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1 Advanced Materials Center, Gdańsk University of Technology, ul. Narutowicza 11/12,
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Gdańsk University of Technology, Narutowicza Street 11/12, 80-233 Gdańsk, Poland
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Abstract: Bioactive glasses have recently been extensively used to replace, regenerate, and repair hard
tissues in the human body because of their ability to bond with living tissue. In this work, the effects
of replacing Na2O with MgO on the electrical, biosolubility, and thermal properties of the target glass
10Na2O–60P2O5–30CaO (in mol%) were investigated. The electrical properties of the glasses were
studied with the impedance spectroscopy technique. At 473 K, DC conductivity values decreased
from 4.21 × 10−11 to 4.21 × 10−12 S cm−1 after complete substitution of MgO for Na2O. All samples
had a similar activation energy of the DC conduction process ~1.27 eV. Conduction mechanisms
were found to be due to hop of ions: Na+, Mg2+

, and probable H+. FTIR analysis showed that, as
the Mg content increased, the Q2 unit (PO2

−) shifted towards higher wavenumbers. The proportion
of Q3 unit (P2O5) decreased in the glass structure. This confirmed that the replacement of Na+ by
Mg2+ was accompanied by concurrent polymerization of the calcium–phosphate glass network. The
biosolubility test in the phosphate-buffered saline solution showed that the magnesium addition
enhanced the biosolubility properties of Na2O–CaO–P2O5 glasses by increasing their dissolution rate
and supporting forming CaP-rich layers on the surface. The glass transition temperature increased,
and thermal stability decreased substantially upon substitution of Na2O by MgO.

Keywords: calcium–phosphate glass; FTIR; impedance spectroscopy; biosolubility; thermal properties

1. Introduction

There has been great interest from scientific and technological points of view in
phosphate glasses in recent years due to their potential applications as bioactive glasses [1].
Phosphate base glasses are also well-known for their low melting point and relatively high
electrical conductivity [2]. The addition of different modifiers, such as Na, Ca, and Mg,
has a significant influence on the structure, biodegradability and thermal properties of
these glasses [3]. For example, Mg addition increases the glass transition temperature Tg
of phosphate glass caused by the high field strength of Mg2+ ions [4–11]. On the other
hand, CaO–P2O5 [12] and Na2O–CaO–P2O5 [1] glass systems exhibit poor durability, high
hygroscopic properties and a relatively fast dissolution in simulated body fluids (SBF). The
biosolubility properties of Na2O–CaO–P2O5 can be modified by adding Mg. Lee et al. [4]
studied the biodegradability properties of Na2O–CaO–MgO–P2O5 glasses and concluded
that increased MgO content decreased the glass systems’ degradation rate. Regi et al. [13]
reported the effect of adding MgO addition on the bioactive properties of CaO–P2O5-doped

Materials 2021, 14, 2626. https://doi.org/10.3390/ma14102626 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-7927-9187
https://orcid.org/0000-0003-1430-2862
https://orcid.org/0000-0001-9322-7842
https://orcid.org/0000-0003-0185-6460
https://www.mdpi.com/article/10.3390/ma14102626?type=check_update&version=1
https://doi.org/10.3390/ma14102626
https://doi.org/10.3390/ma14102626
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14102626
https://www.mdpi.com/journal/materials


Materials 2021, 14, 2626 2 of 18

silicate glasses prepared by the sol–gel technique. It was observed that adding MgO slows
down the rate of formation of the hydroxyapatite layer on the glass surface and increases
the thickness of this layer when exposed to physiological solutions. Catauro et al. [14]
prepared SiO2/ZrO2 composites with the same technique and studied their structure, drug
absorption, bioactive and antibacterial properties. Catauro found that these materials can
be considered carriers in the adsorption of an active drug.

The electrical properties of Na2O-containing phosphate glass systems are
well-known [15–18]. In contrast, less literature is available about the dielectric properties
of phosphate glasses doped with MgO [19,20]. Higazy et al. [20] measured the electrical
properties of MgO–P2O5 glass systems and observed increased conductivity with increased
MgO. They conclude that forming mobile Mg2+ ions is responsible for the ion conduction
process in the glass network. Khor et al. [21] showed that dielectric permittivity, dielectric
strength and DC conductivity decrease with increased magnesium oxide content in the
ZnO–MgO–P2O5 system. This might be due to the dual behavior of Mg2+ that can act as
a glass-former and/or modifier. Therefore, it is interesting to study the conduction pro-
cesses in Na2O–CaO–MgO–P2O5 bioactive glasses to explain the mobility of ions [22–25].
New trends in bioresearch concern scaffolds prepared from bioglass composites, electrical
conductors and can electrically stimulate cell growth [22,23]. Studies have shown that
osteobonding and bone growth on the surface of hydroxylapatite (HPA) can be improved
by generating a permanent surface charge on material [24,25].

This work aims to present in detail the influence of substitution of MgO for Na2O on
the structure, electrical, biosolubility and thermal properties of calcium–phosphate glasses
with a higher content of P2O5 and lower content of Na2O than the previously studied
bioglasses [4]. Except in the case of glass stability, all properties display a pronounced
dependency on MgO content; these observations are explored concerning the structural
role of Mg2+ in the glass network.

2. Materials and Methods
2.1. Glass Preparation

Sodium–calcium–phosphate oxide glasses doped with magnesium were synthesized.
The target glasses compositions of 10Na2O–60P2O5–30CaO, 5Na2O–5MgO–60P2O5–30CaO,
3Na2O–7MgO–60P2O5–30CaO and 10MgO–60P2O5–30CaO (in mol%) were prepared.
The reagents: NaH2PO4 (≥99.5% Sigma Aldrich Co., St. Louis, MO, USA), NH6PO4
(99 +% ACROS ORGANICS, Geel, Belgium), CaCO3 (99.9 +% ChemPUR GmbH, Karlsruhe,
Germany), and MgCO3 (extra pure ACROS ORGANICS, Geel, Belgium) were thoroughly
mixed in an agate mortar and pestle. Samples were first heat-treated at 120–200 ◦C for 3 h,
then at 500 ◦C for 1 h. Samples were finally heated to 1100 ◦C and held for 1 h in Al2O3
crucibles in an air atmosphere. Prepared glasses were annealed at 400 ◦C for 5 h and cooled
to 50 ◦C for 10 h. The obtained samples had circular shapes with diameters from 10 to
15 mm and thicknesses from 2 to 2.8 mm.

2.2. Glass Characterization

Room-temperature powder X-ray diffraction (PXRD) was used to verify the amor-
phous nature of the prepared glasses, using a Bruker D2 PHASER diffractometer (Bruker
AXS GmbH, Karlsruhe, Germany) with CuKα radiation (l = 1.5406 Å) and LynxEye-XE
detector (Bruker AXS GmbH, Karlsruhe, Germany). The data were collected from 10–90◦

2θ over 120 min of scan time. The XRD results were background corrected.
An Olympus LEXT OLS4000 confocal scanning laser microscope (CSLM, Olympus

Life Science, Hambur, Germany) was used to examine the morphology of freshly fractured
samples. 3D color images were obtained using a 405 nm laser and photomultiplier detector
with the maximum obtained optical magnification of 2160x.

The chemical compositions of the glasses were determined by energy-dispersive
X-ray spectrometer (EDX GENESIS Apex Apollo X60 spectrometer, Mahwah, NJ, USA)
analysis, using a scanning electron microscope (SEM), FEI Company Quanta FEG250
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(FEI, Eindhoven, The Netherlands). SEM observations were done with a SE-ETD detector
(secondary electron—Everhart–Thornley detector) using a 20 kV beam accelerating voltage
and under the high vacuum (pressure 10−4 Pa). Samples were freshly fractured before
measurements. EDX analysis was conducted on 3 different areas for each sample. The
target and experimentally obtained compositions are reported in Table 1.

IR measurements were done with a Frontier FTIR spectrometer (PerkinElmer, Waltham,
MA, USA). Plane-parallel plates from mixed powders of KBr and sample were prepared
by milling and pressing. 64 scans of the spectra were obtained in the transmission mode
in the range of 400–4000 cm−1 with a resolution of 4 cm−1. The IR band positions were
estimated using the Origin software (version 8.5). The estimated error in the band position
was ± 2 cm−1.

2.3. Impedance Spectroscopy Measurements

The electrical properties were studied by the impedance spectroscopy technique using
a Novocontrol Concept 40 broadband dielectric spectrometer (Novocontrol, Montabaur,
Germany). The electrical properties were measured in the frequency range from 10 mHz
to 1 MHz in a temperature range of 373 K to 613 K, with an AC voltage of 1 Vrms. The
measurements were performed on polished and gold-coated plane parallel circular glass
samples under air atmosphere. The temperature was controlled using a high-temperature
Novotherm HT 1600 controller (Novocontrol, Montabaur, Germany).

2.4. Solubility in PBS

The biological degradation properties were determined by immersing the samples
for 8 and 15 days in 10 mL of phosphate-buffered saline solution (PBS) at 37 ◦C. The
PBS solution (11.9 mM phosphates, 137 mM sodium chloride and 2.7 mM potassium
chloride) was prepared in proportion 1:10 to deionized water. The PBS has a pH of 7.4.
PBS tests were estimated to observe the beginning of the biosolubility process in all tested
samples. For each measurement, 2 samples of similar weight and size were selected from
each composition. After immersion, the samples were cleaned in deionized water, dried
in a desiccator for 24 h and weighed. The top layer of samples was examined with a
confocal microscope and SEM. The composition of the glass surface was determined by
EDX analysis.

The total percentage change in weight of soaked specimens was calculated using the
following equation:

% weight change =
f inal weight− initial weight

initial weight
× 100 (1)

2.5. Thermal Analysis Measurements

Glass transition (Tg) and crystallization (Tcr) temperatures were measured on pow-
dered samples placed in the Al2O3 crucibles, using differential thermal analysis (DTA)
up to 1000 ◦C in flowing nitrogen with a NETZSCH STA 409PC instrument (NETZSCH,
Selb, Germany) and a heating rate of 20 ◦C min−1. The glass transition temperature was
estimated based on the onset of an endothermic drift on the DTA signal. The exothermic
maxima found in all samples were assigned to crystallization processes. Proteus software
(version 6, NETZSCH) provided by NETZSCH was used for the estimation of thermal
properties parameters with a precision of ±2%.

3. Results and Discussion
3.1. Confocal Microscopy and Compositional Analysis

Four transparent calcium–phosphate glasses with different sodium and magnesium
oxide contents were synthesized. Starting and analyzed glass compositions are listed in
Table 1. The samples were labeled based on the xMg content in mol% (x = 0, 5, 7 or 10).
An example CSLM image for glass sample 5Mg (with 5 mol% of Na2O and 5 mol% of
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MgO) morphology is shown in Figure 1. It was typical for homogenous and amorphous
materials. The morphology of other samples was similar. EDX was used to study the
chemical composition of bulk samples and check Al impurities originating from the crucible
material. The target and analyzed compositions were in good agreement. However, in all
glasses, aluminum was also found and is included in the measured compositions (Table 1).
The lowest amount of Al2O3 (~1.7 mol%) was observed in the 10Mg glass without sodium
ions. Doping with Al2O3 (up to 1.5 mol%) to bioactive silicate-based glasses did not have a
strong effect on their bioactive properties. At the same time, it improved their long-term
stability [26]. The suitable stability is highly important for use bioactive glasses as bone
implants; therefore, adding Al3+ ions can be even an advantage in phosphate-based glasses,
which are known to react rapidly in aqueous solutions [27].

Table 1. IDs, starting and final compositions of all samples.

ID Starting Composition (mol%) Final Composition (mol%)

0Mg 10Na2O–60P2O5–30CaO 7.7Na2O–56.9P2O5–32.6CaO–2.7Al2O3
5Mg 5Na2O–5MgO–60P2O5–30CaO 6Na2O–5MgO–55.5P2O5–29.8CaO–3.7Al2O3
7Mg 3Na2O–7MgO–60P2O5–30CaO 4.9Na2O–7.8MgO–55.8P2O5–29CaO–2.5Al2O3
10Mg 10MgO–60P2O5–30CaO 9.4MgO–57.7P2O5–31.2CaO–1.7Al2O3
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were mostly made from various calcium phosphates. Due to the content of the crystalline 
phase, the sample 7Mg can especially be referred to as a glass–ceramic nanocomposite. 

Figure 1. CSLM micrograph for sample 5Mg (see Table 1 for details). Scale bar is 20 µm.

3.2. Structural Analysis

The X-ray powder diffraction was used to verify the amorphous nature of the prepared
glasses. The XRD curves (Figure 2) show a typical glass bump in the range 20◦–35◦, which
is characteristic of glasses. Samples exhibit not only the amorphous halo, but their XRD
curves also show few broad reflections of low-intensity correlated with different crystalline
phases. The most clearly visible reflections occurred in the sample 7Mg, which may
indicate the highest content of nanocrystallites. However, in samples 0Mg, 5Mg, and
10Mg, reflections were not clearly noticeable and distinguished from halo. They may be a
measuring noise. The best matching reflections fit indicated that observed nanocrystallites
were mostly made from various calcium phosphates. Due to the content of the crystalline
phase, the sample 7Mg can especially be referred to as a glass–ceramic nanocomposite.

FTIR spectra for all samples are shown in Figure 2. All materials showed mostly
rounded shapes of curve bands, typical for amorphous materials. However, sample 7Mg
contained small and sharpened peaks, which indicated the presence of nanocrystallites.
The FTIR bands observed for all glasses are listed in Table 2 and are indicated in Figure 3.
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Figure 2. XRD curves for all as-quenched samples.

Table 2. FTIR bands positions and their assignments (see Figure 3 and text for details), where v, vs. and vas means vibrations,
symmetric stretching vibrations and asymmetric stretching vibrations, respectively.

Sample ID νas(PO2)− νs(PO2)− νas(PO3)2−

End Groups
vas(P–O–P) in
Large Rings

vas(P–O–P)
in Chains vs(P–O–P) v(O–P–O) in

(PO2)− Modes

0Mg 1296 1126 1094 956 910 758 492
5Mg 1304 1122 1094 950 918 758 486
7Mg 1312 1126 1088 960 914 764 494
10Mg 1314 1128 1086 958 916 760 492

References [28,29] [28,29] [28,29] [28] [28,30–32] [30–32] [30]
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Figure 3. FTIR spectra for all samples.

Each composition had an O:P ratio (i.e., degree of phosphate network polymerization)
of ~2.9, which is relatively high. The phosphate tetrahedra in the samples consisted mostly
of Q2 units (polymer-like metaphosphate chains PO2

−) and a small content of Q3 units
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(vitreous P2O5). Two dominating bands appeared at ~1300 and 490 cm−1. According to the
literature [28–30], they were due to the asymmetric stretching vibration of Q2 unit (PO2

−),
and bending vibrations of O–P–O units, δ(PO2) modes of (PO2

−)n chain group, respectively.
Bands at ~1120, 910 and 760 cm−1 can be correlated with symmetric stretching vibration of
Q2 unit, (PO2

−), asymmetric stretching modes of P–O–P bridges in the chain, νas(P–O–P), and
symmetric stretching modes of P–O–P chains, vs. (P–O–P) [30–33], respectively. Additionally,
in all samples, bands at ~1090 and 958 cm−1 were found, which are characteristic for
vibrations in (PO4)3− (Q0) [34] and (PO3)2− (Q1) units [35]. Additionally, samples 7Mg and
10Mg show a weak signal at ~570 cm−1 [36], which is characteristic for nanometer-sized
crystallites consisted of apatitic PO4

3- groups [37]. These results were in agreement with
the XRD analysis presented earlier.

Comparing the band positions of all glasses, it can be seen that the main band
~1300 cm−1 characteristic for dominant Q2 unit shifted towards higher wavenumbers
with increased the content of Mg ions in samples’ compositions (from 1296 cm−1 for 0Mg to
1314 cm−1 for 10Mg). This shift indicates a decreased number of Q3 units in the glass struc-
ture associated with the replacement of monovalent Na+ ions by divalent Mg2+, having a
different effect on the structure of phosphate glasses. This suggests that the depolymeriza-
tion of 0Mg was higher than that of 10Mg. However, the FTIR spectra of all glasses showed
only minor changes as a function of composition, which is in line with reference [4] for
CaO substitution by MgO. The opposite behavior was found for the substitution of MgO
for P2O5, which increased the depolymerization of Na2O–CaO–MgO–P2O5 glasses [37].
It should be noted that the FTIR bands of sample 5Mg seemed to be slightly out of the
behavior trend of the rest of the samples, e.g., νs(PO2)−, vas(P–O–P) in chains, v(O–P–O) in
(PO2)− modes, vas(P–O–P) in large in rings. This sample contained the highest amount of
Al2O3. Therefore, we suspect that not only MgO but also Al2O3 influenced the structure of
tested materials.

3.3. Electrical Properties

Figure 4a shows the real part of conductivity σ′ versus frequency for different temper-
atures for exemplary sample 10Mg. The other samples presented similar behavior to their
σ′ spectra. The basic electrical parameters were analyzed by using Jonscher power-law [38]:

σ′(ω) = σDC(T) + A(T)ωS(T) (2)

where σ′(ω) is the real part of conductivity dependent on frequency and σDC is the direct
current (DC) conductivity, independent of frequency. Part Aωs describes alternating current
(AC) dispersion. The conductivity curves contain two parts: DC conductivity (σDC) and
AC conductivity. The second part linearly increases with frequency (power-law behavior).
The range of frequency for which the DC plateau occurs increases with the temperature for
all tested glasses.

The σDC values were numerically determined using Equation (2) and Figure 4a and
are shown in Figure 4b for all samples. They fulfill Arrhenius’ law, which is given by the
following relation:

σDCT = σ0 exp
(
−EA

kT

)
(3)

The σ0 is the pre-exponential factor of conductivity, EA is the activation energy of
mobile ions diffusion in long-range, and k is Boltzmann’s constant. The lnσ0 and EA values
estimated from fitting (Figure 4a with Equation (3)) and the values of σDC (evaluated
at temperature 473 K) are presented in Table 3. The σDC and lnσ0 decreased with the
substitution of Na+ ions by Mg2+ ions. However, the activation energy estimated for the
DC conduction process was similar for all samples. Its magnitude (~1.27 eV) was typical
for an ion hopping mechanism. In that situation, the observed changes in DC conductivity
were mostly due to changes of parameter σ0.
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Table 3. Values of DC conductivity estimated at 473 K, activation energy of DC conduction process
and σ0 parameter.

IDs σDC at 473 K
(Scm−1)

EA (eV)
±0.001

lnσ0 (KScm−1)
±0.01

0Mg 4.21 × 10−11 1.267 13.38
5Mg 1.38 × 10−11 1.273 12.41
7Mg 8.22 × 10−12 1.276 11.99

10Mg 4.34 × 10−12 1.256 10.86
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The DC conduction mechanism in sample 0Mg was due to thermally activated Na+ ion
hopping. In sample 10Mg, the ionic conduction mechanism may have been connected with
Mg2+ ion hopping observed in MgO–P2O5 [19,20] and ZnO–MgO–P2O5 [21] systems. The
drop of DC conductivity observed between samples 0Mg (Na2O ~7.7 mol%, Na ~3 at %) and
10Mg (MgO 9.4 mol%, Mg ~2 at %) after total ion exchange was of one order of magnitude.
This decrease can be assigned to lower mobility and content of magnesium ions in the
10Mg sample as compared to sodium ions found in the 0Mg sample. Additionally, it was
shown in [21] that the increase in MgO quantity in phosphate glass may decrease its σDC.
At the same time, part of the Mg2+ cations may act as glass-formers, and as a result, the
content of relatively free mobile ions (Mg2+) was reduced. Therefore, most probably in
our 10Mg sample, the part of Mg2+ carriers did not take part in the conduction process. In
the glasses containing both Na+ and Mg2+ ions, samples 5Mg and 7Mg may exhibit mixed
ion hopping.

It is interesting to see whether similar activation energy was found for all samples
followed a “classical” strong electrolyte model concerning ion conductors, as proposed
by Anderson and Stuart [39]. Its main idea is that a mobile ion hops from one site to
another and passes through a “doorway”, which opens as it passes through. Cations sites
require only the presence of non-bridging oxygens. In this model, the activation energy
of conduction is a sum of two parts (Equation (4)): the electrostatic binding energy of
the original site Eb, and the strain energy, Es, required to move an ion from one site to
another [40]:

EA(σ) = Eb + Es, where Eb =
βzz0e2

γ(rM + r0)
and Es = 4πGrD(rM − rD)

2 (4)

Here z and z0 are the charges on the mobile ion and the fixed counterion—in this case,
sodium and/or magnesium and oxygen with ionic radii rM and rO, respectively, e is the
electronic charge, and rD is the effective radius of the (unopened) doorway. Parameter
G is an elastic modulus, β is a “Madelung” constant, and γ is a covalence parameter,
which indicates the degree of charge neutralization between the ion and its immediate
neighbors [41].

Comparing two samples with maximal and minimal content of MgO, we observed (on
FTIR results) that the 0Mg glass exhibited higher depolymerization of structure and ionic
radius of mobile ions (rNa+ = 0.95 Å [41]) than the 10Mg glass (rMg2+ = 0.72 Å). Moreover, it
was shown in [42] that elastic modulus is also slightly higher for phosphate glasses doped
with alkali ions than with magnesium ions. Therefore, we can assume that the strain energy
part of activation energy should be higher for the hopping process of Na+ ions than for
Mg2+ ions. However, while considering the electrostatic binding energy part of activation
energy, the situation should be the opposite. The value of the electrostatic charge was
higher for Mg2+ than for Na+. Assuming that the β parameter can be approximated by the
relation: [39,41,43]: β = 2.1−rNa

3.5 , the general estimation shows that it was also higher in the
10Mg glass (0.39 Å) than in the 0Mg (0.33 Å). Therefore, we can assume that the observed
similar activation energy of the DC conduction process in both samples may result from
the compensation of two energy parts. For alkali–alkaline glasses, the contribution of
electrostatic binding energy and strain energy changes inversely with the content of Na
and Mg ions in sample compositions.

In many single-ionic amorphous conductors, the total AC conductivity complies time–
temperature superposition prepared. For these glasses, a master curve can be constructed
as the shape of σ′ (ω) in log–log plot using Summerfield scaling [17,44]. Figure 5a,b show
the master curves of σ′ (ω) constructed for samples: 5Mg and 10Mg, respectively. For
both samples, the slope of d logσ′/d logν continuously increases with frequency and, as
typical for glasses, is tending towards 1.0. Nevertheless, the shape of master curves of σ′

(ω) dependents on temperature not only for the mixed alkali–alkaline earth sample 5Mg
(Figure 5a) but also for the alkali-free sample 10Mg (Figure 5b). The same behavior is
observed for other samples. In mixed alkali–alkaline earth samples 5Mg and 7Mg, it can be
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correlated to different mobility of the two ionic species: Na+ and Mg2+. In this situation,
an ionic transport is dominated by the ionic species with higher mobility—Na+ [45,46].
However, the AC conductivity of the 10Mg and 0Mg samples, which contained only one
ionic species (Mg2+ or Na+), also did not obey time–temperature superposition. This
indicates the presence of an additional conduction mechanism. Since all glasses are highly
hygroscopic and may contain water bonds, the additional residual mechanism associated
with proton hopping is possible. This process has been observed, for instance, in Na2O–
FeO–P2O5 and CaO–FeO–P2O5 glasses [15].
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3.4. Biosolubility in PBS

The results of the degradation test in PBS are shown as a function of Mg content in
Figure 6. It can be seen that the solubility of glass samples increased with an increase in Mg
content. The opposite effect of weight loss was found for the increase in Na content. The
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weight loss showed high dependence on Mg content. Weight loss after 15 days of incubation
was approximately two times higher than after 8 days. The insert in Figure 6 shows that the
difference between weight loss after 15 and 8 days was approximately linearly dependent
on Mg content. The results indicate that magnesium addition advanced the biodegradation
process of calcium–phosphate glasses while the glass containing only sodium ions exhibited
higher stability. The observed changes in dissolution rate affected by Na2O substitution
contradicted those presented by Lee et al. [4] for CaO substitution by MgO. They stated
that the increase in MgO content decreases the degradation rate of the phosphate glass
systems in the water. In contrast, in our samples, the results showed an opposite behavior
for a PBS solution. Comparing the compositions, in our samples, the content of sodium
ions was significantly lower (two times). At the same time, the number of phosphorous
ions was higher than reported by Lee et al. [4]. Based on these findings, it could be seen that
the magnesium doping effect was highly correlated with the relative contents of sodium,
calcium and phosphorous. Moreover, the higher dissolution rate of tested here sodium-free
glass (10Mg) could also be correlated to the chemical composition of the dissolving solution.
It is known that sodium is more soluble in water than magnesium. However, PBS already
contains a high concentration of sodium ions. Therefore, diffusion of magnesium to the
PBS was more preferable to sodium.
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Figure 6. The results of the biosolubility test for all samples after 8 and 15 days of incubation in PBS
as a function of Mg content. Figure insert shows the effect of Mg content on the difference between
loss of weight after 15 and 8 days. On the right, the SEM micrographs of the 10Mg glass are shown,
correlated by arrows with specific weight loss.

The pH of the PBS solutions was measured before and after the 8 and 15 days of
incubation. The solution’s pH slightly decreased from 7.4 to approximately 7.2 after 8 days
of incubation of sodium-containing glasses. In contrast, the sodium-free glass solution pH
reached ~7.1. After 15 days of immersion, the pH of the solution further decreased for all
glasses. The 10Mg glass, it achieved a pH value below 7. Figure 7 shows the difference
in pH values of the PBS solutions before and after 8 and 15 days of incubation of glasses.
The absolute values of changes in the PBS pH were higher after 15 days of incubation than
after 8 days. They increased with the increase in Mg content. As described in [47], the
dissolution process of the phosphate-based glasses in an aqueous solution can be divided
into two steps: a hydration process and a breakage process. In the hydration process, a
hydrated layer is formed on the glass surface due to Na+ and H+ ion exchange. In the
breakage process, the continuous attack of water results in breaking up P–O–P bonds and
breaking the glass network, releasing [PO4] units. The decrease in pH of solution due to
dissolution of phosphate-based glasses can be related to the hydrated phosphate chains
dissociating [4]. The phosphorus cations released from the breakage of P–O–P bonds tend
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to bond with protons to form phosphoric acid [47]. However, only the dissolution of
sodium-free 10Mg glass caused the acidic pH of the PBS solution, while sodium-doped
glasses only slightly acidified the solution related to the dissolution of Na+ ions into the
solution, which increases the pH of the solution [4]. Moreover, an increase of solution
pH may also be correlated with the release of Ca2+ and Mg2+ ions into the solution and
chelation with the released phosphate species [47].
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Mg content. The difference was calculated as pH of the PBS after incubation of glass—pH of the PBS
before incubation.

The decrease in solution pH observed for tested samples was significantly lower than
the one described for similar glasses with higher sodium content [47] and doped with
MgO [4]. Moreover, incorporating MgO resulted in increasing the rate of hydration and the
rate of breakdown of the phosphate bonds. Consequently, the dissolution rate increased,
and the solution pH decreased, contrary to findings in [4]. Therefore, we suppose that in the
case of our glasses, the dissolution process was dominated by the releasing of phosphorus
and calcium cations into the PBS (PBS lacks Ca2+ ions) and phosphate species chelating
with released Ca2+. Moreover, the release of Mg2+ ions was more favorable than releasing
Na+ ions due to the lack of Mg2+ ions in the PBS. Accordingly, phosphate species chelating
with released Mg2+ was larger because of their higher valency state than of Na+. In this
case, the layer built up of phosphates should occur on the glasses surfaces, as shown in
Figure 6 for the 10Mg glass. The layer grew mostly from phosphorous and calcium ions,
which were released from the glass surface; therefore, the higher the loss of weight was,
the faster layer growth was, as shown in Figure 6 after 8 and 15 days of incubation time. It
should be noted that Al needs an acidic pH to be released from glass [48]; therefore, we
supposed that no Al leached into the PBS during immersion.

To study the effect of incubation time in PBS on the surface changes, confocal micro-
scope and SEM micrographs of sample 10Mg are juxtaposed in Figure 8. It can be seen that
8 days of incubation was enough to observe the beginning of the nucleation process of the
layer. In comparison, after 15 days, the layer was visible on most of the glass surface. The
cracks observable on the layer were a consequence of the drying process. Figure 9 displays
the SEM micrographs of all samples after 15 days of incubation. For all samples, the layer
fragments were observed already after 8 days of incubation. After 15 days, the amount, size
and thickness of the layer were higher. It should be noticed that glasses were not polished
or powdered for biosolubility tests as it is often done [49–51]. Nevertheless, a layer built
up. However, the layer mostly formed on the cracks, breakdowns and edges where the
roughness of the surface was high. The SEM micrographs showed that the layer peels
off the surface (Figure 9 for 5Mg glass). This peeling process was observed for samples
containing Na ions, while for sample 10 Mg (Na free), no peeling was found. Moreover,
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the layer was the thickest on the surface of the 10Mg glass. Accordingly, we can say that
glass which more dissolved (10Mg) had a larger surface area. Therefore, the layer adhesion
was greater for it. A similar effect of MgO incorporation on the support of CaP-rich layer
formation was found for phosphate–silicate glasses immersed in SBF [52].
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Additionally, fern-like crystals were observed on the surfaces of all magnesium-doped
glasses. Sample SEM micrographs of fern-like crystals are displayed in Figure 10 (left).
Fern-like crystals were clearly visible after 8 days of immersion. They were most likely
formed by the deposition of released magnesium and phosphate ions, as they were not
found for the Mg-free 10Na glass. Figure 10 (right) also shows the spherical aggregates
detected on the 10Mg glass surface after 8 (top) and 15 (bottom) days of incubation, which
may have been some kind of precipitated Ca-phosphate species.
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EDX measurements completed after 15 days of immersion on layers showed signifi-
cant changes, especially for glasses 7Mg and 10Mg. The content of P was found to be two 
times lower than for the glass matrix without layer. The content of Al was also signifi-
cantly higher (up to 7 at %). This may suggest that during dissolution, the phosphorous 
and calcium ions were released into the PBS and then chelated and formed CaP-rich crys-
tals with Al, which remained on the glass surface. Apart from apatite formation, several 
other possible phases of calcium orthophosphates may be formed in the PBS. However, at 

Figure 10. SEM micrographs after 8 (top) and 15 (bottom) days of incubation in the PBS for exem-
plar glasses.

The elemental composition was checked by EDX for all samples after 8 and 15 days of
incubation in the PBS. EDX analysis was done for selected areas on layers and for placed
without visible layer (glass matrix). In all samples, an increase in Ca and P content was
detected for both layer and glass matrix after 8 days of incubation in the PBS. Slight changes
in the content of the other elements (Na, Mg and Al) were within the EDX equipment error.
EDX analysis after 15 days of immersion also did not show any significant changes in the
composition of all the glasses matrices, suggesting that all samples dissolved in the PBS
fluid evenly. The even dissolution of biomaterial is its great advantage because it does not
lose its properties, e.g., through local depletion in any of the elements. In addition, from a
biological point of view, it is beneficial for material to dissolve in a controlled manner, as
here, because a local excess of any element can cause toxic reactions around an implant.

EDX measurements completed after 15 days of immersion on layers showed significant
changes, especially for glasses 7Mg and 10Mg. The content of P was found to be two times
lower than for the glass matrix without layer. The content of Al was also significantly
higher (up to 7 at %). This may suggest that during dissolution, the phosphorous and
calcium ions were released into the PBS and then chelated and formed CaP-rich crystals
with Al, which remained on the glass surface. Apart from apatite formation, several other
possible phases of calcium orthophosphates may be formed in the PBS. However, at the
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later stages, all of them will convert into HA in various pathways. To confirm the possible
presence of hydroxyapatite (Ca10(PO4)6(OH)2]) layer created during immersion or indicate
the higher potential for HAp creation on the sample surface, the Ca/P ratio was studied.
For silicate-based glass-ceramics, this value was close to 1.69 (in at %) [48,53], similar to
HAp. For all tested glasses, the Ca/P ratio varied between 0.26 and 0.29 and slightly
increased after immersion. The highest Ca/P ratio ~0.47 was found for the spherical
aggregates observed on 10Mg glass (Figure 9 down, right) and layer on glass 7Mg; ~0.42,
after 15 days of immersion. Both results suggest the presence of Ca-phosphates. However,
values are lower than the theoretical of HAp, which may have resulted from a too-small
thickness of the layer and the EDX signal as measured both on the layer and the glass
matrix below.

3.5. Thermal Properties

All samples clearly showed the glass transition temperature and one broad exothermic
process. The glass transition and crystallization temperatures increased with the magne-
sium addition. Tg increased for 75 degrees, from 447 ◦C for sample 0Mg to 522 ◦C for
sample 10Mg (see Table 4). Figure 11 presents the Tg versus sodium and magnesium
content. It can be seen that Tg decreased linearly with increased Na content. This may have
been due to the different structural roles of sodium and magnesium ions in the phosphate
matrix. It is known that adding modifier ions like Ca2+ and Mg2+ [54] results in depoly-
merization of the glass network and decreases the glass Tg. When high field strength Mg2+

ions substitute low field strength ions: Ca2+ or Na+, the Tg of phosphate glass increases.
Furthermore, adding Al2O3 depolymerizes the phosphate network but increases the Tg is
due to the strong P–O–Al crosslinks [55,56].

Table 4. DTA results of experimentally analyzed samples; glass transition (Tg), exothermic process
onset (Tcr onset), crystalline peak position (Tcr middle), and glass stability (S).

Sample ID Tg (◦C) Tcr onset (◦C) Tcr middle (◦C) S (◦C)

0Mg 447 646 708 199
5Mg 464 655 735 191
7Mg 473 662 779 189
10Mg 522 697 748 175
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These results were also in agreement with the FTIR findings, which showed that the
polymerization of the phosphate network increased with the increase in MgO content.
They also followed the literature data [4]. However, our samples exhibited higher Tg values
than the corresponding glasses with higher Na2O (20 mol%) and lower P2O5 (50 mol%)
contents, even for glasses doped with 30 mol% MgO.

The bioglass resistance to the crystallization process during heating is frequently
estimated as an important parameter for its practical use. Glass thermal stability is generally
defined as the difference between the onsets values of the first crystallization process and
the glass transition temperatures S = Texo1, onset − Tg [57]. Table 4 presents glass thermal
stability values calculated for all samples. It can be seen that glass thermal stability
decreased with increased Mg content from 199 ◦C for sample 0Mg to 175 ◦C for 10Mg. The
decrease in the glass thermal stability due to increased MgO content was a consequence
of slower shiftiness of the beginning of the crystallization process than the one observed
for Tg. This may suggest that the doping with MgO slightly increases the glass tendency
to crystallize. However, in the case of silicate-based glasses, a similar tendency was not
observed [58].

4. Conclusions

In the current paper, we studied increasing Mg content by replacing Na and its effect
on the properties. Four sodium–calcium–phosphate glasses substituted with different
content of magnesium oxide were prepared. Most of the glasses were X-ray amorphous.
IR spectroscopy analysis showed a high degree of spectral overlap between the studied
glassy materials. All of them had phosphate networks made up mostly of Q2 and small
content of Q3 phosphate units. Additionally, in all samples, bands correlated with Q0

and Q1 groups were detected, which suggested the presence of (PO4)3− and (PO3)2−

groups. With adding Mg, the network was increasingly polymerized, which was reflected
in decreased DC conductivity, increased biosolubility and glass transition temperature.
The DC conductivity values decreased by one order of magnitude from 4.21 × 10−11 to
4.21 × 10−12 Scm−1 after substitution of MgO for Na2O in the Na2O–CaO–P2O5 glassy
system. In contrast, the activation energy of the DC conduction process remained close to
~1.27 eV for all samples. The behavior of AC conductivity indicated the presence of at least
two conduction mechanisms for all samples. In mixed alkali–alkaline earth samples, the
conduction mechanism was associated with hopping of two different ionic species: Na+

and Mg2+. However, for all samples, an additional residual mechanism was also possible:
proton hopping. Tests in PBS showed that all prepared samples exhibited biosolubility
properties and evenly dissolved at an appropriate rate in PBS. Furthermore, the magnesium
addition enhanced the biosolubility of calcium–phosphate-based bioglasses by increasing
their dissolution rate and supporting forming CaP-rich layers on the surface. The results
found for the biodegradation process present new insights into the role played by MgO that
contradict available literature data on phosphate bioglasses. The transition temperature
increased by up to 75 ◦C for Na2O–CaO–P2O5 glass after substitution of MgO for Na2O.
The high increase in Tg was caused by the replacement of low field strength ions Na+ by
high field strength Mg2+ ions and by the increase in the polymerization of the network.
Presented materials could be a possible candidate for bone implant application.
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