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Abstract: Digital twin (DT) is an enabling technology that integrates cyber and physical 

spaces. It is well-fitted for manufacturing setup since it can support digitalized assets and 

data analytics for product and process control. Conventional manufacturing setups are still 

widely used all around the world for the fabrication of large-scale production. This paper 

proposes a general DT implementation architecture for engineering objects/artifacts used in 

conventional manufacturing. It will empower manufacturers to leverage DT for real-time 

decision-making, control, and prediction for efficient production. An application scenario 

of Decisional-DNA based anomaly detection for conventional manufacturing tools is 

demonstrated as a case study to explain the architecture. 

Keywords: Digital Twins (DT), Decisional-DNA (DDNA), Virtual Engineering Objects 

(VEO) 

1. Introduction

A large-scale conventional manufacturing setup consists of numerous engineering objects 

like machine tools, accessories, and holding devices. The benefits of conventional 

manufacturing include low initial setup costs and economical fabrication. Nevertheless, it 
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is plagued with inherent uncertainties and difficulties pertaining to product quality and 

productivity. Defects and unwanted features can affect surface roughness and  

mechanical properties, apart from many other technical issues that arise during production. 

Ever since the exponential rise in the advancement in Information and Communication 

Technologies (ICT) and digitalization, Conventional manufacturers have been looking for 

feasible solutions to these problems based on Industry 4.0 environment in general and the 

digital twin (DT) concept in particular [1]. The aim is to exploit the knowledge gained 

from cutting-edge sensor technologies into DTs to monitor, predict and control 

manufacturing objects/operations in a traditional setup. Variables that affect part 

reproducibility, process repeatability, and quality assurance can be empowered with DT 

[2]. There are various definitions of DT that are provided by researchers from time to time, 

one of the most accepted definitions of DT has been provided by ISO for ‘‘Digital twin in 

manufacturing” as ‘‘a fit-for-purpose digital representation of manufacturing key 

performance indicators (KPIs) element with synchronization between the Observable 

Manufacturing Entities (OMEs) and its digital representation [3].” In this context, OMEs 

are conventional manufacturing artifacts, equipment and products. The digital 

representations are data-based models and simulations to help make responsive and 

adaptive control decisions. 

Data analytics, such as physics-based, data-driven, and physics-informed data-

driven modeling, have become valuable tools for employing the digital twin concept when 

considering digital representation methods for two reasons [4,5]. First, process monitoring 

and control have been made easier by the growing availability of precise, affordable 

sensing technology (such as machine vision) that can be quickly implemented into 
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manufacturing facilities [6]. Second, the improvements in computing competencies have 

made real-time data analysis more practical and effective. 

DT can manage manufacturing inherent uncertainties, complexities, and defects 

through data analytics, enabling real-time analysis and control of the manufacturing 

process.  

But, two problems need to be looked into. First, carrying out multidisciplinary 

modelling and simulation involves iterative analyses established on a vast, structural-and-

material design-space exploration. In addition, several process parameters demand a vast 

number of sample input data. Second, implementing a DT for the conventional 

manufacturing process/parts involves integrating multiple systems across different 

platforms and dealing with interoperability and integration problems [3]. 

Using a cheap but less accurate model, known as a surrogate model, is one way to reduce 

the significant processing effort required for physics-based modelling. Experience-based 

knowledge representation modelling techniques can be applied, such as Decisional DNA 

(DDNA) and Set of Experience Knowledge Structure (SOEKS), to address above 

mentioned problems [7-8]. A system architecture that permits the use of such technologies 

and standards is necessary. Establishing a DT can reduce the number of trial-and-error 

testing, faults, and manufacturing lead times, resulting in a more efficient strategy. A DT 

implementation architecture for DDNA-SOEKS based virtual engineering objects (VEO) 

used in conventional manufacturing (Digital Twin Manufacturing Framework) and the 

digital thread concept [1] is proposed in this paper. It aims to allow manufacturers to use 

DTs for real-time decision-making and control of the manufacturing process. It offers a 

means to tackle complex technologies and procedures that can support implementation. 
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The architecture is designed to be generic, customizable, and reusable. The remainder of 

this paper is organized as follows. In section 2, the concept of VEO is discussed. Section 3 

introduces the proposed DT implementation architecture. Section 4 demonstrates a case 

study of anomaly detection in the Virtual Engineering Object (VEO). Section 5 presents 

the discussion and conclusion. 

 

2. Virtual Engineering Object (VEO) 

A VEO is a knowledge representation of the engineering artifact along with its Experience 

embedded in it. The goal of VEO is to organize the Experience of engineering objects in a 

flexible standard format. Thus, converting the Experience into helpful information can help 

practitioners better focus on solving the problems without spending undue time gathering 

information, modelling it, and then analyzing it. SOEKS and DDNA [7,8], an intelligent 

knowledge-based decision tool, is used for developing VEO. That means a VEO is not only a 

knowledge repository but has SOEKS-DDNA qualities like self-awareness and reflexivity 

embedded in it. A VEO is a knowledge representation of an engineering artefact and  it has three 

features:  

(i) the embedding of the decisional model expressed by the set of experiences,  

(ii) a geometric representation, and  

(iii) the necessary means to relate such virtualization with the physical object being 

represented.  

A VEO can encapsulate knowledge and Experience of each vital feature related to an 

engineering object. This can be achieved by gathering information from six aspects of an object: 
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Characteristics, Functionality, Requirements, Connections, Present State, and Experience, as 

illustrated in Figure 1. 

The prospects for applying virtual representation to manufacturing are up-and-coming as 

it offers a systematic approach to capturing, storing, distributing, and reusing information to 

make it available, actionable, and valuable to others. This approach will help practitioners make 

effective decisions at every stage involved in manufacturing based on past Experience, which 

will enhance industrial design and manufacturing. Moreover, manufacturing DNA can also be 

developed [9,10,11]. 

 

Figure 1: Architecture of VEO 

 

3. DT Implementation architecture of Virtual Engineering Object (VEO)  

The proposed DT implementation architecture for VEO in industrial processes is shown in 

Figure 2. This architecture comprises the components needed by DTs, including real-time 

process monitoring and control, connectivity, predictability, adaptability, intelligence, and 
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humans-in-the-loop [11]. Additionally, it has two features: a physical twin (PT) and a digital 

twin (DT). Each layer has one or more entities, each of which is composed of a number of sub-

entities and modules. The entities are the VEO-(DNA), data collection and device control, 

semantic analysis, and user interface manufacturing key performance indicators (KPIs) parts. 

The presented architecture enables end users to: 

 (i) depict the real-time VEO situation,  

(ii) monitor, control, and anticipate the VEO using data analytics, and  

(iii) collect and send VEO data to support decision-making. 

 

 

Figure 2: Digital twin implementation for VEO 

 

The proposed architecture works in the following manner. The required data from the 

VEO setup is captured through sensors, cameras, RFIDs, and test equipment. The acquired data 

is sorted and stored in the SOEKS format before further processing. This data can be geometrical 

accuracy, mechanical properties, and signatures for engineering objects like Characteristics, 

Requirements, Functionality, Connections and Experience, as shown in Figure 2 [9-12]. The 
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concept of DDNA-SOEKS is envisaged on the cloud computing platform [13,14]. The 

information flow is bi-directional throughout the proposed architecture to enable real-time VEO 

monitoring and control. The following subsections cover the PT and DT layers’ organizational 

structures, entities, and sub-entities. 

 

3.1. Physical twin 

The manufacturing key performance indicators (KPIs) for the PT layer are made up of the 

VEO experimental setup and sub-entities that help with data collection, such as sensors, parts 

and test equipment, camera, and device control, and radio frequency identification (RFID) tags. 

The sensors might be of two types: (1) connected sensors, such as a high dynamic range 

(HDR) camera, thermocouple, pyrometer, and voltage/current sensor, or (2) built-in sensors, 

such as location tracking systems and power measurement for a VEO. 

Additionally, in the digital twin implementation for VEO setup, the manufacturing key 

performance indicators (KPIs) are in charge of carrying out the activities and sending the real-

time data to the data collecting and control level entity. Due to this real-time communication, 

failure detection can be quickly and effectively managed by issuing extra VEO orders. 

 

3.2. Digital twin 

Three entities—Data Collection and Control, Semantic Analysis, and User Interface—

make up the DT component. The collected data is pre-processed during the data collection (e.g., 

Tool (SOEKS). Data augmentation, categorization, feature extraction, data cleaning, and data 

reduction (VEO(Tool)) may be included in this. 
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Characteristics: Describe the physical characteristics and anticipated advantages of the 

item that the VEO stands in for. In addition to the geometric dimensions, look, weight, etc., this 

module will also record any potential concurrent qualities, such as "versatility" or "ease of 

operation." Characteristics-stored information will aid in better decision-making by providing the 

answers to questions like, "Which VEO is most suited for a certain physical condition?" 

Functionality: By outlining the fundamental ideas and operations of the VEO, 

functionality is demonstrated. Functionality will retain operational information about an object, 

such as time expended, its operational bounds, and the process's conclusion. Operation-specific 

information can be stored, picked out, and reused with the help of this VEO module. 

Necessity: By outlining the collection of "necessities" that the VEO needs in order to 

function precisely. Here, details about the kind and quantity of power the VEO requires, the 

amount of space needed, and the level of user experience required to operate a VEO will be kept. 

Connections: By outlining the connections between the VEO and other VEOs. Many 

engineering objects interact with one another; these coordinating VEOs may be "parts" of or 

"necessary for" one another. For the scaling up and creating the interconnection of VEOs in a 

manufacturing environment, this module of the VEO framework will be crucial. 

Current State: The Current State of the VEO; by highlighting the VEO's current 

parameters. It will provide a response to the issue of whether the VEO is prepared for a specific 

operation. If the required VEO is occupied, it will forecast when it will be available for the 

following operation. 

Experience: The VEO's experience includes knowledge and information that is dynamic 

in nature and constantly changes with every new choice, action, or occurrence. In other words, 

the Experience will have a record of every official decision made in relation to the VEO. Each 
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time a VEO activity occurs, this component of the VEO will also be updated in real-time [10]. 

Data identification and process control components make up the device control sub-entity. 

Semantic Analysis, the second entity, analyzes the management and overall operation of DT. 

Cloud computing environments make up this system. To help portray the OMEs, the computing 

environment has six primary modules: 

(1) Initial visualization (2) Methods of simulation (3) Surrogate models, which are streamlined 

variations of the procedure that replicate the workings of intricate VEO models, can be utilized 

to speed up calculation and decision-making. (4) An information model is also used to organize 

the flow of information further. (5) Diagnosis and prognosis, as well as decision assistance that 

enables process modification based on simulation and (6) model execution outcomes round out 

the list. 

The user interface, which allows for a variety of interactions between people and 

systems, is the final item in the suggested hierarchical architecture. The user interface interaction 

occurs in the cloud. The processed data obtained from computer environments can be used by 

technicians, shop floor supervisors, operators, designers, planners, and managers in the cloud to 

deliver control commands. 

These commands can modify process parameters like current and voltage for near-

optimal part characteristics and process signatures. These include improved geometric accuracy, 

reduced flaws, reduced surface roughness, and improved mechanical performance. 

 

4. Case Study: Real-time Tool anomaly detection for VEO 

To increase process repeatability, part reproducibility, and model interoperability in VEO, the 

suggested architecture can be used for real-time anomaly detection, as shown in Figure 3. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


The Open Platform Communications Unified Architecture is the foundation for 

communications in this application scenario (OPC UA). It employs the server-client model. The 

client subscribes while the server gives data content. 

Cameras are used to get HDR and thermal images from the experimental setup, while 

sensors collect temperature, pressure, spindle speed data, etc., from the process. The tensile test 

and CMM are also used to extract data from VEO parts. The entity responsible for data 

collection and control receives process and part signatures as well as 1D (such as current and 

voltage), 2D (such as HDR pictures), and 3D data (e.g., surface roughness). This entity is also 

given test data, such as the strain-stress curve. These data are collected with regard to the 

respective components in an information model on a server and are associated with nodes in an 

address space of OPC UA data. 
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Figure 3: Flowchart of tool anomaly detection and process control in VEO-based DT 

 

Information is constantly being pushed from devices (VEO-Tool), as shown in Figure 3. 

The model's primary responsibility is to organize and store incoming data efficiently. Streaming 

data storage is effective in evaluating machine tool performance and maintenance. Any 
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substantial change in the monitored tool's status can be recognized. The change can be 

characterized as a significant variation in the machine (tool) health value (high and low, as 

shown in Figure 3), a maintenance procedure, or a shift in the working schedule. These 

streaming data will be gathered throughout a tool's life cycle and used to create the asset's time 

machine history. Peer-to-peer asset comparison will take place using this live time tool record. 

When an asset fails or is replaced, its relative time-machine record shifts from active to historic 

state and is utilized as a reference for similarity detection and synthesis. 

Data from four sensors are collected and organized in the SOEKS format to represent 

official decisions made while operating the equipment. Calculated similarity to each tool's prior 

SOEKS is used to compare the current tool behavior. The similarity index is calculated using the 

Euclidian distance between the variables. 

The similarity index obtained for each SOEKS in the repository using the query SOEKS 

is displayed in Figure 3. The SOEKS with a red dot are those with the most similar SOE. The 

monitored system's future behavior can be anticipated more precisely once the patterns coincide. 

Each set of variables has a specific SOEKS function to calculate the tool life and machine 

(tool) health index. The matching machine health index and tool life for each SOEKS are shown 

in Figure 3. To maintain a just-in-time maintenance strategy in the manufacturing plant, it is 

helpful to forecast the remaining usable life of assets. Additionally, based on the asset's present 

health status, life projections and historical time machine records can be used to increase asset 

use efficiency. The data needed to predict potential future usage situations and their effects on 

the target asset comes from historical usage patterns of similar assets at various health stages. 

The most effective and productive use pattern for the target asset can be applied in any of those 

instances. 
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Since OPC UA is a cross-platform, open-source standard for data exchange, it addresses 

the interoperability and data sharing concerns of integrating the models and information in many 

platforms. Real-time anomaly detection is made possible by this standard for real-time 

communication, which enables open, deterministic, real-time communication between 

automation systems. It can guarantee data security since it uses client-server communication 

protected by user authentication and authorization.  

 

5. Conclusion 

Digital twin (DT) is an enabling technology that integrates cyber and physical spaces into Cyber 

Physical Systems (CPS)  for the incoming era of Industry 4.0. Based on the idea of the digital 

Manufacturing DNA, a generalized DT implementation architecture for VEO is suggested in this 

study. Manufacturers can use DTs for real-time decision-making and control of VEO 

applications thanks to the implementation design. Additionally, it offers a way to navigate the 

complicated array of standards, tools, and techniques that can be applied to implementing digital 

twins. To show how the suggested architecture may be used, a real-time anomaly detection 

application scenario was also examined. In the next step, the full software/hardware 

representation of the proposed architecture and its implementation in real life manufacturing 

environment is intended.  
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