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Abstract—This paper focuses on convolution neural network
quantization problem. The quantization has a distinct stage of
data conversion from floating-point into integer-point numbers.
In general, the process of quantization is associated with the
reduction of the matrix dimension via limited precision of
the numbers. However, the training and inference stages of
deep learning neural network are limited by the space of
the memory and a variety of factors including programming
complexity and even reliability of the system. On the whole the
process of quantization becomes more and more popular due to
significant impact on performance and minimal accuracy loss.
Various techniques for networks quantization have been already
proposed, including quantization aware training and integer
arithmetic-only inference. Yet, a detailed comparison of various
quantization configurations, combining all proposed methods
haven’t been presented yet. This comparison is important to
understand selection of quantization hyperparameters during
training to optimize networks for inference while preserving
their robustness. In this work, we perform in-depth analysis of
parameters in the quantization aware training, the process of
simulating precision loss in the forward pass by quantizing and
dequantizing tensors. Specifically, we modify rounding modes,
input preprocessing, output data signedness, bitwidth of the
quantization and locations of precision loss simulation to evaluate
how they affect accuracy of deep neural network aimed at
performing efficient calculations on resource-constrained devices.
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I. INTRODUCTION

Edge computing refers to the peripheral devices of control
systems often set up on a local Ethernet network in industrial
electronic systems. Many solutions benefit from extending
human-machine interfaces with edge computing, e.g. by im-
proving data reliability, speeding up data flow, performing
system upgrades more efficiently, as edge devices can be
plugged into existing controllers and tested locally and making
decisions faster by processing data outside a centralized data
center [1].

Due to recent technological advances such as reinvention
of deep learning, increased computational capabilities and
more powerful network technologies, perception abilities and
quality of service have also increased. Various applications of
deep learning at the edge have already been discussed, e.g.
cache decision support [2], combining reinforcement learning,
convolutional and recurrent Neural Networks (NN) with In-
formation Centric Networking and Internet of Things [3], or
reduce of a network traffic [4].

To make deep learning more efficient on resource-
constrained devices, it is important to re-design model ar-
chitectures. Optimization can be two-fold: 1) modification
of a network structure to create more efficient NN, e.g.
MobileNets that use depth-wise separable convolutions [5] or
proper organization of convolutional filters in Fire modules as
in SqueezeNet [6] 2) quantization introduced to constrain the
weights and activation from floating point precision to a few
discrete levels [7], [8]. It has been also shown that deep neural
networks can be trained with quantized-inference in mind what
improves the accuracy. B. Jacob et al. [9] proposed to simulate
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precision loss in specific network parts during training to carry
out more accurate integer-only arithmetic inference.

Although various studies have already evaluated accuracy of
deep learning after quantization, including studies on different
bit-precision [10], to the best of our knowledge there is
no comprehensive study of different quantization algorithms,
rounding parameters and various locations of the network
where precision-loss is introduced. Case study research out-
lined in this work contributes to a more detailed understanding
of how to quantize deep neural networks for inference on
resource-constrained edge devices to reduce computational
overhead while preserving high accuracy. Specifically, our
contribution is as follows: 1) we consider stages necessary
for reduction of the floating-point numbers of the deep neural
network for a chosen object classification model i.e ResNet-
50; 2) the extensive benchmark performed by us contains the
analysis done with the quantization aware training to model
quantization error present in integer-arithmetic only inference;
3) we evaluate various quantization parameters to provide a
better insight of how to perform quantization on edge devices,
widely used in smart home solutions and autonomous driving,
as previously presented by us [11] [12] [13].

The next sections are structured as follows: Section II
overviews state-of-the-art methods for Deep Neural Networks
quantization. Section III provides the steps of simulating the
precision loss during training and the quantization performed
during inference. In addition, we present details about the
performed extensive benchmark evaluation, including quan-
tization parameters tested by us. Preliminary results are col-
lected in Section IV and discussed in Section V. The work
is summarized in the last section, providing conclusions and
ideas for future applications of the presented methods.

II. RELATED WORK

A. Industrial applications of quantized inference on the edge

Facebook optimized performance and memory by reducing
the precision to 8-bit integers from 32-bit floats before de-
ploying neural networks to mobile platforms [14]. B. Jian et
al. [15] showed how neural networks with limited precision
weights (LPWNN) can be applied to digit recognition task
reducing processing time by an order of magnitude on ARM
9 embedded system. Another computer vision application
proved that object detection from live video stream can be
performed in real-time on the embedded Zynq UltraScale+
(XCZU3EG) device by using different levels of quantization
[16]. Significant reduction of convolutional neural network pa-
rameters has been achieved by introducing weight quantization
with a novel low rank sparse quantization (LRSQ) [17]. LRSQ
method has been evaluated on various convolutional neural
networks resulting in a very small accuracy drop (< 1%)
comparing to the full precision mode. The study conducted
by Wang Y. et al. proved 40x energy efficient gain by using
RRAM-based CNN with 8-bit weights [18].

B. Quantization techniques applied to the training

Many authors consider methods that are generalization of
simple quantization method, and obtain algorithms for finding
the optimal number of precision. For example, Gupta et al. [19]
proposed limited precision data of large-scale deep learning
neural network for a training. They have shown that deep
learning neural network might be trained using stochastic
rounding number with 16-bit wide fixed-point representation
of the number. Fixed-point methods with stochastic-rounding
number can be also implemented on an energy-efficient hard-
ware [19]. In light of more modern quantization methods,
Kster et al. [20] proposed to represent data as flex-point
number and replace 32-bit floating point format both for
training and inference. Kim and Smaragdis [21] demonstrated
that the quantization methods can be used in bitwise neural
network. Moreover it has been show that bitwise network can
be trained with binary format of the weight tensors and then
modified to work with full precision digits [21]. Miyashita,
et al. [22] used base-2 logarithmic representation of digits at
5-bits for weights and activation for end-to-end training. The
achieved final accuracy was higher than linear representation
at 5-bits. Instead of direct weight quantization, it also common
to retrain the model with lower precision, as proposed by [23]
and [24].

Networks quantization can lead to significant memory and
processing power reduction. Quantization aware training is
important to achieve higher accuracy during inference, as it
models quantization error during training to match quantiza-
tion effects during the inference [9]. Quantization awareness is
performed by introducing so-called fake quantizations, which
means that quantization is directly followed by dequantization.
In this way, we simulate precision loss that is later observed
in arithmetic-only inference. In this study, we focus only on
the training step, as inference quantization depends heavily on
the hardware specification. Proper quantization should ensure
that quantization errors and fusions at inference time are
accurately modeled at the training time. Although training
with simulated precision loss have been already proposed,
to the best of our knowledge there is no existing in-depth
comparison of parameters selection for quantization-aware
training. This work aims at providing evaluation of these
parameters and determining how they affect network accuracy
to ease inference quantization design decisions.

III. METHODOLOGY

In this study, we model quantization error in the forward
pass using simulated precision loss, while full precision is
used for the back propagation to preserve small gradient
updates, similarly to [9]. Yet contrary to previous studies, we
compare different fake quantization operations available in the
TensorFlow framework and perform experiments for various
locations of these ops. In addition, we evaluate precision and
recall of models trained using different quantization parame-
ters. Analysis is performed for the Resnet v1 50 model [25]
trained on the Cifar10 [26] set, that contains 6k 32x32 RGB
images (5k train and 1k test sets) divided into 10 categories.
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A. Training procedure

All variants of the model were trained using TensorFlow
models repository [27]. For a fair comparison, we were
changing only quantization parameters, other network hyper-
marmeters remained constant and were set to their default
values: weight decay 0.00004, optimizer RMSProp, optimizer
epsilon 1.0, momentum 0.9, learning rate 0.01, learning rate
decay exponential down to 0.0001 every 2 epochs, batch size
8. Number of optimal training steps was determined using
early stopping method on the not-quantized model. As soon as
accuracy on the validation set stopped improving, the training
was stopped. The determined optimal number of training step
was 350000.

In our experiments we followed one-factor-at-a-time method
(OFAT) modifying one quantization parameter at a time
instead of multiple variables simultaneously due to limited
training resources. Yet, in future work we want to perform
similar experiments while changing multiple factors at once
in order to estimate possible interactions between quantization
parameters.

To perform OFAT experiments, we set all quantization
parameters defined in following subsections to their default
values in the first run, and then we were changing each
of them at a time, training ResNet model again with new
configurations. After training, all models were evaluated on
the validation set producing accuracy and recall metrics.

B. Simulating precision loss

To simulate precision loss, each input v is at first quantized
and then dequantized back to fp32 output O as follows:

O =
rm|rhe,rhu(c(v,minin,maxin) ∗ sf )

sf
. (1)

where: minin and maxin are minimum and maximum values
determined from the input or specified manually; v, c is a
clamping operation; sf is the scaling factor and rm is a
rounding mode. All parameters are described in details in
following subsections.

C. Modified quantization parameters

1) Operations in TensorFlow for precision loss simulation:
TensorFlow supports various two main operations for simulat-
ing precision loss: FakeQuantWithMinMaxVars and Quantize-
AndDequantizeV2. The main difference is that quantization
range in FakeQuantWithMinMaxVars is defined as unsigned
([0; 2nbits − 1]) or [1; 2nbits − 1]), while in QuantizeAndDe-
quantizeV2 output signedness can be specified. For detailed
differences in implementation please check TensorFlow docu-
mentation [28].

2) Locations of precision loss simulations: Quantization
aware training described in [9] proposes a quantization scheme
that quantizes convolution weights and activations. We follow
this approach and perform experiments using the same loca-
tions for simulated precision loss (default placement is Relu for
activations and VariableV2, Identity for weights). Yet, contrary
to the proposed quantization scheme, we also quantize inputs

to Add operation, as presented in Fig. 1 This modification was
motivated by the fact that skip connection present in ResNet
may operate within different scale than the main branch,
therefore to take both branches into account equally, ranges
should be updated before adding them. Inputs and outputs
of deep models have proven sensitive to quantization [15],
therefore the full precision for these operations is preserved.

3) Scale sf : Given a set of n points in the range of the
float precision, a(1), ...a(n) ∈ fp32, find n numbers that are
maximum or minimum value of the matrix, as follows:

min
∀x∈R2

f(x) and max
∀x∈R2

f(x). (2)

f(x) is defined to be: f(x) = {x : −128 ≤ x ≤ 127 x ∈ Rs}
and f(x) = {x : 0 ≤ x ≤ 255 x ∈ Ru} for output bitwidth
set to 8 bits, where: Rs and Ru are for signed and unsigned
values of the input. These minin and maxin values could be
controlled by the use of the special TensorFlow flag, i.e range
given. If this flag is set on False the values will be measured
automatically from the input tensor (by default range given
is set to False), otherwise minin and maxin values will be
determined through these parameters.

Consequently, if O ∈ Rs and the number of bits is equal 8
then sf might be defined as −128

minin
and +127

maxin
. Otherwise, if

O ∈ Ru then sf will be determined as follows: the minin = 0
and only maxin is used.

Additionally, the minin and maxin values for activation
are determined during training using moving average.

4) Rounding mode rm: Clearly, these methods allow to
modify the value of the O tensor by using popular rounding-
number modes. There are differentiate stochastic and non-
stochastic methods e.g. round half to even, half up.

1) Round half to even rhe - That is default tie-brekaing
rule of rm. This rule defined output round value without
negative or positive bias and without bias away toward
from zero. The primary goal of this method is to obtain
minimization of the expected error for an activation and
convolution operations:

rm|rhe =

{
bxc if x < 0 and x ∈ R,
dxe otherwise.

(3)

2) Round half up rhu - That is rule broadly used to round
always values up:

rm|rhu = dxe for all x ∈ R. (4)

5) Input and output data: Signedness of the output from
the fake quantization operation can be specified if Quantize-
AndDequantizeV2 is used. Output signedness determines cal-
culation of scale factor sf . If output is unsigned, the minimum
is set to 0 and only maximum value is used. By default output
is signed, but we perform additional experiments for unsigned
outptut as well.

In addition, we also modify image preprocessing step by
using both vgg and inception methods, as defined in [27].
In vgg preprocessing (default setting), given mean values
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Fig. 1: Part of the quantized ResNet v1 50 TensorFlow graph - fake quantization operation inserted on inputs to Add operation

are subtracted from each image channel, but input is not
normalized. In inception preprocessing, input data is rescaled
to the range [−1, 1].

6) Bitwidth of the quantization bt: Bitwidth parameter
specifies the amount of data (measured in bits) used to
represent the output of the quantizer. By default bitwidth is
set to 8 bits, but can be set to any value that is a power of
2. Specified bitwidth in the output determines minimum and
maximum of quantized values:

bt =


[0; 2nbits − 1] if FakeQuant,
[−(2nbits−1); 2nbits−1 − 1] if QDQv2 and Os,

[0; 2nbits − 1] if QDQv2 and Ou.
(5)

where Os means that output is signed and Ou means that
the output is unsigned.

IV. RESULTS

Table I presents the accuracy and recall scores achieved
by baseline model and models with different quantization
parameters on the CIFAR10 test set. Plots of training loss
for different quantization delay values, fake quantization op-
erations, minimum and maximum values setup, and different
placement of simulated precision loss are presented in Fig. 2,
3, 4, 5, respectively.

V. DISCUSSION

The preliminary studies of the experiments described in
this work show the impact of quantization of deep learning
models on the accuracy and recall metrics. The experiments
were divided into 9 categories, each representing separate
quantization parameter with it’s different options tested within
the category.

As a baseline to our experiments, the ResNet50 model
was trained for 350.000 iterations on the CIFAR10 data set
with default configuration and without quantization operations.
Quantized models used in the experiments described below
were trained using the same set of parameters as the baseline
model, with the exception of the quantization configuration.

Fig. 2: Softmax cross entropy loss for different values of quantization
delay

Fig. 3: Softmax cross entropy loss for different simulate precision
loss TensorFlow operations

The baseline model achieved accuracy and recall of 91.14%
and 99.42%, respectively.

Comparing the average accuracy and recall that were
achieved by the quantized models with the same metrics
scored by the not quantized model, quantized models achieved
accuracy of 86.15 ± 10.54% and recall of 99.04 ± 1.44%,
showing that there is no significant degradation in these
metrics when compared to the original model.

In the first experiment we compared original model with
two different quantization operations implemented in the
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TABLE I: Accuracy [%] and Recall [%] comparison of the baseline not-quantized model against models quantized with different quantization
parameters. Quantization operations were inserted on inputs to ops of type Conv2D and Add; and on outputs of activation operations.

Accuracy Recall Quantized Quant. op Rounding
mode Bitwidth Input

preprocessing
Output
signedness

Locations of
quantization op

Range
given

Quantize
delay
[% steps]

Theoratical
Inference
Model Size

91.14 99.42 × - - - - - - - - 89.6 MB
52.90 94.51 X QDQv2 half to even 4 vgg signed Conv, Activation × 80% 11.42 MB
86.27 99.22 X FakeQuant half to even 8 vgg signed Conv, Activation × 80% 22.95 MB
86.60 99.29 X QDQv2 half to even 8 inception signed Conv, Activation × 80% 22.95 MB
88.06 98.99 X QDQv2 half to even 8 vgg signed Conv, Activation X 80% 22.95 MB
88.65 99.10 X QDQv2 half to even 8 vgg unsigned Conv, Activation × 80% 22.95 MB
88.69 99.61 X QDQv2 half to even 8 vgg signed Conv, Activation × 60% 22.95 MB
88.82 99.63 X QDQv2 half to even 8 vgg signed Conv, Activation × 90% 22.95 MB
88.86 99.01 X QDQv2 half up 8 vgg signed Conv, Activation × 80% 22.95 MB

88.87 99.28 X QDQv2 half to even 8 vgg signed Conv, Activation,
Add × 80% 22.95 MB

89.06 99.64 X QDQv2 half to even 8 vgg signed Conv, Activation × 70% 22.95 MB
89.37 99.65 X QDQv2 half to even 8 vgg signed Conv, Activation × 50% 22.95 MB
89.69 99.66 X QDQv2 half to even 8 vgg signed Conv, Activation × 80% 22.95 MB
90.04 99.67 X QDQv2 half to even 8 vgg signed Conv, Activation × 40% 22.95 MB
90.71 99.25 X QDQv2 half to even 32 vgg signed Conv, Activation × 80% 89.6 MB
91.26 99.34 X QDQv2 half to even 16 vgg signed Conv, Activation × 80% 45.90 MB

Fig. 4: Softmax cross entropy loss for different ways of minimum
and maximum values selection

Fig. 5: Softmax cross entropy loss for different placement of simu-
lated precision loss

TensorFlow framework - FakeQuantWithMinMaxVars (Fake-
Quant) and QuantizeAndDequantizeV2 (QDQv2). The results
produced by both of them are below the score achieved by
the original model, however, in case of the QDQv2 operation,
it was only by a small margin (1.45%). For FakeQuant the
accuracy decreased by 5.34% comparing to the not quantized
model.

Default half to even rounding mode has been proved to
produce slightly better evaluation metrics, however it was only
used with bitwidth of 8. It may turn out that rounding of

lower precision values would be better with different rounding
modes. We will perform these experiments in future studies.

We found the theoratical inference model size by utilizing
TensorFlow Graph Transform Tool for all bitwidths consid-
ered. Accuracy-model size tradeoff showed that 8 bit quantized
models performed well with little loss in accuracy while
providing model compression by a factor of four.

In another experiment models with different numerical
precision were tested. No significant changes in the accuracy
and recall were observed, with the exception of the model
trained with 4bit precision, which achieved the lowest scores
in both metrics (accuracy decrease of 41.96%).

Next test investigated the impact of starting the quantization
in different points of the training process (40%, 50%, 60%,
70%, 80% and 90% of training iterations). The results show
that starting the quantization earlier is beneficial for the per-
formance of the model, as the highest accuracy was achieved
by the model that began quantizing after 40% of the iterations,
while models with larger delays trended toward lower scores.

In another test, the choice of minimum and maximum values
for calculatitng quantization scaling was compared. It’s not
surprising that minimum and maximum values determined
automatically from the inputs lead to better accuracy and recall
results, as the range is better adjusted to data on which the
graph operates.

Analysis performed for placement of simulated precision
loss didn’t prove accuracy improvement for ranges adjusted
before adding skip connection to the main ResNet branch.
This may be caused by the fact that minimum and maximum
values of inserted QDQv2 ops were not tied together, so both
branches might have still operated in different ranges. To
solve this problem, in future work we want to ensure that
all operations that have more than 1 parameter (e.g. Add,
Concat update scales of these parameters to the same values
to preserve equal contribution of inputs.

Also, the default TensorFlow preprocessing method for
ResNet model (vgg) has turned out to be better than inception
preprocessing that normalizes input data to [−1, 1], resulting
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in accuracy increase of 3.45%.
The performed extensive benchmark provides in-depth com-

parison of various parameters in quantization aware training
applied to convolutional neural networks and can be used as a
base for designing various deep learning based computer vi-
sion tasks. As a result, industrial applications can be deployed
on resource-constrained edge devices without reveling privacy
of data by sharing it in the cloud. Yet, it is worth mentioning
that achieved results are only preliminary and experiments
should be further extended in future work.

VI. CONCLUSION

This work focused on evaluation of quantization parameters
for precision loss simulation during deep neural network
training. Performed experiments showed that it’s important to
cautiously select quantization parameters in order to achieve
the smallest accuracy drop comparing to non-quantized model.
In future work, we will perform similar experiments while
changing multiple factors at once, to determine whether
there are interactions between quantization parameters. What’s
more, we will provide a mechanism to tie ranges of all inputs
to a given operation to make sure they equally contribute to
the output. Also, we would like to apply quantization aware
training to deep neural networks utilized by us for e.g. image
classification [11] or gesture recognition [29] in smart home
and smart building environments on mobile platforms. In this
way, data can be processed locally to preserve privacy, e.g. in
solutions designed for remote vital signs monitoring [30].
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