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The paper presents a new method for designing railway route in the direction change area adapted to the Mobile Satellite
Measurements technique. The method may be particularly useful in the situations when both tangents cannot be connected in
an elementary way using a circular arc with transition curves. Thus, the only solution would be the application of two circular
arcs of opposite curvature signs, that is, the use of an inverse curve. It has been assumed that the design of the geometrical layout
will take place within an adequate local coordinate system. The solution of the design problem takes advantage of a mathematical
notation and concentrates on the determination of universal equations describing the entire geometrical layout.This is a sequential
operation involving successive parts of thementioned layout.This universal algorithmcanbe easily applied to the computer software
which will allow generating, in an automatic way, other geometrical layouts. Then, the choice of the most beneficial variant from
the point of obtained trains velocities while minimizing the track axis offsets will be held using the optimization techniques. The
current designingmethods do not provide such opportunities.Thepresentedmethod has been illustrated by appropriate calculation
examples.

1. Introduction

An inspiration for undertaking the analyzed problem is
undoubtedly the new technology—the application to the rail-
way track satellitemeasurements GPS.The global positioning
system GPS [1–5] enables determining the coordinates of
points in a uniform three-dimensional reference systemWGS
84 whose origin is placed in the centre of the Earth’s mass.
Effective measurements of railway track might be obtained
by the method of Mobile Satellite Measurements elaborated
by a scientific team of the Gdańsk University of Technology
and the Naval Academy in Gdynia [6, 7]. This method refers
to a pilot study [8] and involves driving through the tested
section of the route being inspected by the use of antennas
installed on a travelling rail carriage.

The Mobile Satellite Measurements make it possible to
determine the coordinates of the existing railway route
using the Cartesian coordinate system (which in Poland
corresponds to the national spatial reference system [9]) as
described in the works [10–13]. It would be advantageous if
the newly designed track axis coordinates were determined
in mentioned system; in particular, the coordinates are used
in setting out the route in terrain.

General principles for design of track geometry were
formulated in the nineteenth century. Then their continuous
modification followed, which was reflected in the constantly
changing regulations. It should be noted, however, that the
development of computer technology constantly stimulates
the ongoing search for new solutions, presented amongothers
in [14–17].

The significant precision obtained in the method of
Mobile Satellite Measurements in terms of the determination
of coordinates in horizontal plane (with an error in the range
of several millimeters) [12] inclines to work out new design
methods adapted to the satellite measurement technique [18,
19] and to new computer-aided programs [20].

The interest of analyzed problem is confirmed by the
investigations carried out in Europe in 2006–2010 as part
of the INNOTRACK program [21]. The investigations were
coordinated by International Union of Railways (UIC). Over
30 participants were engaged in the project including 8
leading infrastructure managing directors (among others
from UK, Germany, and France). It appears that on the list
of the most frequent problems raised by the infrastructure
board of directors is the ascertainment “bad track geometry.”
The methods of geometric shaping of tracks that have been
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used so far proved to be ineffective. Thus, there is plenty of
work to do to improve the present unfavorable situation.

The difficulties connected with the geometric track shap-
ing in horizontal plane result from the fact that the applied
geometric elements, like straight sections, radii of circular
arcs, and transition curves, are very often characterized by
large lengths and therefore a visual evaluation of the whole
system using the traditional geodesic techniques becomes
ineffective. The system should be divided into parts and
analyzed individually, which causes extra errors.

At this point it is essential to note a very important
fact. The reason is that the railway project has its own
characteristics, which is in fact generally connected with
existing layout and the regulation of the track axis. In
situations relating to regions requiring an alternative route
direction, the design will, in principle, be based on making
a correction of the circular arc radius as well as the type and
length of the transition curves so that the new geometric
layout is most desirable from the rail vehicles kinematic point
of view. Simultaneously, its position in horizontal plane will
not divert too much from the existing layout.

Determining the values of geometrical parameters which
will ensure meeting these conditions becomes in fact a key
issue. Specifying these parameters requires consideration of
multiple design options andmaking appropriate choice, using
optimization techniques. The new method of calculating the
coordinates adapted to the satellite measurements is essential
to generate variants of railway geometrical layout. Only after
obtaining the appropriate values of the geometric parameters
as a result of this procedure it is possible to use in a rational
way any of the commercial computer programs supporting
the designing process.

As proved by the satellite measurements that have been
carried out so far, the shape of the railway track in operation
can be so deformed that the determination of the main
directions turns out to be impossible; one cannot apply a
model system to the design: transition curve-circular arc-
transition curve.The only solution in this case is to introduce
two circular arcs of different radius to the geometrical layout,
which means applying a compound curve [19].

All this, however, does not cover the whole problem yet.
But under some conditions even the use of a compound curve
does not allow us to connect themajor directions of the route.
In consequence, it is necessary to use two inverse arcs in the
geometrical layout. A description of the design procedure
for this type of situation can be found in the content of the
paper. The presented conception of the designing technique
related to a route realignment area creates an opportunity, like
other elaborated methods, to obtain an analytical solution by
the application of adequate mathematical formulae, which is
more convenient for practical usage.

2. General Assumptions

The route major directions in the Polish National Spatial
Reference System can be defined by the following equations
[9]:

Straight 1:
𝑋
1
= 𝐴
1
+ 𝐵
1
𝑌.

Straight 2:

𝑋
2
= 𝐴
2
+ 𝐵
2
𝑌.

In the above equations, 𝐴
1
and 𝐴

2
are absolute terms in

the expression and 𝐵
1
and 𝐵

2
define the slope coefficients of

the two straights. The straights have similar slope coefficient
values and intersect at a distant point (they can also run
in parallel to each other). Such a situation justifies the
connection of both straights by reverse curve.

The designing procedure will take place within an appro-
priate local system of coordinates (LCS), making it possible
to present the course of the route in functional notation.This
system results from the adoption of the coordinates of its
starting point𝑂(𝑌

𝑂
, 𝑋
𝑂
) on Straight 1 and making a rotation

of 𝛽 angle.The problem of obtaining appropriate inclinations
of Straights 1 and 2 in LCS system becomes a crucial question
in thismatter.The inclinationsmust be positive to operate the
positive values of ordinates 𝑦(𝑥) and also advantageous in the
view of the procedure of determining these ordinates, that is,
neither too big nor too small. In this respect the 𝛽 rotation
angle will play a decisive role in it.

An assumption is made that, within system 𝑥, 𝑦, Straight
1 will pass through the centre of the system with a slope angle
being equal to 𝜋/4. For the reason that Straight 2 inclination
value is similar to Straight 1 it will certainly be placed within
interval (0, 𝜋/2), closer to the centre of that (i.e., inclination
of Straight 1) than to its boundaries. A positive inclination
of both straights ensures an analytical description of the
whole geometrical layout by the use of explicit functions 𝑦(𝑥)
related to the circular arcs.

In order to insert an inverse curve between both straights
it is necessary to find such coordinates of point 𝑂(𝑌

𝑂
, 𝑋
𝑂
),

where Straight 2 can be placed on the right side of Straight 1.
Knowledge of the point 𝑂(𝑌

𝑂
, 𝑋
𝑂
) coordinates and the rota-

tion angle 𝛽 enables mutual points transformation between
global and local coordinate system.The value of turning angle
𝛽 is determined by the use of the following equation:

𝛽 = 𝜑
1
−
𝜋

4
, (1)

where 𝜑
1
= atan𝐵

1
for 𝐵
1
> 0 and 𝜑

1
= atan𝐵

1
+ 𝜋 for

𝐵
1
< 0. To obtain a positive value of angle 𝛽 from the above

formula, the left turn of the system should be made, whereas,
in the case of a negative magnitude, a right turn of the system
should be made.

In assuming the coordinates of point 𝑂(𝑌
𝑂
, 𝑋
𝑂
) along

Straight 1 and determining the turning angle 𝛽, it is possible
to make a transformation of Straights 1 and 2 to the local
coordinate system 𝑥, 𝑦. The entire geometric system in LCS
system under consideration is presented in Figure 1.

The position of an arbitrary point along the route in local
system 𝑥, 𝑦 can be obtained using the following equations
[22]:

𝑥 = (𝑌 − 𝑌
𝑂
) cos𝛽 + (𝑋 − 𝑋

𝑂
) sin𝛽,

𝑦 = − (𝑌 − 𝑌
𝑂
) sin𝛽 + (𝑋 − 𝑋

𝑂
) cos𝛽.

(2)
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Figure 1: The geometrical layout under consideration in the local coordinate system.

In terms of the local coordinate system Straight 1 is
described by

𝑦
(1)

(𝑥) = 𝑥. (3)

A general notation of Straight 2 takes the following form:

𝑦
(2)

(𝑥) = 𝑎
2
+ 𝑏
2
𝑥, (4)

where

𝑎
2
= −(

𝑋
𝑂
− [tan (𝛽 + 𝜋/2) 𝑌

𝑂
] − 𝐴
2

𝐵
2
− [tan (𝛽 + 𝜋/2)]

− 𝑌
𝑂
) sin𝛽

+ [(𝐴
2
+ 𝐵
2

𝑋
𝑂
− [tan (𝛽 + 𝜋/2) 𝑌

𝑂
] − 𝐴
2

𝐵
2
− [tan (𝛽 + 𝜋/2)]

)

− 𝑋
𝑂
] cos𝛽,

𝑏
2
= tan 𝛿.

(5)

Angle 𝛿, determining the slope of Straight 2 to axis 𝑥 in
the LCS system, is obtained from the formula

𝛿 = 𝜑
2
− 𝛽, (6)

where𝜑
2
= atan𝐵

2
for𝐵
2
> 0 and𝜑

2
= atan𝐵

2
+𝜋 for𝐵

2
< 0.

3. Choice of Parameters to Design the
Geometric System

The designed geometric system connecting Straight 1 with
Straight 2 in the local system of coordinates 𝑥, 𝑦 is composed
of the following components (Figure 1):

(i) First transition curve (TC1) of a specified type, of
length 𝑙

1
.

(ii) First circular arc (CA1) of radius 𝑅
1
and length 𝑙

𝑅1
.

(iii) Second transition curve (TC2) of a specified type, of
length 𝑙

2
.

(iv) Second circular arc (CA2) of radius 𝑅
2
and undefined

length 𝑙
𝑅2
.

(v) Third transition curve (TC3) of a specified type, of
length 𝑙

3
.

Values 𝑙
1
, 𝑅
1
, 𝑙
2
, 𝑅
2
, and 𝑙

3
result from the speed analysis

carried out for the designed system. Value 𝑙
𝑅1

is, in prin-
ciple, arbitrary, while 𝑙

𝑅2
is the final magnitude closing up

the whole system. However, one should take into account
that the raised problem can be solved when advantage is
taken of an appropriate configuration of the abovementioned
parameters. A key role in this procedure is the characteristic
of the curvature used. Curve TC1 and arc CA1 have a negative
curvature, while arc CA2 and curve TC3 have a positive one.
Due to this fact the slope angle of tangent on curve TC1 and
arc CA1 is decreasing but on arc CA2 and on curve TC3 it is
rising. However, the following condition should be fulfilled
(Figure 1):

𝜋

4
+ Θ (𝑙

1
) − 𝛼
1
+ Θ (𝑙

2
) + 𝛼
2
− Θ (−𝑙

3
) = 𝛿, (7)

where Θ(𝑙
1
) is slope angle of tangent at the end of TC1 in 𝑥

1
,

𝑦
1
coordinate system, 𝛼

1
is angle of sense CA1, Θ(𝑙

2
) is slope

angle of tangent at the end of TC2 in 𝑥
2
,𝑦
2
coordinate system,

𝛼
2
is angle of sense CA2, andΘ(−𝑙

3
) is slope angle of tangent

at the end of TC3 in the 𝑥
3
, 𝑦
3
coordinate system.

The only element causing a diversity of the curvature sign
is curve TC2. The curvature along it changes from negative
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to positive. Simultaneously, the value of angle Θ(𝑙
2
) is either

positive or negative. In the case of 𝛿 < 𝜋/4 it would be
advantageous ifΘ(𝑙

2
) < 0, which corresponds to the situation

when 𝑅
1

< 𝑅
2
. When 𝛿 > 𝜋/4 it would be profitable if

Θ(𝑙
2
) > 0, leading to relation 𝑅

1
> 𝑅
2
.

4. Transition Curve TC1

The ordinates of transition curve TC1 are determined by
the use of auxiliary system of coordinates 𝑥

1
, 𝑦
1
(ACS1)

(Figure 1).The course of proceeding takes the following form:

(i) Determination of the type of the transition curve.
(ii) Assumption of the length 𝑙

1
of curve (measured along

the curve) and radius 𝑅
1
of the adjacent circular arc

CA1.

This in consequence gives the parametric equations: 𝑥
1
(𝑙),

𝑦
1
(𝑙), 𝑙 ∈ ⟨0, 𝑙

1
⟩.

For the reason that regardless of the type of the transition
curve connecting the straight with the circular arc |Θ(𝑙

1
)| =

𝑙
1
/2𝑅
1
(rad), the tangent value at the end of transition curve

TC1 is defined by formula

𝑦


1
(𝑙
1
) = − tan(

𝑙
1

2𝑅
1

) . (8)

The next step is to transform curve TC1 to the local
system of coordinates 𝑥, 𝑦 (Figure 1). This is accomplished
by a right turn of the axis of system ACS1 through angle
𝜋/4. Consequently the following parametric equations are
obtained:

𝑥 (𝑙) = 𝑥
1
(𝑙) cos 𝜋

4
− 𝑦
1
(𝑙) sin 𝜋

4
,

𝑦 (𝑙) = 𝑥
1
(𝑙) sin 𝜋

4
+ 𝑦
1
(𝑙) cos 𝜋

4
,

𝑙 ∈ ⟨0, 𝑙
1
⟩ .

(9)

Inserting the final value of parametric 𝑙 (i.e., 𝑙 = 𝑙
1
) into (9) it

is possible to obtain coordinates of the end of curve TC1 (i.e.,
point𝐾

1
): 𝑥
𝐾1

= 𝑙
𝐾𝑃1

and 𝑦
𝐾1
. The tangent value 𝑠

𝐾1
at point

𝐾
1
is

𝑠
𝐾1

= tan(−
𝑙
1

2𝑅
1

+
𝜋

4
) . (10)

5. Circular Arc CA1

The diagram illustrating the position of the circular arc CA1
is shown in Figure 2. Assumption is made of the circular arc
length 𝑙

𝑅1
(measured along the arc). Coordinates of point

𝑆
1
(𝑥
𝑆1
, 𝑦
𝑆1
), the centre of arc CA1, are determined:

𝑥
𝑆1

= 𝑥
𝐾1

+
𝑠
𝐾1

√1 + 𝑠
2

𝐾1

𝑅
1
,

𝑦
𝑆1

= 𝑦
𝐾1

−
1

√1 + 𝑠
2

𝐾1

𝑅
1
.

(11)
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sK1
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O2∝1
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Figure 2: Diagram illustrating the position of circular arc CA1.

The equation of circular arc CA1 is as follows:

𝑦 (𝑥)CA1 = 𝑦
𝑆1

+ [𝑅
2

1
− (𝑥
𝑆1

− 𝑥)
2

]
1/2

,

𝑥 ∈ ⟨𝑥
𝐾1
, 𝑥
𝑂2
⟩ .

(12)

The turning angle of the arc CA1 tangents is

∝
1
=

𝑙
𝑅1

𝑅
1

. (13)

Inclination 𝑠
𝑂2

of tangent to arc CA1 at its end, at point𝑂
2
, is

𝑠
𝑂2

= tan (atan 𝑠
𝐾1

− ∝
1
) . (14)

One should now determine the coordinates of point 𝑂
2
,

the end of circular arc CA1. For this purpose it is necessary to
find the coordinates of point 𝑀

1
(Figure 2). The coordinates

of point 𝑂
2
are as follows:

𝑥
𝑂2

= 𝑥
𝑀1

+
tan (∝

1
/2)

√1 + 𝑠
2

𝑂2

𝑅
1
,

𝑦
𝑂2

= 𝑦
𝑀1

+
𝑠
𝑂2

tan (∝
1
/2)

√1 + 𝑠
2

𝑂2

𝑅
1
.

(15)

6. Transition Curve TC2

The diagram illustrating the position of transition curve TC2
is given in Figure 3.The ordinates of transition curve TC2 are
determined by using an auxiliary system of coordinates 𝑥

2
, 𝑦
2

(ACS2). The transition curve TC2 connects opposite arcs of
radii 𝑅

1
and 𝑅

2
.
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Figure 3: Diagram presenting the position of transition curve TC2.

The course of proceeding is as follows:
(i) A linear or nonlinear form of curvature is assumed.
(ii) The length 𝑙

2
of curve (measured along the curve)

and the radius 𝑅
2
of the adjacent circular arc CA2 are

taken into account.
(iii) Parametric equations 𝑥

2
(𝑙), 𝑦
2
(𝑙), 𝑙 ∈ ⟨0, 𝑙

2
⟩, are

obtained.
The examples of solving linear and nonlinear curvature

distribution along the length of a curve have been given in the
paper [23]. Other forms of formulae are related to inflexion
point 𝑙

0
(i.e., for 𝑙 ∈ ⟨0, 𝑙

0
⟩) on the curvature diagram,whereas

others refer to the final region 𝑙 ∈ ⟨𝑙
0
, 𝑙
2
⟩.

The next step is the transformation of curve TC2 to the
auxiliary coordinate system 𝑥

2
, 𝑦
2
(ACS2) (Figure 3). The

position of the system is determined by angle 𝛾 = atan 𝑠
𝑂2
. If

the slope 𝑠
𝑂2

= tan(atan 𝑠
𝐾1

−∝
1
) > 0, then it is necessary to

make a right turn of systemACS2. However, if the inclination
𝑠
𝑂2

< 0, one should make a left turn of system ACS2. Since
angle 𝛾 = |atan 𝑠

𝑂2
| ∈ ⟨0, 𝜋/2⟩, the following expressions are

obtained:
𝑥 = 𝑥

𝑂2
+ 𝑥
2
(𝑙) = 𝑥

𝑂2
+ 𝑥
2
(𝑙) cos 𝛾 ∓ 𝑦

2
(𝑙) sin 𝛾,

𝑦 = 𝑦
𝑂2

+ 𝑦
2
(𝑙) = 𝑦

𝑂2
± 𝑥
2
(𝑙) sin 𝛾 + 𝑦

2
(𝑙) cos 𝛾,

𝑙 ∈ ⟨0, 𝑙
2
⟩ .

(16)

Values 𝑙TC2 andΔ𝑦TC2 (Figure 3) are determined from the
equations

𝑙TC2 =
𝑥2 (𝑙2)

 =
𝑥2 (𝑙2) cos 𝛾 ∓ 𝑦

2
(𝑙
2
) sin 𝛾

 ,

Δ𝑦TC2 =
𝑦2 (𝑙2)

 =
±𝑥2 (𝑙2) sin 𝛾 + 𝑦

2
(𝑙
2
) cos 𝛾 .

(17)

The coordinates of point𝐾
2
are as follows:

𝑥
𝐾2

= 𝑥
𝑂2

+ 𝑙TC2,

𝑦
𝐾2

= 𝑦
𝑂2

+ Δ𝑦TC2,
(18)

whereas the tangent value 𝑠
𝐾2

at point 𝐾
2
in ACS2 and LCS

system is

𝑠
𝐾2

= tan [Θ (𝑙
2
) ± 𝛾] . (19)

x

y

y

3

O3

x3

ΔyTC3

K3

sK3

lTC3

𝛿

𝛿

x3

y3

Figure 4: Diagram illustrating the position of transition curve TC3.

7. Transition Curve TC3

To determine the position of the end of arc CA2 unknown
at this stage of investigation, it is necessary to find the value
of tangent 𝑠

𝐾3
at the end of transition curve TC3 being of

significance in view of arc CA2. A scheme presenting the
position of transition curve TC3 using the auxiliary system
of coordinates 𝑥

3
, 𝑦
3
(ACS3) is shown in Figure 4.

The course of procedure is as follows:

(i) The type of transition curve is determined.
(ii) The length 𝑙

3
of curve (measured along the curve) is

assumed.
(iii) Parametric equations 𝑥

3
(𝑙), 𝑦
3
(𝑙), 𝑙 ∈ ⟨0, 𝑙

3
⟩, are ob-

tained.

The next step is the transformation of transition curve
TC3 to the auxiliary system of coordinates 𝑥

3
, 𝑦
3
(ACS3)

whose axes are parallel to the local coordinate system 𝑥,
𝑦. The transfer is possible by a right turn of system ACS3
through angle 𝛿. The parametric equations of curve TC3 in
system ACS3 are as follows:

𝑥
3
(𝑙) = 𝑥

3
(𝑙) cos 𝛿 − 𝑦

3
(𝑙) sin 𝛿,

𝑦
3
(𝑙) = 𝑥

3
(𝑙) sin 𝛿 + 𝑦

3
(𝑙) cos 𝛿,

𝑙 ∈ ⟨−𝑙
3
, 0⟩ .

(20)

Inserting the final value of parameter 𝑙 (i.e., 𝑙 = −𝑙
3
) into

(20) gives values 𝑙TC3 and Δ𝑦TC3. The value of tangent 𝑠
𝐾3

at
point𝐾

3
in the PUW3 and LCS systems is

𝑠
𝐾3

= tan(−
𝑙
3

2𝑅
2

+ 𝛿) . (21)

The notation of the curve TC3 in the local coordinate
system calls for the determination of the position of point
𝑂
3
(𝑥
𝑂3
, 𝑦
𝑂3
).
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Figure 5: Effective scheme of the circular arc CA2 position.

8. Circular Arc CA2

An effective scheme of the circular arc CA2 position is shown
in Figure 5. At this stage of the design procedure the following
data are known: radius 𝑅

2
, coordinates of the outset point

𝐾
2
(𝑥
𝐾2
, 𝑦
𝐾2
), and the tangent values at the start of 𝑠

𝐾2
and the

end of 𝑠
𝐾3

of arc CA2 (position of the end of arc, i.e., the end-
point coordinates 𝐾

3
(𝑥
𝐾3
, 𝑦
𝐾3
), is unknown). Thus, to begin

with, the coordinates of point 𝑆
2
(𝑥
𝑆2
, 𝑦
𝑆2
), the mid-point of

arc CA2, are determined:

𝑥
𝑆2

= 𝑥
𝐾2

−
𝑠
𝐾2

√1 + 𝑠
2

𝐾2

𝑅
2
,

𝑦
𝑆2

= 𝑦
𝐾2

+
1

√1 + 𝑠
2

𝐾2

𝑅
2
.

(22)

The equation for the circular arc CA2 is as follows:

𝑦 (𝑥)CA2 = 𝑦
𝑆2

− [𝑅
2

2
− (𝑥 − 𝑥

𝑆2
)
2

]
1/2

,

𝑥 ∈ ⟨𝑥
𝐾2
, 𝑥
𝐾3
⟩ .

(23)

From condition

𝑦 (𝑥
𝐾3
)


CA2 = −
𝑥
𝐾3

− 𝑥
𝑆2

[𝑅
2

2
− (𝑥
𝐾3

− 𝑥
𝑆2
)
2

]
1/2

= 𝑠
𝐾3
, (24)

it is possible to determine 𝑥
𝐾3

and then also 𝑦
𝐾3
:

𝑥
𝐾3

= 𝑥
𝑆2

+
𝑠
𝐾3

√1 + 𝑠
2

𝐾3

𝑅
2
,

𝑦
𝐾3

= 𝑦
𝑆2

−
1

√1 + 𝑠
2

2

𝑅
2
.

(25)

ỹ

x̃

|yP12|

|yP13|

P12
y12

P13

Straight 1

Straight 2

Straight 3

x

y

yP13

O

Õ

|xP12

xP12

xP13

||xP13|

Figure 6: Idea of the procedure of correcting the coordinates of the
origin of LCS system.

The length of arc CA2 projected on 𝑥-axis amounts to

𝑙CA2 = 𝑥
𝐾3

− 𝑥
𝐾2
, (26)

whereas the turning angle of sense of tangents is

∝
2
=
atan 𝑠

𝐾3
− atan 𝑠

𝐾2

 . (27)

Hence the length of the circular arc CA2 (measured along
the arc) follows immediately:

𝑙
𝑅2

= ∝
2
𝑅
2
. (28)

The knowledge of the position of point 𝐾
3
(𝑥
𝐾3
, 𝑦
𝐾3
)

makes it possible to determine the coordinates of the end-
point 𝑂

3
(𝑥
𝑂3
, 𝑦
𝑂3
) (Figure 4),

𝑥
𝑂3

= 𝑥
𝐾3

+ 𝑙TC3,

𝑦
𝑂3

= 𝑦
𝐾3

+ Δ𝑦TC2,
(29)

and the parametric equations of transition curve TC3:

𝑥 (𝑙) = 𝑥
𝑂3

+ 𝑥
3
(𝑙) = 𝑥

𝑂3
+ 𝑥
3
(𝑙) cos 𝛿 − 𝑦

3
(𝑙) sin 𝛿,

𝑦 (𝑙) = 𝑦
𝑂3

+ 𝑦
3
(𝑙) = 𝑥

𝑂2
+ 𝑥
3
(𝑙) sin 𝛿 + 𝑦

3
(𝑙) cos 𝛿,

𝑙 ∈ ⟨−𝑙
3
, 0⟩ .

(30)

9. Determination of the Right Position of
the Origin of the Local Coordinate System

To transfer the designed geometric system from local coordi-
nate system to the system 2000, one should revise the position
of its initial point along Straight 1. However, in general, point
𝑂
3
(𝑥
𝑂3
, 𝑦
𝑂3
), denoting the end of the system, will not be

lying on Straight 2, but on Straight 3 running parallel to it
of equation 𝑦

(3)
= 𝑎
3
+ 𝑏
2
𝑥 (Figure 6).

In order to determine the corrected coordinates of the
outset of LCS system it is necessary to find the coordinates of
points intersecting Straight 1 with Straight 2 andwith Straight
3. Straight 1 intersects Straight 2 at point 𝑃

12
,

𝑥
𝑃12

=
𝑎
2

1 − 𝑏
2

= 𝑦
𝑃12

, (31)
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and Straight 2 at point 𝑃
13
:

𝑥
𝑃13

=
𝑦
𝑂3

− 𝑏
2
𝑥
𝑂3

1 − 𝑏
2

= 𝑦
𝑃13

. (32)

It is intended to shift the start of LCS system (point 𝑂)
along Straight 1 to a new position at point �̃� in such a way that
�̃�
𝑃12

= 𝑥
𝑃13

within �̃�, �̃� system (and, of course, �̃�
𝑃12

= 𝑦
𝑃13

)
(Figure 6). This leads to the following general equation:

𝑥
�̃�
= 𝑦
�̃�
= 𝑥
𝑃12

− 𝑥
𝑃13

. (33)

The revised origin of the local coordinate system in
system 2000 has the following coordinates:

𝑌
�̃�
= 𝑌
𝑂
+ 𝑥
�̃�
cos𝛽 − 𝑦

�̃�
sin𝛽,

𝑋
�̃�
= 𝑋
𝑂
+ 𝑥
�̃�
sin𝛽 + 𝑦

�̃�
cos𝛽.

(34)

The transference of the designed geometric system from
LCS system to system 2000 is carried out by making use of
the following relations [22]:

𝑌 = 𝑌
�̃�
+ 𝑥 cos𝛽 − 𝑦 sin𝛽,

𝑋 = 𝑋
�̃�
+ 𝑥 sin𝛽 + 𝑦 cos𝛽.

(35)

10. Calculation Examples

Example 1 (typical case—connection of straights of proximate
parallelisms). Consider the following:

Straight 1:

𝑋
1
= 27878029,36485 − 3,365805196𝑌,

𝜑
1
= 1,859595714 rad,

𝛽 = 1,074197551 rad.

Straight 2:

𝑋
2
= 35851110,27727 − 4,592528563𝑌,

𝜑
2
= 1,785194693 rad.

Assumed Starting Point:

𝑌
𝑂
= 6498745,04911m,

𝑋
𝑂
= 6004519,50986m.

Design Data:

V = 90 km/h,
𝑙
1
= 90m (clothoid),

𝜓
1
= 0,17m/s3,

𝑓
1
= 27,8mm/s,

𝑅
1
= 500m (𝑙

𝑅1
= 150m),

ℎ
1
= 100mm,

𝑎
𝑚1

= 0,60m/s2,
𝑙
2
= 160m (linear curvature),

𝜓
2
= 0,18m/s3,

−400
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−100
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100

200

300

400

500
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 (m
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Figure 7: Visualization of the designed geometric system
(Example 1).

𝑓
2
= 26,6mm/s,

𝑅
2
= 600m (𝑙

𝑅2
= 170,359m),

ℎ
2
= 70mm,

𝑎
𝑚2

= 0,58m/s2,
𝑙
3
= 70m (clothoid),

𝜓
3
= 0,21m/s3,

𝑓
3
= 25,0mm/s,

where V is speed of trains, ℎ
1
is cant along arc CA1, ℎ

2
is cant

along arc CA2, 𝑎
𝑚1

is unbalanced acceleration along arc CA1,
𝑎
𝑚2

is unbalanced acceleration along arc CA2, 𝜓
1
is speed of

acceleration change on transition curve TC1, 𝜓
2
is speed of

acceleration change on transition curve TC2, 𝜓
3
is speed of

acceleration change on transition curve TC3, 𝑓
1
is speed of

lifting thewheel at the cant transition of curveTC1,𝑓
2
is speed

of lifting the wheel at the cant transition of curve TC2, and 𝑓
3

is speed of lifting thewheel at the cant transition of curveTC3.

Correction of the Initial Position of LCS System:

𝑌
�̃�
= 6,499053,754m,

𝑋
�̃�
= 6003480,469m.

Straight 1:

𝑦
(1)

= 𝑥.

Straight 2:

𝑦
(2)

= −257,909 + 0,86126𝑥.

Figure 7 presents the visualization of the designed geo-
metrical layout from Example 1. In Table 1 characteristics of
the principal points of the geometrical layout are given. The
combination of two straight lines close to the parallelism is
carried out on the length of 640,359m. The length of the
circular arc CA2 closing the entire layout is 𝑙

𝑅2
= 170,359m.

It should be noted that the correction of the local coordinate
system beginning is significant, abscissa 𝑌 about 308m and
ordinate𝑋 about 1039m.
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Table 1: Characteristic of the principal points of the geometric
system (Example 1).

Point 𝑥 (m) 𝑦 (m) 𝑠 Θ (rad)
𝑂 0 0 1,000 0,7854
𝐾
1

65,496 61,680 0,834 0,6954
𝑂
2

193,254 139,202 0,417 0,3954
𝐾
2

344,580 191,579 0,386 0,3687
𝐾
3

492,704 274,569 0,764 0,6527
𝑂
3

546,613 319,204 0,861 0,7110

The practical applicability to the solution presented in
Example 1 (Figure 7) cannot raise any doubts. Taking into
consideration only the calculation technique, some problems
arise when parallel straights are joined, since it is not possible
under such circumstances to make a direct correction of the
local coordinate system position. However, the computer-
aided calculations by the use of the mentioned algorithm
make it possible to solve this problem easily.

Example 2 (a case of more diversified gradients of both the
straights). Data relating to Straight 1, of the assumed outset
point, and the design characteristic are shown as in Example 1
(where the obtained length 𝑙

𝑅2
= 80,350m).

Straight 2:

𝑋
2
= 106803989,47315 − 15,51050124𝑌,

𝜑
2
= 1,635179667 rad.

Correction of the Initial Position of LCS System:

𝑌
�̃�
= 6498784,841m,

𝑋
�̃�
= 6004385,577m.

Straight 1:

𝑦
(1)

= 𝑥.

Straight 2:

𝑦
(2)

= −14,706 + 0,62832𝑥.

Visualization of the designed geometrical layout from
Example 2 is presented in Figure 8. In Table 2 characteristics
of the principal points of the geometrical layout are given.
The combination of two straight lines is carried out on the
length of 550,35m.The length of the circular arc CA2 closing
the entire layout is 𝑙

𝑅2
= 80,35m. The correction of the local

coordinate system beginning is relatively small, abscissa 𝑌

about 40m and ordinate𝑋—140m.
However, at first glance the solution presented in

Example 2 (Figure 8) may raise some doubts. It may appear
that inverse curves are of no use in this situation and both
the straights should be connected in an elementary way using
a circular arc with transition curves. However, in the design
process one must take account of a need to pass over a field
obstacle and then the inverse curves can become a sensible
solution. As can be seen, the inverse curves may provide an
alternative even to such an elementary geometric problem,
which is joining two straights by means of a circular arc.

Table 2: Characteristic of the principal points of the geometric
system (Example 2).

Point 𝑥 (m) 𝑦 (m) 𝑠 Θ (rad)
𝑂 0 0 1,000 0,7854
𝐾
1

65,496 61,680 0,834 0,6954
𝑂
2

193,254 139,202 0,417 0,3954
𝐾
2

344,580 191,579 0,386 0,3687
𝐾
3

417,370 225,465 0,550 0,5026
𝑂
3

477,345 261,541 0,628 0,5608
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Figure 8: Visualization of the designed geometric system
(Example 2).

The calculation examples show the correctness of the
developed method as well as the opportunity to apply it
using elementary way, that is, calculation sheets. However,
this universal algorithm can be easily applied to the computer
software which will allow generating, in an automatic way,
by changing the radii of the arcs and the type and length
of the transition curves, another geometrical layout. Then,
the choice of the most beneficial variant from the point of
obtained trains velocities while minimizing the track axis
offsets will be held using the optimization techniques. The
current designing methods do not provide such opportuni-
ties.

11. Summing-Up

(i) The application of Mobile Satellite Measurements with
antennas installed on a moving rail vehicle makes it possible
to reconstruct the track axis in an absolute reference system.
This creates completely new potentials in the range of rail
track geometric shaping. Under conditions of the created
situation there arises a necessity for working out some new
design methods.

(ii) This paper presents one method more (following
the studies in [18, 19]) relating to the design of a region
of railway track direction change appropriate for Mobile
Satellite Measurement technique. The method may appear
to be of particular applicability if both straights of the track
direction cannot be connected in an elementary way by the
use of a circular arc with transition curves; this also concerns
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the use of the compound curve. Such a situation occurs when
the connected straights indicate values of the inclination
coefficient which are very close to each other and intersect at
a distant point (theymay also run parallel). In such a situation
the only solution is to introduce to the geometric system two
circular arcs of opposite signs of curvature, that is, to apply an
inverse curve.

(iii) The presented conception of the design procedure
relating to the region covering the track direction change
offers an opportunity to find an analytical solution, by the use
of appropriatemathematical formulae, beingmost friendly in
practical application. The design procedure is of a universal
nature and creates a possibility for arbitrary acceptance of
lengths and radii of circular arcs and differentiation of the
type and lengths of the applied transition curves.

(iv) The effects of the application of the analyzed design
method have been illustrated by exact calculation examples.
Its practical applicability cannot cause any doubts. Simulta-
neously attention has been concentrated on the fact that the
inverse curves may provide an alternative even for such an
elementary geometric problem which is the connection of
two straights by using a circular arc. In order to implement
the presented procedure it will be indispensable to work out
in the near future an appropriate computer-aided technique.
The computer software will allow generating automatically
additional geometrical layouts.The choice of the best solution
will be held in the field of optimization. The criteria of
optimizations are the maximum value of the velocity and
minimizing the track axis offsets. The current designing
methods do not provide such opportunities.
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