
Design of metamaterials:Preface

By a metamaterial we usually mean a composite material whose
properties are mostly determined by inner structure rather than prop-
erties of its constituents, see e.g. [1–4]. These inner structuresmay be
conceived such that the resultant metamaterial can ’’...meet a specific
purpose governed by a desired specific behavior that is described by
a given set of evolution equations ... ’’ [4]. Among various types
of metamaterials it is worth to mention the so-called those with a
beam-lattice motif. These metamaterials are motivated by the desire
to mimic crystalline lattice structure and exhibit a range of prospective
properties such as energy absorbance, noise damping, high strength-
to-weight ratio. A typical example of such materials are foams [5].
For proper description of many of the metamaterials, enhanced con-
tinuummodels are required, such as strain gradient [6,7], micropolar,
and micromorphic [8] models. as exemplified in [3,4] which discuss
a variety of applications of these models. Indeed sound theoretical
framework, that can link micro and macro-scales, form a necessary
bedrock for the discovery and rational design of exotic and innovative
metamaterials [9]
Thepossibility to realizemetamaterialshasreceived an impetusdue

to the recent advances in additive technologies which permits their
manufacture with a priori designed properties. This extends signifi-
cantly the class of available composite materials with complex inner
structure which could be very useful in applications. It is worthwhile
to also note that the developments in new experimental technologies
such asDigital ImageCorrelation (DIC) and Digital VolumeCorrelation
(DVC) combined with high resolution imaging are providing increas-
ingly inquisitive tools for empirical verification. Together the extended
computational techniques based upon enhanced theoretical models,
advanced manufacturing and 3D printing, and DIC/DVC analyses of
high fidelity multi-scale/multi-modal imaging provide a powerful tool
for design, manufacturing and further studies of metamaterials.
This special issue ‘‘Design of metamaterials’’ collects several papers

that have presented theoretical, numerical, and experimental stud-
ies of metamaterials. Effective properties of metamaterials were dis-
cussed in [10,11]. In [10] the complete set of elastic moduli of lin-
ear strain gradient elasticity was provided using asymptotic homog-
enization. Nonlinear properties of bio-inspired elastic networks were
achieved through computational homogenization in [11]. A numerical
homogenization approach is also utilized to investigate the scaling of
Young’smodulusand yield strength with relative density of cubic-octet
(CO) plate-lattices [12]. Nonlinear dynamic deformations of panto-
graphic beam-lattice metamaterials were studied in [13,14] from the
experimental and computational point of view, respectively. Linear
dynamics of mass-in-mass chain model of an acoustic metamaterial is

analyzed in [15]. As we mentioned above, strain gradient and micro-
morphic models may be relevant to study beam-lattice metamaterials
including deformation localization and material instabilities. As the
latter phenomena are closely related to strong ellipticity, such studies
were provided in [16,17]. Connections between material instabilities
and ellipticity within strain gradient ellipticity were discussed in [16],
whereas ellipticity conditionswithin these two modelswere compared
in [17]. Experimental verification of a chiral metamaterial with a
granular motif that conforms to the Cosserat or micropolar elasticity
is presented in [18]. This chiral metamaterial is designed using the
micro–macro correlationsobtained through thegranular micromechan-
ics approach. The metamaterial was fabricated using 3D printing and
the theoretically predicted response, obtained froma continuummodel
as well as from micro-macro granular micromechanics model, was
verified using DIC [18].
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