. * The relative RMS error of the relevant coordinate of the response features. $ The cost
includes reference design acquisition cost (923 EM analyses). # The cost includes observable generation (78 EM
analyses).

For Circuit I, the surrogate model has to be valid across a two-dimensional objective
space that includes the following performance figures: operating frequency f 0 within
the range from 1.0 GHz to 2.0 GHz and the power split ratio −6 dB ≤ K ≤ 0 dB. Here,
minimization of matching and isolation at f 0 and enforcing the required power division
ratio at f 0 (see Table 2) are of interest. In the case of Circuit II, the forward model is to
cover a two-dimensional objective space with the figures of interest: operating frequency
f 0 ∈ (1.0 GHz, 2.0 GHz) and the permittivity εr of the substrate within the range of interest
from 2.0 to 5.0. The design optimality is defined as for Circuit I, i.e., we aim at minimizing
matching and isolation at f 0 and maintaining the equal power split at f 0 (see Table 2). For
Circuit III, the performance figures include lower and upper operating frequencies f 1 and
f 2, respectively (the latter set using the ratio Kf = f 2/f 1). Here, the aim is to minimize
matching and isolation at both operating frequencies; an equal power division ratio is an
effect of the structure symmetry.

For Circuit I and Circuit II, we have gathered Nr = 100 random vectors, which required
performing 116 and 226 EM simulations, respectively, whereas in the case of Circuit III,
gathering 78 EM analyses allowed for obtaining Nr = 50 observables. The accepted samples
have been employed to set up the inverse regression surrogate. Next, six sets of training
samples of cardinalities NB = 20, 50, 100, 200, 400, and 800 have been allocated in the
respective confined domains.

Tables 4–6 gather numerical data: the cost of building the surrogate and modeling
accuracy (a relative RMS error assessed using 100 independent test samples). Observe that
the overall cost of assembling the nested kriging modeling framework also includes the
overhead related with the reference design acquisition: 779, 1014, and 923 EM simulations
of the relevant structure, whereas for the proposed approach, the expenditures associated
with collecting the observables (116, 226, and 78 EM analyses) add to the overall cost.
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In the case of the modeling techniques targeting the complete component responses
(i.e., the benchmark methods: kriging, RBF, ANN, CNN, ensemble learning, nested kriging, and
no-reference-design modeling), the accuracies are evaluated as ||R(x)− Rs(x)||/||R(x)||,
where R and RS refer to the EM-evaluated and modeled responses, respectively, whereas
in the case of the proposed modeling technique, which operates on the response features,
the modeling accuracies of the relevant response features are given. For Circuits I and II
(see Tables 4 and 5), the following features are taken into account: the operating frequency
f 0, as well as the level coordinates S21(f 0) and S31(f 0), which serve to assess the power split
of the circuit. As for Circuit III, in Table 6, the accuracy of both operating frequencies f 1
and f 2 is provided. Furthermore, Table 7 provides the absolute error of the performance
figures of interest for each verification structure, i.e., the power division and operational
frequency for Circuits I and II and the operating frequencies for Circuit III.

Table 7. Absolute errors of the performance figures for Circuits I and II.

Verification Structure Modeling
Error

Number of Training Samples

20 50 100 200 400 800

Circuit I
f 0 [GHz] 0.031 0.019 0.016 0.011 0.010 0.008

K [dB] 0.235 0.198 0.155 0.139 0.131 0.095

Circuit II
f 0 [GHz] 0.046 0.015 0.014 0.008 0.007 0.006

K [dB] 0.187 0.149 0.128 0.120 0.103 0.095

Circuit III
f 1 [GHz] 0.039 0.015 0.010 0.008 0.007 0.005
f 2 [GHz] 0.054 0.018 0.009 0.008 0.006 0.005

The main reason for including the absolute error values is that for the test samples
featuring the power split value close to zero, the relative RMS error is not an adequate error
quantifier. This is because the RMS error value is evaluated as |K − KS|/|K|, with K and
Ks being the power split calculated based on the extracted features of the EM-simulated
response and predicted by the surrogate, respectively. Thus, the value of the said error
becomes very large when K≈ 0, regardless of the actual value of the absolute error, however
small. Observe that the absolute power split errors provided in Table 7 for Circuits I and II
are minor (fractions of decibel).

The results obtained for Circuit I are shown in Figures 3–5. Figures 6 and 7 show the
results for Circuit II, whereas Figures 8 and 9 present the results obtained for Circuit III.
Figures 3, 4, 6 and 8 present the scatter plots of the performance figures of interest for all
considered circuits (i.e., the operational frequency and the power division for Circuit I,
the operating frequency for Circuit II, as well as the operating frequencies for Circuit III).
Observe that the correlation between the modeled and EM-evaluated results is satisfactory,
even for the surrogate built with only 20 training data samples, whereas for two hundred
samples it is exceptionally good. Furthermore, Figures 5, 7 and 9 show the EM-simulated
frequency characteristics of Circuits I, II, and III, respectively, at the selected test locations of
different operating frequencies with the corresponding response features rendered by the
proposed surrogate. For all structures, all operating frequencies are predicted accurately,
and the same pertains to the power split, wherever relevant.

In our work, the following response features are considered. For couplers, we take into
account the power split ratio and the operating frequency, whereas in the case of a power
divider, operating frequencies are modeled. However, in the case of couplers and power
dividers, the phase is often considered so as to ensure that the required phase difference
between the circuit’s ports is maintained at a specified frequency or over a bandwidth.
The phase has not been taken into account in the presented approach. Nevertheless, it is
possible to include it in the modeling process, which will be carried out in future work.
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Figure 3. Scatter plots of the operating frequency f 0 [GHz] for the rat-race coupler (Circuit I) of
Figure 1a: rendered by the developed two-stage feature-based surrogate versus the correspond-
ing values obtained from EM-evaluated responses; (a) surrogate set up using 20 samples and
(b) 200 samples.
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Figure 4. Scatter plots of the power split K [dB] for the rat-race coupler (Circuit I) of Figure 1a:
rendered by the developed two-stage feature-based surrogate versus the corresponding values
obtained from EM-evaluated responses; (a) surrogate set up using 20 samples and (b) 200 samples.
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Figure 5. Circuit I (RRC): EM-evaluated responses at the representative test designs; the circles mark
the feature points rendered by the surrogate, which permit assessment of the device’s power split.
The surrogate-predicted operating frequency is indicated with the vertical line. The surrogates are
built with N = 200 training samples.
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Figure 6. Scatter plots of the operating frequency f 0 [GHz] for the branch-line coupler (Circuit
II) of Figure 1c: rendered by the developed two-stage feature-based surrogate versus the corre-
sponding values obtained from EM-evaluated responses; (a) surrogate set up using 20 samples and
(b) 200 samples.
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Figure 7. Circuit II (BLC): EM-evaluated responses at the representative test designs; the circles mark
the feature points rendered by the surrogate, which permit assessment of the device’s power split.
The surrogate-predicted operating frequency is indicated with the vertical line. The surrogates are
built with N = 200 training samples.
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Figure 8. Scatter plots of the operating frequencies f 1 and f 2 [GHz] for the power divider (Circuit
III) of Figure 1e: rendered by the developed two-stage feature-based surrogate versus the corre-
sponding values obtained from EM-evaluated responses; (a) surrogate set up using 20 samples and
(b) 200 samples.
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Figure 9. Circuit III (power divider): EM-evaluated responses at the representative test designs, along
with the surrogate-predicted operating frequencies (indicated with vertical lines). The surrogates are
built with N = 200 training samples.

The modeling accuracy of the introduced feature-based confined surrogates over-
whelmingly surpasses that of the conventional models (kriging, RBF, ANN, CNN, and
ensemble learning). The same pertains to two performance-driven modeling methods
processing entire frequency characteristics: the nested kriging and observable-based mod-
eling techniques. The excellent accuracy of the representation of the operating frequency
of all structures, expressed as the relative RMS error, is below five percent even for the
training datasets comprising as few as 20 samples, whereas for 50 data samples it goes
down to around one percent for all circuits. This degree of modeling accuracy is beyond
the capability of the conventional techniques. The data acquisition cost is remarkably low
even when taking into account the cost of collecting the random observables required to
identify the inverse surrogate: the accuracies of the operational frequencies of around one
percent (1.34%, 1.07%, and 0.70% for Circuits I, II, and III, respectively) have been achieved
using 166, 276, and 128 data samples, respectively.

It should be emphasized that although the presented modeling approach has been
demonstrated using passive microwave circuits, its applicability is not limited to this type
of device. In particular, it can be useful for modeling of active circuits, either to represent
EM simulations thereof or even measured characteristics. An example of such a device is
the power amplifier (e.g., [100]), for which surrogate modeling might be a viable alternative
to expensive measurements or complex full-wave electromagnetic analysis in the design
context.

Furthermore, it should be reiterated that, using formulation, the proposed modeling
approach is independent of the operating frequency of the circuit at hand. As part of
our future work, it will be applied to a broader range of circuits, including those that
operate at frequencies beyond 10 GHz, as well as circuits implementing a larger variety of
functionalities, such as multi-band devices.

4. Conclusions

This article proposed a novel cost-effective feature-based modeling framework that
has been applied for assessing vital features from the design perspective of three microwave
devices: a rat-race coupler, a branch-line coupler, and a power divider. In the presented
approach, the surrogate domain is constricted to encompass only high-quality designs
based on a collection of random observables. The incorporation of the problem-specific
knowledge embedded in the circuit responses in the form of response features permits us
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to obtain remarkable accuracy regarding operational frequencies and power division. For
all verification structures, the constructed surrogates cover extended ranges of geometry,
material, and operating parameters, which are important from the standpoint of their de-
sign utility. Our approach surpasses all the benchmark techniques, both conventional and
performance-driven ones, in terms of the obtained accuracy and the computational expen-
ditures associated with model setup. This corroborates that a combination of cost-efficient
observable-based domain confinement and feature-based modeling leads to significant
cost savings. At the same time, it allows for maintaining excellent predictive power of the
surrogate.

Moreover, the response features encode in a direct manner information pertaining to
vital performance figures such as operating frequencies, which, in conventional frameworks
have to be extracted from the circuit outputs. Therefore, despite carrying out the modeling
process solely on the layer of features instead of the complete responses, no information
pertinent to the design objectives is lost. The presented technique may be considered as
an alternative to standard modeling frameworks, in particular, for low-cost rendition of
reusable surrogates permitting increased-speed redesign of microwave circuits for distant
operational frequencies and/or material parameters.
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