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Andrzej Sobecki1, Julian Szymański1 , David Gil2 and Higinio Mora2

Abstract
In the era of a ubiquitous Internet of Things and fast artificial intelligence advance, especially thanks to deep learning net-
works and hardware acceleration, we face rapid growth of highly decentralized and intelligent solutions that offer func-
tionality of data processing closer to the end user. Internet of Things usually produces a huge amount of data that to be
effectively analyzed, especially with neural networks, demands high computing capabilities. Processing all the data in the
cloud may not be sufficient in cases when we need privacy and low latency, and when we have limited Internet band-
width, or it is simply too expensive. It poses a challenge for creating a new generation of fog computing that supports
artificial intelligence and selects the architecture appropriate for an intelligent solution. In this article, we show from four
perspectives, namely, hardware, software libraries, platforms, and current applications, the landscape of components
used for developing intelligent Internet of Things solutions located near where the data are generated. This way, we pin-
point the odds and risks of artificial intelligence fog computing and help in the process of selecting suitable architecture
and components that will satisfy all requirements defined by the complex Internet of Things systems.
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Introduction

The Internet of Things (IoT)1 is a paradigm of interre-
lated small devices such as radio-frequency identifica-
tion (RFID) tags, sensors, actuators, and smartphones
which are pervasive, and through the use of unique
identifiers they have the ability to automatically con-
nect with each other to achieve a common goal. A thing
in the IoT can be a heart monitor implant, a farm ani-
mal with a biochip transponder, a vehicle which trans-
mits information about traffic jams, an automobile that
has built-in sensors to alert the driver when the tire
pressure is low, or any other object that can be assigned
an IP address and is able to transfer data over a net-
work (https://internetofthingsagenda.techtarget.com/
definition/Internet-of-Things-IoT).

The role of the IoT device depends on the purpose
and type of processed data. Often, the character of the
data generated by devices does not allow effective pro-
cessing in the cloud2 (due to requirements on latency,

privacy, or due to their amount) so it needs to be ana-
lyzed automatically where it is produced. Moreover,
even if we transfer data to the cloud, we may have to
face additional requirements concerning, for example,
privacy, security, budget, or time.

One of the fast developing trends in intelligent data
analysis is deep neural networks (DNNs). They offer a
wide range of machine learning (ML) methods that
often outperforms the state-of-the-art models. To be
effectively used, deep models have special requirements
such as on high computing resources or a large amount
of data examples. Thus, in this article, we focus on this
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type of ML algorithms that are embedded in the IoT
environment.

Usually, most computationally intensive tasks are
performed outside the edge devices, for example, in the
cloud (see Figure 1) or on dedicated servers. Edge
devices were created originally to filter and transfer
data to the cloud. Platforms like Google Cloud or
AWS offer tools to accelerate models for data analysis
fed with data from edge devices. The main problems
with the cloud are the high latency of the decision-
making process, costs of transmission, and limited pri-
vacy of transmitted data.

In order to solve the problems mentioned above,
there was proposed a fog computing paradigm in which
we create some proxy layer between edge devices and
the cloud. Fog computing (https://internetofthingsa-
genda.techtarget.com/definition/fog-computing-fog-
ging), also known as fog networking or fogging, is a
decentralized computing infrastructure in which data,
computation, storage, and applications are distributed
in the most logical, efficient place between the data
source and the cloud. This layer is created by a set of
computing nodes that are placed near the source of
data. The computing nodes are usually provided by the
company which is the owner of the data. This architec-
ture increases privacy and security, and reduces costs
of transmitting data from the edge. Moreover, the data
owner may achieve lower processing latency as a result
of reducing the distance between computing nodes and
data sources.

The current trends point to the next-generation fog
computing paradigm which is based on the edge devices
(see Figure 2). To this day, edge devices perform usu-
ally only some preprocessing, for example, compression
of data or sending them to the cloud or to the fog for
wider analyses. The most power-consuming tasks can-
not be efficiently run on the low-power and low-
performance edge devices. This highly handicaps the
ability to analyze the incoming information and make

decisions in real time. Currently, we can see a break-
through in edge computing, as those devices become
more and more efficient and capable, especially for
usage of sophisticated data analysis models in the edge.
In some cases, the edge device should process data
without an Internet connection which may be crucial in
dynamic environments such as vehicles and airplanes.
Generally, efficient edge devices are dedicated to the
environments where we need high responsiveness of
algorithms based on huge data streams created in real
time. Thanks to progress in hardware for mobile appli-
cations, we are already able to efficiently use deep mod-
els for inference on the edge devices. This provides us
the possibility to create a new generation of fog and
eliminate the proxy layer through using edge devices as
computing nodes. Nevertheless, training still takes
place in the cloud, and management and maintenance
of multiple devices with weak Internet connections are
still difficult tasks. Fog computing models, especially
those designed for the ML computing, require dedi-
cated devices and approaches for creating cohorts of
those devices.

In this article, we describe the advantages and disad-
vantages of available devices, software, and platforms.
Moreover, we present some use cases and configura-
tions which could be selected by the reader. Based on
that, we may use the presented components and config-
ure architecture for a new application according to the
requirements and limitations imposed by the fog and
hybrid environment. This article is organized as fol-
lows: In section ‘‘Architecture of IoT solutions,’’ we
propose to organize IoT devices into two main groups:
thin and fat devices. To better chose devices appropri-
ate for the new application, we propose also a partition
of IoT application architectures based on two factors:
the size of data to take the decision and required
responsiveness. Examples of fat IoT devices are
described in section ‘‘Hardware.’’ The software which
we could use to delegate ML tasks to IoT devices is
presented in section ‘‘Software libraries.’’ We decide to

Figure 1. The current model of usage deep learning models in
the IoT—example of thin edge devices.

Figure 2. Model of deep learning on the edge—example of fat
edge devices.
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distinguish software and platforms because the first
one is installed on the IoT devices and provides the
possibility to deploy models and the core functionality.
On the other side, we propose to separate platforms as
a set of tools which are on the top of the IoT devices.
Platforms enable the possibility of creating hybrid fogs
and automating the maintenance tasks. We describe
them in detail in section ‘‘IoT platforms.’’ Finally, in
section ‘‘Applications,’’ we present examples of applica-
tions that employ ML for data from IoT devices. In
section ‘‘Conclusion,’’ we summarize the state-of-the-
art solutions and identify future directions of develop-
ment and usage of ML in IoT environments.

Architecture of IoT solutions

The decision about which architecture is appropriate
for our application may depend on many factors.
Basically, the costliness of the solution and the technol-
ogy used may have the greatest impact on the choice of
architecture,3 but however the costs of creating and
maintaining architecture can be a surety of other, much
more important factors. In order to introduce the prob-
lem of selecting architecture, we propose two basic
factors:

� Size of data—volume of data which we should
collect to prepare a decision with a desired accu-
racy level;

� Responsiveness—how much time we need to
produce a decision with a desired accuracy level.

For example, let it be assumed that we have a home
with a set of basic sensors for measuring the humidity,
temperature, and light intensity, and we wish to prepare
the decision about whether the window should be open
or closed. If we will analyze signals from the last min-
ute, then the size of data needed to perform the decision
will be very low. The accepted responsiveness is also
very low which means that we accept high latency
because this type of decision is not crucial. In the worst
case, the house will be ventilated slightly later.

A completely different example is the autonomous
vehicle in which, despite a set of sensors, we should con-
sider data from cameras. This creates a large volume of
data which we have to analyze in order to prepare mul-
tiple decisions at once. In this situation, we also expect
high responsiveness because delays are unacceptable
and may threaten the lives of passengers.

The presented examples are contrasting and it is
clear that they use different architectures to make deci-
sions. But we could point out many applications which
are between these two. The development of the IoT
technology has resulted in the fact that many devices
with different architectures and capabilities are

available on the market today. In order to better orga-
nize this set of devices, we propose to divide them into
two main groups:

Thin devices. Basically, these are created to collect
data from sensors without the capability to perform
computation in an efficient way. The main advan-
tages of this type are the small size of the device,
low energy consumption, simple CPU, and low on-
board memory. Examples of thin devices are
Raspberry Pi, Raspberry Zero, and Arduino.
Fat devices. These are specialist equipment dedicated
to performing calculations in specific applications,
for example, neural networks and analyzing video
stream. This is achieved by incorporating special
components such as GPU and TPU (tensor process-
ing units). Examples from this class are devices
based on Google TPU or NVIDIA Xavier
platforms.

In Figure 3, we propose partition of IoT architec-
tures using the abovementioned factors.

In many basic solutions in which data are not so
large and we can wait for decisions, we should think
about the usage of the basic thin IoT devices as compu-
tational nodes. In that model, we assume that most
computations are performed locally and data may be
additionally stored in the cloud, but it is not required.
When we need some coordination and to process larger
volumes of data we should consider the usage of a local
(custom) or regional cloud environment. Finally, we
could use infrastructure from global cloud providers
for computation and to store the collected data. The
decision about which architecture is better in many
cases will depend on the scale in which we deploy our
application.

On the contrary, we may wish to use multiple IoT
devices to collect data and perform some computation.
Then we should use some local coordination point such

Figure 3. The proposed division of the cloud and fog
architectures.
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as gateways or hubs in which we process data from
multiple sensors at once. We can imagine a more
sophisticated solution, for example, when we need a
low-latency decision-making process, and have to pro-
cess data from multiple devices but select them depend-
ing on the current context. In that situation, we should
consider creating a distributed environment of IoT
devices that are context aware and have the ability to
communicate with neighbor devices in an autonomous
way. In most sophisticated solutions, the IoT devices
may be deployed across the region, so we will usually
need a platform for management of the IoT devices
and collecting important data from them. The pre-
sented solutions assumed that we need cloud-based
computing to support the IoT thin devices.

The right-hand side of Figure 3 presents use cases in
which we have too much data to transfer, we cannot
transfer data for security or economic reasons, or high
latency is not acceptable in our business model. In those
cases, we are unable to use the cloud for each request
and should improve our local infrastructure to achieve
the desired result. Basically, we can create hybrid solu-
tions in which the core computations are prepared in
the fog and the rest are computed in the cloud. In that
situation, not all data are transferred from the edge to
the cloud. The mentioned problems are currently solved
using the fog computing paradigm.

The biggest challenge is applications that require
real-time or near-real-time results and need the continu-
ous delivery of large data streams. Moreover, if we
assumed that the IoT devices are moving and have poor
Internet connection, we have an example of a use case
in which cloud computation is unavailable. In those
situations, we must use fat IoT devices which could pre-
pare results in a short time without external providers.
For business models that assume achieving low latency
and high accuracy based on large data streams, we
should consider the usage of new-generation fog com-
puting, such a set of efficient edge devices, or a single
autonomous edge device.

Despite the selected architecture, we will still need
support in management tasks such as upgrade or moni-
toring devices, especially including scenarios when
devices may be visible in the Internet from time to time.
The considerations so far have focused on adapting the
IoT architecture in terms of performance. Another
important aspect of the usage of fog computing for
ML computations is improving the security of data
processing which is crucial in many fields, that is, in
hospital, industry, or military applications. Depending
on the required values of the mentioned factors, we
should choose the appropriate architecture for them.
The contribution of this article is a structured collec-
tion of information for the user about how, and when,
he or she can use fog computing models in their

organizations and which components he or she may
use to achieve that.

Hardware

In the market, there exist many devices that are ready
to support processing data based on neural network
models in the IoT nodes. We propose to divide them
into three classes:

� Universal components to build the complete IoT
node with DL capabilities, which represent
devices that can be used as a core component
when we wish to create a new IoT node with DL
capabilities;

� Components for extending the capabilities of an
existing IoT node, which include all devices that
can be connected to an existing IoT node and
increase the computing power needed for effi-
ciently processing the DL models;

� Components dedicated to create an end-user IoT
node, which are the devices created for the speci-
fied usage and usually projected to use as an
independent fat IoT node.

In this section, we describe the main examples of
devices available in the market, grouped according to
the given classification.

Universal components

Movidius Myriad VPU. The Intel Company proposes a
specialist processor family ‘‘Myriad’’ which can acceler-
ate the inference of a DNN model. Currently, the fam-
ily is created by two processors Myriad 2 and Myriad
X that differ in speed. Both offer acceleration with low
power consumption and have the size adequate to use
them in existing devices. Myriad 2 (https://www.movi-
dius.com/myriad2) offers for the user 12 128-bit vector
processors which are optimized for machine vision. The
Intel Company describes its processor as a device which
offers 1 TFLOPS within a nominal 1 W power con-
sumption. Communication with the vision processing
unit (VPU) is possible via interfaces such as USB3 and
1 GB Ethernet.

The Myriad X (https://www.movidius.com/myriadx)
processor offers 16 128-bit vector processors with theo-
retical performance of 4 TOPS (trillion operations per
second). New interface (MIPI Lanes with ISP) in the
Myriad X VPU supports up to eight RGB sensors with
resolution up to 700 million pixels per second. The pro-
cessor supports video encoders for 4K videos (H.264/
H.265 for 30 Hz and M/JPEG for 60 Hz).
Communication with the processor is available via
interfaces such as USB 3.1 and PCI-E Gen 3. In order
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to adjust the neural network model to the Myriad X
VPU, we can use the SDK which includes an NN com-
piler. This compiler accepts as input the file neural net-
works created by Caffe and TensorFlow.

Google Edge TPU. Google Edge TPU (https://cloud.goo-
gle.com/edge-tpu/) is a device which can act as a co-
processor to accelerate the process of train models on
low-power devices. Currently, the Edge TPU is ready
to run classification models which are retrained on the
device using the technique proposed in Qi et al.4 In
order to run the NN model in the TPU, the user has to
convert the TensorFlow Lite model to TensorFlow Lite
TPU. Models created in PyTorch may be converted
using the ONNX library. Theoretical efficiency (https://
cloud.google.com/edge-tpu/) of Google TPU may be
measured as the number of multiple state-of-the-art
artificial intelligence (AI) models that can be running
simultaneously on the video stream with 30 fps.
Google’s TPUs may be supported by Cloud IoT Edge
to manage AI models on the edge.

A ready-to-use device with Google Edge TPU is
offered as the Coral Dev Board (https://coral.withgoo-
gle.com/docs/dev-board/datasheet/). It integrates
Quad-core Cortex-A53 as a CPU and Google Edge
TPU as a co-processor. If we need an expansion set in
the USB-form device, we can build, for example, Coral
USB Accelerator (https://coral.withgoogle.com/docs/
accelerator/get-started/).

ARM ML processor. The ARM ML processor is created
to accelerate the process of training the ML models
and it is an element of ARM Trillium project. A single
ARM ML processor contains 16 compute engines
which support 8-bit quantized integer. We can train
models created in the following frameworks:
TensorFlow, Caffe2, MXNet, and Android NNAPI.
The ML processor is optimized for processing a convo-
lutional and recurrent neural network (RNN).
Theoretical efficiency of the ML processor is 4 TOPS
at 1 GHz clock speed. The ARM Company assumed
that the minimum efficiency of a processor powered by
1 W of energy should not be lower than 3 TOPS. We
can use the ARM ML processor to build low-energy
IoT devices, but also we can multiply the number of
processors and build an efficient low-energy cluster of
ML processors.

The most important feature of the new ARM pro-
cessors is the functionality to translate layers of NN
between major frameworks. This creates opportunities
to ease creation of multidisciplinary NN based on exist-
ing neural networks, each of which is prepared to real-
ize some dedicated task.

Battery-powered AI CPU. Typically, the software performs
executed public-key encryption. However, the necessity

of connecting the IoT to a number of different sensors
makes this intelligent technology become quite compli-
cated. The chip was designed using the elliptic-curve
encryption technique. The curves have different proper-
ties and use different prime numbers. In addition, the
chip features a general-purpose processor to save
energy and handle encrypted data and a datagram
transport layer security protocol. There is a high prob-
ability that it can provide better security for the IoT.

Usually, computation based on neural networks
requires a lot of energy, and it creates a problem if we
wish to use a neural network outside the office, where
we have a limited number of energy sources. MIT
researchers developed a new CPU (http://news.mit.edu/
2018/chip-neural-networks-battery-powered-devices-
0214) designed to reduce the power consumption of
neural networks as well as a chip designed to perform
public-key encryption for the IoT. This chip was cre-
ated to reduce the power consumption of neural net-
works by up to 95%. In the chip, the input values of
the node are converted into electrical voltages for the
calculation of dot products for multiple nodes. The
goal is to speed up calculations three to seven times
more than its predecessors while reducing power.

Expansion components

Movidius Neural Compute Stick. Movidius Neural
Compute Stick (NCS) is produced by the Intel
Company and it can be run without any need of
Internet. It is shipped with a software development kit
that enables rapid prototyping, validation, and deploy-
ment of DNNs, as well as profiling, tuning, and com-
piling a DNN on a development computer with the
tools that are provided in the Intel Movidius Neural
Compute SDK. The Movidius NCS’ compute capabil-
ity comes from Myriad 2 VPU. The user just needs to
plug it into an edge device via USB and he or she is
able to run deep models fast and efficiently as he or she
has an efficient graphics processing unit (GPU).
Movidius allows you to optimize the operation of large
models such as GoogLeNet.

Intel introduced a USB device called Movidius
Neural Compute Stick 2 (NCS2) that is capable of run-
ning DNNs. This convenient USB stick allows develo-
pers to add neural network capability to existing
hardware and start experimenting with AI. It has the
ability to do it locally on an embedded system with low
power consumption, coupled with low device cost—it
shows the amazing possibilities and opportunities of
edge computing.5 When a computer vision application
based on neural networks is run, the complex mathe-
matical computation is offloaded to the special chip
embedded inside the NCS2. The chip is designed to
accelerate the computation which makes the execution
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of neural networks much faster when compared to the
standard CPU.

After a model is fully trained, it is moved into pro-
duction for identifying and classifying objects, which is
referred to as inference. When using Intel NCS, develo-
pers take a fully trained TensorFlow model and con-
vert it into a format understood by the processing unit
embedded within the device. Through the SDK and
toolkits provided by Intel, only the graph is loaded into
the VPU (Intel Movidius Myriad X VPU) chip while
running the rest of the code on the local CPU.

BITMAIN SOPHON solutions. Other solutions could be
used in fog computing to improve the efficiency of deep
learning computation. Depending on the desired effi-
ciency, developers can select between three tensor com-
puting processors:

� BM1680 (2 TFLOPS with precision FP32,
32 MB internal memory, and 25 W power
consumption);

� BM1682 (3 TFLOPS with precision FP32,
16 MB internal memory, and 2048 processing
units);

� BM1880 (1 TOPS@INT8, processing unit dual-
core Cortex-A53@1.5 GHz and single-core
RISCV@1 GHz).

SOPHONNeural Network Stick (NNS) is a solution
similar to the Movidius NCS. It is designed to acceler-
ate neural network processing using the processor
SOPHON BM1880 and support models created in
Caffe, ONNX, TensorFlow, and PyTorch frameworks.
Devices have USB3.0/USB2.0 interfaces and can extend
the capabilities of a computer with architecture X86_64
with Ubuntu.

Brainium SmartEdge Agile. Brainium SmartEdge Agile
(https://www.brainium.com/studio) is a hardware solu-
tion equipped with multiple sensors such as micro-
phone, gyroscope, magnetometer, pressure control,
temperature, humidity, and proximity. Data can be
transferred through USB type C or Bluetooth 5.0
device. The device can communicate with the Octonion
IoT Intelligent Edge software platform. Besides that,
the Brainium Company offers the AI Studio solution in
which the user can create AI models without program-
ming skills. The trained models may be deployed in the
SmartEdge Agile directly from the AI Studio.

Dedicated components

Apple A12 Bionic chip with Neural Engine. The Apple A12
Bionic is a system on a chip (SoC) from Apple that is
found in iPhone XS and XR. It was announced late

2018 and offers six cores divided into two performance
cores and four power efficiency cores. Compared to the
previous A11 Bionic, A12 offers a 15% improved CPU
performance for the performance cores and 50% lower
power consumption for the efficiency cores (both
according to Apple; https://www.notebookcheck.net/
Apple-A12-Bionic-SoC.331518.0.html). The chip also
includes a new GPU that is advertised as 50% faster,
the M12 motion co-processor and a Neural Engine
with eight cores for up to 5 TOPS.

Apple Neural Engine is built for advanced, real-time
ML. That means the Apple iPhone X line can recognize
patterns, make predictions, and learn from experience, simi-
lar to the way people do. It is incredibly efficient, which
enables it to do all kinds of work in real time, for example,
users can experience immersive AR. Apple also opened the
Neural Engine up to the Core ML platform, so developers
can bring powerful, real-time ML to their applications.
With 6.9 billion transistors, the A12 Bionic is a big chip
especially compared to Snapdragon 835 (3 billion) or a
Skylake desktop quad-core SoC (1.75 billion). Compared
to A11, the A12 integrates 60% more transistors.

Qualcomm Snapdragon 845. The Qualcomm Snapdragon
845 Mobile Platform (or SD845) is a high-end
SoC for smartphones that was introduced in early
2018 and manufactured in 10-nm LPP (Low Power
Plus) fin field-effect transistor (FinFET) at Taiwan
Semiconductor Manufacturing Company. It integrates
4x Kryo 385 cores (Cortex-A75) at up to 2.8 GHz and
4x Kryo 385 at 1.8 GHz. More precisaly the processor
include the graphic processor Adreno 360 with offer
support for immersive XR experiences, an intelligent
personal assistant, and advanced vault-like security is
enabled by the Snapdragon 845 mobile platform. The
Hexagon 685 DSP supports calculation on a tradi-
tional, scalar CPU and offers an additional dedicated
processor for vector analysis (https://www.qualcomm.-
com/products/snapdragon-845-mobile-platform).

NVIDIA Jetson. NVIDIA Jetson AGX Xavier (https://
developer.nvidia.com/embedded/buy/jetson-agx-xavier)
is a computer dedicated for autonomous machines and
vehicles which need AI computing capabilities. It con-
tains a 512-core Volta GPU with Tensor Cores, CPU
with eight cores and 16 GB of memory. The perfor-
mance of the NVIDIA AGX Xavier in AI computation
was estimated to be 32 TOPS. The NVIDIA Jetson
AGX Xavier is a device which can be used in cars in
order to analyze signals from cameras and sensors in
such applications as automatically steering the car.
NVIDIA promises that a new device will allow to
deliver assisted driving features on Level 2+ . Volvo
(https://nvidianews.nvidia.com/news/volvo-selects-nvi-
dia-drive-for-production-cars) has decided to use Jetson
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AGX Xavier in its future vehicles in order to increase
safety on the road.

Samsung Exynos. Samsung Exynos Auto V9 is a com-
puter dedicated for in-vehicle infotainment systems and
can support up to four screens with full HD resolution.
Besides the multimedia capabilities, the Exynos Auto
V9 contains a neural processing unit (NPU) which is a
processor dedicated to accelerate AI methods. Samsung
Exynos 9820 is an application processor which will be
available in the mobile devices. This device will have a
fourth-generation CPU, an advanced LTE modem with
2.0 Gbps downlink speed and an NPU. The NPU will
be up to seven times faster than its predecessor. It may
be used to improve photography, movies, security,
object recognition, or voice recognition (https://news.-
samsung.com/global/samsung-brings-on-device-ai-pro-
cessing-for-premium-mobile-devices-with-exynos-9-
series-9820-processor).

Neousys Nuvo-6108GC. Edge AI GPU Computing node
is created for power-consuming tasks such as analysis
of data streams from multiple sensors in real time. The
device is dedicated to cars and used in the Baidu Apollo
program in which they create solutions for autonomous
driving. The main advantage of the Nuvo is the possi-
bility to use GPU to accelerate the process of usage of
the deep learning models. The described node has sixth-
generation Xeon CPU, accepts up to four SATA disk
drives, and up to 32 GB of RAM. In addition, the user
could add NVIDIA GPU up to 250 W thermal design
power (TDP). The device is adapted to use in cars
through the specialist construction which is vibration
resistant and can work at temperatures between 225�C
and 65�C.

Software libraries

Even if we have the most powerful device which can
inference a neural network in a very short time, we still
need software to use the capabilities of that device. In
the last few years, we can observe the process of creat-
ing numbers of libraries dedicated to easier usage of
ML capabilities. Most of the newest solutions provide
us with tools for creating, training, and deploying
neural network models based on predefined compo-
nents. Currently, the new version of these libraries
enables us to deploy or even train models on the edge
devices. We can distinguish three classes of software
libraries:

1. Fundamental. This offers functionality dedicated
to advanced developers who wish to create a
custom neural network and adjust the para-
meters of each layer manually.

2. Exemplary. This enables developers to create a
solution based on a set of pretrained models or
offers functionality for automatically finding the
desired architecture of a neural network based
on the provided data.

3. Universal. This supports the process of trans-
forming the model between different fundamen-
tal and exemplary libraries.

It is noteworthy that the exemplary libraries usually
provide the possibility to create a custom network
based on the predefined set of fundamental libraries. In
this section, we describe a main example of each of the
mentioned classes.

Fundamental

TensorFlow Lite from Google. TensorFlow Lite is
TensorFlow’s lightweight solution for mobile and
embedded devices. It enables on-device ML inference
with low latency and a small binary size. TensorFlow
Lite also supports hardware acceleration with the
Android Neural Networks API. TensorFlow Lite uses
many techniques for achieving low latency, such as
optimizing the kernels for mobile apps, prefused activa-
tions, and quantized kernels that allow smaller and
faster (fixed-point math) models. TensorFlow Lite sup-
ports a set of core operators, both quantized and float,
which have been tuned for mobile platforms. They
incorporate prefused activations and biases to further
enhance performance and quantized accuracy.
TensorFlow Lite has a new mobile-optimized inter-
preter, which has the key goals of keeping apps lean
and fast. The interpreter uses static graph ordering and
a custom (less dynamic) memory allocator to ensure
minimal load, initialization, and execution latency
(https://www.tensorflow.org/lite/overview). TensorIO
is a portable framework for iOS that removes direct
interaction with TensorFlow Lite library (https://med-
ium.com/@_doc_ai/machine-learning-on-the-edge-380d
2e90c9c5). In 2019, it is planned to offer the possibility
to train models on the edge device (https://www.tensor
flow.org/lite/guide/roadmap) and full support for long
short-term memory (LSTM) network on the mobile
device.

Caffe2Go from Facebook. Caffe2Go is based on the popu-
lar Caffe2 framework for developing deep learning
models. It stems from Facebook’s experience in the
usage of ML models on mobile devices (https://heart
beat.fritz.ai/machine-learning-models-on-the-edge-mobile-
and-iot-8a5384a370ba). Facebook wishes to create and
offer pretrained neural networks which can inference with
data stored in the smartphones on the fly. The interesting
use cases are as follows:

Sobecki et al. 7

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


� Face recognition;
� Fingerprint recognition;
� Detecting persons in the pictures.

Facebook claims that it is a high-performance solu-
tion for mobile and edge devices which enables efficient
usage to train neural networks on the mobile device.
They assume that the training process in the mobile
device will be faster than that in the cloud if we include
the time needed for the transfer of data from a smart-
phone to the cloud. Caffe2Go will be used in
Facebook’s applications to transform videos or photos
using style transfer methods. The authors declare that
in some smartphones Caffe2Go will be able to provide
AI inference at less than 1=20th of a second. Currently
this solution was not released yet.

Core ML from Apple. Core ML is Apple’s solution for
deploying ML models on Apple devices. It lets AI engi-
neers design and develop ML models for Apple iOS
apps and then package them into the app bundle. Core
ML supports conversion from many of the popular fra-
meworks like TensorFlow and Caffe2.6. Core ML as a
domain-specific framework supports Vision for image
analysis, Natural Language for natural language pro-
cessing, and GameplayKit for evaluating decision trees.
Core ML as a layer in libraries is on top of low-level
primitives like Accelerate and basic neural network
subroutines (BNNS), as well as Metal Performance
Shaders (https://developer.apple.com/documentation/
coreml). Core ML is optimized for devices offered by
Apple, which means optimization for memory and
power consumption. Ensuring that the privacy of user
data is simpler, the data remain on the smartphone,
which can be analyzed without a network connection.
Core ML is available currently only for devices with
the iOS.

Exemplary

ML Kit from Google. TensorFlow Lite is Google’s frame-
work with a predefined set of neural network models
dedicated for deployment in the edge devices. ML Kit
(https://developers.google.com/ml-kit/) offers a few dif-
ferent application program interfaces (APIs) for popu-
lar use cases like image recognition and natural
language processing, and is integrated with Google’s
Firebase development platform. It works on both iOS
and Android, which is a benefit over Apple’s local solu-
tion. ML Kit assumes the minimization of cycles
required to prepare and adjust AI. The library offers
an intuitive developer’s toolkit that leverages Google’s
ML expertise. Base APIs offer ready solutions for
many popular use cases in the vision, speech, and text

fields. For other use cases, the library accepts also the
custom models created in TensorFlow Lite. Then ML
Kit acts as an API layer offering an easier method to
run and use the models. The created models may be
run in the cloud or in the mobile or edge device.

Fritz.ai. Fritz.ai (https://heartbeat.fritz.ai/machine-lear
ning-models-on-the-edge-mobile-and-iot-8a5384a370ba)
is the commercial end-to-end platform that offers a set
of tools to convert, deploy, and manage the ML models
in edge and mobile devices. One model may be created
for all types of supported platforms and Fritz.ai will
automatically convert and deploy it on appropriate
devices. Fritz.ai platform assumes that users do not
have to be AI experts and all required support is offered
through a set of available functions. It is similar in idea
to the ML Kit from Google which means that only the
user can send data to analysis, and provides results from
predefined, popular models.

Chainer. Chainer6 is a library which can be used for eas-
ily creating, training, and evaluating the deep learning
models which will be accepted by the AWS Greengrass
platform.7 The library is based on the CuPy library and
through that supports the CUDA GPU and multi-
GPU learning process. The user can use the available
functionality to quickly implement one of the known
convolutional neural networks (CNNs), or recurrent
network using also higher order derivatives. Chainer
library proposes a define-by-run approach to create a
neural network based on the computational graph.
This means that Chainer is one of the dynamic graph
frameworks in which the graph is allowed to change
each iteration. In opposition, there are static graph fra-
meworks like TensorFlow, Caffe2, and Microsoft
CNTK which use the same computational graph for
every iteration. The benchmarks (https://github.com/
soumith/convnet-benchmarks; https://github.com/neu-
lab/dynet-benchmark) show that the Chainer library is
faster than PyTorch, TensorFlow, and Keras in some
tasks. Chainer library may be extended by modules that
offer ready to use models for computer vision, reinforce-
ment learning, and modules for creating distributed net-
works of devices for using the created deep learning
models. Currently, Chainer is offered by the AWS
Greengrass platform as ready to use on the devices based
on Intel Atom, NVIDIA Jetson TX2, and Raspberry Pi.

Universal

Open Neural Network Exchange (ONNX). Open Neural
Network Exchange (ONNX) is an open-source stan-
dard for serialization of the AI models and transferring
them from one to another fundamental library.
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Currently, ONNX offers converters for most major
software such as Caffe2, Cognitive Toolkit, MXNet,
PyTorch, and MATLAB. Besides the mentioned for-
mats, there are also converters in an early version for
Core ML and TensorFlow. ONNX.js is a JavaScript
library created by Microsoft dedicated for running
ONNX models on browsers and on Node.js. (https://
onnx.ai/getting-started). ONNX offers to the user a col-
lection of pretrained models which are widely adopted
to different domains and widely presented in the litera-
ture. Currently, we do not have the possibility to trans-
form the ONNX models to TensorFlow Lite directly.
But we can do that indirectly through TensorFlow and
next TensorFlow Lite (https://bit.ly/2Hy8UCp).

IoT platforms

In order to create the fog, we need to use a platform
which supports us in synchronization and management
of devices that are outside the cloud. The fog comput-
ing paradigm proposes reducing the latency through
using interlayers between edge devices and the cloud.
To efficiently use the advantages of these interlayers,
we need tools to orchestrate tasks, run complex scenar-
ios, and distribute them depending on the current con-
text and devices’ conditions. Finally, we should have
the possibility to describe known scenarios of computa-
tion in which we can decide under which conditions the
decision-making process will be performed based on
the edge devices, interlayers, or the cloud.

The abovementioned problems are addressed to the
IoT platforms which provide us well-defined solutions
appropriate to the fog paradigm. Basically, we can dis-
tinguish the available platforms into two classes:

� Vendor-agnostic platforms support communica-
tions in the north of infrastructure with different
providers of cloud computing;

� Vendor-specific platforms are created by the
company, which support only their services, for
example, Google support GCP and Amazon
support AWS Cloud.

To the first class, we can assign EdgeX Foundry which
was created by the Linux Foundation. The second class
represents solutions created by IT companies which
also offer cloud environments. They are interested in
simplifying the process of usage of the cloud computa-
tion power by the processes executed on the edge.
Especially, the proposed solutions may be interesting
when we wish to train and use DNN models.

EdgeX Foundry

EdgeX Foundry (https://www.edgexfoundry.org/
about/) is the project of a platform supporting

developers in creating, connecting, and managing edge
devices. The project unifies the components that may
be used to create solutions on the edge. This unification
provides the creation of the marketplace with compo-
nents OS agnostic and hardware agnostic. The compo-
nents and devices based on the EdgeX Foundry
platform use an open and interoperable API which is
based on microservices.

The platform is focused on leverage of cloud-native
principles such as loosely coupled services, platform
independence, or scalability. The key feature of EdgeX
Foundry is platform independence offered on three
levels:

� CPU (e.g. x86, ARM);
� OS (e.g. Linux, Windows);
� Application environment (e.g. .NET, Python,

Java, Go).

Using the proposed platform, the user may create the
production environment (fog or edge computing) based
on the available set of example microservices. Data
from IoT nodes may be sent to analysis in the cloud or
analyzed on the edge.

AWS IoT Greengrass

AWS IoT Greengrass (https://aws.amazon.com/green-
grass/) is the Amazon Platform-as-a-Service (PaaS)
offered in the Amazon Web Services cloud environ-
ment in order to connect edge devices which can per-
form data locally. AWS Greengrass is divided into
three parts:

� AWS IoT Greengrass Core acts as a hub which
connects devices that are running on Amazon
FreeRTOS or has AWS IoT Device SDK
installed. The registered devices create the AWS
IoT Greengrass group within which they can
communicate.

� AWS IoT Greengrass Connectors allows to con-
nect with third-party solutions (sensors, gate-
ways, on-premises software) without writing
their own source code.

� AWS IoT Greengrass Secrets Manager stores
and manages credentials, keys, and configura-
tions of devices on the edge. If they need some
credentials, we may use Greengrass Connectors
for access to the Secrets Manager.

The main goal of this platform is providing services
for efficient device management and collecting data in
durable storage. Devices registered in the Greengrass
platform can run also AWS Lambda functions and use
the cloud to compute power-consuming tasks, for
example, learning neural networks. AWS Lambda
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functions can have access to the data available locally
on the edge device such as cameras, serial ports, and
GPUs. Moreover, the Greengrass platform provides
sync and communicates securely with devices known in
the platform including error handling such as a tempo-
rarily offline device. AWS Greengrass assumes that the
learning process should be performed in the cloud, and
the inference process may be performed on the edge
devices. Using the platform, we can choose which data
will be transmitted to the cloud and which should be
processed locally.

Microsoft Azure IoT Edge

Microsoft Azure IoT Edge (https://azure.microsoft.-
com/en-us/services/iot-edge/) is a service for custom-
ers who wish to analyze their raw data as soon as
possible without immediately sending them to the
cloud. The user may configure which data are trans-
ferred to the cloud and which should be calculated on
the edge side. IoT Edge is aware of potential commu-
nication problems with edge devices, which means
that the platform waits until the edge device will be
available in order to synchronize data. IoT Edge is
interoperable and system agnostic through the sup-
port of different OSs in the edge devices such as
Windows or Linux and application written in Java,
.Net, Node.js, C, or Python. IoT Edge is based on the
IoT Hub service and users can register and manage in
one place all their sensors and edge devices across
many platforms. Management of IoT devices is avail-
able through Azure IoT Hub.

IoT Edge support deploys a variety of types of appli-
cations such as AI models, computer visions, and real-
time streaming of data. Microsoft also offers the service
called IoT solution accelerators which are basically tem-
plates of IoT scenarios which could be used to quickly
create an own IoT solution in an organization.

Moreover, the users of Microsoft Azure IoT Edge
can use AI Toolkit (https://github.com/Azure/ai-
toolkit-iot-edge) which offers many complex models
ready to use, for example, to perform image recogni-
tion. Using the Cognitive Service platform and
Computer Vision library (https://www.customvisio-
n.ai), the user also has the possibility to easily train a
model concerning computer vision problems. The cre-
ated model may be exported to platforms Core ML,
ONNX, or TensorFlow using the protobuf format.
The model may also be optimized and converted to the
embedded device using the Microsoft Embedded
Learning Library. Users may use Azure Machine
Learning to train a model, manage it, and containerize
it and using Azure IoT Edge to describe the data pipe-
line and the process of how the model should be
deployed in the edge.

Google Cloud IoT Edge

Google Cloud IoT Edge (https://cloud.google.com/
blog/products/gcp/bringing-intelligence-edge-cloud-iot)
is a software that allows you to utilize cloud computa-
tion power and AI capabilities in the edge devices.
Cloud IoT Edge is installed on the edge device and
includes two components: Edge Connect and Edge
ML. The first is dedicated to connect the device to the
cloud, improve security of communication, and support
the user in software and firmware updates. Moreover,
through Edge Connect, the user can manage data
exchange between edge devices and the cloud. Through
Cloud IoT Edge, it is possible to use other Google
Cloud services:

� Cloud Dataflow for streaming and batch
analysis;

� Cloud Pub/Sub for ingesting event streams and
delivering them to the Dataflow component;

� Cloud IoT Care for device connection and
management;

� BigQuery for data warehouse and fast querying;
� Cloud ML Engine to train, deploy, and run ML

models.

In the edge device, we could also use the Edge ML
component to run pretrained ML models saved in
TensorFlow Lite format. Edge ML also enables the
usage of DL accelerator Google Edge TPU which sup-
ports efficiency of inference of the TensorFlow Lite
models.

Cisco Edge Fog Fabric

Cisco Edge Fog Fabric (CEFF; https://www.cisco.-
com/c/en/us/products/collateral/cloud-systems-man-
agement/edge-fog-fabric/datasheet-c78-738866.html) is
an IoT platform for industrial customers which need
support in IoT applications for real-time monitoring
and diagnostics equipment. The platform has modular
microservice architecture that allows immediate and
intelligent processing of the raw data in the place where
it is registered, or its distribution to the fog or the
cloud. The CEFF platform consists of the following
key components:

� System administrator;
� Dataflow editor;
� System monitoring;
� Message broker;
� Links;
� IoT historian database.

Currently, Cisco renamed its product Kinetic IoT
Platform.
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Baidu OpenEdge

The Baidu Company offers an open-source edge com-
puting platform (https://www.infoq.com/news/2019/01/
baidu-edge-platform-opensource) which allows to cre-
ate applications for smart home, wearable, and IoT
devices. The OpenEdge is a component that can be
installed in the edge devices in order to support collect-
ing data, distributing messages, performing AI infer-
ence, and synchronizing devices with Baidu ABC
(AI + Big Data + Cloud Computing). Edge devices
with OpenEdge could be managed in one place through
a Baidu Cloud user interface and run models created in
TensorFlow or PaddlePaddle libraries.

Applications

Indoor localization

The problem of indoor localization is important for
intelligent applications that select service which depends
on the user context. We can find examples of those
applications in smart homes, hospitals, and malls.
Moreover, we may wish to use the indoor localization
techniques to efficiently tracking children in a kinder-
garten to increase their safety.

Wang et al.8 describe system DeepFi which uses sig-
nals from different transmitters (i.e. Wi-Fi access
points, iBeacon, Bluetooth, RFID) and DL models to
predict the location. The models are created in offline
phase based on the predefined set of data. Previous
studies9,10 report on the usage of DL models in combi-
nation with other learning methods to extract hidden
features and estimate positions. The authors also
describe the relation between the number of hidden
layers in the DL model and their impact on localization
accuracy. Liu et al.11 describe how a CNN is used to
predict the indoor localization based on both magnetic
and visual sensing data. Additional work was presented
in Mohammadi et al.12 where the authors incorporate
the CNN model to analyze an image from the user
environment.

Intelligent transportation systems

Intelligent transportation systems (ITS) provide services
to automatically collect data and manage the traffic
and roads in some region. The example ITS was pre-
sented by Ma et al.13 in which they use a deep restricted
Boltzmann machine and RNN to create a model for
prediction of traffic congestion. As the input data, they
use the Global Positioning System (GPS) signals from
taxi riding in the city. Using the GPU, they achieve the
accuracy as high as 88% within less than 6 min.

Tian and Pan14 propose to use LSTM RNNs to pre-
dict the short-term traffic flow. The main problem
described by the authors is a predefined and static

length of input historical data. They propose to use the
LSTM RNNmodel in order to automatically determine
the optimal time lags. The conducted experiments con-
firm the high accuracy of the proposed method for each
of the tested intervals (15, 30, 45, and 60 min). The
authors achieve the lowest value of mean absolute per-
centage error (MAPE) metric for each tested interval.

Automated vehicles

The automated vehicles15 are also known as self-driving
cars. Automation and electricity of vehicles are cur-
rently described as the main directions of automotive
development. Through Zero Vision,16 the European
Union assumes that by 2050 we will totally eliminate
accidents on the roads. To achieve that, we need sys-
tems which provide the possibility to quickly gather
new data from sensors, cameras, and others, and pro-
cess them in real time to handle all necessary decisions
on the road. What is obvious is that we should find
solutions that could work without an Internet connec-
tion because in many cases we can drive too fast or we
can be too far from any city (poor Internet connection)
but we will still need an assistant working in real time.
This is an example of environments in which we need
deep learning on the edge devices and why the popular-
ity of such solutions will be growing. Autonomous
vehicles enable us new types of solutions, such as auto-
matic minimization of traffic jams in the city17 and on-
demand transport18 with sharing car. We can also think
about eliminating cars from the center of the city
through automatically parking them outside the center
and invoke them if they will be needed.

The solutions offered by the NVIDIA Company are
highly interesting in supporting the vehicles in autono-
mous functionality. They offer Jetson family devices
and have great achievements in creating neural net-
works which can be applied in autonomous vehicles.19

For example, they prepared the CNN network which
could be used to steer an automobile.

The Baidu Company offers, for the car manufactur-
ers, solutions ready to use through devices such as
Baidu Intelligent Edge AI Board and AI Box with the
software Apollo 3.5 (http://apollo.auto/). This is a set
of tools which can be used to build an autonomous car.
In the project Apollo, more than 30 partners from the
automotive industry such as Honda, Microsoft, Bosch,
Ford, Jaguar, Hyundai, PSA, Volvo, and others like
Intel and ZTE are involved.

Besides many deep learning models (services), the
autonomous vehicles need support into the method of
virtualization and orchestration of this type of services
in edge devices. Morabito et al.20 propose lightweight
virtualization (LV) technologies to address the prob-
lems of managing services in the edge devices.
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Sallab et al.21 propose a deep reinforcement learning
framework for autonomous driving. First, they use
CNN to recognize objects in the environment, such as
lane and vehicles. Next, for the prediction of the future
state, they used LSTM RNN. Based on the informa-
tion on recognized objects and potential future states,
the reinforcement learning network (Q-network) was
used to find the most promising solution.

AllGoVision

Video data can be costly and complex to gather and
then transfer and analyze all data in the cloud, that is
why Intel invented AllGoVision which provides an
innovative analytics solution for video data. It rapidly
analyzes video from surveillance cameras for desig-
nated parameters, like specified factors, behavior pat-
terns, environmental monitoring, and motion tracking
of people and objects (https://www.allgovision.com/).

It offers a deep learning–based video analytics solution
that is integrated with existing infrastructure to provide
automatic near-real-time alerts and insight for actionable
business intelligence. It brings IoT and analytics expertise
to unlock valuable insight from video data.22

AllGoVision uses an open platform video manage-
ment software (VMS) and camera integration which is
compatible with existing security systems and highly
accurate in tasks such as object tracking in crowds.
AllGoVision is also customizable and cost effective by
reducing hardware needed to provide the same func-
tionality per server. With the AllGoVision and Intel
solution, analytics can be conducted at

� The edge and cloud;
� Single server;
� A distributed architecture.

For server analytics, the solution can reside in the
VMS or on a separate machine. Open network video
interface forum (ONVIF) streaming is supported, along
with leading VMS. Alarms and alerts are sent to the
VMS viewer (smart client) or to AllGoVision’s Alarm
Center.22

As it comes to the edge and cloud, analytics at the
edge and cloud are available on IP cameras. Alarms
and alerts are sent to the VMS viewer. Features such as
detection of intrusion or suspicious incidents and
counting are supported simultaneously. Also, it can be
run locally (at the edge or machine) or on the cloud,
with the ability to send alarms and alerts via wireless
area network (WAN). Alarms and alerts can be hosted
on the cloud.

The solution powered by robust Intel architecture
can be used by a wide spectrum of industries and verti-
cal segments. It has already been deployed in more than
100 installations in 35 countries.

Agriculture

To effectively planning the agriculture production pro-
cess, we should have services that help us solve the
problems such as detecting disease in plants, predicting
the amount and proportion of fertilizers, or automati-
cally managing the irrigation system. The volume of
data needed in the process of preparing the decision
may extend the capability of usually poor Internet con-
nection. In this case, we should be able to run the
decision-making process on the edge devices.

Sladojevic et al.23 reported how deep CNNs could
be used to detect, recognize, and classify diseases based
on leaf images. In the classification process, they define
13 categories and achieve an accuracy of about 96%.
The application with the prepared model may be pro-
vided by a regional server or by a smartphone with ML
co-processor. In the long-term observation, we could
also perform data fusion in order to find dependency
between weather condition, used pesticides, and recog-
nized disease.

Support of a large-scale agriculture requires a
broader set of data, for example, from satellite. Kussul
et al.24 propose using data from the Landsat-8 and
Sentinel-1A satellites and analyze them with the CNNs.
In the result, they achieve 85% accuracy for all major
crops such as wheat, maize, sunflower, soybeans, and
sugar beet. Similar works in which DL was used for
land and crop detection were described in previous
papers.25,26 The proposed solutions may help in creat-
ing the automated monitoring and management ser-
vices in large-scale agriculture lands.

Bargoti and Underwood27 propose to use fast R-
CNN to create bounding boxes around the fruit and
detect fruits. They create custom solutions based on ZF
and VGG16 networks with five convolutional layers
and a VGG16 network, with 13 convolutional layers.
They analyzed F1 metric for three types of fruits:
Apples (0.904), Mango (0.908), and Almond (0.775).
They processed images with a resolution of 500 3 500
pixels for which the time of prediction was about 0.1 s
using the GPU NVIDIA 980 Ti.

Patient-generated health data

Currently, in hospitals there are thousands of docu-
ments being generated containing the important data
but usually those documents are only stored in data-
bases. Medics do not have time to analyze all data
about the patient but use only the last few records.
Data can also be generated outside the hospital by IoT
devices such as wearable sensors, smartphones, pace-
makers, and glucose meters. Users may wish to have
access to the actual recommendations, predictions, or
alerts that are generated from the collected medical
data.
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Edge computing applications have the potential to
solve this data problem. Using them, we can analyze
information in real time and filter the collected data
before they will be sent over the Internet.

The new Apple Watch 4 (https://support.apple.com/
en-us/HT208944) can analyze a person’s current condi-
tion and send alerts the moment anomalies are detected,
allowing for rapid response times that may well save
their life. In the meantime, the device can continue to
feed non-critical data gathered over time to be sorted
and processed by the network’s more powerful central
servers or data centers operated by edge computing
companies.

Muhammad et al.28 propose a system for voice
pathology detection based on signals registered by IoT
devices. All signals are sent to the cloud for analytics
using an extreme learning machine trained by voice sig-
nals to diagnose the pathology.

Heart diseases: medical imaging

The popularity of the personal assistants embedded in
the edge devices will be increased with creating new use-
ful applications. For example, Pereira et al.29 proposed
to use a smart pen with sensors to measure handwritten
dynamics in order to help in identifying Parkinson’s dis-
ease in its early stages.

A patient with heart disease requires continuous
monitoring in order to quickly predict the heart
arrhythmias from an electrocardiogram (ECG) in an
outstanding way. This application could be installed in
smartphone, smartwatch, or dedicated device and use
methods proposed by the Stanford team (http://safe-
beat.org/newsroom/headlines/the_machines_are_gettin-
g_ready_to_play_doctor/). They proposed a deep
learning algorithm to identify different types of irregu-
lar heartbeats based on ECG data.

In addition, there are a lot of applications that work
along with ECG or electroencephalogram (EEG)
devices and turn alarms on when something worrying
happens. Also, we can watch how websites like www.ar-
terys.com grow instantly. A web platform for medical
imaging to transform clinical care diagnostic certainty
allows to collaborate with other physicians from URL
and to deliver powerfully simple AI-enabled imaging
solutions (like LungAI, CardioAI, LiverAI, BreastAI).
The application and its owners won many meaningful
awards such as MedTech Innovator 2017, SIIM
Innovation challenge 2017, or FABA 2017.

Decision support system in medicine

Currently, the most medical decisions are prepared
based on some subset of data and experience of a doc-
tor. Simple applications used to manage hospital pro-
cesses like electronic patient record (EPR) do not

provide intelligent services to increase the efficiency of
decision-making processes. Results reported in
Giacomini et al.30 point out that the combination of
clinical and algorithm diagnosis can contribute to the
decrease of doubtful and incorrectly classified patients
and add weight to the work of the physician in the
majority of cases. Although the system is in early
phase, a prototype framework has already been tested
in a pre-release version at the Esophageal Surgical Unit
of the School of Medicine of the University of Genova
to find possible qualitative correlations between gastro-
esophageal reflux disease (GERD) symptoms and func-
tional results from esophageal manometry and 24-h
esophageal gastric pH monitoring.

Genome

Genomes are a natural fit for AI31 because they often
consist of huge datasets, which require a lot of annota-
tion and work. Existing software requires well-
annotated genomes, and because of this much of our
understanding centers around more popular organisms.
Using deep learning, a software called DeepVariant
can identify single-nucleotide polymorphisms by trans-
forming genomic information into images.32

These images represent the different nucleotides and
can be used by the model to identify polymorphisms.
This method makes it possible for researchers to use it
because more uncommon model organisms can be
studied. This removes a significant amount of work by
researchers on improving low-quality reference gen-
omes, and the high error rate otherwise associated.

DeepVariant is an updated, open-source (GitHub)
deep learning–based variant caller. It applies the
Inception TensorFlow framework, which was originally
developed to perform image classification. DeepVariant
converts a BAM file into images similar to genome
browser snapshots and then classifies the positions as
variant or non-variant. Conceptually, it uses the idea
that if a person can leverage a genome browser to deter-
mine if a call is real, a sufficiently smart framework
should be able to make the same determination.32

Improving authentication methods

Secure authentication of a signal is probably one of the
most challenging problems in IoT. It is related to the
large-scale nature of the system and vulnerability to
man-in-the-middle and eavesdropping attacks. To pre-
vent such situations, new solutions based on deep learn-
ing and IoT are created.

The framework proposed by Ferdowsi and Saad33

integrates a deep learning and game theory to enable
computationally efficient authentication of IoT signals
and devices. The deep learning algorithm used in this
framework uses LSTM blocks to extract stochastic
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features from the IoT signal and watermarks them
inside the original signal. This allows operators in the
cloud to detect attacks because the attacker cannot
change watermarks. In addition, the LSTM algorithm
compared to other methods (such as encryption)
reduces the complexity and latency of the attack. This
enables DNN to effectively complement the basic cryp-
tographic and security solutions of an IoT.

Malware detection schemes

It is possible to use supervised learning techniques to
evaluate the runtime behaviors of the apps in malware
detection by IoT devices. In the malware detection
scheme, an IoT device uses K-NNs and random forest
classifiers to build the malware detection model.

Narudin et al.34 report that the IoT device can filter
the Transmission Control Protocol (TCP) packets and
select the features among various network features
including the frame number and length, label them,
and store these features in the database. To perform
these tasks, the algorithm uses the K-NN-based mal-
ware detection to assign the network traffic to the class
with the largest number of objects among its K-NNs.
The second classifier based on random forest builds the
decision trees with the labeled network traffic to distin-
guish types of malware. The achieved results indicate
that true-positive rates (TPRs) of the proposed K-NN-
based malware detection and random forest-based
scheme with the MalGenome data set are 99.7% and
99.9%, respectively.

Voice assistants

Voice assistants (Alexa, Cortana, Siri, Google)35,36 cur-
rently have to send data from the user device to the
cloud and wait for analysis. This may be a potential
drawback if the user values his privacy. The user has
no warranty which information is sent to the cloud and
where exactly is the cloud. If the assistants also have
access to the data on health, then in many countries
sending this type of data outside the country is prohib-
ited. ML on the edge is one solution to prevent sending
sensitive data outside the user location.

Amazon Go

On 22 January 2018, Amazon opened its first conveni-
ence store, Amazon Go in Seattle, Washington. The
store attracted a lot of attention because it does not
have any hurdles which people usually face in tradi-
tional supermarkets. The store does not have any regis-
ters, cashiers, or checkout line. Amazon has called this
‘‘Just Walk Out’’ technology. Amazon’s Just Walk Out
technology uses ML, IoT, computer vision, and sensor
fusion which ensure that customers are only charged

for the product which they actually bought. Amazon
has also made it clear that it does not use facial recog-
nition technology.37

Before visiting Amazon Go, the shoppers must have
the Amazon Go app linked to their Amazon Prime
accounts. The key feature generates a QR code that lets
a user enter the store. And the Receipts feature tells you
about the things you have bought as soon as you walk
out of the store. The payment is processed using a credit
card which is linked to your Amazon account. There
are a lot of cameras in the store. These cameras are the
central equipment of how things function in the store.
The cameras use computer vision, which tells the system
when the item is taken from the shelf and who has
taken it. Amazon has also revealed the use of ‘‘sensor
fusion’’ which combines data from different sensors for
perfection and efficiency. The various sensors include
the weight sensors which allow the company to track
individual product.

AWS DeepLens

AWS DeepLens38 is the first camera with deep learning
functionality. DL algorithms can use 100 GFLOPS of
computing power on the device. This allows to process
HD video in real time using deep learning models. The
camera cooperates with Amazon SageMaker which
supports the user in creating, training, and deploying
the ML models. AWS DeepLens accepts popular deep
learning frameworks such as TensorFlow and Caffe.
The device is based on the Intel Atom Processor, 8 GB
RAM, Intel Gen9 Graphics Engine, and Ubuntu as an
OS.

Intelligent Suitcase

ForwardX Company was created in May 2016 and has
started R&D project with an intelligent Suitcase (Ovis;
https://www.forwardx.com). Now their product was
presented in CES 2019 as a suitcase which learns face
and posture of the owner, in order to automatically fol-
low him. The suitcase uses the AI models to recogni-
tion patterns without sending data to the cloud.

Anomaly detection

In some cases, we may wish to quickly detect anomaly
in order to reduce the range of security attacks or to
increase efficiency of the industry processes.

Vincent et al.39 describe the solution based on an
autoencoder for anomaly detection which is created as
a two-part algorithm. The first part resides in the edge
device and the second one in the cloud. The edge device
can detect anomaly in a fully distributed manner, with-
out communicating with the cloud. The second part of
the algorithm resides in the cloud and is dedicated to
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the computation-intensive task such as inference of the
model.

IBM GRAF (Global High-Resolution Atmospheric
Forecasting System; https://www.ibm.com/weather/
industries/cross-industry/graf) is a forecasting system
that uses mobile devices (e.g. smartphones) as a set of
distributed sensors which increase the density of the
measurements and improves the accuracy of prediction.
They are particularly valuable in places where there is a
lack of sensors and the predictions have poor quality.

Conclusion

A revolution in Edge AI computing has started. In this
article, we distinguished three main challenges in this
revolution:

� Supply edge devices with enough computing
power to run AI algorithms like DNNs;

� Create libraries which provide the transfer of
pretrained models to the edge devices and use
them efficiently;

� Provide a platform to ease managing, updating,
and syncing the set of edge devices in a system-
agnostic way.

Currently, in the market we can see two opposite direc-
tions of development of the ML on the edge which we
will call: fat and thin edge devices.

The first one assumes that the edge devices should
be autonomous and all potential predictions or deci-
sions should be prepared on the device side with the
reduction of time when a connection with the cloud is
needed. This is a direction good for autonomous vehi-
cles, intelligent wearable devices, and healthcare, but
also for industrial companies for which the privacy of
production data is crucial. The second direction is thin
edge devices, which assumes tightly coupled cloud
architecture, which means that the cloud will still pro-
vide the main role in processing new data.

Distinctions proposed in this article are examples of
totally opposite directions. Rather than dividing the
market, we should expect the development of hybrid
solutions dedicated for fog computing and further for
edge computing. The process of creation of the smart
city architecture, increasing the number of intelligent
vehicles, clothes, and other objects, may cause an
increasing number of small data centers located close
to the data sources.

Intel, Google, NVIDIA, Apple, and Samsung lead
in hardware development and try to create rather the
fat edge devices dedicated to fast analysis of video
streams. On the other side, Facebook and Google cre-
ate great software for high-performance deep learning
inference and training. Currently, there are great tools

for fast development and prototyping like TensorFlow
and PyTorch, but deployment capabilities are limited.
For instance, developers report many problems with
running TensorFlow Lite on Raspberry Pi, but also
other devices. At the same time, we are waiting for a
solution from Facebook, their Caffe2Go. Finally, man-
aging edge infrastructure is not easy, but platforms like
EdgeX, AWS IoT Greengrass, or Google Cloud Edge
help with that. Currently, many of them seem to sup-
port only thin edge devices by requiring the data to be
sent from the edge device to the cloud in order to ana-
lyze and store them.

We should still observe changes in the market
because many solutions (software and hardware) are
still in beta or early development stage. We need to
wait for the maturity of a whole edge computing eco-
system which will enable the deployment of AI models
in business use cases such as Industry 4.0 and indoor
localization, through ITS, finally to agriculture and
healthcare applications.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This work has been partially supported by funds from
the Faculty of Electronics, Telecommunications and
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