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Abstract 

Single crystals of a new ternary aluminide ErV2Al20 were grown using a self-flux method. The crystal 

structure was determined by powder X-ray diffraction measurements and Rietveld refinement, and 

physical properties were studied by means of electrical resistivity, magnetic susceptibility and specific 

heat measurements. These measurements reveal that ErV2Al20 is a Curie-Weiss paramagnet down to 

1.95 K with an effective magnetic moment μeff = 9.27(1) μB and Curie-Weiss temperature 

ΘCW = -0.55(4) K. The heat capacity measurements show a broad anomaly at low temperatures that is 

attributed to the presence of a low-energy Einstein mode with characteristic temperature ΘE = 44 K, 

approximately twice as high as in the isostructural ‘Einstein solid’ VAl10.1. 

Keywords: Intermetallic compounds, CeCr2Al20-type structure, magnetic properties, specific heat 

measurements 

Introduction 

Ternary aluminides RT2Al20 (R = electropositive elements, T – early 3d, 4d, and 5d transition metals) 

crystallizing in the CeCr2Al20-type structure have recently attracted much scientific interest, due to 

their versatility towards the chemical composition and a variety of interesting physical properties, 

depending on the constituent elements.  

The unit cell of a CeCr2Al20-type compound is shown in Figure 1. A characteristic feature of this 

structure is the presence of large ‘cages’ formed by Al atoms surrounding the electropositive R atom 

(occupying the Wyckoff position 8a). Such cages of various shapes and sizes are also found eg. in 

dodecaboride ZrB12 [1], clathrates including Ba8Si46, Ba24Si100 [2], Ba8Au16P30 [3], Na24Si136 [4], filled 

skutterudites [5–7] and in the β-pyrochlore oxides AOs2O6 (A = alkaline metals) [8] (see Figure 2). In 

these systems low-energy, large amplitude localized (related to a specific crystallographic site) 

anharmonic vibrations of small cage-filling atoms are observed. This ‘rattling’ of cage filling atoms 

affects thermal and transport properties of materials, resulting eg. in suppression of the lattice thermal 

conductivity [3,5,9] that can lead to an increase in the thermoelectric figure of merit (ZT) [3,5]. The 

presence of ‘rattling’ phonons is also found to enhance the superconducting critical temperature in 
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hexa- and dodecaborides [1,10,11], β-pyrochlores [8,12], and CeCr2Al20-type compounds: AlxV2Al20 

[13–15], GaxV2Al20 [14,16], and RV2Al20 (R = Sc, Y, Lu) [17]. The contribution of ‘rattling’ phonons 

to the specific heat are usually well described using the Einstein model with a low characteristic 

(Einstein) temperature ΘE. 

 

Figure 1 Unit cell of ErV2Al20. (a) Er atoms (orange), arranged in a diamond lattice, are positioned inside Frank-

Kasper CN 16 polyhedra [18] (Panel b) formed by Al1(16c) and Al3(96g) atoms (silver). V atoms (green) form a 

pyrochlore array [19]. (c,d) Al1(16c) atoms are encaged in Frank-Kasper CN 14 polyhedra formed by Al3(96g) and 

Er(8a). Image was rendered using VESTA software [20]. Fig. S1 of Supplementary Material shows the relationships 

between the CeCr2Al20, ZrZn22, and Mg3Cr2Al20-type structures. 

 

Figure 2 Comparison of cage-type crystal structures: (a) CeCr2Al20-type ErV2Al20, (b) ZrB12 dodecaboride (Zr atoms 

– yellow, B – silver) [21,22], (c) PrOs4Sb12 skutterudite (Pr – yellow, Os – brown, Sb – silver) [23,24], (d,e) Ba8Si46 

clathrate (Ba –green, Si – blue) [22,25], with two distinct Ba-Si cage types, (f) KOs2O6 β-pyrochlore (K – purple, Os – 

brown, O – red) [22,26]. 
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The introduction of 4f elements into the 8a position of a CeCr2Al20 structure leads to a variety of 

magnetic properties. LaV2Al20 was found to exhibit strong diamagnetism [27] resulting from a peculiar 

Fermi surface [28]. CeT2Al20 (T = Ti, V, Cr) are found to exhibit Pauli paramagnetism, consistent with 

a nonmagnetic tetravalent configuration of the Ce atom [29,30]. PrT2Al20 (T = Ti, V) are exotic 

superconductors in which the superconducting state coexists with quadrupolar order [13–16], while 

PrCr2Al20 was described as a paramagnetic Kondo lattice [30]. NdTi2Al20 is an antiferromagnet (AFM) 

with the Néel temperature TN = 1.45 K [35], NdV2Al20 and NdCr2Al20 in turn are ferromagnets (FM) 

with the Curie temperature TC = 1.8 K and 1.7 K, respectively [35]. In SmT2Al20 (T = Ti, V, and Cr) 

AFM transition (TN = 6.4, 2.9 and 1.8 K, respectively) was observed along with strong valence 

fluctuations and a Kondo effect [36], similarly SmTa2Al20 shows strong electron correlation effects 

[37]. EuV2Al20 was found to exhibit a Kondo lattice behavior [38] and EuCr2Al20 shows an AFM 

transition (TN = 4.8 K) due to the magnetic moments carried on in a divalent Eu ion [39]. GdTi2Al20, 

GdV2Al20, and GdCr2Al20 are reported AFMs with TN = 2.6, 2.4-3.1, and 3.9 K [40,41], respectively. 

TmTi2Al20 was recently found to exhibit an AFM transition at 0.7 K [42], while no magnetic ordering 

is observed in TmV2Al20 down to 0.5 K [43]. YbT2Al20 (T = Ti, V, Cr) are Pauli paramagnets with a 

divalent Yb ion [44] and LuV2Al20 was found to exhibit a SC transition with the critical temperature Tc 

= 0.6 K [17]. Although some of the Tb, Dy, Ho, and Er-bearing compounds are reported [45], their 

physical properties remain unknown. 

In this study we present single-crystal growth and physical characterization of a previously unreported 

ErV2Al20 intermetallic. The crystal structure of the new compound is described along with results of 

magnetic susceptibility, electrical resistivity and specific heat measurements. 

 

Materials and Methods 

Single crystals of ErV2Al20 were grown using an Al self-flux method [46]. Erbium (99.9% purity), 

vanadium (99.8%), and aluminum (99.99%) pure metals were put together in an alumina crucible at 

the atomic ratio of 1:2:90 (Er:V:Al). A frit-disc and a second crucible were used for flux separation as 

it is described in ref. [47]. The crucible set was then sealed in an evacuated quartz tube backfilled with 

Ar to dilute the Al vapor attacking the tube walls.  

The ampoule was then placed in a furnace, heated at 100°C/h to 1070°C, held for 2 h, and then slowly 

cooled (4°C/h) to 770°C at which temperature it was centrifugated to separate crystals from the 

remaining flux. Crystals with sizes up to a few millimeters were obtained.  

Crystals were then etched in ca. 0.1 M sodium hydroxide (NaOH) solution for a few hours to remove 

the Al flux droplets that remained after centrifugation.  

Powder X-ray diffraction (XRD) patterns were collected on pulverized single-crystals using 

PANalytical X’Pert Pro diffractometer with Cu Kα source. To prevent the effect of preferred 

orientation along the [111] direction several small single crystals were first fine ground using an agate 

mortar and pestle and the resulting powder was spilled onto a spot of Apiezon M grease on a sample 

holder. FullProf software package [48] was used for the Rietveld refinement [49] of the structure 

model derived from crystallographic data for GdV2Al20 [41]. 

Resistivity measurements were carried out by the four contact method in a Quantum Design Physical 

Properties Measurement System (PPMS) on a single crystal sample cut and polished into a rectangular 

plate. Electrical leads were made of Ø0.04 mm platinum wires glued to the sample surface using a 

silver paste. Magnetic susceptibility measurements were done on etched single crystals using the 

ACMS option of PPMS in a temperature range of 1.95-300 K. Several randomly-oriented single 
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crystals were taken and put in standard straw sample holders. Specific heat measurements were carried 

out using the PPMS Heat Capacity option by means of the standard 2τ relaxation method. 

 

Results 

Crystallographic structure 

Figure 3 presents the powder XRD pattern collected on pulverized single crystals of ErV2Al20 along 

with a Rietveld fit to the data. Analysis of the diffraction reflections showed that the sample contained 

approx. 2 wt.% of Al that remained after etching in NaOH solution.  

Table 1 presents the crystallographic structure parameters derived from the Rietveld fit. Lattice 

constant of ErV2Al20 a = 14.5175(2) Å was found to be slightly larger than reported for TmV2Al20 

(14.5024 Å) [43] and LuV2Al20 (14.5130 Å) and smaller than for DyV2Al20 (14.54 Å) [45], in 

agreement with the lanthanide contraction effect (see Figure 4). The unit cell parameter of ErV2Al20 

was found to be larger than in ErCr2Al20 and smaller than for ErTi2Al20 (see inset of Figure 4) in 

consistency with behavior of the whole CeCr2Al20-type family.  
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Figure 3 Fit (black) to the experimental powder X-ray diffraction pattern of pulverized ErV2Al20 crystals (red points). 

The difference profile (Iobs – Icalc) is shown as a blue line. Purple and green ticks mark the positions of Bragg 

reflections for ErV2Al20 and Al impurity, respectively. The slightly higher background around 2Θ ≈ 40° comes from 

the Apiezon M grease used for sticking powder to the sample holder. 

 

Figure 4 The relation between unit cell parameter a and covalent radius of the cage-filling R(8a) atom for the reported 

RV2Al20 compounds. Unit cell parameter decreases with increasing atomic number from La to Lu due to the 

lanthanide contraction effect. For atoms smaller than Lu, cell parameters does not change significantly, as it is 

discussed in ref. [17]. Inset shows unit cell parameters of ErT2Al20 (T = Ti, V, Cr). Covalent radii of the elements are 

given after ref. [50], unit cell parameters: green triangles and blue squares – ref. [45] and references therein, red 

circles – ref. [30], red diamonds – ref. [17], red triangle (YbV2Al20) – ref. [44], blue triangle (VAl10.1) – ref. [15], green 

circle (TmV2Al20) – ref. [43], green open square – ref. [14], grey triangle (ThV2Al20) – ref. [51], blue circle (ErTi2Al20) - 

[52]. 
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Table 1: Crystal structure parameters obtained from Rietveld fits to the XRD data collected at room temperature (ca. 

20°C). Numbers in parentheses indicate statistical uncertainties of the least significant digits. The site occupancies 

were not relaxed during the refinement. The R-factors presented in the table are corrected for background 

contribution. 

 ErV2Al20 

Space group 𝐹𝑑3̅𝑚 (no. 227) 

Z (number of formula units 

per unit cell) 

8 

Pearson symbol cF184 

Cell parameter (Å) 14.5175(2) 

Cell volume (Å
3
) 3059.68(13) 

Molar weight (g·mol
-1

) 808.77 

Density (g·cm
-3

) 3.51 

Er (8a)             x = y = z = 1/8 

Biso (Å
2
) 2.34(3) 

V (16d)           x = y = z = ½ 

Biso (Å
2
) 1.27(4) 

Al1 (16c)        x = y = z = 0 

Biso (Å
2
) 2.42(10) 

Al2 (48f)                   x =  

                           y = z = 

0.4871(1) 

1/8 

Biso (Å
2
) 1.61(6) 

Al3 (96g)             x = y = 

                                 z = 

0.0596(1) 

0.3240(1) 

Biso (Å
2
) 1.66(4) 

Er-Er distance (Å) 6.2862(1) 

Er-Al distances (Å):       Al1 3.143 

Al3 3.186(2) 

Figures of merit:  

Rp (%) 

Rwp (%) 

Rexp (%) 

χ
2
 (%) 

11.7 

11.6 

10.8 

1.16 
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Electrical resistivity 

Resistivity of ErV2Al20 shows metallic-like character as it is shown in Figure 5(a). Since the single 

crystal used for measurements was cut and its surface was polished, the contribution of Al flux spots 

to the sample resistivity can be considered negligible. The low-temperature resistivity was found to 

show a complex character that cannot be fitted by simple models  (see Figure 5(b)). The unusual T-

dependence of resistivity results from the presence of a low-energy Einstein phonon mode (see the 

Specific heat paragraph below). It was shown by J.R. Cooper [53] that the contribution of an Einstein 

mode to the resistivity can be described using an equation: 

  ρEinstein(T) =
KN

MT(exp(
ΘE

∗

T
)−1)(1−exp(

−ΘE
∗

T
))

 (1) 

where M is the mass of the oscillator, N is the number of oscillators per unit volume, K is a parameter 

dependent on the electron density and the strength of the coupling between electrons and local mode 

phonons, and Θ
*
E is the characteristic temperature of the Einstein mode (Einstein temperature). While 

this equation was successfully used for fitting the resistivity data of ‘Einstein solids’ VAl10+x and 

GaxV2Al20 [16,53], in the case of ErV2Al20 it was necessary to include additional terms, as is shown in 

Eq. 2: 

  ρ(T) = ρ0 + ρEinstein(T) + AT2 + BT5 (2) 

where ρ0 is a residual resistivity arising from both crystal and spin lattice disorder, BT
5
 describes the 

resistivity resulting from electron-phonon scattering in the low-temperature limit and AT
2
 accounts for 

electron-electron scattering. The fit yields the residual resistivity ρ0 = 13 μΩ·cm, the electron-electron 

and electron-phonon scattering coefficients A = 2.7(4) · 10
-9

 μΩ·cm K
-2

 and B = 3.0(1) · 10
-9

 μΩ·cm 

K
-5

, and the parameters of scattering by Einstein mode phonons: ΘE
∗  = 35(1) K and 

𝐾𝑁

𝑀
 = 97(5) μΩ·cm 

K (numbers in parentheses indicate the statistical uncertainties of the least significant digits). 

The residual resistivity is of the same order of magnitude as reported for polycrystalline samples of 

YV2Al20, LaV2Al20 and LuV2Al20, and almost 10 times lower than for ScV2Al20, where the presence of 

structural disorder was speculated [17], however, when comparing ρ0 of magnetic and non-magnetic 

compounds it is important to take into account the effect of spin disorder in the former. Taking the ρ0 

value from the fit, a residual resistivity ratio RRR = ρ(300 K)/ρ0 ≈ 6.3 is calculated, suggesting a 

relatively good sample quality.  
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Figure 5 (a): Temperature dependency of resistivity of ErV2Al20. Residual resistivity ratio RRR = 6.3. Inset shows a 

sample aggregate of single crystals on a millimeter scale. (b): Low-temperature resistivity. Neither ~T2 dependence 

(blue line), ~T5 dependence (green line), nor ~T5 combined with Mott ~T3 term (red line) is sufficient to reproduce the 

experimental trend. (c): Fit (orange line) to the low-temperature resistivity (black circles) using Eq. 1, yielding 

residual resistivity ρ0 = 13 μΩ·cm and the characteristic temperature of the Einstein mode ΘE = 35(1) K. Red line 

show a contribution of Einstein mode to the resistivity, green of electron-electron scattering and blue of electron-

phonon scattering. 

 

Magnetic susceptibility 

The temperature dependence of dc susceptibility χ(T) at 1 T field (Figure 6) is found to follow the 

Curie-Weiss law (eq. 3): 

 χ(T) =  
C

T−θC−W
+ χ0 (3) 

where C is the Curie constant, θC-W is the Curie-Weiss temperature and χ0 is the temperature-

independent contribution to the susceptibility (coming both from the sample and a sample holder). 

Figure 5(b) shows an inverse susceptibility vs. temperature plot emphasizing the Curie-Weiss 

character of magnetic susceptibility. The χ(T) data were fitted using the relationship given in Eq. 3. 

The Curie constant is related to the effective moment μeff associated with the magnetic ion as shown in 

eq. 4: 

 C =
NAμB

2 μeff
2

3kB
 (4) 

where NA is the Avogadro number, μB – Bohr magneton, and kB – Boltzmann constant. Values 

extracted from the fit are gathered in Table 2. The obtained effective magnetic moment (9.27 μB) is 

close to the value expected for a free Er
3+

 ion (9.5 μB) [54] and a small difference may be explained by 

both trace amounts of Al in the sample and effects of the crystal electric field. The close to zero yet 

negative value of ΘC-W suggests the presence of only very weak effective interactions between Er
3+

 

magnetic moments. The field dependence of magnetization (see Fig. S2 of Supplementary Material) 

shows a saturating  character at low temperature (2 K), as expected for a Curie-Weiss paramagnet. 

Results of ac magnetic susceptibility at low constant field Hdc = 5 Oe  (Bdc = 0.5 mT) show no sign of 

a magnetic transition down to 1.95 K (see Figure 6(c)). 
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Figure 6 (a) Magnetic susceptibility of ErV2Al20. The Curie-Weiss fit (Eq. 3) to the experimental points (black circles) 

is shown as a red solid line. (b) Inverse susceptibility (corrected for the temperature-independent contribution) shows 

a linear relation consistent with the Curie-Weiss law down to the lowest temperatures measured (1.95 K). (c) ac 

magnetic susceptibility at low dc field Hdc = 5 Oe. No magnetic transition is observed down to 1.95 K. The plot of 

magnetization vs. applied magnetic field at 2 K and 50 K is shown in Fig. S2 of the Supplementary Material. 

Table 2: Results of Curie-Weiss fit to the dc susceptibility at 1 T. Note that the temperature-independent susceptibility 

(χ0) is not corrected for the contribution of sample holder. 

C (emu K mol
-1

 Oe
-1

) 10.73(2) 

μeff (μB) 9.27(1) 

ΘCW (K) -0.55(4) 

χ0 (emu mol
-1

 Oe
-1

) -1.4(1) · 10
3
 

 

 

Specific heat 

The specific heat of ErV2Al20 single crystal in the temperature range 1.95-30 K at zero magnetic field 

is shown in Figure 7. Two anomalies are seen in the Cp/T vs. T plot: the first one below 5 K, attributed 

to the Schottky anomaly and second between 5 and 20 K, attributed to a low-energy Einstein phonon 

mode, observed in the isostructural ‘Einstein solid’ VAl10.1 [13,15].  

The experimental data are fit with a function including electronic, phonon and Schottky contributions: 

 Cp = Celectronic + CDebye + CEinstein + CSchottky 

 Celectronic = γT 

 CDebye = βT3 (5) 

 CEinstein = A ⋅ 3nR (
ΘE

T
)

2
exp (

ΘE

T
) (exp (

ΘE

T
− 1))

−2
 

 CSchottky =
B

T2 
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where γ is the Sommerfeld coefficient, β is a phonon specific heat parameter, ΘE is a characteristic 

temperature of the low-energy Einstein mode, n is the number of atoms per formula unit, R is the gas 

constant, and A, B are fitting parameters. The Schottky term is described using a simplified, high-

temperature limit formula. 

 

Figure 7 Measured specific heat of ErV2Al20 at zero magnetic field (black circles). Orange line shows a fit to the 

experimental data including electronic, lattice, and Schottky components (see text). Contributions of individual 

components are plotted below: green – electronic, blue – Debye phonon heat capacity, red – low-energy Einstein 

phonon mode, brown – Schottky term. 

The fit yields γ = 118(3) mJ mol
-1

 K
-2

, β = 0.882(9) mJ mol
-1

 K
-4

, A = 0.00294(4), ΘE = 43.7(3) K, B = 

5.1(1) J K mol
-1

. The individual contributions are plotted on Figure 7. The large value of the γ 

coefficient compared to isostructural RV2Al20 (R = Sc, Y, La, Lu) compounds, for which it varies from 

20 to 30 mJ mol
-1

 K
-2 

[17], may result from an insufficient modelling of the Schottky heat capacity 

contribution, however some enhancement of γ is possible due to the electron-phonon coupling. The 

Einstein temperature obtained from the specific heat fit (ΘE) is higher than obtained from resistivity 

results (ΘE
∗ ) by ca. 20%. Such underestimation of the Einstein temperature in resistivity fits was 

reported previously for VAl10+x and GaxV2Al20 compounds [16] . 

In order to confirm the lattice origin of the anomaly attributed to an Einstein mode, specific heat 

measurements were performed in magnetic fields of 0.5-9 T (main panel of Figure 8). The Schottky 

anomaly is shifted towards higher temperatures with an applied field due to Zeeman splitting of the 

Er
3+

 energy levels, while the anomaly attributed to the Einstein mode is not affected. Figure 8(b) 

shows a fit to the specific heat at 0.5 T yielding the same Einstein temperature as obtained from the fit 

in zero field ΘE = 43.8(5) K. At higher magnetic fields the Einstein contribution to specific heat is 

already obscured by the large Schottky anomaly. 
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Figure 8 (a) Specific heat of ErV2Al20 in magnetic fields B = 0.5 T and from 2 to 9 T with 1 T increments. The 

direction of magnetic field is parallel to the [111] crystallographic direction. Inset (b) shows a fit to the data measured 

at 0.5 T. 

In a simple Debye model the β coefficient is related to the Debye temperature ΘD: 

 ΘD = √
12π4nR

5β

3
 (6) 

The estimated value of ΘD = 370(1) K is comparable to the value reported recently for UNb2Al20 (381 

K) [55], but significantly lower than obtained for RV2Al20 (R = Sc, Y, La, Lu) for which the Debye 

temperature is in the order of 500 K, and for UCr2Al20 (474 K) and ThCr2Al20 (457 K) [56]. This 

difference may be explained by both the effect of low-energy modes and systematic error in estimation 

of β parameter caused eg. by applying the low-temperature ~T
3
 expansion of the Debye specific heat 

in too wide temperature range. 

The fitted parameters B and γ were used to obtain a lattice specific heat (Clattice) by subtracting the 

specific heat of the Schottky and electronic term from the experimental data. The results are shown in 

Figure 9. The peak at approx. 8.5 K confirms the presence of an Einstein mode with ΘE ≈ 5 · 8.5 ≈ 43 

K. The peak observed in ErV2Al20 is also seen in the specific heat of LaV2Al20 and LuV2Al20, however 

the characteristic temperature is significantly higher (ca. 140 and 90 K, respectively). A low-

temperature Einstein mode was also observed in an isostructural VAl10.1 compound with ΘE = 21 K 

[13], approx. twice lower than for ErV2Al20. Since the mode in VAl10.1 was attributed to localized 

anharmonic ‘rattling’ of Al atoms occupying the 8a sites inside Al atom cages, the low-energy 

Einstein mode in ErV2Al20 arises likely from a ‘rattling’ of the cage-filling Er atoms. Relatively large 

thermal displacement parameters obtained from the Rietveld fit suggests that the mode could be 

associated with vibrations of Er(8a) or Al1(16c) atoms, both positioned inside large cages (see Figure 

1(b,d)). In order to clarify this, phonon structure calculations or inelastic neutron scattering 

experiments should be performed. 
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Figure 9 Lattice specific heat of ErV2Al20 at zero magnetic field (black circles). Red line shows the contribution of a 

low-energy Einstein mode with ΘE = 43.7 K. Lattice specific heat of LaV2Al20 (gray dashed line) and LuV2Al20 (gray 

solid line) are plotted for comparison after ref. [17]. 

 

Conclusions 

Single crystals of the previously unreported ErV2Al20 compound crystallizing with the CeCr2Al20-type 

structure were successfully grown using the flux-growth technique. The crystal structure of the new 

compound was studied by means of powder X-ray diffraction and Rietveld refinement. 

Magnetization measurements show Curie-Weiss paramagnetic character with an effective magnetic 

moment μeff = 9.27(1) μB close to the expected value for trivalent Er
+3

 ion. The Curie-Weiss 

temperature ΘCW = -0.55(4) K is close to zero suggesting very weak effective interactions between 

Er
3+

 magnetic moments.  

Specific heat measurements show a presence of two anomalies at low temperatures: while one, 

sharper, is attributed to the Schottky anomaly, the second, broader, is found to arise from the presence 

of a low-energy Einstein mode (ΘE = 44 K), probably associated with the large amplitude vibrations of 

either Er(8a) or Al1(16c) atoms positioned in oversized cages. Therefore, ErV2Al20 is a new aluminide 

cage compound in which the ‘rattling’ effect is observed. Further studies, including phonon structure 

calculations and inelastic neutron scattering experiments, will be necessary to shed light on the origin 

of the low-energy Einstein mode. An interesting question to study is also how the ‘rattling’ of 

paramagnetic lanthanide atom affects the magnetic properties of the material. 
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Fig. S1: Relationships between the ZrZn22 [1], CeCr2Al20, and Mg3Cr2Al18-type [2] crystal 

structures. 
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Fig. S2: Magnetic field dependency of magnetization for ErV2Al20 showing a linear relation at 50 

K and saturating character at 2 K, as expected for a Curie-Weiss paramagnet. 
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