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Abstract
The work presented in the paper is dedicated to determining and evaluating the most efficient
neural network architecture applied as a multiple regression network localizing human body
joints in 3D space based on a single low resolution depth image. The main challenge was to
deal with a noisy and coarse representation of the human body, as observed by a depth sensor
from a large distance, and to achieve high localization precision. The regression network was
expected to reason about relations of body parts based on depth image, and to extract locations
of joints, and provide coordinates defining the body pose. The method involved creation of a
dataset with 200,000 realistic depth images of a 3D body model, then training and testing
numerous architectures including feedforward multilayer perceptron network and deep
convolutional neural networks. The results of training and evaluation are included and
discussed. The most accurate DNN network was further trained and evaluated on an augment-
ed depth images dataset. The achieved accuracy was similar to a reference Kinect algorithm
results, with a great benefit of fast processing speed and significantly lower requirements on
sensor resolution, as it used 100 times less pixels than Kinect depth sensor. The method was
robust against sensor noise, allowing imprecision of depth measurements. Finally, our results
were compared with VGG, MobileNet, and ResNet architectures.

Keywords Depth image . Pose estimation . Artificial neural networks . Deep learning

1 Introduction

Many modern computer interfaces employ gesture tracking and user pose estimation. The
foremost example is a Kinect sensor [1, 23] utilizing a depth camera and a dedicated algorithm
based on random forests. Common approaches to joints tracking involve processing of 2D
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grayscale or color images [31, 32], 2D depth maps [7, 14, 23] or 3D body geometry scans
obtained by a fusion of many depth images [20]. Depending on the used method the accuracy is
influenced by numerous problems such as obscuration of body parts in case of crossed legs or
arms, front-back confusion, pose ambiguity, and low accuracy of joints localizations and orien-
tations. Usually a high processing power and high resolution sensors are required to achieve
satisfactory precision. The approach presented here involves a very low resolution depth images
and employs neural network-based regression run in real time on a medium performance CPU.

Kinect sensor was chosen as a reference for the results presented in this paper because there
were no other as accurate and as well-established methods for extracting joints positions from
depth image of human body. Kinect uses structured light to obtain depth map of size 640 × 480
pixels with 11-bit resolution expressing the distance from the sensor. The pose tracking
algorithm is based on decision trees classifying each pixel as belonging to a particular body
part, based on local features of the depth image. As a result the scanned geometry is first
divided into body parts, and then their 3D space coordinates are estimated. The average
precision of all joints localizations is 0.731, assuming that the distance less than 0 .1m from
the ground truth is a true positive. For wrists and hands the precision reaches 0.67 (Section 5).
The method requires relatively high resolution of the depth map and a high processing power
(on a GPU 200 frames are processed per second, and on a 8-core CPU only 50 frames) [23].

The high requirements of Kinect were addressed in the presented research. The goal was to
propose and evaluate a DNN (Deep Convolutional Neural Network) multiple regression
method for estimating 3D coordinates of body joints, able to operate on a very low resolution
depth image (100 less pixels than Kinect), and more efficient than the prior method.

Aims of the presented work were: to verify how selected neural network architectures
perform with joint localization task, to speed up the localization process, and to reduce the
required size of input depth map comparing to the reference Kinect algorithm [1, 23]. Low
resolution depth images of 60 × 50 pixels were used. A very fast regression on body joints
locations in 3D space was observed. Even in case of a sensor noise, large distance, occlusions
and reaching off the screen, the achieved precision was comparable with Kinect (Section 6).

The reminder of this paper is organized as follows: related work is presented in Section 2.
Section 3 documents the dataset, Section 4 describes MLP and DNN architectures, research
methodology, and training procedure, Section 5 presents results of joints localization, Section 6
is dedicated to improvement upon those results by further training the best network, and
Section 7 concludes the paper.

2 Related work

DNN networks are successfully used in many image processing applications, including pose
estimation (Table 1). Such networks are usually composed of several layers, of three different
types [11, 13]: 1) convolutional layers taking rectangular areas of a defined window size from
a previous layer, then performing convolution with a given set of kernels, and returning filtered
results, which are interpreted as feature maps; 2) pooling layers, reducing the size of feature
maps, and introducing invariance to shifts or distortions, by e.g. choosing maximal or median
value of a rectangular window slid with a defined step over the input; 3) fully connected layers
decoding the internal state of the network and mapping features into a desired output format.

DNN architectures were already used for pose estimation by other researchers. Usually
localization accuracy is expressed by mean average precision (mAP), by defining a threshold
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for acceptable distance between estimated and actual location (absolute distance in millimeters,
or relative to particular body part bounding box size, or as a fraction of torso size), and then
treating each detection within this distance as a true-positive. The ratio of such true-positives to
all estimated coordinates is mAP. Average absolute errors are also relevant for assessing the
performance.

Significant efforts are made for pose estimation from 2D photos or video frames, important
mainly for video indexation. In a Deeppose framework 2D color natural images were analysed
to estimate upper body pose, achieving speed of 0.1s for 220 × 220 image on 12-core CPU
[32]. Tompson et al. used deep convolutional network architectures to detect body joints inside
two sliding windows of 128 × 128 and 64 × 64 pixels over 2D images of 320 × 240 pixels [31].
The processing speed was 0.05 s per image. A more complex approach with two strategies for
DNN training was evaluated: training for pose regression and body part detectors, and a pre-
training when the pose regressor is initialized using a weights of the network first trained for
body part detection [15]. Input 2D color images with 112 × 112 pixels were processed by the
architecture containing 3 conv. layers with pooling, effectively scaling down the input to 10 ×
10 feature maps. Depending on the complexity of the analyzed pose the mean average errors
were within a range 77 mm to 190 mm, and the mAP precision was within a range 0.2 to 0.95.

Using depth information from time-of-flight sensors, instead of RGB image, simplifies
segmentation, and allows for more accurate pose estimation not only in 2D image plane, but in
3D space. An approach similar to the Kinect method was implemented, dedicated strictly for
processing sequences of poses in a golf swing [21]. It utilizes random regression forests
cooperatively voting to localize joints in a 640 × 480 depth image, followed by a random
verification forests that evaluate and optimize the votes to improve the accuracy of clustering
that determine the final position of anatomic joints. For joints of interest mean average
precision mAP of 0.98 and mean location error of 30 mm were achieved. Despite such high
accuracy, the major drawback is limitation to defined action of playing golf. The method is
able to process a single frame in 25 ms on a powerful i7-6850K CPU.

Another limited application was described in [4], with DNNs applied for regression of body
joints in a depth images presenting action of climbing up the stairs. The accuracy is expressed
in a dedicated Bpose space^ with reduced dimensionality, therefore a direct comparison with
other methods is not possible. Input 224 × 224 depth images are processed by an deep
convolutional architecture (5 conv. layers, and 3 max pooling in-between) with a speed of
100 frames per second on a GTX750 GPU.

Highly complex method of model-based search was implemented and joints locations were
compared with motion capture ground truth data in a work by Ganapathi et al. [5]. Average
pose error was 0.05–0.1m (depending on a test sequence), but the processing speed was low:
100 ms per 128 × 128 depth image.

A cascaded approach was also studied [33], where first confidence maps of body parts are
generated by a fully convolutional network analyzing 216 × 176 pixels depth image (6 conv.
layers with kernels from 7 × 7 to 3 × 3, with max pooling, and three conv. layers with kernels
of 1 × 1), generating 23 images of 19 × 28 pixels. Then the image patches and body parts
templates are processed by a second architecture to obtain optimal configuration of joints. For
precision assessment the distance between the predicted and the true joint position was
accepted when laying within a defined fraction of a torso diameter. For 0.2 of this diameter,
the mAP is 0.91. This method is able to process 25 frames per second on a GTX-980Ti GPU.

A model based approach involving a comparison of a newly acquired depth map of 176 ×
144 pixels with all poses available in the database (nearest neighbor search) was implemented
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[34]. The initial search is refined with a generative approach, i.e. 3D pose is modified and
rendered to achieve depth image closely aligned with the input. Achieved mean average
precision is high 0.95, but the method is too slow for real-time (60–150 s per frame), due to
its long generative phase.

Another generative approach with genetic optimization of pose of a 3D body model was
successfully implemented [16]. Due to the nature of the applied evolutionary method, this
implementation is extremely slow as for a single image it requires 10,000 iterations lasting ca.
70 min on a powerful CPU.

Often the problem of estimating object’s pose in the image is reduced to the location and
orientation of a rigid object within a frame. In numerous approaches the bounding box
coordinates are inferred from the image of the object, serving as its 2D localization, supple-
mented with a rotation estimation. Such efforts are usually focused on vehicles, house
appliances, etc., as well as silhouettes, but without detailed body pose information. Deep
residual networks (ResNet [6]) were applied for that scenario to simultaneous localization and
classification of vehicles in a traffic, obtaining the localization estimated as a bounding box
coordinates with mAP of 79.24% [10].

Other authors proposed new architecture with a shared feature network, i.e. first a classifier
network operated on extracted features, and finally a respective pose regression networks were
engaged separately for each of resulting 12 classes [18]. The feature extractor was based on
ResNet-50 stages 1 to 4, then 3 additional FC layers were added and trained for each class pose
estimation. The pose angle is estimated with error within range 2.6 to 29 degrees, depending
on the class.

Also the popular VGG architecture, with 13 convolutions and 3 fully connected layers
(VGG-D variant) was used in a localization task, estimating bounding box size and location of
rigid objects of 1000 classes. This particular VGG-D had 138 millions parameters, and
processed 224 × 224 RGB images [24]. VGG and Alexnet were trained to estimate rigid
object orientation in a 2D images, first applying classification network, and then dedicated
pose network for each object class, inferring 3 orientation coordinates [17].

An approach similar to our work was done previously for face images [25]. A cascade of
three ConvNets was proposed aimed at 5 facial keypoints positions estimation. The networks
outputs are fused to increase accuracy. It was shown that ConvNets are able to extract face
features, and networks perform multiple regression, and predict all coordinates simultaneously,
thus the geometric constraints are implicitly encoded, and local minima due to possible
occlusions, and large pose variations can be avoided. Next stages are cascaded to refine initial
predictions, resulting in high accuracy and reliability.

A recent attempt at efficient, universal and easily scalable architecture was presented [8],
resulting in a MobileNet architecture with a new type of depthwise convolutions, capable to
both classify and to localize objects in images.

Architectures simpler than DNN, namely multilayered perceptron networks (MLP) were
used specifically for 3D finger tracking in the depth image [30], and among other classifiers
bag-of-features and SVM were employed for gesture recognition [29], and hand tracking [1,
14].

Summarizing, we have observed that convolutional networks are able to extract meaningful
features from the image, and were also proven to perform accurate regression. It was stated that
the same features are useful both for the classification and for localization [10, 18], and
networks such as VGG performed exceptionally good in both classification and localization
competitions [6]. Therefore we aimed at determining and evaluating a DNN architecture
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performing both tasks at the same time. Our proposed output layer has separate neurons for
triples of 3D coordinates representing joint localization in real space, and pairs of 2D
coordinates in the image plain for classification of body part in the image (Section 4).

On the other hand the MLP network without convolutions was also evaluated in our work,
as an alternative approach. In this architecture each input pixel obtains different weights
(contrary to shared weights of DNN), and pooling is not performed, allowing for high spatial
resolution. Pooling in DNN is mainly motivated by assuring invariance to shifts, but it must be
stressed here, that it is expected that shifts must influence output values in localization task.
See also Section 7. for additional discussion on other state-of-the-art architectures.

Other important aspect is that previous approaches dealt with relatively large input images,
requiring the sensor to be high resolution and positioned close to the object. In our scope lies
the challenge of processing low resolution depth images. The smallest input depth map was
128 × 128 pixels in the work of Ganapathi et al. [5], but they were not employing neural
network, and achieved large errors up to 100 mm. On the other hand the most similar approach
to ours was by Wang et al. [33], used deep convolutional neural networks for joints regression,
but it required 12 times more pixels than our input format, and had a quite complex cascaded
architecture: image patches localization, then joints positions optimization. Our effort is aimed
at proposing and evaluating streamlined deep convolutional architecture, and showing a
difference between wider and narrower configurations, and very simple multilayered
perceptron network also trained as a joint localization regressor.

3 Depth images dataset

A dataset with ground truth positions of every relevant joint was required for the supervised
learning. Such data are hard to obtain in real conditions, as the only way to register actual
joints positions in 3D space is to use expensive and demanding motion capture systems.
Moreover, for a real person it would be a tremendous effort to take thousands of different
poses, required in this experiment. Therefore a 3D graphics software was used to model, pose
and render human figure, creating depth image and appropriate ground truth for each pose.
Similar artificial database was used for training of decision trees in Kinect algorithm, but this
particular set and similar ones were not publicly available. Therefore a new dataset was created
for this research [27] consisting of realistic very low resolution depth images of a simulated
human figure [26]. It was assumed, that the sensor has a horizontal field of view 57° (same as
Kinect), and the depth image was rendered to 60 × 50 pixels in 8-bit greyscale (3-bit less, i.e. 8
times lower depth resolution than Kinect).

The human figure was positioned in an empty space, without a background and other
foreground objects. In real applications to obtain the same conditions a separation of fore-
ground object based on depth information should be performed, e.g. by assuming the body to
be the object closest to a camera, and discarding the ones positioned further by comparing their
depth values.

The dataset represents a wide variation of the upper body poses with biologically correct
random joints positions, with wrists positions uniformly covering the available space in front
of the figure. The body absolute position was changed randomly to introduce shifts in x, y and
z directions relative to the fixed sensor. The movement ranges were limited to allow only far
reaching hands to leave the frame, whilst the rest of the figure remained visible. 200,000 depth
images were created, randomly split in 60/40 proportion into training and testing sets. In
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testing set 56,000 images had hands inside the frame, 24,000 had one or both hands reaching
out of the frame.

Each depth image was described by the root joint location in meters in 3D space (reflecting
the figure absolute location in front of the camera), 3D coordinates in meters of both hands,
elbows, arms, relative to the root, and 2D coordinates in pixels of both hands, elbows, and
arms on the image plane. The pose state was defined as a set P of 3D coordinates of 7 joints:

P ¼ jx; jy; jz
� �n o

ð1Þ

where a joint j∈{root, right arm, right elbow, right hand, left arm, left elbow, left hand}.
Pose estimation errors were defined twofold, as an error along particular axis εjloc,dim (3)

and as an Euclidean distance in space between true and estimated values εjdist for a particular
joint j (4):

ε j
loc;dim ¼ j jdim– j*dimj ð3Þ

ε j
dist ¼ ‖ jx; jy; jz

� �
; j*x; j

*
y; j

*
z

� �
‖ ð4Þ

where dim∈{x, y, z}, j* is an estimated joint coordinate, and || · , · || is a distance metric between
two points in the 3D space.

In the 2D image plane the localization of joints is a set L of pixel coordinates:

L ¼ ix; iy
� �� � ð5Þ

and errors are expressed as:

εiloc;dim ¼ jidim–i*dimj ð6Þ

εidist ¼ ‖ ix; iy
� �

; i*x; i*y
� �

‖ ð7Þ
where dim∈{x, y} are image row and column coordinates, and Euclidean distance was used as
a metric || ||.

4 Training of neural network architectures

The applied methodology consisted of qualitative measurement of joint localization regression
accuracy and comparison with the baseline Kinect algorithm. First the dataset was
preprocessed to fulfill good practices of machine learning, then four neural networks were
defined, with justification of their architectures, then the supervised training with error
backpropagation was performed, and the results were presented and discussed. The most
accurate network was further trained and tested on augmented dataset. Accuracy was
expressed as distances between the estimate and actual joint position, and precision is
calculated facilitating comparison with the Kinect.
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The dataset consists of accurate 8-bit depth renderings of the human body model. Such an
idealized representation is not suitable for machine learning, potentially leading to fast
overfitting. Therefore the depth images were preprocessed by adding noise with a mean μ =
0, and a standard deviation σ = 1.25 cm for a random half of training images, and σ = 2.5cm
for the other half, thus in the first case 98% of pixels were within range ± 2·σ = ±2.5cm from
the actual depth, and within ±2·σ = ±5 cm in the latter case. All testing images were also noised
(μ = 0, σ = 1.875). The noise simulates rough surface of the body and cloths, and assure
robustness to presence of wearable trinkets and accessories. Next, an average image over
training subset was calculated and subtracted from every training and testing sample (Fig. 1),
eliminating influence of absolute distance.

The output values of P and L (root location, joints relative locations, and image plane
coordinates) were normalized to a range < 0, 1 > using min-max rule, where each new nor-
malized value x*i of xi was calculated based on the minimal and maximal value of x (8):

x*i ¼ xi–min xð Þð Þ= max xð Þ–min xð Þð Þ ð8Þ
Normalization ranges {min(x), max(x)} were obtained from the training dataset individually
per each output and were used again to scale the network output back to original ranges for
expressing absolute errors εiloc, εidist, εjloc, εjdist. The normalization helps each output value and
its gradient to influence the network weights in the same amount, increasing training speed
[12].

Four architectures were considered, a Multi-Layered Perceptron (MLP), and three Deep
Convolutional Neural Networks (DNN) described below.

Networks were trained to act as a multiple regression networks, and to return continuous
values of predicted coordinates P and L, minimizing εjloc, dim and εiloc.

MLP was composed of an input layer fed with 3000 depth image pixels, one hidden layer
with 500 neurons, and an output layer with 33 neurons (Fig. 2). In each neuron a rectified

a) b) c)

d) e)

Fig. 1 Depth image preprocessing: a human model and upper body skeleton (circles mark joints of interest), b
rendered depth image, cmean image of the training set, d noisy input with the mean subtracted, e samples of two
other training images
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linear activation (ReLU) was used, following the suggestion that ReLUs are able to learn faster
than tanh and sigmoid due to a lower computational complexity and the lack of saturation [19].

The DNN architectures used by us resemble the AlexNet [11]. The input for DNNs was an
image of 60 × 50 pixels, first convoluted with 20 kernels with size 5 × 5, resulting in feature
maps of size 60 × 50. These 20 maps were expected to grasp key local features of the depth
image such as particular gradient orientations, edges or points, as well as reduce the impact of
noise. Next, for each map the max pooling was performed within a sliding window of 2 × 2
with a stride of 2 × 2, resulting in 20 feature maps of size 30 × 25. After the next convolution
layer and pooling more general feature maps of size 15 × 13 × 50, 15 × 13 × 33, or 15 × 13 × 20
were obtained, depending on the chosen number of feature filters in the second convolutional
layer. In consequence three networks were created DNN50, DNN33, DNN20 varying in the
size of second convolutional layer (Fig. 3).

The justification for chosen sizes is that DNN33 was expected to model 33 feature maps
closely correlated with 33 output values, in one-to-one relation. Next, the number of feature
maps in DNN20 was reduced to 60% (20 feature maps) as an attempt to train a more
generalized network, and purposefully taking into account that some of output values were
correlated, e.g. location in pixels in the image (ix, iy) with location along X- and Z-axis in space
(jx, jz),. Finally the last architecture DNN50 involved 50% more features (50 feature maps in
total) as an attempt to verify if such an increased capabilities should improve accuracy,
possibly by modeling of subtle nonlinear relations between the camera distortions, and
changes in size and distances due to an optical perspective, and extrapolation for hands
locations outside of camera field of view.

Results of convolutions and pooling were passed onto a fully connected layer of
500 neurons dedicated to decoding internal state of the network, and finally to a fully
connected layer of 33 neurons forming desired outputs. ReLU activation function was
used in all neurons.

Fig. 2 Architecture of the MLP network
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Architectures deeper than the presented one were not verified, as it was assumed that further
convolution and pooling performed on 15 × 13 large feature maps of the stage 3 would lead to
significant degradation of internal representation of joints coordinates. Pooling usually is
expected to introduce shift invariance in classifier networks, but in our case the exact pixel
location should be transformed into respective 3D coordinates. Filtration and pooling would
obscure that dependency.

On the other hand, wider and narrower architectures were evaluated in our previous work
[28], revealing that at least 20 kernels are required for satisfactory accuracy, and using over 50
kernels does not increase the accuracy any further.

The training was conducted in R environment [22] with MXNet package for neural
networks [2, 3] on a 4 core i5–6500@3.2GHz CPU, with 16GB RAM, and on DGX
Station.

For all networks the learning rate was 0.05, and momentum 0.3. The validation
error was observed, and the training was stopped once the mean absolute validation
error slowed its decrease and became lower than 0.0001 per epoch, or after a given
number of epochs.

One epoch of MLP network training took approx. 5.5 s, and one DNN epoch took 75 to
87 s for DNN20 and DNN50 respectively (Table 2). MLP was trained for 6500 epochs, and
DNNs for 2260 epochs.

The mean absolute error (MAE) for training data and evaluation data is presented on Fig. 4,
visualized for a particular epoch number, and for the elapsed time. It can be noticed that:

– all DNNs generalize better than MLP, as the gap between the training and evaluation error
was ca. 0.01 for DNNs and ca. 0.018 for MLP,

– DNNs achieve higher accuracy than MLP, as DNNs training errors were ca. 0.01 lower
than MLP, and DNNs evaluation errors were ca. 0.018 lower than the MLP evaluation
error,

– DNNs after 24 h of training surpassed MLP in the training error, and achieved lower
evaluation error 12 h,

– the random large changes in the evaluation error for DNN33 before epoch 2260 were a
result of too long learning, as the model started to overfit to training data, and lost its
generalization capabilities.

Fig. 3 Architecture of the DNN networks used in the experiment. N in the second convolution stage was 20, 33
or 50 for DNN20, DNN33 and DNN50 respectively
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5 Neural networks performance and accuracy evaluation

For MLP network the pose estimation and joints location speed reached over 35,000 images
per second, and for DNN over 550 images per second (averaged over all 60 k testing samples,
measured on a desktop workstation with 4 cores, i5–6500@3.2GHz CPU) (Table 2). Thus the
achieved speed exceeded the reference value of 200 images reported for Kinect algorithm run
on the XBOX360 GPU [23].

Networks inference was also performed on a mobile CPU i5-5200U with adjusted clock
speed. The achieved framerate depended on the architecture and clock speed, but even for
800 MHz the inference was faster than Kinect algorithm tested on a modern 8-core CPU [23].

The measured regression speed leaves large overhead for real-time applications, as the joint
localization ought to be executed at reception of each new depth frame from a sensor.
Assuming the modern Time-of-Flight camera is used with up to 90 frames per second, the
neural network regressor can be run on any modern CPU. Considering the trade-off between
the localization error (Section 6) and the speed, for applications where average precision of 0.7
is acceptable (only slightly below baseline Kinect mAP), one can apply MLP architecture
achieving over 5000 fps on the slowest of tested configurations. For example, compact

Table 2 Training and inference speed for a given network architecture and CPU type, compared to baseline
Kinect

MLP DNN20 DNN33 DNN50 Kinect

Average length of 1 training epoch [seconds, the lower the better]:
Desktop i5@3.2GHz, 4 cores 5.5 75 78 87 –

Regression speed [frames per second, the higher the better]:
Desktop i5@3.2GHz, 4 cores 32,520 1121 1119 1032 –
Mobile i5@2.5GHz, 4 cores 14,134 241 234 210 –
Mobile i5@1.6GHz, 4 cores 8000 150 134 130 –
Mobile i5@0.8GHz, 4 cores 5200 73 72 62 –
Unspecified 8 cores CPU – – – – 50
XBOX360 GPU – – – – 200

Fig. 4 Mean absolute errors during the training and evaluation for a given number of epochs and time
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Raspberry Pi 3 computer, equipped with 1.4GHz quad-core CPU would handle the DNN33
network for joint localization in real-time.

The joints localization errors were expressed as distances along particular dimensions in 3D
space εjloc, dim (Fig. 5) and as distances in x and y image plane coordinates εiloc, dim (Fig. 6).
Errors were the largest for hands localization along the depth Y-axis in space, and along the
vertical axis on the image. Hands locations were expressed by wrist position, what caused
mistakes because the fingertips were the most extreme parts of the whole arm, probably
disturbing the classification and localization (Fig. 8). Moreover the Y-direction is perpendic-
ular to the image plane (depth) and its value in the depth image is highly influenced by the
added noise. MLP network generally achieved the lowest accuracy, due to the simplicity of
this architecture, as expected. DNN33 was the most accurate (see medians, 3rd quartiles, and
upper whiskers), and DNN50 and DNN20 were slightly worse. This confirmed initial as-
sumptions on DNN architecture – it was expected that matching the number of feature maps in
the last convolutional layer of DNN33 with the number of 33 outputs would allow the most
accurate modeling (Section 4). It can be observed that generally the errors are the largest for
hands, their 4th quartile range exceeds 0.1m. Arms and elbows are located with high accuracy
(less than 0.05 m), being a satisfactory result, taking into account the low resolution of input
image. In the pixel space of 2D image plane (Fig. 6), the localization of arms and elbows is, in
half of the test images, done with subpixel accuracy, as the median lies below 1pix. The largest
errors are for hands, on extreme reaching 8 pixels, but 3rd quartile range is below 3pix.

The absolute distances εjdist were analyzed as well (Fig. 7). For DNNs errors have medians
of 2, 4 and 6 cm for root, arms and elbows respectively, 10 cm for hands, and reaching 28 cm
for hands. Generally MLP architecture accuracy was the worst. The main contribution to the
large distance error was the low accuracy of localization of joints along Y-axis (depth),
partially caused by the artificially introduced sensor noise. Generally, the noise increased
distances between the ground truth coordinates and the estimated result. In case of hands the Y-
axis error median reached 5 cm, up to 10 cm in the 3rd quartile, what relates to the absolute
distance error up to 15 cm in the 3rd quartile. In our previous work [26], it was verified that
increasing the noise variance in range 0.005–0. 01 m does not influence this accuracy, so it
must be concluded that the proposed networks, trained with the presented dataset does not
allow for more accurate localization of the hands, and the conditions for precision increase will

Fig. 5 Absolute errors in localization of joints (in m) along X,Y,Z-axes for MLP and DNNs architectures
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be studied in the future. One of the scenarios for improvement will involve tracking the hand
not only by the wrist location, but also by its fingertips, which, when straightened, can be even
15 cm apart from the wrist, what can be observed on fifth and sixth sample frame in Fig. 8.

Obtained results were compared with the original Kinect results by Shotton, et al. [23]. For
Kinect it was assumed that a joint located within a distance 0 .1m from the ground truth
location was counted as a true positive, and the reported average precision over all joints was
0.731, for hands reaching 0.67. The average precisions for the presented neural networks
approaches were calculated following the same convention. The precision surpassed the
reference results for arms and elbows locations but was lower for both hands (Fig. 9), probably

Fig. 6 Absolute errors in image plane localization of joints (in pixels) for MLP and DNNs architectures

Fig. 7 Localization errors (distances in 3D space) for joints for MLP and DNNs architectures

Multimedia Tools and Applications (2019) 78:29357–29377 29369

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


due to a high depth noise added to all images or too short training time, what was verified in
the next step (Section 6).

It must be stressed here that the testing set was significantly more demanding comparing to
the Kinect input images – it had a lower resolution, and lower bit depth and significant amount
of additive depth noise (Section 3). In half of the cases (results above median) the hands errors
exceeded 10 cm, but in 75% of cases (3rd quartile) errors were less than 15 cm, what is
considered acceptable in case of that low sensor resolution.

Fig. 8 Poses with low and high localization errors (sums of distances between Ground Truth and estimated
locations). For simplification only locations of hands, elbows and arms are shown, GT and respective estimations
are connected with lines
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6 Localization accuracy improvements

The best performing DNN33 network was further trained on the initial training set (Fig. 10a).
Once the process was restarted at epoch 2260 the previously small learning rate was reset to
0.05 (training error spike), but the model recovered generalization capability, and the error
decreased in more stable manner in consecutive epochs. It can be observed that evaluation
error tended to saturate on 0.037 but training error still had decreased. To prevent overfitting
the process was stopped at epoch 4000.

Finally, the DNN33 was evaluated on an augmented dataset. The depth images database
contained 200,000 poses. In the initial experiment (Section 5) only 120,000 of them were used
for training, thus excluding significant number of possible test poses. Therefore, a database
augmentation was performed by shifting all 200,000 images one column and one row in
random direction, and filling the missing pixels with repetition of their neighbor, and adding
Gaussian noise with a mean μ = 0 cm and σ = 0.625 cm. Augmented images differ enough
from the training set, therefore the achieved results were reliable without the risk of exact
match with training samples. Comparing results obtained on the augmented set to the initial
testing set, the hands localization median error decreased by 1 cm, maximal error decreased by
5 cm (Fig. 10c), and maximal pixel error decreased by almost 2 pixels (Fig. 10d), maximal 3D
distance error decreased by 8 cm (Fig. 10b). Average precision for hands was increased by 0.2,
and was equal to the one achieved by Kinect (Fig. 11).

7 Comparison with state-of-the-art architectures

It was already stated in Section 2, that numerous architectures were used for localization and
detection of human figure in color and depth images. Although our approach differs signifi-
cantly (in network size and in input resolution), an attempt was made to use those other
architectures for the same task of localization and regression and test with the same input data.
Following pre-trained architectures were chosen: MobileNet-512 SSD [8], Resnet-18 and
Resnet-34 [6], Squeezenet [9], VGG-16 and VGG-16 with reduced number of layers [24].

Fig. 9 Comparison of Kinect, MLP, and DNNs average precision for initial training set. Rightmost BAverage^
was calculated based on hands, elbows, and arms only, as precision for the root was not available for Kinect.
Kinect results recreated based on [23]
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Other networks were more than 100 times larger than our DNN33, and were omitted as
significantly different than the considered convolutional networks.

Two transfer learning approaches were explored:

– F: full pre-trained network, i.e. all layers up to the last flattening operation are kept, and
one fully connected layer is added at the end, with 33 output regression neurons,

– S: pre-trained network is shortened to only first few layers: no more than 2 convolutions
and no more than 2 pooling stages are used, and two fully connected layers are added at
the end, first with 500 and second one with 33 neurons (following our DNN design).

As a result we can use either all features of the pre-trained network or only the most basic low
level features from first layers, and then train last FC layers to exploit the features for
localization of body joints.

Fig. 10 Results for DNN33 network trained for 4000 epochs and tested on augmented set: a training and
evaluation errors, b 3D space localization error, c localization errors along each axis, d localization errors in
pixels
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Following configurations were used in this transfer learning scenarios:

MobileNet-512 SSD F: flatten4_output + FC33
MobileNet-512 SSD S: conv_2_conv2d_output + FC500 + FC33
Resnet-18 F: flatten0_output + FC33
Resnet-18 S: plus0_output + FC500 + FC33
Resnet-34 F: flatten0_output + FC33
Resnet-34 S: stage1_unit1_relu2_output + FC500 + FC33
Squeezenet v1.1 F: flatten_output + FC33
Squeezenet v1.1 S: fire2_concat_output + FC500 + FC33
VGG-16 F: flatten0_output + FC33
VGG-16 S: pool1_output + FC500 + FC33
VGG-16 reduced F: pool5_output + FC33
VGG-16 reduced S: pool1_output + FC500 + FC33

For each network the same training and evaluation dataset was provided, the training was
performed for 2000 epochs, and errors were observed (Table 3).

Squeezenet, VGG-16 reduced, and VGG-16 employ many convolutions and pooling
stages, in consequence introducing a significant decrease of the analysis resolution. They are
dedicated mainly to image classification, where the resolution loss is not harmful, but rather
intended to achieve shifts invariance. Here for the localization task it can be observed that they
are not capable to accurately regress on joints coordinates. The low accuracy of full network is
improved for VGGs, in scenarios S when only few first layers are used, therefore benefiting
from highly detailed representation of the input after only two convolutions.

Residual networks (Resnet-18 and Resnet-34) are designed to preserve information from
previous, more detailed layers, therefore allow to take into account low level, local, and high
resolution features, resulting in a very high accuracy. Moreover, the generalization gap
(difference between training and evaluation results) is the smallest here, indicating high
suitability of this architectures for the joint coordinates regression task.

MobileNet was designed as an example of new paradigm of depthwise convolution and
trained for a single shot detection. This network is able to extract meaningful and detailed
features from the input image, and the achieved accuracy is the highest among tested networks.

Fig. 11 Comparison of Kinect and DNN average precision for augmented set, with DNN33 trained up to 4000
epochs
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The best results were achieved for MobileNet, Resnet-18, Resnet-34, surpassing our
proposed architecture, although these networks are significantly larger (from 4 up to 23 times
larger than our DNN33), and thus significantly slower. Depending on the implementation,
these solutions could be not suitable for real-time operation.

Finally, a comparison of network sizes reveals that the increase of architecture complexity
does not guarantee increase of accuracy. Carefully constructed networks achieve high accura-
cy, when their architectures are aimed at extraction and preservation of local low level features,
either by mechanisms of residual blocks, or depthwise convolution, or simply a low number of
convolutions as in our case.

8 Conclusions

Proposed neural network architectures proven to be a good tool for multiple regression on
body joints, and were capable to model relations between body parts appearance in depth
image, to detect and localize joints, and to transform their depth and position in the image into
a 3D space coordinates. This satisfactory precision and relatively small errors were achieved
despite the low resolution input and resolution loss introduced by the pooling operations. MLP
without the convolution and pooling was not able to this precisely grasp non-linear relations
between joint locations and depth pixels, achieving lower accuracy. MLP would be still usable
in specific scenarios demanding fast processing speed, high accuracy for arms and elbows, and
when accuracy for hands slightly lower than Kinect is accepted.

Differences between three DNN architectures and feedforward simple MLP were assessed.
The highest accuracy was achieved for root, arms, and elbows, surpassing previous results, and
for hands reaching similar precision as Kinect. The method achieved high accuracy, very fast
processing speed, and has low requirements on the sensor resolution, as it uses 100 times less
pixels than Kinect depth sensor. The method was robust against the sensor noise.

Our method was compared with state-of-the-art architectures, and it was shown that similar
accuracy is obtained by transfer learning of pre-trained networks, usually requiring more than
4 times larger and slower architectures.

The method is suitable for estimating body poses for gesture-controlled computer inter-
faces, e.g. during actions of selecting and manipulating objects in space and onscreen menus
by hands movements, similar to many Kinect applications.

Table 3 Comparison of training and evaluation errors after 2000 epochs of transfer learning of state-of-the-art
architectures

Networks Our
DNN

Our
MLP

Mobile
Net SSD

Resnet-18 Resnet-34 Squeeze
net

VGG
reduced

VGG-16

F S F S F S F S F S F S

Training error .025 .040 .017 .019 .015 .060 .013 .048 .146 .149 .224 .037 .185 .039
Evaluation

error
.037 .058 .019 .028 .020 .060 .020 .049 .146 .149 .224 .038 .185 .040

Relative net
size

×1 ×1.4 ×4.0 ×23 ×10 ×6.1 ×19 ×6.1 ×1.1 ×10 ×13 ×13 ×13 ×13

Evaluation errors below 0.04 are in bold. Network sizes are expressed as a relative to our DNN33 with 751k
weights
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The ongoing work focuses on introducing larger variation of body poses, including front
and side orientations and legs movement, localization of knees and feet, and on increasing
training speed by applying GPGPU platforms.
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