

Imię i nazwisko autora rozprawy: Anna Magdalena Banaś Dyscyplina naukowa: Budownictwo

ROZPRAWA DOKTORSKA

Tytuł rozprawy w języku polskim: Diagnostyka wibracyjna obiektów mostowych z zastosowaniem czujników rotacji

Tytuł rozprawy w języku angielskim: Vibrational diagnostics of bridges with use of rotation sensors

Promotor	Drugi promotor
nodnis	nodnis
	poupis
Prof. dr hab. inż. Krzysztof Wilde	
Promotor pomocniczy	Kopromotor
podpis	podpis

Gdańsk, rok 2017

MOST WIEDZY Pobrano z mostwiedzy.pl

MOST WIEDZY Pobrano z mostwiedzy.pl

... moim Rodzicom ...

MOST WIEDZY Pobrano z mostwiedzy.pl

Spis treści

1	Wstęp 1
1.1	Uwarunkowania ekonomiczne rozwoju mostownictwa w Polsce 1
1.2	Przykładowe technologie diagnostyczne stosowane w Polsce
1.3	Wprowadzenie do aktualizacji modelu w procedurach diagnostycznych
1.4	Czujniki i technologie pomiarowe stosowane w mostownictwie 10
1.5	Cel i zakres pracy15
2	Podstawy teoretyczne17
2.1	Metody redukcji bazy17
2.1.1	Metoda Statyczna Guyana 17
2.1.2	Metoda Improved Reduced System (IRS) 18
2.1.3	Metoda System Equivalent Reduction Expansion Process (SEREP)
2.2	Kryteria walidacji postaci drgań własnych20
2.2.1	Modal Assurance Criterion (MAC)
2.2.2	Modal Scale Factor (MSF)
2.2.3	Normalised Modal Difference
2.2.4	Normalized Cross Orthogonality23
2.3	Metody optymalizacji
2.3.1	Programowanie liniowe
2.3.2	Programowanie nieliniowe
2.3.3	Uwarunkowanie zadania41
2.3.4	Uwarunkowanie macierzy
2.3.5	Zadanie dobrze i źle postawione (ill-posed problem)
2.4	Aktualizacja przy użyciu częstości i postaci drgań własnych44

2.4.1	Wprowadzenie44
2.4.2	Wrażliwość wartości i wektorów własnych46
2.4.3	Wrażliwość eksperymentalna49
2.4.4	Metody iteracyjne bazujące na parach modalnych50
2.4.5	Macierz wag wartości mierzonych53
2.4.6	Macierz wag aktualizowanych parametrów53
2.4.7	Minimalizacja funkcji kary54
2.5	Definicja macierzy wag55
2.6	Funkcja odpowiedzi częstotliwościowej dla układu o jednym stopniu swobody56
2.7	Funkcja odpowiedzi częstotliwościowej dla układu o wielu stopniach stopniu swobody
3	Aktualizacja parametrów projektowych na podstawie analiz numerycznych61
3.1	Indeksy uszkodzenia61
3.2	Aktualizacja parametrów projektowych na przykładzie belki swobodnie podpartej66
3.3	Wpływu modyfikacji macierzy wag na procedurę aktualizacji paramentów81
3.4	Wpływu szumu pomiarowego na procedurę aktualizacji paramentów
3.5	Aktualizacja warunków podporowych i sztywności globalnej modelu103
4	Badania eksperymentalne107
4.1	Aparatura pomiarowa107
4.2	Model eksperymentalny belki swobodnie podpartej109
4.3	Program badań111
4.4	Wyniki badań eksperymentalnych113
4.5	Niepewności pomiarowe118
5	Aktualizacja parametrów projektowych na podstawie badań eksperymentalnych119

5.1	Procedura	aktualizacji	parametrów	projektowych	na	podstawie	badań
eksperyn	nentalnych						119
5.2	Aktualizacja	parametrów p	projektowych na	podstawie 6 trar	nslacy	jnych stopni s	wobody 135
5.3	Aktualizacja	parametrów p	rojektowych na	podstawie 6 rota	cyjnyc	h stopni swoł	ody142
5.4	Aktualizacja	parametrów p	projektowych na	podstawie 6 tra	nslacy	/jnych i 6 rota	acyjnych
stopni sw	vobody						149
6	Badania in si	tu na obiektac	h inżynierskich .				155
6.1	Opis aparatu	ıry					155
6.2	Kładka nad d	lrogą S8					157
6.2.1	Opis obiektu	I					157
6.2.2	Model MES.						158
6.2.3	Badania in si	tu					159
6.2.4	Wyniki pomi	arów					160
6.3	Kładka nad t	rasą Ogińskieg	o w Bydgoszczy				162
6.3.1	Opis obiektu	l					162
6.3.2	Model MES.						163
6.3.3	Badania in si	tu					164
6.3.4	Wyniki pomi	arów					166
6.4	Wiadukt Bria	ańskiego w Kor	ninie				169
6.4.1	Opis obiektu	I					169
6.4.2	Model MES.						170
6.4.3	Program bac	lań in situ					171
6.4.4	Wyniki pomi	arów					172
6.5	Podsumowa	nie wyników p	omiarów z użyci	em czujników rot	acji		175
6.6	Kładka nad u	ılicą Chwarznie	eńską				175

6.6.1	Opis obiektu	176		
6.6.2	Modele MES	176		
6.6.3	Program badań in situ	179		
6.6.4	Wyniki pomiarów	181		
6.6.5	Analiza modalna	183		
6.6.6	Aktualizacja modelu MES kładki	189		
6.7	Wnioski	198		
7	Podsumowanie	201		
8	Streszczenie	205		
9	Abstract	207		
Bibliografia				
Załącznik 1				

1 Wstęp

Obiekty mostowe od zawsze uznawane były za cuda inżynierii. Były i są symbolem łączenia. Słowo "most" występuje w wielu kontekstach. W słowniku języka polskiego (słownik PWN) pod tym terminem, opisana jest nie tylko konstrukcja łącząca brzegi znajdujące się nad przeszkodą wodną, ale również przedstawione są pojęcia: "to, co służy porozumieniu między ludźmi o odmiennych poglądach", a także "urządzenie umożliwiające wymianę danych między dwiema lokalnymi sieciami komputerowymi opartymi na różnych systemach okablowania", lub "część mózgu zawierająca m.in. ośrodki słuchu i równowagi".

1.1 Uwarunkowania ekonomiczne rozwoju mostownictwa w Polsce

Ostatnie lata w Polsce to czas bardzo szybkiego, na niepotykaną dotychczas skalę, rozwoju infrastruktury, który zacznie unowocześnił i powiększył sieć dróg zarówno kołowych jak i kolejowych. Znaczy wzrost nakładów finansowych na obiekty infrastrukturalne związany jest między innymi z wejściem Polski do Unii Europejskiej jak i organizacją Mistrzostw Europy w Piłce Nożnej Euro 2012 (rysunek 1.1).

WYDATKI NA DROGI KRAJOWE I LINIE KOLEJOWE OD WEJŚCIA POLSKI DO UE

Rysunek 1.1 Wydatki na drogi krajowe i linie kolejowe w latach 2004-2011 (źródło: Gazeta Wyborcza rok 2011)

Według stanu na dzień 31 lipca 2015 roku łączna długość sieci dróg ekspresowych i autostrad wynosi 3.041 km, w tym 1.553,2 km autostrad i 1.487,8 km dróg ekspresowych (rysunek 1.2), co stanowi w okresie 2004-2015 wydłużenie ~3-krotne długości autostrad oraz

~6,6- krotne wydłużenie dróg ekspresowych w kraju. Koszty związane z budową dróg ekspresowych i autostrad w okresie 2004 – 2013 wynoszą 140.340.107,70 tysięcy złotych, z czego największe nasilenie tego typu inwestycji miało miejsce w latach 2011-2013. Zwłaszcza lata 2011 i 2012 były szczególne pod względem wysokości nakładów (48.607.295,6 tys. zł) oraz długości oddawanych dróg ekspresowych i autostrad (źródło GDDKiA).

Rysunek 1.2 Sieć autostrad i dróg ekspresowych zrealizowana lub w trakcie realizacji – stan na 31.07.2015 (źródło: GDDKiA)

Główny kierunek rozwoju sieci kolejowych w Polsce w ostatnich latach, koncertuje się na stworzeniu sieci kolejowej charakteryzującej się wysokimi parametrami. Ma to na celu uatrakcyjnienie oferty przewoźników kolejowych, a tym samym wzrost udziału kolei w rynku transportowym. Szansą na stworzenie konkurencyjnej oferty w stosunku do innych przewoźników jest program rozbudowy kolei wysokich prędkości wprowadzony już w życie i mający się zakończyć w roku 2040 (rysunek 1.3).

Rysunek 1.3 Koncepcja sieci kolei dużych prędkości w Polsce do 2040 r (źródło: ministerstwo Infrastruktury)

Nowa sieć dróg nierozerwalnie wiąże się z powstawaniem nowych obiektów inżynierskich. Bardzo często budowane obiekty mają nie tylko pełnić funkcję użytkową, ale również kształtować krajobraz, pełnić rolę symbolu bądź być miejscem charakterystycznym, które jak znak drogowy ma ułatwiać nawigację (Cywiński & Kido 2000; Flaga & Januszkiewicz 2010; Flaga et al. 2005; Łagoda & Łagoda 2014; Łapko 2010; Salamak & Fross 2010). Nie bez znaczenia jest też forma architektoniczna, która staje się często coraz bardziej wyszukana i oryginalna. Mosty wybudowane w ostatnich latach w Polsce są niejednokrotnie perłami pod względem nie tylko architektury ale również konstrukcji. Wśród nich nie można pominąć: mostu wantowego im. Jana Pawła II w Gdańsku (Biliszczuk 2003), mostu łukowego przez Dziwną w Wolinie (Filipiuk 2005), podwieszonego mostu przez Wisłę w Płocku (Biliszczuk 2007), mostu łukowego w Puławach (Grej et al. 2008), najdłuższego w Polsce podwieszonego Mostu Rędzińskiego (Biliszczuk & Onyks 2012), największego łuku w Toruniu (Wąchalski & Cywiński 2015), najdłuższego w Europie mostu typu ekstradosed w Kwidzyniu (Filipiuk & Stefanowski 2014), oryginalnego mostu Uniwersyteckiego w Bydgoszczy (Stefanowski & Filipiuk 2015) czy niedawno oddanego do ruchu mostu wantowego w Rzeszowie (Siwowski & Czarnik 2014). Znaczące osiągnięcia zostały dokonane również przy rewitalizacji starych obiektów mostowych. Przykładem jest konstrukcja mostu drogowego przez rzekę Wisłę w Tczewie. Jest to jedna z najstarszych konstrukcji w Polsce, symbol całego Pomorza, będąca obecnie w trakcie wieloetapowych prac remontowych i modernizacyjnych, wyprzedzająca zdecydowanie czas, w którym była wybudowana (Malinowski et al. 2016). W ostatnich latach widać silny trend nie tylko w poszukiwaniu coraz to ciekawszych form konstrukcyjnych, ale również we wprowadzaniu nowoczesnych i nowatorskich materiałów w budownictwie. O dużym sukcesie w tej dziedzinie świadczy wybudowanie kilku obiektów inżynierskich z kompozytów (Zobel et al. 2003; Grotte et al. 2009; Chróścielewski, Klasztorny, et al. 2014; Siwowski et al. 2014).

1.2 Przykładowe technologie diagnostyczne stosowane w Polsce

Dążenie do rozwoju, a co za tym idzie stosowanie i wprowadzanie zupełnie nowych technologii w mostownictwie wiąże się z potrzebą poznania pracy rzeczywistej konstrukcji. Prowadzi to do pilnej potrzeby rozwoju szeroko rozumianej diagnostyki obiektów mostowych. W przypadku obiektów mostowych podstawowym elementem monitoringu są narzucone przez prawo budowalne roczne podstawowe oraz pięcioletnie rozszerzone przeglądy (PB 1994). Swoim zakresem obejmują one głównie wizualną ocenę stanu technicznego ustroju nośnego, podpór i elementów wyposażenia oraz zalecenia dotyczące dalszej eksploatacji, a w szczególności zalecenia dotyczące zakresu prac przeprowadzanych w ramach bieżącego utrzymania oraz prac remontowych (I1 2005). Na ich podstawie, w przypadku stwierdzenia znaczących nieprawidłowości, można wnioskować o przeprowadzenie przeglądu szczegółowego lub wykonanie ekspertyzy. W przypadku obiektów nowatorskich wskazanym wydaje się uzupełnienie standardowego przeglądu systemem monitoringu technicznego konstrukcji (SHM – Structural Health Monitoring) (Sohn et al. 2004; Wenzel 2008; Bień 2010; Wilde 2016). Pojęcie samego monitoringu można traktować wielopoziomowo z uwagi na jego rolę na danym obiekcie inżynierskim (Chróścielewski et al. 2011; Wilde 2014). Do podstawowych, najczęściej stosowanych typów monitoringu obiektów mostowych, zaimplementowanych w ostatnich latach na terenie Polski, można zaliczyć monitoringi podczas budowy (Chróścielewski et al. 2013; Malinowski, Banaś, et al. 2015; Chróścielewski et al. 2016) oraz w trakcie eksploatacji (Malinowski 2003; Biliszczuk et al. 2006; Hildebrand et al. 2009; Onysyk 2011; Barcik & Sieńko 2012; Sieńko 2013; Żółtowski 2015; Klikowicz, Salamak & Łaziński 2016; Klikowicz, Salamak & Poprawa 2016). Dotyczą one jednak zwykle tylko nietypowych konstrukcji mostowych bądź tuneli (Malinowski, Sitarski, et al. 2015) i obiektów znajdujących się na terenach górniczych (Weseli et al. 2007; Bętkowski et al. 2015). Ciągły monitoring, czy to w fazie budowy czy eksploatacji, daje bardzo dobry i realistyczny obraz pracy konstrukcji. Jednak jego istotną wadą są dodatkowe koszty na etapie budowy oraz późniejszej eksploatacji, które znacząco limitują powszechne użycie tych systemów. Nie bez znaczenia jest także ingerencja systemu w samą konstrukcję, co może być problematyczne zwłaszcza w przypadku istniejących już konstrukcji. W przypadku konstrukcji nowo budowanych systemy monitoringu powinny być projektowane razem z branżami i instalowane już na etapie budowy obiektu. W każdym przypadku należy jednak zapewnić odpowiednią instalację i zabezpieczenie niekiedy bardzo dużej liczby czujników oraz modułów pomiarowych.

Diagnostyczne badania in situ, czy to ciągłe cykliczne (monitoring) czy to przeprowadzane sporadycznie bądź okresowo (badania eksperckie lub sprawdzające) (Olaszek 2015) to narzędzia ochrony nowych obiektów nietypowych, nowatorskich i prototypowych, ale także już istniejących konstrukcji. Dostarczają danych o rzeczywistym zachowaniu się konstrukcji, a tym samym na ich podstawie, można wnioskować o ewentualnych uszkodzeniach i usterkach ustroju i jego aktualnej nośności.

Przykładem potrzeby stosowania monitorowania istniejących obiektów jest awaria Mostu Cłowego w Szczecinie, która pokazuje że same przeglądy nie dostarczają niejednokrotnie wystarczających danych do jednoznacznej oceny stanu i nośności obiektu (Żółtowski et al. 2016). Przyczyną awarii mostu była korozja kabli sprężających, która w konsekwencji doprowadziła do zerwania części z nich.

Podobnego typu awaria miała miejsce parę lat wcześniej na jednym ze stalowych łuków kratowych w Gdańsku – Wrzeszczu w ciągu ul. Braci Lewoniewskich (Chróścielewski et al. 2005). Korozja elementów łączących pomost ze ściągiem łuku doprowadziła do ich stopniowej degradacji i w konsekwencji do całkowitego zerwania części z nich. Sytuacja była o tyle niebezpieczna, że zagrażała nie tylko nośności samego obiektu i ruchu na nim. Z uwagi na znajdująca się pod spodem trakcję kolejową, między innymi linii magistralnej E-65 oraz SKM, mogła doprowadzić do katastrofy kolejowej.

Do zerwania cięgna sprężającego doszło również na przęsłach zalewowych mostu w Kiezmarku w roku 1988 (Malinowski et al. 1988; Kaliński et al. 2004). Zewnętrzne cięgna sprężające kotwione były w płycie pomostu konstrukcji zespolonej. Wody opadowe penetrujące przez kapy chodnikowe i nieszczelności izolacji doprowadziły do ich powolnej korozji, a w konsekwencji do ich zerwania i awarii, którą dziś można by przewidzieć wprowadzając na etapie przeglądów odpowiedni aparat diagnostyczny wspomagający inżyniera. Niewidoczna na pierwszy rzut oka utrata nośności obiektu, może też być spowodowana jego znacznym wyeksploatowaniem. Można tu przytoczyć przykład sześciu obiektów kolejowych w Bydgoszczy nad ulicą Gdańską (Chróścielewski, Banaś, et al. 2014). Eksploatowane od ponad 100 lat, mimo zaawansowanych ubytków korozyjnych, czy uszkodzeń mechanicznych z powodzeniem przechodziły pozytywnie kolejne przeglądy techniczne. Interwencja w 2012 roku Wojewódzkiego Inspektora Nadzoru i nakaz wykonania ekspertyzy opartej na wynikach uprzednio przeprowadzonego badania obiektu pod próbnym obciążeniem, doprowadziła do natychmiastowego podparcia obiektu i zabezpieczenia przed katastrofą.

O bardzo dużym znaczeniu badań diagnostycznych, w tym odbiorowych, można mówić także w przypadku mostu zespolonego z dźwigarami kratowymi (Olaszek & Łagoda 2011). Obiekt po remoncie przed oddaniem do użytku, został poddany próbnemu obciążeniu. Wykazało ono znaczne nieprawidłowości w pracy samej konstrukcji, które były nie możliwe do wychwycenia przy użyciu tylko technik wizualnych. Znaczne przyrosty mierzonych ugięć w trakcie wprowadzenia próbnego obciążenia, a także brak stabilizacji wyników podczas pełnego obciążenia, wymusiły decyzje o przerwaniu próby. Po przeprowadzonych analizach, przyczyną nieprawidłowej pracy konstrukcji okazało się niewłaściwe wykonanie połączeń ciernych w zaprojektowanych stykach montażowych modernizowanej konstrukcji. Przeprowadzone badania pozwoliły uniknąć awarii czy katastrofy, a na podstawie ich wyników, wykonano projekt naprawczy i w konsekwencji oddano obiekt do eksploatacji zgodnie z pierwotnymi założeniami projektowymi.

Opisane powyżej sytuacje i wiele innych podobnych do nich, często wymagają wzbogaconego sytemu diagnostycznego do oceny aktualnego stanu i rzeczywistej nośności konstrukcji oraz wydania decyzji o warunkach dalszej eksploatacji obiektów mostowych. Stwarza to potrzebę poszukiwania nowych narzędzi diagnostycznych, które pozwolą w sposób ciągły lub doraźny na stosunkowo tanie oraz nieinwazyjne ocenianie stanu konstrukcji, bez wyłączania jej na dłuższy czas z eksploatacji.

1.3 Wprowadzenie do aktualizacji modeli w procedurach diagnostycznych

Większość obecnie znanych procedur diagnostyki nieniszczącej bazuje na modelu numerycznym konstrukcji, który można rozumieć, jako matematyczne i numeryczne procesy, które pozwalają na transformację fizycznego obiektu na model matematyczny (Marwala 2010). Dla takiego modelu, dzięki procedurom numerycznym, możemy oszacować charakterystyki dynamiczne konstrukcji takie jak postaci i częstotliwości drgań własnych (Friswell & Mottershead 1995). Obecnie najczęściej wykorzystywana do tworzenia modeli numerycznych jest Metoda Elementów Skończonych (MES). Cały proces modelowania numerycznego wiąże się wiec z: dyskretyzacją i przyjęciem funkcji kształtu, zbudowaniem macierzy mas i sztywności, wyznaczeniem częstotliwości i postaci drgań oraz funkcji odpowiedzi częstotliwościowej (Zienkiewicz 1986). Techniki komputerowe, a w tym również Metoda Elementów Skończonych w ostatnich latach przeżywają prawdziwy rozkwit i pozwalają na coraz bardziej precyzyjne modelowanie otaczającej rzeczywistości. Nie zmienia to jednak faktu, że zwykle wyniki obliczeń numerycznych nie są identyczne z wynikami badań eksperymentalnych prowadzonych na rzeczywistej konstrukcji. Przyczyną rozbieżności pomiędzy danymi numerycznymi a eksperymentalnymi mogą być (Friswell & Mottershead 1995):

- ✓ błędy w modelowaniu wywołane na przykład: trudnością w modelowaniu tłumienia, połączeń śrubowych oraz spawanych czy warunków podporowych;
- błędy w przyjętym rzędzie modelu, które powstają w wyniku dyskretyzacji modelu numerycznego;
- ✓ błędy w przyjętych parametrach modelu, wynikające na przykład z błędnej identyfikacji paramentów materiałowych;
- ✓ błędy wynikające z pomiarów podczas badań eksperymentalnych.

Zwykle zakłada się, że dane pochodzące z badań eksperymentalnych nie są obarczone błędem. Pociąga to za sobą konieczność dopasowania i zaktualizowania modelu numerycznego, tak aby otrzymane na podstawie jego analizy wyniki były zgodne z wynikami z badań eksperymentalnych. Początek badań nad aktualizacją modeli numerycznych na bazie parametrów dynamicznych sięga lat siedemdziesiątych (Cawley & Adams 1979). Pierwsze prace ukierunkowane były na aktualizację parametrów modelu na podstawie pomierzonych częstotliwości drgań własnych. Takie podejście jednak szybko okazało się niewystarczające z uwagi na bardzo małe zmiany częstotliwości drgań własnych, nawet przy relatywnie bardzo dużych uszkodzeniach konstrukcji (Hong et al. 2002; Kim et al. 2003; Douka et al. 2004; Hirsz & Wilde 2006; Rudzik et al. 2014).

Metody aktualizacji modeli MES są podzielone na dwie zasadnicze grupy:

- ✓ metody bezpośrednie,
- ✓ metody iteracyjne.

Metody bezpośrednie nie wymagają procesu iteracyjnego, a co za tym idzie pozwalają na ograniczenie czasu obliczeń. Model zaktualizowany metodą bezpośrednią pozwala na odwzorowanie wszystkich pomierzonych paramentów, jednak przy jego tworzeniu, pominięte są kwestie związane z sensem fizycznym akutalizowanego obiektu. W związku z tym otrzymane w procesie aktualizacji macierze układu, które nie zawsze są dodatnio określone, nie mają znaczenia fizycznego i nie można ich odnieść do rzeczywistej zamiany parametrów modelu MES (Maia & Silva 1997).

Metody iteracyjne bazują na zmianie parametrów fizycznych modelu w taki sposób, aby wybrane kryteria zbieżności uzyskanych wyników z danymi pomiarowymi zostały spełnione. Pozwalają one na stworzenie rzeczywistego w sensie fizycznym modelu, którego macierze mas i sztywności mają znaczenie fizyczne.

Zarówno metody bezpośrednie jak i iteracyjne, wykorzystujące funkcje odpowiedzi czestotliwościowej lub parametry dynamiczne konstrukcji, bazują zwykle na kilku podstawowych technikach aktualizacji. Jedna z podstawowych metod aktualizacji opiera się na modyfikacji macierzy układu w celu identyfikacji uszkodzenia. Różnica pomiędzy macierzami zaktualizowanymi a bazowymi pozwala na zlokalizowanie miejsca uszkodzenia. Zwykle w podejściu tym należy sformułować odpowiednią funkcję celu, która jest następnie minimalizowana oraz wybrać odpowiedni algorytm optymizacji (D'Ambrogio & Zobel 1994; Friswell & Mottershead 1995; Ojalvo & Pilon 1988; Ewins 2000). Kolejna metoda jest metoda macierzy optymalnej. Zwykle klasyfikowana jest ona jako metoda bezpośrednia i wykorzystuje rozwiązanie analityczne, a nie numeryczne (Baruch & Bar-Itzhack 1978; Berman & Nagy 1983; Kabe 1985; Carvalho et al. 2007). Z reguły sformułowana jest w odniesieniu do mnożników Lagrange'a i perturbacji macierzy. Istotną wadą metody, jest to, że zaktualizowany model nie zawsze posiada realne właściwości fizyczne. Kolejną grupą są metody bazujące na wrażliwości. Zakładają one, że dane eksperymentalne są perturbacją danych projektowych oryginalnego modelu numerycznego. Aktualizacja opiera się na obliczeniu pochodnych z paramentów dynamicznych albo z funkcji odpowiedzi częstotliwościowej (Fox & Kapoor 1968; Ben-Haim & Prells 1993; Lin et al. 1995; Alvin 1997). Metody ustalenia par własnych (postaci i częstotliwości drgań własnych) oparte są na teorii sterowania układów. Konstrukcja będąca obiektem badań zostaje wymuszona w taki sposób, aby jej odpowiedz była z góry ustalona i pozwalała na identyfikację określonych par modalnych. Podczas poszukiwania uszkodzenia w badaniach mierzone są tylko wybrane elementy w celu identyfikacji określonej wielkości własnej układu (Zimmerman & Kaouk 1992; Schultz et al. 1996). Jedną z najbardziej powszechnie stosowanych technik aktualizacji są iteracyjne metody optymalizacji. Mogą one między innymi bazować wprost na minimalizacji różnicy pomiędzy eksperymentalnymi, a numerycznymi postaciami drgań (Schwarz et al. 2007) lub na wrażliwości parametrów modalnych konstrukcji (Bakir et al. 2007; Minshui & Hongping 2008). Inną metodą jest podejście Bayes'a, które opiera się na prawie Bayes'a oraz funkcjach przeprowadzających wnioskowanie statystyczne przy użyciu dowodów lub obserwacji w celu aktualizacji prawdopodobieństwa, że dana hipoteza może być prawdziwa

(Marwala 2009). Metody oparte na prawie Bayes'a z powodzeniem stosowane są również w aktualizacji dużych konstrukcji, w tym mostów (Wong et al. 2006; Zheng et al. 2009). Inną grupą są inteligentne metody obliczeniowe. Bazują one na sztucznej inteligencji i wykorzystują zbiory rozmyte do aktualizacji modeli numerycznych. Również wśród tych metod można znaleźć udane aplikacje do konstrukcji mostowych (Jung & Kim 2009; Liu et al. 2009).

Aktualizacją modeli MES przy użyciu algorytmu iteracyjnego, wykorzystującego częstotliwości i postaci drgań własnych zajmował się również dr inż. Michał Hirsz (Hirsz & Wilde 2004; M. Hirsz & Wilde 2005; Michał Hirsz & Wilde 2005; Hirsz 2008; Hirsz & Wild 2010). Obszar jego zainteresowań koncentrował się głównie na aktualizacji parametrów projektowych płyty swobodnie podpartej z wykorzystaniem wyłącznie translacyjnych stopni swobody mierzonych przy pomocy akcelerometrów. W pracach wykorzystano dwa modele doświadczalne, belki wspornikowej i płyty swobodnie podpartej. Wykonane w niniejszej pracy analizy są kontynuacją prac prowadzonych przez dr. Hirsza i koncertują się na zastosowaniu czujników rotacji do diagnostyki nieniszczącej, rozwinięciu procedur typowania poprawnych rozwiązań oraz aplikacji technologii diagnostycznej dla rzeczywistych konstrukcjach inżynierskich.

Stosowane metody aktualizacji modeli numerycznych można zróżnicować pod względem danych wykorzystywanych do samej procedury. Eksperymentalne dane dynamiczne wykorzystywane w procedurach aktualizacji mogą być przedstawione w trzech różnych dziedzinach: w dziedzinie czasu, w dziedzinie częstotliwości oraz w dziedzinie czasowo - częstotliwościowej. Dane przestawione w dziedzinie czasu, pochodzą bezpośrednio z pomiaru i przestawiają pomierzony sygnał i zamianę jego charakterystyk w czasie (Majumder & Manohar 2003; Qu & Peng 2007; Zimin & Zimmerman 2009). Bardzo często jednak w procedurach aktualizacji dziedzina czasu, konwertowana jest na dziedzinę częstotliwości za pomocą transformaty Fouriera (FFT), która pozwala zaobserwować zmiany w sygnale w zależności od częstotliwości (Fasel et al. 2003; Nelwamondo & Marwala 2006; Lee & Kim 2007). Dziedzina czasu może zostać również przekształcona na dziedzinę czasowo-częstotliwościową poprzez użycie na przykład okienkowej transformaty Fouriera, badź, na przykład, transformaty Gabora (Huang & Nemat-Nasser 2006; Gökdağ & Kopmaz 2009; Yan et al. 2010). Jest ona stosowana zwykle do elementów o zmiennych charakterystykach dynamicznych z uwagi na to, że pozwala na obserwację zmian częstotliwości sygnału w czasie. Dodatkową kategorią danych, często wykorzystywaną przy poszukiwaniu uszkodzeń konstrukcji, są parametry dynamiczne pozyskane z funkcji odpowiedzi częstotliwościowej (Marwala 2000). Uzyskane w ten sposób częstotliwości oraz postaci drgań własnych jak również tłumienie konstrukcji są wrażliwe na zmianę parametrów projektowych i tym samym pozwalają na lokalizację uszkodzenia (Chen 2008; Shahdin et al. 2009).

Należy również podkreślić, że przy aktualizacji modeli MES, z uwagi na trudności w modelowaniu, zasadne jest pominięcie aktualizacji połączeń śrubowych bądź spawanych, jak również warunków podporowych. Różnice w wynikach wynikające z tych parametrów mogą być rekompensowane poprzez odpowiednie zaktualizowanie właściwości materiałowych bądź znaczących elementów konstrukcyjnych. Dodatkowo celowe jest założenie, że model pracuje w zakresie liniowo-sprężystym oraz że wpływ tłumienia na konstrukcje jest pomijalnie mały (Mottershead & Friswell 1993; Friswell & Mottershead 1995; Marwala 2010).

Obecnie stosowane techniki akutalizacji coraz częsciej wykorzystywane są w budownictwie. Coraz większe potrzeby dianostyczne nowo wznoszonych konstrukcji mostowych sprawiły, że w ostniach latach również w tej dziedzinie można było doczekać się wielu obiecujacych realizacji (Jaishi & Ren 2007; Živanović et al. 2007; Huang et al. 2008; Minshui & Hongping 2008; Bayraktar et al. 2009; Schlune et al. 2009; Li & Du 2009; Yue & Li 2014; Park et al. 2015; Xiao et al. 2015; Zhong et al. 2016). Rozwój metod numerycznych oraz technik pomiarowych pozwala na przypuszczenie, że w najbliższej przyszłości metody bazujące na akutalizacji modelu MES staną się powszechnie stosowanym narzędziem diagnostycznym.

1.4 Czujniki i technologie pomiarowe stosowane w mostownictwie

Do podstawowych badań diagnostycznych wykonywanych na obiektach mostowych można zaliczyć monitoringi oraz badania pod próbnym obciążeniem. Obiekty mostowe są właściwe jedynymi konstrukcjami budowlanymi w Polsce, które podlegają obowiązkowym próbnym obciążeniom. Zasady i zakres ich przeprowadzania narzucony jest w kilku obowiązujących aktach prawnych i normach: PN-89/S-10050 Obiekty mostowe. Konstrukcje stalowe. Wymagania i badania., PN-99/S-10040 Obiekty mostowe. Konstrukcje betonowe. Wymagania i badania., Zarządzeni nr 47 GDDKiA z dnia 10.08.2011r., Id-16 (D-83) PKP PLK S.A. 2005r., Standardy techniczne PKP PLK 2009. Badania przeprowadzane są zarówno dla nowych obiektów, przed oddaniem ich do eksploatacji, jak również dla obiektów użytkowanych, w celu sprawdzenia lub uzupełniania danych o zachowaniu się konstrukcji. W zależności od rodzaju użytkowego obiektu (drogowy, kolejowy), materiału z którego jest wykonany jak również obowiązującego dla danej konstrukcji aktu prawnego, przeprowadzane badania obejmują swoim zakresem badania wyłącznie statyczne bądź statyczne i dynamiczne.

Podstawowym badaniem podczas próbnych obciążeń jest badanie statyczne, które powinno być pierwszym obciążeniem użytkowym obiektu inżynierskiego. Podczas badań statycznych podstawowymi mierzonymi wartościami są: przemieszczenia, odkształcenia, osiadania podpór oraz temperatura konstrukcji. Przy pomiarze statycznym odczyty powinny być wykonywane z odpowiednim interwałem czasowym, tak aby możliwe było zarejestrowanie zmian mierzonych wartości, nie ma jednak wymogu ciągłego pomiaru o wysokiej częstotliwości próbkowania. Badania dynamiczne charakteryzują się zwykle dużą zmiennością parametrów w czasie. Podstawowymi mierzonymi wartościami są: przemieszczenia, przyśpieszenia oraz odkształcenia. Przebiegi zmienności parametrów powinny być rejestrowane z próbkowaniem sygnału zależnym od spodziewanych częstotliwości sygnału.

Do niedawana najpowszechniej stosowanymi czujnikami do statycznego pomiaru przemieszczeń były czujniki zegarowe z wyświetlaczem analogowym bądź cyfrowym (rysunek 1.4a). Wyposażone są one zwykle w przekładnię zębatą. Ich niewątpliwą zaletą jest brak konieczności podłączania czujników do systemów akwizycji danych, brak okablowania i duża dokładność pomiaru. Największą wadą jest brak automatycznej możliwości rejestrowania pomiarów w czasie i ich przydatność wyłącznie podczas pomiarów statycznych. Drugą grupą powszechnie stosowanych czujników są czujniki indukcyjne (rysunek 1.4b). Ich mechanizm działania wykorzystuje zmianę indukcyjności w zależności od przemieszczeń rdzenia czujnika. Ich największą zaletą jest duża dokładność pomiarów zarówno podczas badań statycznych jak i dynamicznych oraz ciągła rejestracja sygnału w czasie. Wymagają one jednak odpowiedniego systemu akwizycji danych oraz okablowania. Inna grupą czujników służących do pomiaru przemieszczeń są interferometry laserowe (rysunek 1.4c). Umożliwiają one pomiary zarówno w zakresie stycznym jak i dynamicznym Ich największą zaletą w stosunku do czujników zegarowych oraz indukcyjnych jest brak konieczności połączenia czujnika z mierzoną konstrukcją. Do pomiarów statycznych konstrukcji, zarówno w zakresie przemieszczeń jak i osiadań podpór powszechnie wykorzystuje się też przyrządy geodezyjne (rysunek 1.4d). Do najczęściej wykorzystywanych należą niwelatory precyzyjne oraz tachimetry. Ich główną zaletą jest możliwość pomiaru z bardzo dużej odległości. Charakteryzują się one jednak mniejszą dokładnością pomiaru niż wcześniej wymienione grupy czujników. Do rzadziej stosowanych czujników służących do pomiaru przemieszczeń można zaliczyć: czujniki rezystancyjne, czujniki inkremantalne, laserowe czujniki triangulacyjne, radary interferencyjne, przyrządy hydrostatyczne oraz czujniki radiowe.

Rysunek 1.4 Czujniki do pomiaru przemieszczeń a) mechaniczne- zegarowe analogowe i cyfrowe b) indukcyjne c) interferometry laserowe d) geodezyjne- tachimetr

Czujnikami do pomiaru odkształceń o najdłuższej historii, są tensometry elektrooporowe (rysunek 1.5a). Ich zasada działa polega na zamianie oporności, w zależności od wydłużenia tensometru. Mimo swojej długiej historii są one nadal powszechnie stosowane. Ich największą zaletą są małe rozmiary pozwalające na punktowy pomiar odkształcenia. Wymagają one jednak dużego doświadczenia pomiarowego, a ich montaż jest stosunkowo trudny i pracochłonny, wymaga zawsze odpowiedniego przygotowania powierzchni, w tym usunięcia powłok malarskich. Z uwagi na dużą wrażliwość na czynniki środowiskowe, przy wykorzystaniu ich poza laboratorium, wymagają również odpowiedniego zabezpieczenia. Do pomiaru za ich pośrednictwem niezbędne jest również użycie specjalnie przystosowanego systemu akwizycji danych. Inna grupa czujników służących do pomiaru odkształceń to tensometry strunowe (rysunek 1.5b), w których odkształcenie mierzone jest poprzez zmianę częstotliwości drgań umieszczonych wewnątrz nich struny. Do ich istotnych wad należy trudność w montażu, muszą zostać przymocowane do konstrukcji poprzez klejenie bądź spawanie, oraz przydatność głównie do badań statycznych. Inną grupą czujników służących do pomiaru odkształceń, która jest przydatna tylko w przypadku pomiarów statycznych, są ekstensometry mechaniczne – zegarowe (rysunek 1.5c). Ich montaż odbywa się poprzez przyklejenie dwóch płytek tworzących bazę, a następnie każdorazowe przyłożenie ekstensometru. Ich zaletą jest to, że jeden czujnik może być wykorzystany wielokrotnie, nie umożliwią one jednak ciągłego pomiaru w czasie. Do czujników mierzących odkształcenia, które są najprostsze w montażu i nie wymagają ingerencji w powierzchnię konstrukcji są ekstensometry indukcyjne (rysunek 1.5d). Pozwalają one na pomiary zarówno statyczne jak i dynamiczne. Istotną wadą w stosunku do tensometrów elektrooporowych jest zadecydowanie dłuższa baza pomiarowa, która nie umożliwia punkowych pomiarów odkształceń.

Rysunek 1.5 Czujniki do pomiaru odkształceń a)tensometr elektrooporowy b) tensometr strunowy (źródło: Neostrain) c) ekstensometry mechaniczny d) ekstensometry indukcyjny

Do pomiaru temperatury konstrukcji najczęściej wykorzystywane są czujniki półprzewodnikowe i rezystancyjne. Stosuje się również czujniki termoelektryczne i pirometry.

W przypadku badań dynamicznych poza pomiarami przemieszczeń oraz odkształceń, podstawowym mierzonym parametrem jest przyspieszenie konstrukcji. Pomiary wykonuje się przy użyciu akcelerometrów piezoelektrycznych (rysunek 1.6b), wykorzystujących zjawisko piezoelektryczne dla przetworzenia zmian kształtu lub sił nań działających na napięcie elektryczne, indukcyjnych (rysunek 1.6a) lub pojemnościowych wykonywanych w technologii MEMS (rysunek 1.6a).

Relatywnie rzadko podczas badań in situ mierzone są kąty obrotu. Najczęściej w tym celu wykorzystuje się laserowe poziomnice – inklinometry (rysunek 1.6a) lub pochyłomierze, które poprzez pomiar kąta obrotu pozwalają na wyznaczenie linii ugięcia przęsła (Olaszek 2015). Z reguły jednak na zakresy pomiarowe mogą one być tylko wykorzystywane do badań statycznych konstrukcji. Mierzą one zależność pomiędzy kątem nachylenia w zależności od zmiany przyśpieszenia ziemskiego. Nową, bardzo rzadko stosową aczkolwiek niezwykle obiecującą grupą czujników do pomiaru kątów obrotu są żyroskopy typu MEMS (rysunek 1.6a).

Rysunek 1.6 Czujniki pomiarowe a) 1- inklinometr 2- akcelerometr indukcyjny 3- żyroskop MEMS 4akcelerometr MEMS w obudowie b) akcelerometry piezoelektryczne

Najbardziej obiecującą gałęzią rozwoju czujników pomiarowych są nowoczesne czujniki MEMS (Micro-Electro-Mechanical Systems). Są to układy łączące w sobie zarówno elementy mechaniczne jak i elektroniczne. Popularnym ich zastosowaniem są akcelerometry, które wypierają stopniowo inne rodzaje czujników do pomiaru przyśpieszeń z rynku. Szybko rozwijająca się technologia pozwala również na budowę innych czujników o różnych zastosowaniach takich jak: czujniki do pomiarów środowiskowych, biometrycznych, optycznych itd. (rysunek 1.7). Do największych zalet czujników MEMS należą niewielkie rozmiary, a tym samym bardzo małe masy czujników i ich inercja oraz niskie zużycie surowców na ich produkcję, ale również niski pobór prądu, mała podatność na zmiany temperatury i wibracje oraz łatwa integracja z innymi urządzeniami. Dużą zaletą jest również możliwość tworzenia czujników zintegrowanych, które pozwalają na redukcję ilość podłączeń oraz kabli w systemach pomiarowych. Ich bardzo szybki rozwój związany jest w dużej mierze z potrzebami szeroko pojętej elektroniki. Znajdują one zastosowanie w sprzęcie elektronicznym codziennego użytku takim jak smartfony, tablety, gry komputerowe czy sprzęt gospodarstwa domowego. Stosowane są również w elektronice samochodowej, lotnictwie oraz górnictwie naftowo-gazowym.

Rozwój akcelerometrów oraz żyroskopów MEMS jest związany także z coraz większą ich miniaturyzacją oraz zwiększaniem możliwości pomiarowych. Prognozy dotyczące rynku związanego ze sprzedażą akcelerometrów, żyroskopów (rysunek 1.9c) oraz czujników zintegrowanych MEMS, zakładają ponad 8 krotny wzrost ich sprzedaży pomiędzy rokiem 2008, a 2018 (rysunek 1.9a). Związane jest to niewątpliwie z ich miniaturyzacją (rysunek 1.9b), ale też stałym spadkiem ich cen. Czujniki typu MEMES niewątpliwe pretendują do miana czujników najbliższej przyszłości.

Rysunek 1.7 Prognozy rozwoju rynku czujników MMS w B(\$) (źródło: Yole Developpment 2015)

Rysunek 1.8 Przykładowe rodzaje i zastosowanie czujników MEMS (źródło: Yole Developpment 2015)

Rysunek 1.9 a)Prognozy rozwoju rynku akcelerometrów, żyroskopów oraz czujników zintegrowanych typu MEMS b) przykładowy rozmiar czujnika MEMS c) schemat działania żyroskopu MEMS (źródło: Yole Developpment 2015)

1.5 Cel i zakres pracy

W niniejszej pracy głównymi celami badań naukowych i prac rozwojowych są:

- ✓ rozszerzenie standardowo używanych w diagnostyce translacyjnych stopni swobody o pomiary rotacyjnych stopni swobody mierzonych za pomocą żyroskopów typu MEMS;
- ✓ opracowanie autorskich indeksów ułatwiających detekcję uszkodzeń za pomocą aktualizacji parametrów modelu MES na bazie częstości i postaci drgań własnych;
- ✓ opracowanie autorskich definicji macierzy wag;
- budowa algorytmu selekcji poprawnych rozwiązań aktualizacji parametrów;
- ✓ aplikacja systemu pomiarowego złożonego z czujników żyroskopowych typu MEMS do diagnostyki konstrukcji mostowych.

Zakres prac obejmuje badania symulacyjne na danych numerycznych i danych eksperymentalnych uzyskanych podczas badań modelu belki swobodnie podpartej oraz rzeczywistego obiektu kładki nad ulicą Chwarznieńską w Gdyni.

W pierwszym etapie badań przeprowadzono aktualizację parametrów na podstawie danych numerycznych dla modelu MES belki swobodnie podpartej. Aktualizowanymi parametrami były sztywności giętne poszczególnych elementów modelu MES belki. Uszkodzenie skumulowane było poprzez zmniejszenie sztywności giętnej o intensywności odpowiednio 1%, 5%, 10% i 15% w elemencie numer 3 lub 5 modelu MES.

Następny etap obejmował badania doświadczalne na modelu belki swobodnie podpartej. Na podstawie częstotliwości i postaci drgań własnych uzyskanych z sygnałów pomiarowych, wykonano aktualizację parametrów modelu MES belki. Uszkodzenie symulowane było poprzez dodanie mas o 3 różnych intensywnościach w elementach 3 lub 5 belki modelowej. Wymuszenie dynamiczne przykładane było w polu 6 i 8 analizowanej belki.

Kolejnym etapem prac było przeprowadzenie badań przy użyciu żyroskopów MEMS na trzech rzeczywistych obiektach inżynierskich: łukowej kładce nad drogą S8, łukowej kładce nad trasą Ogińskiego w Bydgoszczy oraz wiadukcie Brańskiego w Koninie.

Ostatni etap obejmował aktualizację parametrów modelu MES na podstawie badań eksperymentalnych przeprowadzonych na kładce nad ulicą Chwarznieńską w Gdyni. Uszkodzenie symulowane było poprzez dodanie masy w dwóch wybranych polach kładki. Jako wymuszenie dynamiczne używano dwóch wzbudników drgań oraz grupy pieszych.

2 Podstawy teoretyczne

2.1 Metody redukcji bazy

Metoda Elementów Skończonych (MES) jest powszechnie stosowana w obliczeniach numerycznych obiektów budowlanych. Dynamiczny rozwój mocy obliczeniowej komputerów umożliwił modelowanie konstrukcji i związanych z nią procesów mechanicznych, fizycznych i chemicznych z bardzo dużą dokładnością. Jednak wzrost rozmiaru modelu obliczeniowego powoduje znaczny wzrost nakładów pracy potrzebnych do jego rozwiązania. Ma to bardzo istotne znaczenie zwłaszcza w przypadku zagadnień związanych z analizą dynamiczną, gdzie rozwiązania wymagają złożone układy o bardzo dużej liczbie niewiadomych z całkowaniem równań w domenie czasu. Dostosowanie liczby stopi swobody modelu obliczeniowego jest bardzo często wykonywane w analizach numerycznych bazujących na badaniach eksperymentalnych. W takim wypadku mierzona liczba parametrów jest znacznie mniejsza od liczby stopni swobody modelu obliczeniowego. To samo dotyczy parametrów konstrukcji pozyskiwanych z badań eksperymentalnych i analiz numerycznych, takich jak na przykład częstotliwości drgań własnych, czy postacie drgań własnych. Dlatego analizy związane z porównywaniem i walidacją modeli obliczeniowych na danych pomiarowych rzeczywistych konstrukcji najczęściej bazują na technikach redukcji stopni swobody modelu MES.

Redukcja liczby stopni swobody danego zadania może być wykonana poprzez kondensację macierzy modelu obliczeniowego. Większość metod kondensacji wymaga podziału stopni swobody układu na dwa typy: zasadnicze (master) i zależne (slave). Taki podział pozwala na eliminacje nieistotnych dla danej analizy stopni swobody i redukcję modelu numerycznego.

2.1.1 Metoda Statyczna Guyana

Metoda statyczna Guyana (Guyan 1965; Irons 1965) jest jedną z najstarszych i najpopularniejszych metod redukcji bazy dla układów o dużej liczbie stopni swobody. W metodzie tej wektory przemieszczeń i sił, jak również macierze mas i sztywności, zostają tak przeszeregowane aby podzielić je na odrębne podwektory i podmacierze, odnoszące się do zasadniczych i zależnych stopni swobody. Przy założeniu, że tłumienie w układzie jest małe oraz obciążenie przykładne jest tylko i wyłącznie do zasadniczych stopni swobody można zapisać:

$$\mathbf{M}\ddot{\mathbf{x}} + \mathbf{K}\mathbf{x} = \mathbf{P},\tag{2.1}$$

$$\begin{bmatrix} \mathbf{M}_{mm} & \mathbf{M}_{ms} \\ \mathbf{M}_{sm} & \mathbf{M}_{ss} \end{bmatrix} \left\{ \ddot{\mathbf{x}}_{s} \\ \ddot{\mathbf{x}}_{s} \\ \mathbf{K}_{sm} & \mathbf{K}_{ss} \end{bmatrix} \left\{ \mathbf{x}_{m} \\ \mathbf{x}_{s} \\ \mathbf{K}_{ss} \\ \mathbf{K}_{$$

Indeks *m* związany jest z zasadniczymi stopniami swobody (master), a indeks *s* odnosi się to stopni swobody zależnych (slave).

Jeżeli pominiemy siły bezwładności, które związane są z drugą częścią wektora (slave) możemy zapisać równanie:

$$\mathbf{K}_{\rm sm}\mathbf{x}_{\rm m} + \mathbf{K}_{\rm ss}\mathbf{x}_{\rm s} = \mathbf{0}_{\rm s}. \tag{2.3}$$

Wszystkie zmienne można odnieść tylko do zasadniczych stopni swobody:

$$\left\{ \frac{\mathbf{x}_{m}}{\mathbf{x}_{s}} \right\} = \left[\frac{\mathbf{I}}{-\mathbf{K}_{ss}^{-1}\mathbf{K}_{sm}} \right] \left\{ \mathbf{x}_{m} \right\} = \mathbf{T}_{s}\mathbf{x}_{m}, \qquad (2.4)$$

$$\mathbf{T}_{s} = \begin{bmatrix} \mathbf{I} \\ -\mathbf{K}_{ss}^{-1}\mathbf{K}_{sm} \end{bmatrix}.$$
 (2.5)

Macierz \mathbf{T}_{s} nazywamy macierzą transformacji statycznej pomiędzy pełnym wektorem przemieszczeń, a wektorem złożonym tylko z zasadniczych przemieszczeń. W związku z tym macierze zredukowane układu można przedstawić jako:

$$\mathbf{K}_{r} = \mathbf{T}_{s}^{\mathsf{T}} \mathbf{K} \mathbf{T}_{s}, \qquad (2.6)$$

$$\mathbf{M}_{r} = \mathbf{T}_{s}^{\mathsf{T}} \mathbf{M} \mathbf{T}_{s}. \tag{2.7}$$

Kondensacja Guyana nie wprowadza żadnego błędu do rozwiązania zagadnień statycznych, oznacza to, że odpowiedz układu uzyskana przy pomocy macierzy zredukowanej jest dokładna tylko dla zerowej częstotliwości wymuszenia. Wraz ze wzrostem częstotliwości wymuszenia błąd wprowadzany do rozwiązania przy pomocy metody redukcji Guyan'a wzrasta.

Przykłady zastosowania metody redukcji Guayan'a można znaleźć w pracach Prakash i Prabhu (1986), Bouhaddi i Fillod (1992), Noor (1994).

2.1.2 Metoda Improved Reduced System (IRS)

Metoda IRS została wprowadzona przez O'Callahan'a (1989) jako udoskonalenie redukcji statycznej Guyan'a. Uwzględnienia ona wpływ zależnych sił bezwładności jako sił pseudo - statycznych.

Metoda ta, za cenę przyspieszenia procesu obliczeniowego, zmniejsza dokładność obliczeń i nie pozwala na odwzorowanie w pełni zachowania się niezredukowanej konstrukcji.

Jednak, dla niskich częstotliwości własnych konstrukcji, metoda ta wykazuje znacznie lepszą zgodność niż redukcja statyczna Guyan'a.

Z uwagi na postać macierzy transformacji \mathbf{T}_{IRS} , macierz sztywności charakteryzuje się większą sztywnością niż macierz zredukowana otrzymana metoda Guyan'a:

$$\mathbf{T}_{\rm IRS} = \mathbf{T}_{\rm s} + \mathbf{Z}\mathbf{M}\mathbf{T}_{\rm s}\mathbf{M}_{\rm R}^{-1}\mathbf{K}_{\rm R}, \qquad (2.8)$$

gdzie macierze mas \mathbf{M}_{R} i sztywności \mathbf{K}_{R} to macierze otrzymane przy użyciu redukcji statycznej, macierz \mathbf{T}_{s} jest macierzą transformacji stycznej, a macierz \mathbf{Z} dana jest wzorem:

$$\mathbf{Z} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{K}_{\rm ss}^{-1} \end{bmatrix}.$$
 (2.9)

Problemem redukcji bazy przy użyciu metody IRS zajmowali się miedzy innymi: Friswell i inni (1995), Friswell i inni (1998), ; Kim i Cho (2008), Li i inni (2008).

2.1.3 Metoda System Equivalent Reduction Expansion Process (SEREP)

Zaproponowana przez O'Callahan'a i innych (1989) metoda System Equivalent Reduction Expansion Process (SEREP) w celu zbudowania macierzy transformacji, korzysta z wektorów postaci drgań własnych obliczonych analitycznie dla modelu bez tłumienia. Macierz wektorów własnych podzielona zostaje na cześć związaną z zasadniczymi stopniami swobody i na część związaną z zależnymi stopniami swobody zgodnie ze wzorem:

$$\boldsymbol{\phi} = \begin{bmatrix} \boldsymbol{\phi}_{mm} & \boldsymbol{\phi}_{ms} \\ \boldsymbol{\phi}_{sm} & \boldsymbol{\phi}_{ss} \end{bmatrix}.$$
(2.10)

Macierz transformacji dana jest wzorem:

$$\mathbf{T}_{\text{SEREP}} = \begin{bmatrix} \mathbf{I} \\ \mathbf{\Phi}_{\text{Sm}} \mathbf{\Phi}_{\text{mm}}^{-1} \end{bmatrix}, \qquad (2.11)$$

a zredukowane macierze sztywności i mas:

$$\mathbf{K}_{r} = \mathbf{T}_{\text{serep}}^{\mathsf{T}} \mathbf{K} \mathbf{T}_{\text{serep}}, \qquad (2.12)$$

$$\mathbf{M}_{r} = \mathbf{T}_{serep}^{\mathsf{T}} \mathbf{M} \mathbf{T}_{serep}.$$
(2.13)

Zaletą metody SEREP jest to, że zachowuje ona takie same częstotliwości drgań własnych jakie ma model niezredukowany. Wyniki otrzymane przy jej użyciu, nie zależą od wyboru stopni swobody. Metoda ta pozwala więc na wybór dowolnych stopni swobody jako zasadniczych.

Wadą metody jest to, że dla każdego modelu wymaga rozwiązania problemu własnego i wyznaczenia macierzy modalnej (Sastry et al. 2003; Das & Dutt 2008).

2.2 Kryteria walidacji postaci drgań własnych

Zestawienie par modalnych, czyli częstotliwości i postaci drgań własnych tworzy reprezentacę podstawowych dynamicznych właściwości konstrukcji. Postacie drgań mogą być podstawą wielu dalszych analiz, takich jak walidacja czy aktualizacja modeli numerycznych. Umożliwiają one tym samym ocenę stanu konstrukcji, bądź są podstawą analiz diagnostycznych lokalizujących uszkodzenia.

Prowadzenie zaawansowanych analiz, bazujących na porównywaniu charakterystyk dynamicznych wyznaczonych w oparciu o badania eksperymentalne rzeczywistej konstrukcji i charakterystyk otrzymanych w wyniku analiz numerycznych, wymaga zastosowania odpowiednich technik porównawczych. Jednym z bardziej istotnych problemów jest "parowanie" postaci drgań własnych, zarówno pod względem częstotliwości jak i postaci drgań. Dotyczy to zwłaszcza bardziej skomplikowanych konstrukcji, w których niejednokrotnie część postaci drgań może wydawać się podobnych. Drugim istotnym problem, jest różna skala amplitudy wektorów postaci drgań własnych otrzymywanych z modelu numerycznego i z badań eksperymentalnych.

2.2.1 Modal Assurance Criterion (MAC)

Modal Assurance Criterion (MAC) (Allemang & Brown 1982) jest jednym z najpopularniejszych kryteriów porównywania postaci drgań własnych. Jest ono bardzo wrażliwe na duże różnice w postaciach drgań, i relatywnie mało wrażliwe na niewielkie zmiany. Kryterium porównuje tylko wektory postaci drgań co oznacza, że niezbędne jest równocześnie zastosowanie kryterium porównującego częstotliwości drgań własnych.

Kryterium MAC dane jest wzorem:

$$\mathsf{MAC}_{ij} = \frac{\left| \mathbf{\phi}_{mi}^{\mathsf{T}} \mathbf{\phi}_{aj} \right|^{2}}{\left(\mathbf{\phi}_{aj}^{\mathsf{T}} \mathbf{\phi}_{aj} \right) \left(\mathbf{\phi}_{mi}^{\mathsf{T}} \mathbf{\phi}_{mi} \right)}, \tag{2.14}$$

gdzie:

 $\mathbf{\phi}_{mi}$ - j-ta postać drgań otrzymana w wyniku badan eksperymentalnych,

 ϕ_{ai} - j-ta postać drgań otrzymana w wyniku analiz numerycznych.

Wynikiem jest macierz MAC, w której elementy przyjmują wartości pomiędzy zerem (brak zgodności) a jeden (całkowita zgodność). Taka prezentacja pozwala, wraz z porównaniem częstotliwości, na dobranie odpowiednich par modalnych pochodzących z badań eksperymentalnych i z analizy numerycznej. Przy wartości MAC większej od 0,9 przyjmuje się, że zgodność postaci drgań jest duża.

Kryterium MAC jest powszechnie stosowane m.in. przy (Allemang 2003):

- porównywaniu postaci drgań własnych otrzymanych z badań eksperymentalny z postaciami otrzymanymi w wyniku analiz numerycznych (parowanie postaci drgań),
- ✓ walidacji modeli obliczeniowych na podstawie danych eksperymentalnych,
- ✓ aktualizacji modeli obliczeniowych na podstawie danych eksperymentalnych,
- ✓ sprawdzaniu spójności/stabilności w algorytmach szacowania parametrów modalnych,
- ✓ kompletowaniu lub rozbudowie eksperymentalnych wektorów postaci drgań własnych,
- uśrednianiu wektorów postaci drgań,
- ✓ odwzorowywaniu macierzy układu pomiędzy modelem analitycznym a eksperymentalnym,
- ✓ szacowaniu wektora drgań własny otrzymanego na podstawie wymuszeń w różnych miejscach konstrukcji,
- szacowaniu wektora drgań własnych otrzymanego na podstawie różnych technik identyfikacji z tych samych danych pomiarowych,
- wykrywaniu uszkodzeń konstrukcji,
- ✓ poszukiwaniach optymalnego rozmieszczenia czujników pomiarowych.

Jedną z istotnych zalet kryterium MAC jest to, że porównanie wektorów postaci drgań może być dokonane zarówno dla modelu niezredukowanego, jak i zredukowanego. Nie wymaga również wyznaczania macierzy mas i sztywności konstrukcji. Kolejną z zalet jest to, że obliczenia mogą być prowadzone również dla zespolonych postaci drgań własnych.

Kryterium MAC zostało wprowadzone razem ze współczynnikiem Modal Scale Factor (MSF).

2.2.2 Modal Scale Factor (MSF)

Współczynnik Modal Scale Factor (MSF) (Allemang & Brown 1982) jest współczynnikiem skalującym postać drgań otrzymaną z badań eksperymentalnych w stosunku do postaci otrzymanej z analiz numerycznych. Współczynnik wyraża się wzorem:

$$\mathsf{MSF}_{i} = \frac{\mathbf{\Phi}_{ai}^{\mathsf{T}} \mathbf{\Phi}_{mi}}{\mathbf{\Phi}_{mi}^{\mathsf{T}} \mathbf{\Phi}_{mi}}, \qquad (2.15)$$

gdzie:

 $\mathbf{\phi}_{mi}$ - j-ta postać drgań otrzymana w wyniku badan eksperymentalnych,

 $\mathbf{\phi}_{ai}$ - j-ta postać drgań otrzymana w wyniku analiz numerycznych.

Współczynnik MSF uwzględnia wielkość amplitudy porównywanych postaci i różnice fazowe. Różne wielkości amplitudy porównywanych wektorów postaci drgań mogą wynikać z tego, że wektory obliczane na podstawie analiz numerycznych są znormalizowane przez macierze mas, natomiast w przypadku wektorów otrzymanych w wyniku badań eksperymentalnych nie jest dokładnie określony rozkład masy konstrukcji. Dlatego też najczęściej normalizuje się pomierzone postaci drgań w odniesieniu do macierzy mas otrzymanej na podstawie analiz numerycznych.

Współczynnik MSF, nie zawiera danych dotyczących jakości dopasowania porównywanych wektorów, a jednie określa współczynnik ich skali.

2.2.3 Normalised Modal Difference

Kryterium Normalised Modal Difference (NMD) (Waters 1995) jest zdefiniowane przy użyciu kryterium MAC i można je zapisać w postaci:

$$\mathsf{NMD}_{ij} = \sqrt{\frac{1 - \mathsf{MAC}_{ij}}{\mathsf{MAC}_{ij}}}.$$
 (2.16)

Kryterium NMD przyjmuje wartość 0 przy pełnej zgodności postaci drgań i wartość równą 1 przy braku zgodności postaci drgań własnych.

Kryterium to oblicza średni błąd ze wszystkich stopni swobody porównywanej postaci. Jest ono bardziej wrażliwe na zmiany w postaciach drgań własnych niż MAC.

2.2.4 Normalized Cross Orthogonality

Kryterium Normalized Cross Orthogonality (NCO) (Lieven & Waters 1994) bazuje na warunkach ortogonalności wektorów postaci drgań. Kryterium NCO podobnie jak MAC wyznacza związek pomiędzy dwoma dowolnymi wektorami postaci drgań własnych. W przeciwieństwie do kryterium MAC, do wyznaczenia kryterium NCO korzysta się z macierzy mas lub sztywności według wzoru:

$$\mathsf{NCO}_{ij} = \frac{\left| \boldsymbol{\varphi}_{mi}^{\mathsf{T}} \mathbf{M} \boldsymbol{\varphi}_{aj} \right|^{2}}{\left(\boldsymbol{\varphi}_{aj}^{\mathsf{T}} \mathbf{M} \boldsymbol{\varphi}_{aj} \right) \left(\boldsymbol{\varphi}_{mi}^{\mathsf{T}} \mathbf{M} \boldsymbol{\varphi}_{mi} \right)}, \qquad (2.17)$$

lub

$$\mathsf{NCO}_{ij} = \frac{\left| \mathbf{\phi}_{mi}^{\mathsf{T}} \mathbf{K} \mathbf{\phi}_{aj} \right|^{2}}{\left(\mathbf{\phi}_{aj}^{\mathsf{T}} \mathbf{K} \mathbf{\phi}_{aj} \right) \left(\mathbf{\phi}_{mi}^{\mathsf{T}} \mathbf{K} \mathbf{\phi}_{mi} \right)}, \qquad (2.18)$$

gdzie:

 $\mathbf{\phi}_{mi}$ - postać drgań otrzymana w wyniku badan eksperymentalnych,

 $\mathbf{\phi}_{ai}$ - postać drgań otrzymana w wyniku analiz numerycznych,

M – macierz mas układu,

K – macierz sztywności układu.

Kryterium NCO może przyjmować wartości od 0 (brak zgodności wektorów postaci drgań) do 1 (pełna zgodność wektorów postaci drgań). Wartość kryterium NCO jest wzmocniona przez macierz mas, co powoduje, że jest ono bardziej wrażliwe na lokalne postaci drgań, którym odpowiada duża energia kinetyczna, niż dla postaci drgań niższego rzędu.

Kryterium NCO może być używane tylko do postaci drgań opisanych liczbami rzeczywistymi, które są znormalizowane przez macierz mas.

2.3 Metody optymalizacji

Zgodnie ze słownikiem języka polskiego (słownik PWN) optymalizacja to:

"1. organizowanie jakichś działań, procesów itp. w taki sposób, aby dały jak największe efekty przy jak najmniejszych nakładach

2. poszukiwanie za pomocą metod matematycznych najlepszego, ze względu na wybrane kryterium, rozwiązania danego zagadnienia gospodarczego, przy uwzględnieniu określonych ograniczeń."

Problemy optymalizacji znane były już w starożytności. Jako jeden z pierwszych znanych przykładów, można przytoczyć poemat Eneida rzymskiego poety Wergiliusza. Opisuje on historię założenia Kartaginy. Założycielom miasta Bogowie postawili jeden z pierwszych problemów optymalizacyjnych. Mieli oni dla ograniczonej długości murów znaleźć optymalną krzywą, taką aby miasto miało jak największą powierzchnię. Później, w czasach nowożytnych, do rozwoju optymalizacji przyczynili się między innymi Newton czy Lagrange. Okres drugiej wojny światowej i prowadzone wtedy działania wojenne miały również wpływ na rozwój optymalizacji. Jednak to rozwój metod komputerowych spowodował, że nastąpił gwałtowny wzrost zainteresowania zadaniami optymalizacji, które bazują na algorytmach numerycznych.

Na chwilę obecną uproszczony podział metod optymalizacji można przedstawić:

- o optymalizacja statyczna:
 - ✓ optymalizacja liniowa (programowanie liniowe)
 - metoda simpleksów
 - zagadnienie dualne
 - -optymalizacja nieliniowa (programowanie nieliniowe)
 - bezgradientowe bez ograniczeń
 - Hooke'a-Jeevesa
 - Rosenbrocka
 - Neldera-Meada
 - Gaussa-Seidla
 - Powella
 - Złotego podziału????
 - Interpolacji kwadratowej??
 - gradientowe bez ograniczeń
 - Gradientu prostego
 - Najszybszego spadku
 - Newtona
 - Gradientu sprzężonego
 - Levenberga-Marquarda
 - gradientowe z ograniczeniami
 - Programowanie kwadratowe
 - Funkcja kary
- o optymalizacja dynamiczna
 - metody klasyczne rachunek wariacyjny
 - zasada maksimum
 - programowanie dynamiczne
- o algorytmy genetyczne, sieci neuronowe

2.3.1 Programowanie liniowe

O problemie programowania linowego możemy mówić wówczas, gdy zarówno funkcja celu jak i funkcje ograniczeń są funkcjami liniowymi (Szymczak 1998).

Postać standardową problemów programowania liniowego możemy przedstawić jako

$$\min_{\boldsymbol{x}\in\boldsymbol{X}_d} F(\boldsymbol{x}) = \boldsymbol{c}^T \boldsymbol{x} = \sum_{j=1}^n c_{jx} X_j, \qquad (2.19)$$

$$\mathbf{X}_{d} = \{ \mathbf{x} \in \mathbb{R}^{n} : [\mathbf{A}] \mathbf{x} = \mathbf{b}, \mathbf{b} \in \mathbb{R}^{m}, \mathbf{x} \ge 0 \},$$
(2.20)

gdzie

- **x** wektor zmiennych niezależnych ($\mathbf{x} \in \mathbb{R}^n$),
- **b** wektor prawych stron ograniczeń ($\mathbf{b} \in \mathbb{R}^m$),
- **A** macierz warunków ($\mathbf{A} \in \mathbb{R}^{m \times n}$),
- **c** wektor współczynników funkcji celu ($\mathbf{c} \in \mathbb{R}^n$).

2.3.1.1 Metoda simpleksów

W metodzie simpleksów rozwiązanie znajduje się poprzez poszukiwanie wierzchołków obszaru ograniczeń, tak aby wartość funkcji celu w kolejnym kroku nie była gorsza niż w poprzednim. Simpleksem nazywany jest n-wymiarowym wielościan wypukły mający n+1 wierzchołków. Algorytm metody simpleksów można podzielić na sześć zasadniczych faz (Amborski 2009).

W fazie pierwszej należy przekształcić układ równań do postaci kanonicznej. Oznacza to takie przedstawienie problemu, aby poszukiwane było maksimum/minimum liniowej funkcji celu, której ograniczenia są funkcjami liniowymi równowartościowymi, a prawe strony tych ograniczeń, jak również zmienne niezależne są nieujemne. W tym celu ograniczenia należy podzielić na dwie kategorie: równościowe i nierównościowe. W przypadku gdy w zadaniu istnieją ograniczenia nierównowartościowe do zadnia należy wprowadzić zmienne osłabiające do lewych stron ograniczeń i przekształcić je w ograniczenia równowartościowe.

Faza druga polega na zbudowaniu tablicy simpleksu, zawierającej macierz jednostkową, która następnie zostaje wybrana jako macierz bazowa. Jeżeli z macierzy ograniczeń nie można wyodrębnić macierzy jednostkowej do zadnia należy wprowadzić zmienne sztuczne i zmodyfikować funkcję celu. Modyfikacja polega na odejmowaniu sumy zmiennych sztucznych pomnożonych przez dodatni współczynnik *w*, który jest co najmniej o rząd większą wartością od współczynnika funkcji celu:

$$F_{1}(\mathbf{x}) = F(\mathbf{x}) - \mathbf{w} \sum_{j=n+1}^{n+p} x_{j}$$
(2.21)

W kolejnej, trzeciej fazie należy stworzyć w dolnej części tablicy wiersz różnic i sprawdzić ich wartości. Gdy w wierszu tym nie występują elementy ujemne, zadanie nie ma lepszego rozwiązania i jest to koniec algorytmu. W przeciwnym wypadku należy przejść do fazy czwartej.

W czwartej fazie należy wybrać z macierzy taki wektor kolumnowy, który będzie odpowiadał największej ujemnej różnicy, a następnie wprowadzić go do bazy.

Następnie w fazie piątej należy wytypować wektory usuwany z bazy. Oblicza się w tym celu ilorazy x_{io} / x_{ik} dla wszystkich dodatnich elementów kolumny i jako wektor usuwany z bazy przyjmuje się ten, którego cechuje najmniejsza wartość ilorazu.

W ostatniej, szóstej fazie należy obliczyć ilorazy kolumnowe i nowy wiersz różnic. Należy zbadać czy w wierszu różnic istnieje jakkolwiek wartość ujemna. Jeżeli tak, należy przekształcić tablicę simpleksów i powrócić do fazy czwartej. W przypadku, gdy wszystkie wartości w wierszu różnic są nieujemne zadanie nie ma lepszego rozwiązania i jest to koniec postępowania.

2.3.1.2 Zagadnienia dualne w programowaniu liniowym

Problemowi pierwotnemu programowania liniowego w postaci:

$$\min_{\boldsymbol{x}\in\boldsymbol{X}_d} F(\boldsymbol{x}) = \boldsymbol{c}^T \boldsymbol{x} = \sum_{j=1}^n c_{j\boldsymbol{x}} \boldsymbol{x}_j, \qquad (2.22)$$

$$\mathbf{X}_{d} = \{ \mathbf{x} \in \mathbb{R}^{n} : [\mathbf{A}] \mathbf{x} \ge \mathbf{b}, \mathbf{b} \in \mathbb{R}^{m}, \mathbf{x} \ge 0 \},$$
(2.23)

odpowiada symetryczny problem dualny programowania liniowego maksymalizacji dualnej funkcji celu \mathbf{F}_{p} (Szymczak 1998):

$$\max_{\boldsymbol{y}\in\boldsymbol{Y}_d}\boldsymbol{F}_{D}(\boldsymbol{y}) = \boldsymbol{b}^{\mathsf{T}}\boldsymbol{y}$$
(2.24)

$$\mathbf{Y}_{d} = \{ \mathbf{y} \in \mathbb{R}^{m} : [\mathbf{A}]^{T} \, \mathbf{y} \le \mathbf{c}, \mathbf{y} \ge \mathbf{0} \}$$
(2.25)

W zagadnieniach dualnych rozróżniamy również zadania dualne niesymetryczne. W takim wypadku przykładowemu zadaniu programowania liniowego o ograniczeniach równowartościowych postaci:

$$\min_{\mathbf{x}\in X_d} F(\mathbf{x}) = \mathbf{c}^{\mathsf{T}} \mathbf{x} = \sum_{j=1}^n c_{jx} x_j, \qquad (2.26)$$

$$\mathbf{X}_{d} = \{ \mathbf{x} \in \mathbb{R}^{n} : [\mathbf{A}]\mathbf{x} = \mathbf{b}, \mathbf{b} \in \mathbb{R}^{m}, \mathbf{x} \ge 0 \},$$
(2.27)

odpowiadania niesymetryczne zadanie dualne:

$$\max_{\boldsymbol{y}\in\boldsymbol{Y}_d} \boldsymbol{F}_{D}(\boldsymbol{y}) = \boldsymbol{b}^{\mathsf{T}} \boldsymbol{y}$$
(2.28)

$$\mathbf{Y}_{d} = \{ \mathbf{y} \in \mathbb{R}^{m} : [\mathbf{A}]^{\mathsf{T}} \, \mathbf{y} \le \mathbf{c}, \mathbf{y} \ge \mathbf{0} \}$$
(2.29)

Twierdzenie o dualności:

1) Jeżeli jeden z problemów: dualny albo pierwotny ma rozwiązanie optymalne \mathbf{x}^* , to i drugi je ma \mathbf{y}^* , przy czym zachodzi równość $F_p(\mathbf{x}^*) = F_D(\mathbf{y}^*)$.

2) Jeżeli jeden z problemów nie ma rozwiązania, ze względu na nieograniczoność funkcji celu $F_p(\mathbf{x}^*) \rightarrow \infty$ lub $F_D(\mathbf{y}^*) \rightarrow \infty$, to zbiór rozwiązań drugiego problemu jest pusty.

Na podstawie twierdzeń o dualności można stwierdzić, że możemy wykazać optymalne rozwiązanie problemu przy znajomości rozwiązania dualnego tego problemu.

2.3.2 Programowanie nieliniowe

Z programowaniem nieliniowym mamy do czynienia wówczas gdy funkcja celu jest funkcją liniową bądź nieliniową przy ograniczeniach również będących funkcjami dowolnymi (linowymi bądź nieliniowymi).

2.3.2.1 Metody bezgradientowe

2.3.2.1.1 Metoda Hooke'a-Jeevesa

Bezgradientowa metoda Hooke'a-Jeevesa wyznacza kierunek za pomocą wykonania sekwencji próbnych kroków o określonej długości w kolejnych kierunkach bazowych. Dla prostokątnego układu współrzędnych kierunki wyznaczają zwykle wersory osi układu współrzędnych (Amborski 2009).

W metodzie tej każdorazowo sprawdzana jest wartość funkcji w danym punkcie, zaczynając od wybranego punktu startowego. Jeżeli wartość funkcji po wykonaniu próbnego kroku jest mniejsza wykonuje się w tym kierunku krok roboczy, w przeciwnym wypadku należy zmienić znak kroku próbnego bądź zredukować wartość kroku próbnego i ponownie obliczyć wartość funkcji w nowym punkcje. Na tej podstawie określa się kierunek opadania funkcji. Procedurę powtarza się dla każdego kierunku bazowego, a następnie sprawdza się czy został spełniony warunek zakończenia obliczeń, czyli na przykład:

$$\left|f(\mathbf{x}_{i}) < f(\mathbf{x}_{i+1})\right| < \varepsilon, \tag{2.30}$$

gdzie ε jest ustalonym na początku wykonywania zadnia warunkiem zakończenia obliczeń. Jako warunek zakończenia obliczeń można także przyjąć moment, w którym długość kroku próbnego jest mniejsza od przyjętej wartości ε . Jeżeli warunek zakończenia obliczeń nie jest spełniony, nowy punktu przyjmuje się jako punktu bazowy i powtarza procedurę.

2.3.2.1.2 Metoda Rosenbrock'a

W metodzie Rosenborck'a poszukujemy minimum funkcji w kolejnych, ortogonalnych kierunkach. Metoda ta podobna jest do metody Hooke'a - Jeevesa, z tą różnica że w odróżnieniu od metody poprzednio omawianej pozwala ona na obrót układu współrzędnych (Gawrylczyk 2011).

Algorytm metody sprawdza wartość funkcji w punkcie startowym, a następnie wykonuje krok w danym kierunku próbnym. Jeżeli wartość funkcji w tym punkcie jest mniejsza niż w poprzednim to wykonujemy w tym kierunku krok roboczy, w przeciwnym wypadku redukujemy długość kroku bądź wykonujemy krok w kierunku przeciwnym i sprawdzamy wartość funkcji. Procedurę należy powtórzyć dla wszystkich kierunków bazowych, czyli w pierwszym etapie dla wszystkich wersorów osi układu współrzędnych. Jeżeli w tym momencie spełniony jest warunek stopu kończymy algorytm. W przypadku przeciwnym należy obrócić układ współrzędnych, tak aby w bazie kierunków znalazł się kierunek największej poprawy. Za taki kierunek możemy uważać wektor wypadkowy wektorów sum udanych kroków próbnych w poprzednim etapie. Dla obróconego układu należy powtórzyć całą procedurę.

2.3.2.1.3 Metoda Neldera – Meada

Metoda Neldera – Meada zwana jest również metodą pełzającego simpleksu. Nazwa ta wywodzi się z faktu że każdorazowo przeprowadza się operacje na n+1 punktach, które tworzą simpleks. Znajduje ona zastosowanie dla funkcji nieróżniczkowalnych, ponieważ nie wymaga liczenia pochodnej (Gawrylczyk 2011).

Algorytm metody rozpoczyna się od etapu porządkowania, w którym należy uporządkować n+1 punktów według wartości funkcji w węzłach:

$$f(\mathbf{x}_{n+1}) \ge \dots \ge f(\mathbf{x}_{i}) \ge \dots \ge f(\mathbf{x}_{1}).$$

$$(2.31)$$
Kolejny etap algorytmu to nazywany jest odbiciem. W pierwszej kolejności należy wyznaczyć środek ciężkości punktów (rysunek 2.1) według wzoru:

Rysunek 2.1 Etap porządkowania i znajdywanie środka ciężkości punktów dla simpleksu dwu-wymiarowego

Dla płaszczyzny dwuwymiarowej środek ciężkości jest środkiem odcinka, który łączy oba punkty. Następnie należy wyznaczyć punkt próbny, czyli odbicie punktu \mathbf{x}_{n+1} (rysunek 2.2) według wzoru:

$$\mathbf{x}_{r} = \mathbf{c} + \alpha (\mathbf{c} - \mathbf{x}_{n+1}), \qquad \alpha > 0, \tag{2.33}$$

przy czym α jest współczynnikiem odbicia.

Rysunek 2.2 Etap odbicia dla simpleksu dwu-wymiarowego

Kolejny etap to zbadanie wartości funkcji w nowym punkcie \mathbf{x}_r . W zależności od wartości funkcji $f(\mathbf{x}_r)$ w stosunku do pozostałych wartości funkcji mamy trzy różne warianty postępowania.

W przypadku pierwszym może zaistnieć:

$$f(\mathbf{x}_r) < f(\mathbf{x}_1). \tag{2.34}$$

Oznacza to, że nowy punkt \mathbf{x}_r jest lepszy od wszystkich punktów w dotychczasowym simpleksie i poszukiwanie rozwiązania w tym kierunku wydaje się być celowe. W takim wypadku dokonujemy ekspansji simpleksu w tym kierunku i obliczamy punkt \mathbf{x}_e (rysunek 2.3), który zastąpi \mathbf{x}_{n+1} w nowym simpleksie, korzystając ze wzoru:

$$\mathbf{x}_{e} = \mathbf{c} + \beta(\mathbf{x}_{r} - \mathbf{c}), \qquad (2.35)$$

gdzie β oznacza współczynnik ekspansji i $\beta > 0$.

Rysunek 2.3 Etap ekspansji dla simpleksu dwu-wymiarowego.

Drugą możliwością jest sytuacja gdy:

$$f(\mathbf{x}_n) \ge f(\mathbf{x}_n) \ge f(\mathbf{x}_1), \tag{2.36}$$

czyli nowa wartość funkcji jest wartością pośrednią. W takim wypadku należy wykonać operację odbicia, a więc wyznaczyć nowy simpleks zastępując punkt \mathbf{x}_{n+1} punktem \mathbf{x}_r i powrócić do punktu pierwszego algorytmu, czyli szeregowania wartości funkcji w zależności od ich wartości.

Ostatnią możliwością jest sytuacja gdy:

$$f(\mathbf{x}_n) < f(\mathbf{x}_r). \tag{2.37}$$

W takim wypadku nowa wartość funkcji jest gorsza od pozostałych i należy wykonać kontrakcję (ściśnięcie simpleksu) w jednym z dwóch kierunków w zależności od wartości funkcji w punkcie f_r i f_{n+1} :

$$\mathbf{x}_{e} = \mathbf{c} + \gamma (\mathbf{x}_{n+1} - \mathbf{c}), \quad g dy \quad f_{r} \ge f_{n+1},$$
 (2.38)

$$\mathbf{x}_e = \mathbf{c} + \gamma (\mathbf{x}_r - \mathbf{c}), \quad g dy \quad f_r < f_{n+1}, \tag{2.39}$$

przy czym γ jest współczynnikiem kontrakcji o wartościach (0,1). Jeżeli nowy punkt spełnia warunki $f(\mathbf{x}_e) < f(\mathbf{x}_r)$ oraz $f(\mathbf{x}_e) < f(\mathbf{x}_{n+1})$ to należy zbudować na tym punkcie nowy simpleks i wrócić na początek algorytmu. W przeciwny wypadku należy powtórzyć operację kontrakcji lub wykonać operację zmniejszenia simpleksu, czyli ściśnięcia całego simpleksu wokół punktu \mathbf{x}_1 o najmniejszej dotychczas wartości funkcji $f(\mathbf{x}_1)$ (rysunek 2.4). Należy dla *i* wierzchołków wyznaczyć nowe współrzędne punktów według wzoru:

$$\mathbf{x}_{i} = \mathbf{x}_{1} + \gamma (\mathbf{x}_{i} - \mathbf{x}_{1}), \quad i = 2, ..., n+1.$$
 (2.40)

MOST WIEDZY Pobrano z mostwiedzy.pl

Rysunek 2.4 Etap ekspansji i zmniejszenia dla simpleksu dwu-wymiarowego

Często do algorytmu simpleksu Neldera-Meada wprowadzany jest zabieg periodycznej odnowy. Polega on na takim przekształceniu simpleksu, aby jego kształt był regularny. Program wykonuje go wtedy, gdy w jednym kierunku simpleks jest za bardzo rozciągnięty i wydłużony, a w drugim za bardzo ściśnięty.

W metodzie simpleksu Neldera-Meada obliczenia prowadzone są od momentu, aż odległości pomiędzy wierzchołkami simpleksu w pobliżu poszukiwanego minimum osiągną wartość mniejszą od \mathcal{E} , które jest deklarowanym na początku zadnia warunkiem stopu.

2.3.2.1.4 Metoda Gaussa – Seidla

W metodzie Gaussa-Seidla minimum poszukuje się w ortogonalnych kierunkach bazowych, które tworzą wersory osi układu współrzędnych (Amborski 2009). Rozpoczynając od wyboru punktu startowego obliczamy wartość funkcji i przeprowadzamy minimalizację w kierunku pierwszego wersora. W ten sposób należy dojść do punktu styczności z poziomicą, a następnie poszukiwać minimum funkcji w kolejnym kierunku, a wiec do punktu styczności z kolejną poziomicą. Algorytm należy powtarzać, dla wszystkich kierunków zbioru argumentów, a następnie należy sprawdzić przyjęty na wstępie warunek zakończenia obliczeń, który może być wyrażony jako:

$$\left|f(\mathbf{x}_{i}) < f(\mathbf{x}_{i+1})\right| < \varepsilon, \tag{2.41}$$

gdzie ε jest ustalonym na początku wykonywania zadnia warunkiem zakończenia obliczeń.

Jeżeli warunek nie jest spełniony, nowy punktu przyjmuje się jako punktu bazowy i powtarza procedurę.

2.3.2.1.5 Metoda Powella

Metoda Powella należy do metod kierunków sprzężonych. Oznacza to, że w kolejnych krokach kierunki poszukiwań dobierane są w taki sposób, aby były wzajemnie sprzężone i jak

najszybciej doprowadzały do rozwiązania problemu optymalizacji (Szymczak 1998; Amborski 2009).

Definicja

Kierunek $z \in \mathbb{R}^n$ sprzężony do pozostałych $\mathbf{x}_i \in \mathbb{R}^n$ względem symetrycznej dodatnio określonej macierzy $\mathbf{A} \in \mathbb{R}^{n \times n}$ to taki kierunek dla którego:

$$\mathbf{z}^{T}\mathbf{A}\mathbf{x}_{i}=0, \quad i=1,2,\dots,n.$$
 (2.42)

Twierdzenie

Jeżeli punkt **b**₁ *jest minimum formy liniowo-kwadratowej:*

$$F = \mathbf{e}^{\mathsf{T}}\mathbf{x} + \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}, \qquad (2.43)$$

w kierunku **d** i jeżeli punkt **b**₂ jest również minimum w tym samym kierunku (ale z innego punktu startowego), to kierunek łączący te dwa minima $(\mathbf{b}_2 - \mathbf{b}_1)$ jest sprzężony z kierunkiem **d**.

Twierdzenie

Jeżeli $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n$ są kierunkami wzajemnie sprzężonymi względem dodatnio określonej macierzy **A** i stanowią bazę danej przestrzeni, to minimum funkcji:

$$F(\mathbf{x}) = \mathbf{e}^{\mathsf{T}}\mathbf{x} + \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}, \qquad (2.44)$$

można wyznaczyć w skończonej liczbie iteracji w wyniku minimalizacji tej funkcji wzdłuż każdego z kierunków **z**, tylko raz.

W metodzie Powella kolejny sprzężony kierunek wyznacz się zgodnie ze wzorem:

$$\mathbf{z}_{n+1} = \frac{\mathbf{x}_{n+1} - \mathbf{x}_1}{\|\mathbf{x}_{n+1} - \mathbf{x}_1\|},$$
(2.45)

gdzie:

 \mathbf{Z}_{n+1} - jest nowym kierunkiem,

 \mathbf{x}_{n+1} - bieżącym punkt minimalizacji,

 \mathbf{X}_1 - punktem startowym.

Po obliczeniu nowego kierunku, należy sprawdzić czy układ nowych wektorów jest liniowo niezależny. Gdy kierunki są linowo zależne lub są bliskie kierunkom linowo zależnym należy zmienić je na układ początkowych wersorów bazy podstawowej.

Metoda Powella ma szereg modyfikacji. Jeden z wariantów tej metody, który pozwala uniknąć sytuacji, kiedy kierunki są wzajemnie linowo zależne, dopuszcza inną modyfikację bazy. Nowy kierunek sprzężony zostaje tu wstawiony w miejsce kierunku, w którym został wykonany najdłuższy krok, a nie jak w podstawowej metodzie Powella na koniec bazy.

Metoda ta wykorzystywana jest zwykle do funkcji o poziomicach w kształcie wąskich dolin, ponieważ stosunkowo szybko prowadzi do zbieżności.

2.3.2.1.6 Metoda Złotego Podziału

Metoda złotego podziału polega na skracaniu badanego przedziału w kolejnych krokach według zależności (Szymczak 1998):

$$\frac{x_{2i} - a_i}{b_i - a_i} = \frac{b_i - x_{1i}}{b_i - a_i} = 0,618,$$
(2.46)

gdzie

a, - lewy koniec przedziału w *i*-tej iteracji,

b_i - prawy koniec przedziału w *i*-tej iteracji,

 x_{1i} , x_{2i} – wewnętrzne punkty podziału odcinka (a_i , b_i) w *i*-tym kroku iteracji.

Przedstawiony powyżej iloraz odwołuje się do zasady złotego podziału, która stosowna była już w czasach starożytnych przy kształtowaniu greckich budowli.

W pierwszym kroku algorytmu należy wyznaczyć wartości funkcji na końcach przedziału oraz sprawdzić, czy długość badanego odcinka nie jest mniejsza od zdefiniowanej na początku dokładności obliczeń. Następnie korzystając z równania (2.46) wyznaczamy wewnętrzne punkty podziału, dla których obliczamy wartość funkcji.

Jeżeli $f(x_{21}) > f(x_{1i})$ to przyjmujemy w następnym korku:

$$b_{i+1} = x_{2i}, \ a_{i+1} = a_1, \ x_{2(i+1)} = x_{1i}$$
(2.47)

i odrzucamy przedział (x_{2i} , $b_i > .$ Z równania (2.46) obliczamy tylko $x_{1(i+1)}$.

W przeciwnym wypadku, czyli gdy $f(x_{2i}) < f(x_{1i})$ otrzymujemy:

$$a_{i+1} = x_{1i}, \ b_{i+1} = b_1, \ x_{1(i+1)} = x_{2i}$$
 (2.48)

i odrzucamy przedział ($a_i, x_{1i} >$. Z równania (2.46) obliczamy tylko $x_{2(i+1)}$.

Kolejne kroki algorytmu wykonujemy aż do momentu kiedy przedział zostanie zredukowany, tak że jego długość będzie mniejsza od założonej wstępnie dokładności.

2.3.2.1.7 Metoda interpolacji kwadratowej

W metodzie interpolacji kwadratowej minimalizowaną funkcję celu f(x)aproksymujemy funkcją kwadratową $f_{kwad}(x)$. Algorytm metody zakłada, że dla trzech punków x_1, x_2, x_3 obliczamy wartości funkcji celu $f(x_1), f(x_2), f(x_3)$. Na podstawie tych wartości, wykorzystując wzór na interpolację Lagrange'a, możemy opisać funkcję kwadratową przechodzącą przez te trzy zadane punkty w postaci (Gawrylczyk 2011):

$$f_{kwad}(x) = \left[\frac{(x-b)(x-c)}{(a-b)(a-c)}\right]f(a) + \left[\frac{(x-a)(x-c)}{(b-a)(b-c)}\right]f(b) + \left[\frac{(x-a)(x-b)}{(c-a)(c-b)}\right]f(c).$$
(2.49)

Wiedząc że $f_{kwad}(x)$ jest kwadratowym przybliżeniem f(x) w przedziale $\langle x_1, x_3 \rangle$, można podać współrzędną jej ekstremum w tym przedziale:

$$x_{\min} = 0.5 \frac{(b^2 - c^2)f(a) + (c^2 - a^2)f(b) + (a^2 - b^2)f(c)}{(b - c)f(a) + (c - a)f(b) + (a - b)f(c)}.$$
(2.50)

Następnym krokiem algorytmu jest zmiana jednego z początkowo wybranych punków zewnętrznych na X_{min} . W ten sposób nowe granice przedziału tworzą jeden z punktów początkowych oraz X_{min} . Punkt wewnętrzny dobierany jest tak, aby wartość funkcji w tym punkcie była mniejsza niż dla punktów granicznych. W ten sposób w kolejnych krokach algorytmu zawęża się przedział aż do momentu, w którym długości przedziału będzie mniejsza od założonej początkowo dokładności obliczeń.

2.3.2.2 Metody gradientowe bez ograniczeń

2.3.2.2.1 Metoda gradientu prostego

Metoda gradientu prostego wyznacza kolejne kierunki minimalizacji funkcji na podstawie obliczeń gradientu funkcji w danym punkcie, a więc funkcja celu musi być funkcją różniczkowalną (Amborski 2009).

Pierwszym etapem metody jest obliczenie dla wybranego punktu startowego \mathbf{x}_{0} , zarówno wartości funkcji $f(\mathbf{x}_{0})$ w tym punkcie jak i jej gradientu $\mathbf{g}(\mathbf{x}_{0})$. Kierunek poszukiwań określa się jako $\mathbf{d} = -\mathbf{g}(\mathbf{x}_{i})$ i w tym kierunku wykonuje się kolejny krok przechodząc do następnego punktu. Kolejnym etapem jest zbadanie wartości funkcji w nowym punkcie. W przypadku gdy $f(\mathbf{x}_{n+1}) > f(\mathbf{x}_{n})$, należy zmniejszyć długość kroku i ponownie zbadać wartość funkcji. Jeżeli w kolejnych redukcjach kroku, warunek nie zmienia swojej postaci należy zakończyć działanie algorytmu. Gdy $f(\mathbf{x}_{n+1}) < f(\mathbf{x}_{n})$ należy w nowym punkcie obliczyć wartość gradientu i zbadać warunek stopu czyli czy $|\mathbf{g}^{\mathsf{T}}\mathbf{g}| < \varepsilon$, gdzie ε jest założoną na początku algorytmu dokładnością wyznaczenia minimum. Gdy warunek jest spełniony kończymy działanie algorytmu. W przeciwnym wypadku należy wykonać krok w kierunku $\mathbf{d} = -\mathbf{g}(\mathbf{x}_{n+1})$ i kontynuować działanie algorytmu.

2.3.2.2.2 Metoda najszybszego spadku

Metoda najszybszego spadku bazuje na algorytmie zbliżonym do metody gradientu prostego. Różnica w stosunku do poprzednio omawianej metody polega na tym, ze kolejne wykonywane kroki w kierunku wyznaczonym przez gradient funkcji nie mają stałej długości, a dobrane są tak aby na danym kierunku osiągnąć minimum badanej funkcji celu (Amborski 2009).

Cechą charakterystyczną metody jest jej "zygzakowaty" charakter. Jest to spowodowane tym, że przez cały przebieg algorytmu metoda bazuje tylko na dwóch prostopadłych do siebie kierunkach poszukiwań.

2.3.2.2.3 Metoda Newtona

Metoda Newtona bazuje na aproksymacjach kwadratowych funkcji $f(\mathbf{x})$ w kolejnych punkach. Cechą charakterystyczną metody jest to, że wymaga ona zarówno obliczeń gradientu (wektora pierwszych pochodnych cząstkowych funkcji) jak i hesjanu (macierz drugich pochodnych funkcji). Algorytm wyznacza kolejne punkty, tak aby gradient aproksymującej funkcji wynosił w tym punkcie zero (Stachurski 2009).

Algorytm metody Newtona rozpoczyna się od przyjęcia punktu startowego \mathbf{x}_0 i przyjęciu numeru kroku k = 0. Następnie należy obliczyć gradient funkcji i jej hesjan w punkcie i sprawdzić warunek zakończenia obliczeń. Jeżeli nie jest spełniony to należy przejść do

następnego kroku algorytmu, to znaczy wyznaczyć nowy kierunek poszukiwań korzystając z równania:

$$\mathbf{d}_{k} = -[\nabla^{2} f(\mathbf{x}_{k})]^{-1} \nabla f(\mathbf{x}_{k}).$$
(2.51)

Na tym kierunku należy wyznaczyć punkt minimalizujący funkcję celu w kierunku \mathbf{d}_k w ktym kroku i wyznaczyć kolejny punkt według wzoru:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - [\nabla^2 f(\mathbf{x}^k)]^{-1} \nabla f(\mathbf{x}^k), \qquad (2.52)$$

a następnie podstawić k = k + 1 i rozpocząć dzianie algorytmu od początku dla nowego punktu startowego.

Metoda Newtona wykazuje dobrą zbieżność w pobliżu poszukiwanego minimum, natomiast daleko od minimum, funkcja zwykle cechuje się wolną zbieżnością lub jej brakiem.

2.3.2.2.4 Metoda gradientu sprężonego

Metoda ta ma podobne założenia jak metoda najszybszego spadku.

(

Algorytm metody zakłada przyjęcie wstępnego punku startowego i warunku stopu kończącego obliczenia. W kolejnym etapie należy wyznaczyć wartość funkcji w punkcie startowym i jej gradient oraz jako kierunek poszukiwań przyjąć (Amborski 2009):

$$\mathbf{d}_{\nu} = -\nabla f(\mathbf{x}_{\nu}). \tag{2.53}$$

Następnie należy dokonać minimalizacji funkcji celu $f(\mathbf{x}^k + t\mathbf{d}^k)$ w kierunku \mathbf{d}_k . W ten sposób otrzymuje się nowy punkt \mathbf{x}_{k+1} dla którego wyznacza się kolejny sprzężony kierunek poszukiwań:

$$\mathbf{d}_{k+1} = -\nabla f(\mathbf{x}_{k+1}) + \beta_{k+1} \mathbf{d}_k, \qquad (2.54)$$

gdzie:

$$\beta_{k+1} = \frac{\nabla^T f(\mathbf{x}_{k+1}) [\nabla^T f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_k)]}{|\nabla f(\mathbf{x}_k)|^2}.$$
(2.55)

W przypadku gdy:

$$|\nabla f(\mathbf{x}^{k})| < \varepsilon, \tag{2.56}$$

przy czym \mathcal{E} jest przyjętą dokładnością obliczeń, należy zakończyć działanie algorytmu.

W przeciwnym wypadku należy wykonać krok w kierunku \mathbf{d}_{k+1} , dobrany tak aby osiągnąć minimum na tym kierunku i przejeść do następnego punku, dla którego należy powtórzyć algorytm.

2.3.2.2.5 Metoda Levenberga – Marquardta

Metoda Levenberga - Marquardta powstała z połączenia dwóch metod optymalizacji: metody najszybszego spadku i metody Newtona. Algorytm zbudowany jest w ten sposób aby wykorzystywać najkorzystniejsze cechy obu metod, tak więc z dala od minimum funkcji zachowuje się jak metoda najszybszego spadku, blisko minimum zaś zaczyna zachowywać się jak metoda Newtona (Góra 2010).

Algorytm metody zaczyna się od przyjęcia dla numeru iteracji k = 1, punktu startowego $\mathbf{x}_k = \mathbf{x}_0$ oraz parametru λ , który decyduje o tym czy posługujemy się metodą podobną do metody Newtona czy najszybszego spadku. Początkowo należy przyjąć parametr λ o stosunkowo dużej wartości. Duża wartość parametru λ sprawia, że metoda wyznaczania minimum zachowuje się podobnie jak metoda najszybszego spadku. Gdy przyjmy małą wartość λ metoda zachowuje się podobnie do metody Newtona i zapewnia szybką zbieżność w pobliżu punktu minimalizowanego. Należy również założyć warunek stopu dla metody, który może być sformowany na przykład jako:

$$\left\|\nabla f(\mathbf{x}_{k})\right\| < \varepsilon, \tag{2.57}$$

$$\left\| \mathsf{ub} \left\| \nabla f(\mathbf{x}_k) \right\|^2 < \varepsilon, \tag{2.58}$$

$$\left\|\mathbf{u}b\right\| \mathbf{x}_{k+1} - \mathbf{x}_{k} \left\| < \varepsilon, \tag{2.59}$$

$$\left| \operatorname{lub} \left| f(\mathbf{x}_{k+1}) - f(\mathbf{x}_{k}) \right| < \varepsilon.$$
(2.60)

W pierwszym kroku algorytmu obliczamy wartość funkcji w punkcie startowym $f(\mathbf{x}_0)$, gradient funkcji w tym punkcie $\nabla f(\mathbf{x}_0)$ oraz hesjan funkcji $\nabla^2 f(\mathbf{x}_0)$. Należy także sprawdzić warunek stopu. Jeżeli jest on spełniony to punkt \mathbf{x}_0 jest wynikiem optymalizacji. W przypadku przeciwnym należy wykonać kolejny krok algorytmu.

Kolejnym krokiem jest wyznaczanie punktów próbnych \mathbf{x}_p według wzoru:

$$\mathbf{x}_{p} = \mathbf{x}_{k} - [\nabla^{2} f(\mathbf{x}_{k}) + \lambda \mathbf{I}]^{-1} \nabla f(\mathbf{x}_{k}).$$
(2.61)

Po wyznaczeniu punktu próbnego należy sprawdzić jego wartość funkcji celu w stosunku do wartości dla poprzedniego punktu.

Jeżeli $f(\mathbf{x}_{\rho}) > f(\mathbf{x}_{k})$ należy zwiększyć wartość λ n- krotnie i ponownie wrócić do wzoru (2.61) i wyznaczyć nowy punkt \mathbf{x}_{ρ} .

Jeżeli $f(\mathbf{x}_{\rho}) < f(\mathbf{x}_{k})$ należy zmniejszyć wartość λ n- krotnie i przyjąć za następny punkt $\mathbf{x}_{k+1} = \mathbf{x}_{\rho}$ i wrócić do punktu pierwszego algorytmu.

2.3.2.3 Metody optymalizacji nieliniowej z ograniczeniami

2.3.2.3.1 Metoda Lagrange'a

Metoda ta bazuje na wyprowadzeniu funkcji Lagrange'a i poszukiwaniu jej punktu siodłowego (Amborski 2009).

Dla problemu optymalizacji nieliniowej funkcji celu z ograniczeniami:

$$\min_{\mathbf{x}\in\mathbf{X}\subset\mathbb{R}^n} f(\mathbf{x}), \tag{2.62}$$

przy ograniczeniach równowartościowych:

$$g_i(\mathbf{x}) = b_i, \quad i = 1, 2, ..., m,$$
 (2.63)

zapisujemy funkcje Lagrange'a tego problemu w postaci sumy funkcji celu i kombinacji liniowej ograniczeń:

$$L(\mathbf{x}, \mathbf{l}) = f(\mathbf{x}) + \sum_{i=1}^{m} I_i [b_i - g_i(\mathbf{x})].$$
(2.64)

Jako warunek konieczny istnienia minimum funkcji można zapisać:

$$\frac{df(\mathbf{x})}{dx_{j}} - \sum \frac{dg(\mathbf{x})}{dx_{j}} = 0, \qquad j = 1, 2, \dots, n,$$
(2.65)

więc

$$\frac{dL(\hat{\mathbf{x}},\hat{\mathbf{l}})}{dx} = 0, \quad j = 1, 2, ..., n,$$
(2.66)

$$\frac{dL(\mathbf{x}, \mathbf{l})}{dl_{j}} = 0, \quad j = 1, 2, ..., m.$$
(2.67)

Jest to warunek istnienia punktu siodłowego funkcji $L(\mathbf{x}, \mathbf{l})$. Funkcja osiąga w tym punkcie minimum względem zmiennej \mathbf{x} i maksimum względem zmiennej \mathbf{l} .

Bardzo często przy rozwiązywaniu zadań optymalizacji, problemowi towarzyszy również zagadnienie dualne. Pozwala to na rozwiązywanie problemów minimalizacji również dla zadań z ograniczeniami nierównościowymi:

$$\min_{\mathbf{x}\in\mathcal{X}\subset\mathbb{R}^n} f(\mathbf{x}),\tag{2.68}$$

przy ograniczeniach równowartościowych i różnowartościowych:

$$g_i(\mathbf{x}) = 0, \quad i = 1, 2, ..., m,$$
 (2.69)

$$g_i(\mathbf{x}) \le 0, \quad i = 1, 2, ..., n.$$
 (2.70)

Zadanie bazowe nazywane jest wtedy prymalnym i jako funkcja Lagrange'a ma postać:

$$L(\mathbf{x}, I_{E}, I_{I}) = f(\mathbf{x}) + \sum_{i \in E} I_{i}g_{i}(\mathbf{x}) + \sum_{j \in I} I_{j}g_{j}(\mathbf{x}), \qquad (2.71)$$

któremu towarzyszy zadanie dualne tego problemu:

$$\max_{(l_E, l_i)} L_D(l_E, l_i) \tag{2.72}$$

przy ograniczeniach $I_{l} \ge 0$.

2.3.2.3.2 Metody funkcji kary

Metody stosowania funkcji kary, można uznać za najbardziej popularne sposoby rozwiązywania zadań optymalizacji nieliniowych z ograniczeniami. Metody te polegają na wyeliminowaniu ograniczeń i włączeniu ich do funkcji celu.

Przykładowy problem optymalizacji można przedstawić w postaci:

$$\min_{\mathbf{x}\in X\subset\mathbb{R}^n} f(\mathbf{x}), \tag{2.73}$$

przy ograniczeniach:

$$g_i(\mathbf{x}) = 0, \quad i = 1, 2, ..., m,$$
 (2.74)

$$g_i(\mathbf{x}) \le 0, \quad i = 1, 2, ..., n.$$
 (2.75)

W metodach funkcji kary funkcja celu zostaje zmodyfikowana poprzez dołączenie do niej składnika, który dodaje karę za niespełnienie ograniczeń. Funkcje kary należy dobrać w ten sposób, aby w przypadku gdyby punkt nie spełnia ograniczeń przyjmowała ona wartości większe od zera, a gdy punkt spełnia ograniczenia była równa zeru.

Problem minimalizacji funkcji celu waz z funkcją kary można przedstawić jako:

$$\min_{\mathbf{x}\in\mathcal{X}\subset\mathbb{R}^n}(f(\mathbf{x})+\mu\rho(\mathbf{x})),\tag{2.76}$$

gdzie

 $\mu\,$ - jest parametrem funkcji kary i $\,\mu\,{>}\,0$

 $p(\mathbf{x})$ - jest funkcją kary postaci:

$$p(\mathbf{x}) = \varphi[g_i(\mathbf{x})] + \psi[g_i(\mathbf{x})], \qquad (2.77)$$

przy założeniach, że φ, ψ - to funkcje ciągłe takie, że:

$$\varphi(0) = 0,$$
 (2.78)

$$\varphi(\mathbf{y}) > 0 \quad dla\, \mathbf{y} \neq \mathbf{0}, \tag{2.79}$$

$$\psi(\mathbf{y}) = 0 \quad dla\,\mathbf{y} \le 0, \tag{2.80}$$

$$\psi(y) > 0 \quad dla \, y > 0.$$
 (2.81)

W metodach z funkcją kary wyróżnić można dwie podstawowe metody:

- ✓ metoda funkcji kary zewnętrznej,
- ✓ metoda funkcji kary wewnętrznej.

Metoda kary zewnętrznej dla punktów wychodzących poza ograniczenie dodaje dodatkową wartość do funkcji celu. W algorytmie metody kary zewnętrznej powszechne jest stosowanie ciągu dodatnich wartości parametru kary, które są rozbieżne do +∞.

Algorytm zakłada wybranie na początku kryterium stopu ε , wybranie punktu początkowego \mathbf{x}_0 , oraz współczynnika funkcji kary $\mu > 0$. Następnie należy rozwiązać zadanie minimalizacji w postaci:

$$\min_{\mathbf{x}\in\mathbf{x}\in\mathbb{R}^n}(f(\mathbf{x})+\mu p(\mathbf{x})). \tag{2.82}$$

Jeżeli \mathbf{x}_{k+1} jest rozwiązaniem optymalnym powyższego problemu należy sprawdzić warunek:

$$\mu_k p(\mathbf{x}_{k+1}) < \varepsilon. \tag{2.83}$$

Jeżeli jest on spełniony to kończymy działanie algorytmu. W przeciwnym wypadku należy podstawić k = k + 1, zwiększyć wielkość parametru kary i wykonać kolejny przebieg algorytmu.

Metoda funkcji kary wewnętrznej jest nazywana inaczej funkcją bariery. Stosuje się ją wyłącznie do ograniczeń nierównowartościowych, ponieważ funkcja kary w tym przypadku zdefiniowana jest tylko w zbiorze punktów dopuszczalnych, a granica nie należy do tego zbioru. W algorytmie tym kara dodawana jest w przypadku zbliżaniu się punktów do brzegów obszaru dopuszczonego.

Algorytm zakłada wybranie na początku kryterium stopu ε , wybranie punktu początkowego \mathbf{x}_0 , takiego, że $g_i(\mathbf{x}_0) < 0$ oraz współczynnika funkcji kary $\mu > 0$. Następnie należy rozwiązać zadanie minimalizacji w postaci:

$$\min_{\mathbf{x}\in\mathbb{P}^n}(f(\mathbf{x})+\mu p(\mathbf{x})),\tag{2.84}$$

przy ograniczeniach:

$$g_i(\mathbf{x}) < 0, \quad i = 1, 2, ..., n.$$
 (2.85)

Największym problem jest zabezpieczenie się przed wyjściem poza obszar punktów spełniających warunek $g_i(\mathbf{x}_0) < 0$, jak również znalezienie punktu startowego który leży w obszarze dopuszczalnym. Jeżeli \mathbf{x}_{k+1} jest rozwiązaniem optymalnym powyższego problemu należy sprawdzić warunek:

$$\mu^k \rho(\mathbf{x}_{k+1}) < \varepsilon. \tag{2.86}$$

Jeżeli jest on spełniony to kończy się działanie algorytmu. W przeciwnym wypadku należy podstawić k = k + 1, zwiększyć wielkość parametru kary i wykonać kolejny przebieg algorytmu.

2.3.3 Uwarunkowanie zadania

Uwarunkowanie zadania numerycznego (Góra 2012):

Niech $f: \mathbb{R}^n \to \mathbb{R}^m$ będzie pewną funkcją odpowiednio wiele razy różniczkowalną i niech $\mathbf{x} \in \mathbb{R}^n$.

Definicja:

Mówimy, że zagadnienie obliczenia $f(\mathbf{x})$ jest numerycznie dobrze uwarunkowane, jeżeli niewielkie względne zmiany danych dają niewielkie względne zmiany rozwiązania. Zagadnienia, które nie są numerycznie dobrze uwarunkowane, nazywamy źle uwarunkowanymi.

Współczynnik uwarunkowania

Niech $f: \mathbb{R}^n \to \mathbb{R}^m$ będzie pewną funkcją, $\mathbf{x} \in \mathbb{R}^n$ dokładną wartością argumentu, a $\overline{\mathbf{x}} \in \mathbb{R}^n$ znanym numerycznym przybliżeniem \mathbf{x} .

Definicja:

Jeżeli istnieje $\kappa \in \mathbb{R}$ taka, że:

$$\forall \mathbf{x}, \overline{\mathbf{x}} \frac{\left\| f(\mathbf{x}) - f(\overline{\mathbf{x}}) \right\|_{\mathbb{R}^{m}}}{\left\| f(\mathbf{x}) \right\|_{\mathbb{R}^{m}}} \leq \kappa \frac{\left\| \mathbf{x} - \overline{\mathbf{x}} \right\|_{\mathbb{R}^{n}}}{\left\| \mathbf{x} \right\|_{\mathbb{R}^{n}}},$$
(2.87)

nazywamy ją współczynnikiem uwarunkowania zagadnienia wyliczenia wartości f (względem zadanych norm).

W sytuacji gdy przybliżenie, znacznie różni się od wartości dokładnej, można przypuszczać, że również wyniki obliczeń będą się znacznie różnić. Kiedy rozwiązywany jest problem z zagadnieniem numerycznie źle uwarunkowanym może zaistnieć sytuacja, że przy niewielkim odchyleniu przybliżenia od wartości dokładnej rozwiązania otrzymamy znaczną różnicę wyników.

2.3.4 Uwarunkowanie macierzy

Twierdzenie (Góra 2012):

Współczynnik uwarunkowania odwracalnej macierzy symetrycznej, rzeczywistej jest równy ilorazowi największego i najmniejszego modułu spośród jej wartości własnych.

$$\kappa = \frac{\max_{i} |\lambda_{i}|}{\min_{i} |\lambda_{i}|}.$$
(2.88)

Jako wskaźnik uwarunkowania zadania optymalizacji funkcji f, która jest dwukrotnie różniczkowalna rozumiemy stosunek maksymalnej do minimalnej wartości własnej jej macierzy hesjanu, w danym punkcie. Przy zbyt dużym wskaźniku mogą wystąpić problemy obliczeniowe związane z błędami zaokrągleń, które mogą powstać np. przy odwracaniu macierzy hesjanu.

Przykładem źle uwarunkowanej funkcji jest funkcja Rosenbrock'a, zwana również doliną bananową. Nazwa ta pochodzi od kształtu dziedziny, czyli zbiorów poziomicowych w kształcie wysmukłych bananów, tworzącej rodzaj doliny o stromych zboczach. Charakter i przebieg funkcji Rosenborck'a utrudnia znalezienie jej minimum metodami optymalizacji. Z tego powodu funkcja ta stała się testową funkcją dla algorytmów optymalizacji.

2.3.5 Zadanie dobrze i źle postawione (ill-posed problem)

Definicja (Regińska 2013):

Zadanie wyznaczenia rozwiązania równania:

 $Au = f, A: X \rightarrow Y, X, Y \, przestrzenie metryczne,$ (2.89)

nazywamy zadaniem dobrze postawionym w sensie Hadamarda na parze przestrzeni X,Y, ماکر

jeśli:

- $\checkmark \quad \forall f \in Y \text{ istnieje rozwiązanie } u \in X$
- $\checkmark \quad \forall f \in Y \text{ rozwiązanie jest jednoznaczne}$
- ✓ rozwiązanie zleży w sposób ciągły od prawej strony , tj.

jeśli $f, f_n \in Y$ i $f_n \rightarrow f$ w Y, to $u_n \rightarrow u$ w X,

gdzie U_n i U są rozwiązaniami odpowiednio dla f_n i f.

Zadanie nazywamy źle postawionym w sensie Hadamarda na parze przestrzeni X, Y jeżeli co najmniej jeden z powyższych warunków nie jest spełniony.

W zadaniach optymalizacji często spotyka się z problemem kiedy liczba mierzonych parametrów różni się zasadniczo od liczy niewiadomych parametrów. Zadanie wtedy można opisać układem równań niedookreślonym bądź nadokreślonym.

Z niedookreślonym układem równań mamy do czynienia wtedy kiedy liczba równań jest mniejsza od liczby niewiadomych (m < n). Oznacza to w praktyce, że mamy więcej niewiadomych niż danych pomiarowych. Taki układ równań nigdy nie będzie rozwiązany jednoznacznie i będzie miał nieskończenie wiele rozwiązań.

Twierdzenie:

Jeżeli macierz $\mathbf{A} \in \mathbb{R}^{m \times n}$ ma rząd m, układ $\mathbf{A} \mathbf{x} = \mathbf{b}$ jest zawsze rozwiązywalny. Dla każdego **b** istnieje wówczas nieskończenie wiele rozwiązań, z których:

$$\mathbf{x}_{p} = \mathbf{A}^{T} (\mathbf{A} \mathbf{A}^{T})^{-1} \mathbf{b}, \qquad (2.90)$$

jest tym o najmniejszej normie. Macierz $\mathbf{A}^{\mathsf{T}} (\mathbf{A}\mathbf{A}^{\mathsf{T}})^{-1}$ nazywana jest przy tym macierzą pseudoodwrotną macierzy \mathbf{A} .

Nadokreślony układ równań to taki w którym liczba równań jest większa od liczy niewiadomych. W takim przypadku liczba mierzonych parametrów jest większa od liczby niewiadomych (m > n). Tak zdefiniowany układ równań może nie mieć żadnego rozwiązania, może być jednoznaczny, czyli mieć tylko jedno rozwiązanie, bądź mieć nieskończenie wiele rozwiązań.

W sytuacji, w której nie ma żadnego rozwiązania, zwykle poszukuje się rozwiązania przybliżonego, traktując zadanie jako aproksymację i poszukując rozwiązania metodą najmniejszych kwadratów.

W zagadnieniach nadokreślonych rozwiązania można zapisać jako:

$$\mathbf{x}_{p} = (\mathbf{A}^{\mathsf{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{b}$$
(2.91)

2.4 Aktualizacja przy użyciu częstości i postaci drgań własnych

2.4.1 Wprowadzenie

Badania eksperymentalne i prowadzone pomiary służą poznaniu rzeczywistego zachowania się konstrukcji inżynierskich. Pozwalają one nie tylko na stwierdzenie, czy konstrukcja jest bezpieczna i spełnia założenia projektowe, ale również są narzędziem do tworzenia nowych i lepszych rozwiązań konstrukcyjnych i technologicznych.

Wyniki badań eksperymentalnych są również bezcenną bazą danych służącą do walidacji modelu MES konstrukcji. Zgodność modelu numerycznego z danymi eksperymentalnymi możemy oceniać na kilku poziomach. Ewins (1990, 2000) zaproponował pięć poziomów oceny zgodności:

- model numeryczny, który odwzorowuje poprawnie parametry modalne konstrukcji takie jak częstotliwości i postacie drgań dla mierzonych stopni swobody w zakresie pomiarowym;
- ✓ model numeryczny, który odwzorowuje wszystkie pomierzone funkcje odpowiedzi częstotliwościowej FRF w zakresie pomiarowym;
- ✓ model numeryczny, który odwzorowuje poprawnie parametry modalne konstrukcji takie jak częstotliwości i postacie drgań dla mierzonych i niemierzonych stopni swobody w zakresie pomiarowym;
- ✓ model numeryczny, który odwzorowuje wszystkie pomierzone funkcje odpowiedzi częstotliwościowej FRF również poza zakresem pomiarowym;
- model numeryczny, który posiada poprawne właściwości dotyczące rozkładu masy, sztywności i tłumienia i pozwala na otrzymanie poprawnych wszystkich właściwości dynamicznych, również tych niemierzonych.

Spełnienie każdego kolejnego kryterium jest coraz bardziej wymagające. Istnieje kilka prac, między innymi Caesar'a i Peter'a (1987) i Ibrahim'a (1988), które mówią o rozbieżnościach dotyczących zarówno danych pochodzących z modelu analitycznego jak i z danych eksperymentalnych. Głównymi problemami dotyczącymi danych z modelu numerycznego są:

- ✓ poprawne przybliżenie i określenie rzeczywistych warunków podporowych,
- odpowiednia dyskretyzacja modelu,
- ✓ odpowiednie określenie parametrów fizycznych materiałów,

- ✓ odpowiednie określenie bądź pominiecie tłumienia, lub założenie występowania tłumienia proporcjonalnego,
- niedokładne modelowanie połączeń,
- ✓ stworzenie modelu MES kompatybilnego z mierzonymi stopniami swobody.

Istnieją jednak również rozbieżności, które wynikają z pomiarów. Do najczęściej spotykanych można zliczyć:

- małą liczbę pomierzonych stopni swobody, wynikającą z ograniczeń sprzętowych,
- ograniczoną liczbę pomierzonych postaci drgań,
- ✓ występowanie postaci drgań opisanych liczbami zespolonymi,
- nieuwzględniane w modelu numerycznym błędy pomiarowe takiej jak szumy i nieliniowości,
- ✓ słaba jakoś analizy modalnej,
- ✓ trudności w wymuszeniu bądź identyfikacji niektórych postaci drgań.

Pomimo, pewnych ograniczeń pomiarowych i możliwych z tego powodu błędów danych eksperymentalnych, metody walidacji, korelacji i aktualizacji zwykle zakładają, że dane pomiarowe są poprawne i obarczone relatywnie niewielkimi błędami.

W przypadku, gdy porównujemy model numeryczny z danymi pomiarowymi również możemy odnieść się do kilku poziomów dokładności metod (Maia & Silva 1997):

- metody porównywania pozwalają oszacować, czy dane pomiarowe i dane z modelu numerycznego są ze sobą zgodne. Ich zadnie jest ograniczone tylko do podania informacji, która z postaci drgań analitycznych odpowiada której postaci drgań eksperymentalnych, bez wyjaśniania ewentualnych nieścisłości i powodów różnic pomiędzy wynikami;
- metody lokalizacji pozwalają określić, w którym miejscu istnieje nieścisłość pomiędzy wynikami, nie dając jednocześnie odpowiedzi z czy powstała ona z powodu zmiany masy, czy sztywności;
- metody korelacji pozwalają zlokalizować i określić jakie różnice istniejące pomiędzy modelami zarówno w rozkładzie masy jak i sztywności. Celem tych metod jest otrzymanie modelu, który będzie adekwatnie odwzorowywał wszystkie charakterystyki konstrukcji.

Do jednej z bardziej popularnych metod korelacji należy aktualizacja przy użyciu wrażliwości wektorów i częstotliwości drgań własnych.

2.4.2 Wrażliwość wartości i wektorów własnych

Wyprowadzenie wzoru na obliczenie macierzy wrażliwości z uwzględnieniem wektorów własnych zaproponowali Maia i Silva (1997). Jeżeli λ_{ai} i ϕ_{ai} tworzą analityczne rozwiązanie problemu własnego antycznego modelu nietłumionego, to możemy zapisać:

$$\left[\mathbf{K} - \lambda_{a_i} \mathbf{M}\right] \mathbf{\phi}_{a_i} = \mathbf{0}, \qquad (2.92)$$

gdzie i = 1, 2, ..., N jest numerem częstości drgań własnych.

Można założyć, że θ_i jest zestawem N_p akutalizowanych parametrów, które są przydzielone do zmiennych projektowych modelu analitycznego. Wtedy analityczne pary modalne λ_{ai} i ϕ_{ai} są funkcją θ_i .

Jeżeli założymy, że przy użyciu kryterium MAC, eksperymentalne pary modalne λ_{mi} , ϕ_{mi} udało się połączyć z ich analitycznymi odpowiednikami λ_{ai} , ϕ_{ai} , to możemy zapisać rozwiązanie eksperymentalnego problemu własnego w postaci szeregu Taylora, w odniesieniu do akutalizowanych parametrów, w formie:

$$\boldsymbol{\lambda}_{mi} = \boldsymbol{\lambda}_{ai} + \sum_{j=1}^{N\rho} \frac{\partial \boldsymbol{\lambda}_{ai}}{\partial \theta_j} \theta_j + \mathbf{O}(\theta_j^2), \qquad (2.93)$$

$$\boldsymbol{\phi}_{mi} = \boldsymbol{\phi}_{ai} + \sum_{j=1}^{N\rho} \frac{\partial \boldsymbol{\phi}_{ai}}{\partial \theta_j} \theta_j + \mathbf{O} \left(\theta_j^2 \right), \tag{2.94}$$

gdzie $\mathbf{O}\left(\theta_{j}^{2}\right)$ jest resztą z szeregu Taylora.

Zakładając, że zamiany w aktualizowanych parametrach są małe, eksperymentalne pary modalne można przedstawić jako funkcje liniowe ograniczone do dwóch pierwszych wyrazów:

$$\boldsymbol{\lambda}_{mi} = \boldsymbol{\lambda}_{ai} + \Delta \boldsymbol{\lambda}_{i}, \qquad (2.95)$$

$$\boldsymbol{\phi}_{mi} = \boldsymbol{\phi}_{ai} + \Delta \boldsymbol{\phi}_{i}, \qquad (2.96)$$

gdzie:

$$\Delta \mathbf{\lambda}_{i} \approx \sum_{j=1}^{N_{p}} \frac{\partial \mathbf{\lambda}_{ai}}{\partial \theta_{i}} \theta_{j}, \qquad (2.97)$$

$$\Delta \mathbf{\phi}_{i} \approx \sum_{j=1}^{Np} \frac{\partial \mathbf{\phi}_{ai}}{\partial \theta_{j}} \theta_{j}.$$
(2.98)

Wrażliwość wartości własnych można otrzymać przemnażając równanie (2.92) przez ϕ_{ai}^{T} :

$$\boldsymbol{\phi}_{ai}^{\mathsf{T}} \left[\mathbf{K} - \lambda_{ai} \mathbf{M} \right] \boldsymbol{\phi}_{ai} = 0.$$
(2.99)

Różniczkując powyższe równanie względem θ_i otrzymujemy:

$$\frac{\partial \mathbf{\phi}_{ai}^{\mathsf{T}}}{\partial \theta_{j}} \left[\mathbf{K} - \lambda_{ai} \mathbf{M} \right] \mathbf{\phi}_{ai} + \mathbf{\phi}_{ai}^{\mathsf{T}} \frac{\partial \left[\mathbf{K} - \lambda_{ai} \mathbf{M} \right]}{\partial \theta_{j}} \mathbf{\phi}_{ai} + \mathbf{\phi}_{ai}^{\mathsf{T}} \left[\mathbf{K} - \lambda_{ai} \mathbf{M} \right] \frac{\partial \mathbf{\phi}_{ai}}{\partial \theta_{j}} = 0.$$
(2.100)

Z uwagi na to, że równanie (2.92) oraz pierwsza i trzecia część równania (2.100) jest równa zero, możemy zapisać:

$$\boldsymbol{\phi}_{ai}^{\mathsf{T}} \frac{\partial \left[\boldsymbol{\mathsf{K}} - \boldsymbol{\lambda}_{ai} \boldsymbol{\mathsf{M}}\right]}{\partial \boldsymbol{\theta}_{i}} \boldsymbol{\phi}_{ai} = \boldsymbol{0}. \tag{2.101}$$

Rozpisując wyrażenie w środku równania (2.101), z lewej strony równania otrzymujemy:

$$\frac{\partial \left[\mathbf{K} - \lambda_{ai} \mathbf{M}\right]}{\partial \theta_{i}} = \frac{\partial \mathbf{K}}{\partial \theta_{i}} - \frac{\partial \lambda_{ai}}{\partial \theta_{i}} \mathbf{M} - \lambda_{ai} \frac{\partial \mathbf{M}}{\partial \theta_{i}}.$$
(2.102)

Z uwagi na ortogonalność wektorów własnych względem macierzy mas ($\phi_{ai}^T M \phi_{ai} = I$)

i sztywności ($\phi_{ai}^{T} \mathbf{K} \phi_{ai} = \mathbf{\Phi}$) równanie (2.101) można zapisać w postaci:

$$\boldsymbol{\phi}_{ai}^{\mathsf{T}} \frac{\partial \mathbf{K}}{\partial \theta_{j}} \boldsymbol{\phi}_{ai} - \frac{\partial \lambda_{ai}}{\partial \theta_{j}} - \lambda_{ai} \boldsymbol{\phi}_{ai}^{\mathsf{T}} \frac{\partial \mathbf{M}}{\partial \theta_{j}} \boldsymbol{\phi}_{ai} = 0.$$
(2.103)

Ostatecznie wrażliwość wartości własnych można przedstawić w formie:

$$\frac{\partial \lambda_{ai}}{\partial \theta_{j}} = \mathbf{\phi}_{ai}^{\mathsf{T}} \left[\frac{\partial \mathbf{K}}{\partial \theta_{j}} - \lambda_{ai} \frac{\partial \mathbf{M}}{\partial \theta_{j}} \right] \mathbf{\phi}_{ai}.$$
(2.104)

Wrażliwość wektorów własnych, zakładając że są one liniowo niezależne, można przedstawić jako liniową kombinację samych wektorów własnych:

$$\frac{\partial \mathbf{\phi}_{ai}}{\partial \theta_j} = \sum_{k=1}^{N} \varphi_{ik}^{(j)} \mathbf{\phi}_{ak}.$$
(2.105)

Wracając do równania (2.92) i różniczkując je względem θ_i otrzymamy:

$$\frac{\partial \left[\mathbf{K} - \lambda_{ai} \mathbf{M}\right]}{\partial \theta_{j}} \mathbf{\phi}_{ai} + \left[\mathbf{K} - \lambda_{ai} \mathbf{M}\right] \frac{\partial \mathbf{\phi}_{ai}}{\partial \theta_{j}} = \mathbf{0}.$$
(2.106)

Podstawiając równanie (2.105) do równania (2.106) możemy zapisać:

$$\frac{\partial \left[\mathbf{K} - \lambda_{ai} \mathbf{M}\right]}{\partial \theta_{j}} \mathbf{\phi}_{ai} + \left[\mathbf{K} - \lambda_{ai} \mathbf{M}\right] \sum_{k=1}^{N} \varphi_{ik}^{(j)} \mathbf{\phi}_{ak} = \mathbf{0}, \qquad (2.107)$$

lub

$$\sum_{k=1}^{N} \varphi_{ik}^{(j)} \left[\mathbf{K} - \lambda_{ai} \mathbf{M} \right] \mathbf{\phi}_{ak} = -\frac{\partial \left[\mathbf{K} - \lambda_{ai} \mathbf{M} \right]}{\partial \theta_{j}} \mathbf{\phi}_{ai}.$$
(2.108)

Przemnażając równanie (2.108) przez ϕ_{as}^{T} , przy założeniu że $s \neq i$ możemy zapisać rozwiązanie w formie:

$$\sum_{k=1}^{N} \varphi_{ik}^{(j)} \mathbf{\phi}_{as}^{\mathsf{T}} \left[\mathbf{K} - \lambda_{ai} \mathbf{M} \right] \mathbf{\phi}_{ak} = -\mathbf{\phi}_{as}^{\mathsf{T}} \frac{\partial \left[\mathbf{K} - \lambda_{ai} \mathbf{M} \right]}{\partial \theta_{j}} \mathbf{\phi}_{ai}.$$
(2.109)

Ponieważ założono ortogonalność wektorów własnych, lewa strona równania jest równa zero, pomijając przypadek kiedy k = s:

$$\varphi_{ik}^{(j)}\left(\lambda_{as}-\lambda_{ai}\right) = -\boldsymbol{\phi}_{as}^{\mathsf{T}} \frac{\partial \left[\boldsymbol{\mathsf{K}}-\lambda_{ai}\boldsymbol{\mathsf{M}}\right]}{\partial \theta_{j}} \boldsymbol{\phi}_{ai}.$$
(2.110)

Rozwijając prawą stronę równania (2.110) otrzymujemy:

$$\varphi_{ik}^{(j)}\left(\lambda_{ak}-\lambda_{ai}\right) = -\phi_{ak}^{\mathsf{T}} \frac{\partial \mathbf{K}}{\partial \theta_{j}} \phi_{ai} + \frac{\partial \lambda_{ai}}{\partial \theta_{j}} \phi_{ak}^{\mathsf{T}} \mathbf{M} \phi_{ai} + \lambda_{ai} \phi_{ak}^{\mathsf{T}} \frac{\partial \mathbf{M}}{\partial \theta_{j}} \phi_{ai}.$$
(2.111)

W przypadku gdy $k \neq i$ drugi element prawej strony równania jest równy zero, co pozwala zapisać je w formie:

$$\varphi_{ik}^{(j)} = \frac{-1}{\left(\lambda_{ak} - \lambda_{ai}\right)} \phi_{ak}^{\mathsf{T}} \left[\frac{\partial \mathbf{K}}{\partial \theta_{j}} - \lambda_{ai} \frac{\partial \mathbf{M}}{\partial \theta_{j}} \right] \phi_{ai} \quad k \neq i.$$
(2.112)

Z równania wynika, że dla k = i współczynniki $\varphi_{ik}^{(j)}$ należy policzyć niezależnie. Różniczkując $\mathbf{\phi}_{ai}^{\mathsf{T}} \mathbf{M} \mathbf{\phi}_{ai} = \mathbf{I}$ otrzymujemy:

$$2\boldsymbol{\phi}_{ai}^{\mathsf{T}}\boldsymbol{\mathsf{M}}\frac{\partial\boldsymbol{\phi}_{ai}}{\partial\boldsymbol{\theta}_{i}} = -\boldsymbol{\phi}_{ai}^{\mathsf{T}}\frac{\partial\boldsymbol{\mathsf{M}}}{\partial\boldsymbol{\theta}_{i}}\boldsymbol{\phi}_{ai}.$$
(2.113)

Podstawiając do równania (2.113) wyrażenie (2.105) możemy zapisać:

$$2\boldsymbol{\phi}_{ai}^{\mathsf{T}}\mathbf{M}\sum_{k=1}^{N}\varphi_{ik}^{(j)}\boldsymbol{\phi}_{ak} = -\boldsymbol{\phi}_{ai}^{\mathsf{T}}\frac{\partial\mathbf{M}}{\partial\theta_{i}}\boldsymbol{\phi}_{ai}, \qquad (2.114)$$

lub

$$2\sum_{k=1}^{N}\varphi_{ik}^{(j)}\boldsymbol{\phi}_{ai}^{\mathsf{T}}\mathbf{M}\boldsymbol{\phi}_{ak} = -\boldsymbol{\phi}_{ai}^{\mathsf{T}}\frac{\partial\mathbf{M}}{\partial\theta_{j}}\boldsymbol{\phi}_{ai}, \qquad (2.115)$$

48 | Strona

oraz zgodnie z warunkami ortogonalności:

$$\varphi_{ii}^{(j)} = -\frac{1}{2} \phi_{ai}^{\mathsf{T}} \frac{\partial \mathsf{M}}{\partial \theta_{i}} \phi_{ai}.$$
(2.116)

Podsumowując, równania (2.112) i (2.116) możemy zapisać:

$$\varphi_{ik}^{(j)} = \begin{cases} \frac{-1}{(\lambda_{ak} - \lambda_{ai})} \phi_{ak}^{\mathsf{T}} \left[\frac{\partial \mathbf{K}}{\partial \theta_{j}} - \lambda_{ai} \frac{\partial \mathbf{M}}{\partial \theta_{j}} \right] \phi_{ai}, & dla \, k \neq i \\ -\frac{1}{2} \phi_{ai}^{\mathsf{T}} \frac{\partial \mathbf{M}}{\partial \theta_{j}} \phi_{ai}, & dla \, k = i. \end{cases}$$
(2.117)

Łącząc równania (2.112), (2.116) i podstawiając je do równania (2.105) otrzymujemy:

$$\frac{\partial \Phi_{ai}}{\partial \theta_{j}} = \sum_{k=1; k \neq i}^{N} \frac{\Phi_{ak} \Phi_{ak}^{\mathsf{T}}}{\lambda_{ai} - \lambda_{ak}} \left[\frac{\partial \mathbf{K}}{\partial \theta_{j}} - \lambda_{ai} \frac{\partial \mathbf{M}}{\partial \theta_{j}} \right] \Phi_{ai} - \frac{1}{2} \Phi_{ai} \Phi_{ai}^{\mathsf{T}} \frac{\partial \mathbf{M}}{\partial \theta_{j}} \Phi_{ai}.$$
(2.118)

Ostatecznie macierz wrażliwości wartości i wektorów własnych możemy zapisać w postaci:

$$\mathbf{S}_{(N_{c} \times N_{p})} = \begin{bmatrix} \frac{\partial \lambda_{a1}}{\partial \theta_{1}} & \cdots & \frac{\partial \lambda_{a1}}{\partial \theta_{N_{p}}} \\ \frac{\partial \mathbf{\phi}_{a1}}{\partial \theta_{1}} & \cdots & \frac{\partial \mathbf{\phi}_{a1}}{\partial \theta_{N_{p}}} \\ \vdots & \vdots \\ \frac{\partial \lambda_{ap}}{\partial \theta_{1}} & \cdots & \frac{\partial \lambda_{ap}}{\partial \theta_{N_{p}}} \\ \frac{\partial \mathbf{\phi}_{ap}}{\partial \theta_{1}} & \cdots & \frac{\partial \mathbf{\phi}_{ap}}{\partial \theta_{N_{p}}} \end{bmatrix}, \qquad (2.119)$$

gdzie p jest liczbą par modalnych branych do procedury aktualizacji niewiadomych parametrów θ_i , a $N_c = p(N+1)$.

2.4.3 Wrażliwość eksperymentalna

W przypadku gdy istnieją duże rozbieżności pomiędzy wynikami uzyskiwanymi z modeli eksperymentalnych i numerycznych, walidacja szeregów Taylora w równaniu jest źle uwarunkowana i iteracyjna procedura jest podatna na dywergencję. Lin i inni (1995) zaproponował modyfikację metody, która pozwala na otrzymanie poprawnych wyników, nawet w przypadku modeli o dużej rozbieżności pomiędzy wynikami pomiarów a modelami MES. Osiągnięto to poprzez użycie zarówno analitycznych jak i eksperymentalnych parametrów modalnych w definicji wrażliwości rozwiązania problemu własnego. Równanie (2.103) oraz (2.118) można przedstawić w formie:

$$\frac{\partial \lambda_{ai}}{\partial \theta_{i}} = \boldsymbol{\phi}_{ai}^{\mathsf{T}} \frac{\partial \mathbf{K}}{\partial \theta_{i}} \boldsymbol{\phi}_{mi} - \lambda_{mi} \boldsymbol{\phi}_{ai}^{\mathsf{T}} \frac{\partial \mathbf{M}}{\partial \theta_{i}} \boldsymbol{\phi}_{mi}, \qquad (2.120)$$

$$\frac{\partial \mathbf{\phi}_{ai}}{\partial \theta_{j}} = \sum_{k=1; k \neq i}^{N} \frac{\mathbf{\phi}_{ak} \mathbf{\phi}_{ak}^{\mathsf{T}}}{\lambda_{mi} - \lambda_{ak}} \left[\frac{\partial \mathbf{K}}{\partial \theta_{j}} - \lambda_{mi} \frac{\partial \mathbf{M}}{\partial \theta_{j}} \right] \mathbf{\phi}_{mi} - \frac{1}{2} \mathbf{\phi}_{ai} \mathbf{\phi}_{ai}^{\mathsf{T}} \frac{\partial \mathbf{M}}{\partial \theta_{j}} \mathbf{\phi}_{mi}, \qquad (2.121)$$

gdzie są λ_{mi} i ϕ_{mi} pomierzonymi parami modalnymi.

2.4.4 Metody iteracyjne bazujące na parach modalnych

Aktualizacja opierająca się na metodach iteracyjnych ma za zadnie poprawić korelacje pomiędzy danymi pomierzonymi a danymi pochodzącymi z modelu numerycznego. Korelacja jest determinowana przez funkcję kary, zwierającą w sobie częstości i postacie drań własnych. Z uwagi na charakter funkcji kary, rozwiązanie zwykle wymaga aby problem został zlinearyzowany i zoptymalizowany iteracyjnie. Takie podejście pozwala na dużą dowolność w wyborze parametrów aktualizowanych.

Funkcje kary są zwykle nieliniowymi funkcjami parametrów. Z tego powodu w celu uzyskania zbieżności rozwiązania należy zastosować iteracyjną procedurę. Jeżeli zmiana wartości parametrów pomiędzy następującymi po sobie iteracjami jest mała, istnieje duże prawdopodobieństwo na dobre oszacowanie właściwości dynamicznych modelu.

Pomierzone podczas badań eksperymentalnych pary modalne (kwadraty częstości i postacie drgań) można zgrupować w jednym wektorze. W przypadku gdy założymy brak tłumienia może on być wyrażony jako (Friswell & Mottershead 1995):

$$\mathbf{z}_{\mathrm{m}} = [\lambda_{\mathrm{m}1}, \boldsymbol{\varphi}_{\mathrm{m}1}^{\mathrm{T}}, \lambda_{\mathrm{m}2}, \boldsymbol{\varphi}_{\mathrm{m}2}^{\mathrm{T}}, \dots, \lambda_{\mathrm{m}N}, \boldsymbol{\varphi}_{\mathrm{m}N}^{\mathrm{T}}]^{\mathrm{T}}.$$
(2.122)

W modelu numerycznym wektor kwadratów częstości i postaci drgań, odpowiadających danym eksperymentalnym może zostać zapisany w wektorze wartości przewidywanych:

$$\mathbf{z}_{a} = [\lambda_{a1}, \boldsymbol{\varphi}_{a1}^{\mathsf{T}}, \lambda_{a2}, \boldsymbol{\varphi}_{a2}^{\mathsf{T}}, \dots, \lambda_{aN}, \boldsymbol{\varphi}_{aN}^{\mathsf{T}}]^{\mathsf{T}}.$$
(2.123)

Aktualizacja modeli numerycznych przy użyciu postaci i częstości drgań własnych niesie za sobą wiele problemów. Jednym z nich jest fakt, że liczba mierzonych parametrów jest znacznie mniejsza od liczby parametrów uzyskanych z modelu numerycznego. Formuła wektorów par modalnych wymaga, aby liczba częstości i postaci drgań z danych pomiarowych i numerycznych była taka sama. Wektor \mathbf{z}_m zwykle zawiera tylko kilka par modalnych. Kolejnym problemem jest to, że liczba stopni swobody modelu numerycznego jest zwykle znacznie większa od liczby punktów pomiarowych. Dlatego model numeryczny wymaga dyskretyzacji zgodnej z planem pomiarów. Rozwiązanie tego problemu ułatwiają też techniki redukcji bazy (rozdział 2.1). W wielu przypadkach postacie drgań uzyskane z modelu numerycznego i z badań eksperymentalnych nie są uporządkowane w tej samej kolejności. Problem parowania postaci drgań można rozwiązać stosując kryterium MAC lub NMD. Gdy w macierzy MAC wartości są zbliżone do 1 lub w macierzy NMD zbliżone do 0 wybrane postaci drgań są odpowiadające. Dopiero połączone w pary postacie drgań mogą zostać użyte w algorytmie aktualizacji parametrów. W przypadku gdy postacie pomierzone i numeryczne są w przeciwnych fazach należy posłużyć się współczynnikiem Modal Scale Factor (MSF).

Sposoby aktualizowania modelu oparte na gradiencie, czyli metodzie funkcji kary, zaproponowane przez Friswell'a i Mottershead'a (1995) pozwalają na zapisanie liniowego przybliżenia w postaci:

$$\delta \mathbf{z} = \mathbf{S}_i \delta \mathbf{\Theta}, \qquad (2.124)$$

gdzie

 $\delta \mathbf{z} = \mathbf{z}_{m} - \mathbf{z}_{aj}$ - jest błędem w pomierzonych parametrach,

 $\delta \boldsymbol{\Theta} = \boldsymbol{\Theta} - \boldsymbol{\Theta}_i$ - jest zmianą parametrów,

 $\boldsymbol{\theta} = \begin{bmatrix} \theta_1, \theta_2, ..., \theta_{Np} \end{bmatrix}^T$ - jest wektorem akutalizowanych parametrów,

 \mathbf{S}_i - jest macierzą wrażliwości.

W równaniu (2.124) aktualna wartość parametru po iteracji *j* jest wyrażona wektorem $\boldsymbol{\theta}_{j}$, a w wyniku tego oszacowania parametrów otrzymujemy wektor \mathbf{z}_{aj} . Parametryczny wektor $\boldsymbol{\theta}$ zawiera "rzeczywiste" parametry, które odzwierciedlają dane pomiarowe, ale przy zastosowaniu procedury iteracyjnej zawiera on oszacowanie parametrów po bieżącej iteracji. Macierz wrażliwości \mathbf{S}_{j} zawiera pierwsze pochodne wartości własnych i postaci drgań własnych w odniesieniu do parametrów aktualizacji, obliczone na podstawie oszacowania parametrów $\boldsymbol{\theta}_{j}$ w bieżącej aktualizacji.

Spotykane są dwie różne metody rozwiazywania zagadnień z funkcją kary. W pierwszej z nich zakłada się, że wektor akutalizowanych nieznanych parametrów można uzyskać przez minimalizację pewnej funkcji kary J względem $\delta\theta$. Polega ona na różniczkowaniu funkcji

J w odniesieniu do każdego elementu $\delta\theta$ i porównaniu otrzymanego wyniku do zera. W drugiej metodzie równanie (2.124) jest traktowane jako ogólne rozwiązanie.

Rozważając rozwiązanie równania metodą najmniejszych kwadratów dla nieznanych parametrów, otrzymujemy wartości niewiadomych parametrów dla dwóch przypadków:

$$\delta \boldsymbol{\Theta} = \left[\mathbf{S}^{\mathsf{T}} \mathbf{S} \right]^{-1} \mathbf{S}^{\mathsf{T}} \delta \mathbf{z} \qquad \mathrm{dla} N \ge N_{\mathrm{p}}, \qquad (2.125)$$

$$\delta \boldsymbol{\Theta} = \mathbf{S}^{\mathsf{T}} \Big[\mathbf{S} \mathbf{S}^{\mathsf{T}} \Big] \delta \mathbf{z} \qquad \text{dla} N \leq N_{\mathsf{p}}, \qquad (2.126)$$

lub

$$\boldsymbol{\theta}_{j+1} = \boldsymbol{\theta}_j + \left[\mathbf{S}_j^{\mathsf{T}} \mathbf{S}_j \right]^{-1} \mathbf{S}_j^{\mathsf{T}} \left(\mathbf{z}_m - \mathbf{z}_{aj} \right) \qquad \text{dla} N \ge N_{\mathsf{p}}, \qquad (2.127)$$

$$\boldsymbol{\theta}_{j+1} = \boldsymbol{\theta}_j + \mathbf{S}_j^{\mathsf{T}} \left[\mathbf{S}_j \mathbf{S}_j^{\mathsf{T}} \right]^{-1} \left(\mathbf{z}_m - \mathbf{z}_{aj} \right) \quad \text{dla} N \leq N_{\mathsf{p}}.$$
(2.128)

Pierwszy przypadek (równanie (2.125)) występuje, gdy liczba pomierzonych danych jest większa od liczby akutalizowanych parametrów. W takim wypadku dostarczamy więcej danych niż posiadamy niewiadomych, a zestaw równań jest nadokreślony. W przeciwnym wypadku (równanie (2.126)), posiadamy więcej niewiadomych niż pomierzonych parametrów, a układ równań jest niedookreślony. Do rozwiązania tego problemu można wykorzystać np. mnożniki Lagrange'a lub podobne techniki, tak jak to przedstawiono w równaniu (2.126).

Wynik równania (2.124) można również otrzymać przez minimalizację funkcji kary względem parametrów aktualizowanych:

$$J(\delta \mathbf{\Theta}) = \mathbf{\varepsilon}^{\mathsf{T}} \mathbf{\varepsilon}, \qquad (2.129)$$

gdzie

$$\mathbf{z} = \delta \mathbf{z} - \mathbf{S} \delta \mathbf{\Theta}, \qquad (2.130)$$

jest błędem w przewidywanych danych pomiarowych na podstawie zaktualizowanych parametrów. Po podstawieniu równania (2.130) do (2.129), funkcję kary można zapisać w postaci:

$$J(\delta \mathbf{\Theta}) = \{\delta \mathbf{z} - \mathbf{S} \delta \mathbf{\Theta}\}^{\mathsf{T}} \{\delta \mathbf{z} - \mathbf{S} \delta \mathbf{\Theta}\} = \delta \mathbf{z}^{\mathsf{T}} \delta \mathbf{z} - 2\delta \mathbf{\Theta}^{\mathsf{T}} \mathbf{S}^{\mathsf{T}} \delta \mathbf{z} + \delta \mathbf{\Theta}^{\mathsf{T}} \mathbf{S}^{\mathsf{T}} \mathbf{S} \delta \mathbf{\Theta}$$
(2.131)

Wynik aktualizacji paramentów otrzymany z równania (2.131) jest taki sam jak otrzymany z równań (2.125) i (2.126). Aktualne wartości parametrów mogą być otrzymane z równań (2.127) i (2.128).

2.4.5 Macierz wag wartości mierzonych

W standardowym przypadku równa waga przykładana jest do wszystkich komponentów pomierzonych danych. W wielu testach dynamicznych otrzymane częstości drgań własnych są szacowane z dokładnością 0,25%, natomiast odpowiadające im postacie z dokładnością 10%. W przypadku gdy nie używamy macierzy wag, równa waga przykładana jest zarówno do częstości jak i postaci drgań własnych. Głównym problemem jest fakt, ze wyższe częstotliwości mogą być mierzone z inną dokładności niż niższe. Macierz wag wartości mierzonych $\mathbf{W}_{\varepsilon\varepsilon}$ jest zwykle dodatnio określona i diagonalna. W praktyce często macierz wag jest odchyleniem standardowym z mierzonych częstości i postaci drgań. W algorytmie aktualizacji perturbacja nieznanych parametrów może być wyrażona jako:

$$\delta \boldsymbol{\Theta} = \left[\mathbf{S}^{\mathsf{T}} \mathbf{W}_{\varepsilon \varepsilon} \mathbf{S} \right]^{-1} \mathbf{S}^{\mathsf{T}} \mathbf{W}_{\varepsilon \varepsilon} \delta \mathbf{z}, \qquad (2.132)$$

a aktualizowane parametry:

$$\boldsymbol{\theta}_{j+1} = \boldsymbol{\theta}_{j} + \left[\mathbf{S}_{j}^{\mathsf{T}} \mathbf{W}_{\varepsilon \varepsilon} \mathbf{S}_{j} \right]^{-1} \mathbf{S}_{j}^{\mathsf{T}} \mathbf{W}_{\varepsilon \varepsilon} \left(\mathbf{z}_{\mathsf{m}} - \mathbf{z}_{\mathsf{a}j} \right).$$
(2.133)

2.4.6 Macierz wag aktualizowanych parametrów

W wielu przypadkach aktualizowane parametry znacznie się od siebie różnią, na przykład gdy aktualizujemy moduł Young'a oraz wysokość przekroju belki. Z tego powodu zwykle konieczne jest użycie macierzy wag paramentów $\mathbf{W}_{\theta\theta}$. W procedurze aktualizacji, niektóre parametry są określone bardziej dokładnie od innych jak np. sztywność przęsła i sprężystość podpory. Można to uwzględnić w procedurze aktualizacji parametrów poprzez zastosowanie macierzy wag parametrów $\mathbf{W}_{\theta\theta}$ względem aktualizowanych parametrów:

$$\delta \boldsymbol{\Theta} = \mathbf{W}_{\boldsymbol{\Theta}\boldsymbol{\Theta}}^{-1} \mathbf{S}^{\mathsf{T}} \left[\mathbf{S} \mathbf{W}_{\boldsymbol{\Theta}\boldsymbol{\Theta}}^{-1} \mathbf{S}^{\mathsf{T}} \right]^{-1} \delta \mathbf{z}, \qquad (2.134)$$

lub:

$$\boldsymbol{\theta}_{j+1} = \boldsymbol{\theta}_j + \mathbf{W}_{\boldsymbol{\theta}\boldsymbol{\theta}}^{-1} \mathbf{S}_j^{\mathsf{T}} \Big[\mathbf{S}_j \mathbf{W}_{\boldsymbol{\theta}\boldsymbol{\theta}}^{-1} \mathbf{S}_j^{\mathsf{T}} \Big]^{-1} \Big(\mathbf{z}_{\mathsf{m}} - \mathbf{z}_{\mathsf{a}j} \Big).$$
(2.135)

Macierz wag parametrów mierzonych $\mathbf{W}_{\theta\theta}$ jest zwykle macierzą diagonalną z odwrotnościami oszacowanych wariancji odpowiednich parametrów na przekątnej. Użycie tak zdefiniowanej macierzy wag nie ogranicza całkowitej zamiany paramentów w trakcie iteracji (Friswell & Mottershead 1995).

2.4.7 Minimalizacja funkcji kary

Alternatywną metodą uzyskania wartości zamiany parametrów projektowych $\delta \theta$, przy uwzględnieniu obu macierzy wag $\mathbf{W}_{\epsilon\epsilon}$ i $\mathbf{W}_{\theta\theta}$, jest minimalizacja funkcji kary w odniesieniu do aktualizowanych parametrów $\delta \theta$:

$$J(\delta \theta) = \varepsilon^{\mathsf{T}} \mathbf{W}_{\varepsilon \varepsilon} \varepsilon + \delta \theta^{\mathsf{T}} \mathbf{W}_{\theta \theta} \delta \theta.$$
 (2.136)

Podstawiając $\varepsilon = \delta \mathbf{z} - \mathbf{S} \delta \theta$ do równania (2.136) otrzymujemy:

$$J(\delta \theta) = \delta \mathbf{z}^{\mathsf{T}} \mathbf{W}_{\varepsilon \varepsilon} \delta \mathbf{z} - 2\delta \theta^{\mathsf{T}} \mathbf{S}^{\mathsf{T}} \mathbf{W}_{\varepsilon \varepsilon} \delta \mathbf{z} + \delta \theta^{\mathsf{T}} \Big[\mathbf{S}^{\mathsf{T}} \mathbf{W}_{\varepsilon \varepsilon} \mathbf{S} + \mathbf{W}_{\theta \theta} \Big] \delta \theta.$$
(2.137)

Minimalizując równinie (2.137) w odniesieniu do $\delta \theta$ otrzymujemy zmianę parametrów w postaci:

$$\delta \boldsymbol{\theta} = \left[\mathbf{S}^{\mathsf{T}} \mathbf{W}_{\varepsilon \varepsilon} \mathbf{S} + \mathbf{W}_{\boldsymbol{\theta} \boldsymbol{\theta}} \right]^{-1} \mathbf{S}^{\mathsf{T}} \mathbf{W}_{\varepsilon \varepsilon} \delta \mathbf{z}, \qquad (2.138)$$

lub:

$$\boldsymbol{\theta}_{j+1} = \boldsymbol{\theta}_{j} + \left[\mathbf{S}_{j}^{\mathsf{T}} \mathbf{W}_{\varepsilon\varepsilon} \mathbf{S}_{j} + \mathbf{W}_{\theta\theta} \right]^{-1} \mathbf{S}_{j}^{\mathsf{T}} \mathbf{W}_{\varepsilon\varepsilon} \left(\mathbf{z}_{\mathsf{m}} - \mathbf{z}_{\mathsf{a}j} \right).$$
(2.139)

Równania (2.138) i (2.139) mogą być bardziej skuteczne jeżeli waga jest przyłożona do początkowych szacunków parametrów. Link (1993) oraz Flores-Santiago i Link (1993) korzystając z tej metody redukowali parametr regulujący w każdej iteracji, co jest równoważne ze zmniejszaniem macierzy wag $\mathbf{W}_{\theta\theta}$. Podobnym podejściem, które pozwala na otrzymanie dobrze uwarunkowanego układu równań, jest dodanie macierzy wag parametrów $\mathbf{W}_{\theta\theta}$ do początkowych nieznanych parametrów. Zmiana parametru w początkowej wartości szacunkowej jest dokładniejsza niż zmiana parametru w każdej iteracji. Nowe wyrażenie można więc zapisać wzorem:

$$J(\delta \theta) = \varepsilon^{\mathsf{T}} \mathbf{W}_{\varepsilon \varepsilon} \varepsilon + \{\theta - \theta_{0}\}^{\mathsf{T}} \mathbf{W}_{\theta \theta} \{\theta - \theta_{0}\}$$

= $\varepsilon^{\mathsf{T}} \mathbf{W}_{\varepsilon \varepsilon} \varepsilon + \{\delta \theta + \{\theta_{j} - \theta_{0}\}\}^{\mathsf{T}} \mathbf{W}_{\theta \theta} \{\delta \theta + \{\theta_{j} - \theta_{0}\}\},$ (2.140)

gdzie jest θ_0 początkowym oszacowaniem parametru. Podstawiając $\epsilon = \delta \mathbf{z} - \mathbf{S} \delta \theta$ do pierwszej części równania i rozwijając jego drugą część przybiera ono postać:

$$J(\delta \theta) = \delta \mathbf{z}^{\mathsf{T}} \mathbf{W}_{\varepsilon \varepsilon} \delta \mathbf{z} + \left\{ \theta_{j} - \theta_{0} \right\}^{\mathsf{T}} \mathbf{W}_{\theta \theta} \left\{ \theta_{j} - \theta_{0} \right\} - 2\delta \theta^{\mathsf{T}} \left\{ \mathbf{S}^{\mathsf{T}} \mathbf{W}_{\varepsilon \varepsilon} \delta \mathbf{z} - \mathbf{W}_{\theta \theta} \left\{ \theta_{j} - \theta_{0} \right\} \right\} + \delta \theta^{\mathsf{T}} \left[\mathbf{S}^{\mathsf{T}} \mathbf{W}_{\varepsilon \varepsilon} \mathbf{S} + \mathbf{W}_{\theta \theta} \right] \delta \theta.$$
(2.141)

Otrzymaną zmianę parametrów wynikającą z minimalizacji funkcji kary w odniesieniu do aktualizowanych parametrów można zapisać w postaci:

$$\delta \boldsymbol{\Theta} = \left[\mathbf{S}^{\mathsf{T}} \mathbf{W}_{\varepsilon \varepsilon} \mathbf{S} + \mathbf{W}_{\theta \theta} \right]^{-1} \left\{ \mathbf{S}^{\mathsf{T}} \mathbf{W}_{\varepsilon \varepsilon} \delta \mathbf{z} - \mathbf{W}_{\theta \theta} \left\{ \boldsymbol{\theta}_{j} - \boldsymbol{\theta}_{0} \right\} \right\},$$
(2.142)

lub

$$\boldsymbol{\theta}_{j+1} = \boldsymbol{\theta}_{j} + \left[\mathbf{S}_{j}^{\mathsf{T}} \mathbf{W}_{\varepsilon\varepsilon} \mathbf{S}_{j} + \mathbf{W}_{\theta\theta} \right]^{-1} \left\{ \mathbf{S}_{j}^{\mathsf{T}} \mathbf{W}_{\varepsilon\varepsilon} \left(\mathbf{z}_{\mathsf{m}} - \mathbf{z}_{\mathsf{a}j} \right) - \mathbf{W}_{\theta\theta} \left\{ \boldsymbol{\theta}_{j} - \boldsymbol{\theta}_{\mathsf{0}} \right\} \right\}.$$
(2.143)

2.5 Definicja macierzy wag

Jednym z bardziej istotnych czynników wpływających na wynik aktualizacji parametrów za pomocą minimalizacji funkcji kary (2.136) jest odpowiedni dobór macierzy wag wartości mierzonych \mathbf{W}_{ee} . i parametrów projektowych \mathbf{W}_{ee} .

Macierz wag danych pomiarowych $\mathbf{W}_{\varepsilon\varepsilon}$ pozwala uwzględnić różne znaczenie poszczególnych elementów wektora resztkowego $\boldsymbol{\varepsilon}$. Dzięki temu dysponując pomierzonymi częstotliwościami jak i postaciami drgań można im nadać w procesie aktualizacji różne wagi w zależności od stopnia pewności oszacowania otrzymanych wyników. W ten sposób można również modyfikować wagi przypisane częstotliwościom drgań własnych, które przy niższych postaciach, mogą być mierzone z inną dokładnością, niż te odpowiadające wyższym postaciom.

Zazwyczaj macierz wag danych pomiarowych $\mathbf{W}_{\varepsilon\varepsilon}$ definiowana jest jako dodatnio określona macierz diagonalna. Najprostszą definicją jest w tym wypadku definicja macierzy jednostkowej:

$$\mathbf{W}_{cc} = \mathbf{I}.$$
 (2.144)

Macierz wag parametrów $\mathbf{W}_{\theta\theta}$ pozwala na rozróżnienie wag parametrów projektowych. Powinna ona odzwierciedlać niepewności w początkowym ich określeniu. Ma to duże znaczenie w przypadku gdy dokonujemy jednorazowo aktualizacji różnych parametrów projektowych, jak na przykład: sztywności podpór pionowych i rotacyjnych, modułów Young'a oraz gabarytów przekrojów poprzecznych. Parametrów tych nie jesteśmy w stanie określić z taką samą dokładnością na etapie tworzenia modelu numerycznego, co może zostać odzwierciedlone poprzez przypisanie im różnych wag (Mottershead et al. 2011)

Jedna z klasycznych definicji zakłada, że macierz wag $\mathbf{W}_{\theta\theta}$ można zdefiniować korzystając z regularyzacji Tikonov'a definiując ją jako macierz jednostkową (Mottershead et al. 2011):

$$\mathbf{W}_{\theta\theta} = \mathbf{I}.\tag{2.145}$$

Podejście to zakłada jednak przyłożenie takiej samej wagi do wszystkich akutalizowanych parametrów bez względu na ich rodzaj.

2.6 Funkcja odpowiedzi częstotliwościowej dla układu o jednym stopniu swobody

Równanie ruchu, które opisuje układ o jednym stopniu swobody w dziedzinie czasu *t* można przedstawić w postaci:

$$m\ddot{x}(t) + c\dot{x}(t) + kx(t) = p(t), \qquad x(o) = x_0, \ \dot{x}(o) = \dot{x}_0, \qquad (2.146)$$

gdzie *m*, *c*, *k* oznaczają odpowiednio masę tłumienie oraz sztywność, *p* jest obciążeniem zewnętrznym natomiast *x*(0) oraz $\dot{x}(0)$ są przemieszczeniem i prędkością początkową. Wykorzystując transformatę Laplace'a, przy założeniu, że warunki początkowe są zerowe, równanie można zapisać w postaci (Mottershead et al. 2011; McConnell 2008):

$$\mathcal{L}[m\ddot{x}+c\dot{x}+kx]=\mathcal{L}[p(t)]=P(s). \tag{2.147}$$

Jeżeli przemieszczenie i prędkość początkowa są równe zero, równanie można zapisać w postaci:

$$(ms^{2} + cs + k)X(s) = P(s).$$
 (2.148)

Pozwala to na zapisanie funkcji przejścia jako ilorazu transformaty Laplace'a odpowiedzi do transformaty Laplace'a wymuszenia:

$$H(s) = \frac{X(s)}{P(s)} = \frac{1}{ms^2 + cs + k},$$
 (2.149)

$$H(s) = \frac{X(s)}{P(s)} = \frac{\frac{1}{m}}{s^2 + \frac{c}{m}s + \frac{k}{m}} = \frac{\frac{1}{m}}{s^2 + 2\xi\omega_n s + \omega_n^2},$$
(2.150)

gdzie ξ jest liczbą tłumienia a ω_n częstotliwością drgań nietłumionych.

W przypadku tłumienia podkrytycznego dla $\xi < 1$, pierwiastki równania, nazywane biegunami, można zapisać jako:

$$s_1 = -\xi \omega_n + \omega_n \sqrt{\xi^2 - 1} = -\xi \omega_n + i\omega_d, \qquad (2.151)$$

$$s_2 = -\xi \omega_n - \omega_n \sqrt{\xi^2 - 1} = -\xi \omega_n - i\omega_d, \qquad (2.152)$$

gdzie *i* jest częścią zespoloną, a \mathcal{O}_d częstotliwością drgań tłumionych.

Przekształcając więc równanie (2.150) można je zapisać jako:

$$H(s) = \frac{\frac{1}{m}}{(s-s_1)(s-s_2)} = \frac{r_1}{(s-s_1)} + \frac{r_2}{(s-s_2)}.$$
 (2.153)

Zapisując funkcję przejścia w dziedzinie częstotliwości $s = i\omega$ otrzymujemy:

$$H(s) = \frac{\frac{1}{m}}{(s-s_1)(s-s_2)} = \frac{r_1}{(s-s_1)} + \frac{r_2}{(s-s_2)},$$
(2.154)

gdzie

$$r_1 = \frac{1}{i2m\omega_d},\tag{2.155}$$

$$r_2 = -\frac{1}{i2m\omega_d}.$$
(2.156)

Podstawienie r_1 i r_2 do równania (2.154) pozwala je zapisać w postaci:

$$H(s) = \frac{\frac{1}{m}}{(s-s_1)(s-s_1^*)} = \frac{r_1(s-s_1^*)}{(s-s_1)(s-s_1^*)} = \frac{2r_1i\omega_d}{s^2 + 2\xi\omega_n s + \omega_n^2},$$
 (2.157)

gdzie r_1 jest współczynnikiem residuum lub resztą.

W celu otrzymania funkcji odpowiedzi częstotliwościowej (FRF), funkcję przejścia zapisaną w dziedzinie czasu należy przekształcić do dziedziny częstotliwości:

$$H(\omega) = H(s)\Big|_{s=i\omega} = \frac{2r_1i\omega_d}{(i\omega)^2 + 2\xi\omega_n i\omega + \omega_n^2} = \frac{2r_1i\omega_d}{\omega^2 + i2\xi\omega_n \omega + \omega_n^2}.$$
 (2.158)

2.7 Funkcja odpowiedzi częstotliwościowej dla układu o wielu stopniach stopniu swobody

Równanie ruchu, które opisuje układ o wielu (n_d) stopniach swobody w dziedzinie czasu t można przedstawić w postaci:

$$M\ddot{x}(t) + C\dot{x}(t) + Kx(t) = p(t), \qquad x(o) = x_{o}, \ \dot{x}(o) = \dot{x}_{o}, \qquad (2.159)$$

gdzie **M**, **C**, **K** oznaczają odpowiednio macierze mas tłumienia oraz sztywności o wymiarze $n_d \times n_d$, **p** jest wektorem obciążeń zewnętrznych natomiast **x**(0) oraz **x**(0) są wektorami przemieszczeń i prędkości początkowych. Wykorzystując transformatę Laplace'a równanie można zapisać w postaci:

$$(Ms^{2} + Cs + K)U(s) - Msx(0) - M\dot{x}(0) - Cx(0) = P(s).$$
 (2.160)

Założenie zerowych warunków początkowych pozwala na zapisanie równania w postaci:

$$\mathbf{B}(s)\mathbf{X}(s) = \mathbf{P}(s), \qquad (2.161)$$

gdzie **B**(s) jest macierzą systemu definiowaną jako:

$$B(s) = Ms^2 + Cs + K,$$
 (2.162)

która z uwagi na symetrie macierzy ${\bf M},\,{\bf C},\,{\bf K}\,$ jest również macierzą symetryczną.

Odwrotnością macierzy systemu jest macierz przejścia zdefiniowana jako:

$$\mathbf{H}(s) = \mathbf{B}(s)^{-1} = \frac{adj\mathbf{B}(s)}{\det\mathbf{B}(s)} = \frac{\mathbf{R}(s)}{\det\mathbf{B}(s)},$$
(2.163)

gdzie $adj\mathbf{B}(s)$ jest macierzą dołączoną do macierzy $\mathbf{B}(s)$, natomiast $\mathbf{R}(s)$ jest macierzą reszt modalnych. Pierwiastki, zwane biegunami, stanowią rozwiązanie równania charakterystycznego det $\mathbf{B}(s) = 0$:

$$\boldsymbol{p}_{k} = -\xi_{k}\omega_{nk} \pm i\omega_{dk}, \qquad (2.164)$$

dla k = 1, 2, ..., N gdzie N jest liczbą postaci drgań własnych układu.

Macierz przejścia można zapisać również w postaci:

$$\mathbf{H}(s) = \sum_{k=1}^{N} \left(\frac{\mathbf{R}_{k}}{s - p_{k}} + \frac{\mathbf{R}_{k}^{*}}{s - p_{k}^{*}} \right), \qquad (2.165)$$

gdzie **R**(*s*) jest macierzą reszt modalnych dla *k*-tej postaci drgań i można ją zapisać, korzystając ze współczynnika skalującego dla każdej z *k* postaci drgań w postaci:

$$\mathbf{R}_{k} = t_{k} \mathbf{\Phi}_{k} \mathbf{\Phi}_{k}^{\mathsf{T}}, \quad \mathbf{k} = 1, 2, \dots, \mathbf{n}_{d}.$$
(2.166)

Funkcja odpowiedzi częstotliwościowej (FRF), powstaje poprzez zapisanie funkcji przejścia w dziedzinie częstotliwości i można ja sformułować jako:

$$\mathbf{H}(\omega) = \sum_{k=1}^{N} \left(\frac{t_k \mathbf{\Phi}_k \mathbf{\Phi}_k^{\mathsf{T}}}{i\omega + \xi \omega_{nk} - i\omega_{dk}} + \frac{t_k^* \mathbf{\Phi}_k^* (\mathbf{\Phi}_k^*)^{\mathsf{T}}}{i\omega + \xi \omega_{nk} + i\omega_{dk}} \right).$$
(2.167)

W zależności od danych wyjściowych funkcja odpowiedzi częstotliwościowej nazywana jest (Maia & Silva 1997):

 ✓ podatnością dynamiczną, gdy opisuje zależność pomiędzy wejściem przyłożonym obciążeniem, a wyjściem - odpowiedzią konstrukcji w postaci przemieszczeń:

$$\mathbf{H}(\omega) = \frac{\mathbf{X}_{j}(\omega)}{\mathbf{P}_{k}(\omega)},$$
(2.168)

 mobilnością dynamiczną, gdy opisuje zależność pomiędzy wejściem przyłożonym obciążeniem, a wyjściem - odpowiedzią konstrukcji w postaci prędkości:

$$\mathbf{H}(\omega) = \frac{\dot{\mathbf{X}}_{j}(\omega)}{\mathbf{P}_{k}(\omega)},$$
(2.169)

 interancją dynamiczną, gdy opisuje zależność pomiędzy wejściem - przyłożonym obciążeniem, a wyjściem - odpowiedzią konstrukcji w postaci przyspieszeń:

$$\mathbf{H}(\omega) = \frac{\ddot{\mathbf{X}}_{j}(\omega)}{\mathbf{P}_{k}(\omega)}.$$
(2.170)

3 Aktualizacja parametrów projektowych na podstawie analiz numerycznych

3.1 Indeksy uszkodzenia

Wykrywanie uszkodzenia realizowane jest przy użyciu indeksów uszkodzenia. Obliczenie zestawu indeksów przy jednoczesnej interpretacji ich wartości umożliwia detekcję ubytków oraz przyrostów materiałowych lub redukcji sztywności. W procesie detekcji uszkodzenia z reguły wykorzystuje się cztery stopnie zaawansowania:

- 1. stwierdzenie czy uszkodzenie istnieje;
- 2. poszukiwanie miejsca uszkodzenia;
- 3. ocena stopnia uszkodzenia
- 4. ocena typu uszkodzenia.

W opracowanych autorskich indeksach wykorzystano poniższe oznaczenia:

n - liczba elementów modelu MES;

 n_{\max} - numer elementu modelu MES o największej bezwzględnej zamianie sztywności lub masy otrzymanej w wyniku procedury aktualizacji;

*n*_d - numer dowolnego elementu modelu MES wytypowanego (potencjalnie uszkodzonego);

- Eli sztywność początkowa i-tego elementu modelu MES;
- El^k_i sztywność końcowa *i*-tego elementu modelu MES po procedurze aktualizacji;
- m^p_i masa początkowa *i*-tego elementu modelu MES;
- m_i^k masa końcowa *i*-tego elementu modelu MES po procedurze aktualizacji.

Podstawowym indeksem jest skalarny indeks I_{oi} , obliczany niezależnie dla każdego z *n* elementów modelu MES. Pozwala on na sprawdzenie procentowej zmiany parametru projektowego, który definiowany jest jako różnica sztywność EI_i lub masy m_i *i*-tego elementu modelu MES, wyznaczonej po procedurze aktualizacji w stosunku do wartości początkowej danego parametru projektowego, znormalizowany przez wartość początkową parametru projektowego. Jeżeli akutalizowanym parametrem projektowym jest sztywność EI_i elementu modelu MES indeks I_{oi} zdefiniowany jest w postaci:

$$I_{oi} = \frac{EI_i^p - EI_i^k}{EI_i^p} \cdot 100\%.$$
 (3.1)

W przypadku gdy aktualizowanym parametrem jest masa elementu modelu MES, indeks I_{oi} dany jest wzorem:

$$I_{oi} = \frac{m_i^k - m_i^p}{m_i^p} \cdot 100\%.$$
(3.2)

Na bazie indeksu skalarnego I_{oi} zaproponowano indeks wektorowy I_o , o wymiarze 1xn, który zawiera zestawione dla każdego z elementów modelu MES procentowe zmiany parametru projektowego:

$$\mathbf{I}_{o} = [I_{o1}, I_{o2}, I_{o3}, \dots, I_{on}].$$
(3.3)

Modyfikacją indeksu I_o jest indeks I_o^{abs} (3.4), którego elementy są wartością bezwzględną z indeksu I_{oi} dla każdego z n elementów modelu MES:

$$\mathbf{I}_{o}^{abs} = [|I_{o1}|, |I_{o2}|, |I_{o3}|, \dots, |I_{on}|].$$
(3.4)

Podstawowe indeksy, bazujące na procentowej zmianie parametru projektowego, uzupełniono indeksami ułatwiającymi szacowanie położenia uszkodzenia w konstrukcji, jego stopnia oraz kontrolujące poprawność działania algorytmu. Do ich definicji wykorzystano dwanaście indeksów pomocniczych. Założono, że model MES składa się z minimum siedmiu elementów oraz, że element uszkodzony nie jest elementem skrajnym ani przedskrajnym - tzn. posiada co najmniej dwóch "sąsiadów" z każdej strony. W przypadku mniejszej liczby elementów bądź uszkodzenia zlokalizowanego w skrajnych częściach modelu indeksy definiowane są analogicznie z pominięciem odpowiednich elementów wektorów.

Zdefiniowano trzy typy indeksów pomocniczych. Wszystkie 3 typy indeksów wyznaczano biorąc pod uwagę, że za element uszkodzony uważa się ten o największej zmianie sztywności n_{max} po procedurze aktualizacji bądź, dowolny element wytypowany n_d , gdy potencjalnie znamy miejsce uszkodzenia.

Pierwsza grupa proponowanych indeksów wyznacza średnią zmianę parametrów projektowych elementów nieuszkodzonych:

$$I_{rm} = \frac{\sum_{i=1}^{n} I_{oi} - I_{o}(n_{\max-1}, n_{\max}, n_{\max+1})}{n-3} \quad dlan > 3,$$
(3.5)

62 | Strona

$$I_{rmd} = \frac{\sum_{i=1}^{n} I_{oi} - I_{o}(n_{d-1}, n_{d}, n_{d+1})}{n-3} \quad dlan > 3,$$
(3.6)

$$I_{rm}^{abs} = \frac{\sum_{i=1}^{n} I_{oi}^{abs} - I_{o}^{abs}(n_{max-1}, n_{max}, n_{max+1})}{n-3} \quad dlan > 3,$$
(3.7)

$$I_{rmd}^{abs} = \frac{\sum_{i=1}^{n} \mathbf{I}_{oi}^{abs} - \mathbf{I}_{o}^{abs}(n_{d-1}, n_{d}, n_{d+1})}{n-3} \quad dlan > 3.$$
(3.8)

Indeks I_{rm} (3.5) jest różnicą pomiędzy sumą parametrów projektowych wszystkich elementów indeksu wektorowego I_o , a sumą parametrów projektowych elementu o maksymalnej zamianie i elementów z nim sąsiadujących, znormalizowany przez n-3. Indeks I_{rmd} (3.6) jest różnicą pomiędzy sumą parametrów projektowych wszystkich elementów indeksu wektorowego I_o , a sumą parametrów projektowych dowolnego elementu wytypowanego i elementów z nim sąsiadujących, znormalizowany przez n-3. Analogicznie do powyższych indeksów zdefiniowano indeksy I_{rm}^{abs} (3.7) oraz I_{rmd}^{abs} (3.8) odnosząc się do indeksu wektorowego I_o^{abs} .

Druga grupa proponowanych indeksów pomocniczych odnosi się do maksymalnej zmiany parametru projektowego:

$$I_{r_{max}} = \max \left\langle I_{o}(1, ..., n_{max-2}, n_{max+2}, ..., n) \right\rangle$$
(3.9)

$$I_{r\max d} = \max \left\langle I_{o}(1,...,n_{d-2},n_{d+2},...,n) \right\rangle$$
(3.10)

$$I_{r_{\max}}^{abs} = \max \left\langle I_{o}^{abs}(1, ..., n_{\max-2}, n_{\max+2}, ..., n) \right\rangle$$
(3.11)

$$I_{r\max d}^{abs} = \max \left\langle I_{o}^{abs}(1,...,n_{d-2},n_{d+2},...,n) \right\rangle$$
(3.12)

Indeks I_{rmax} (3.9) jest maksymalną wartością z indeksu wektorowego I_o , z pominięciem wartości indeksu I_o dla elementu o maksymalnej zmianie parametrów projektowych i elementów z nim sąsiadujących. Indeks $I_{rmax d}$ (3.10) jest maksymalną wartością z indeksu wektorowego I_o , z pominięciem wartości indeksu I_o dla dowolnego wytypowanego elementu i elementów z nim sąsiadujących. Analogicznie do powyższych indeksów zdefiniowano indeksy I_{rmax}^{abs} (3.11) oraz $I_{rmax d}^{abs}$ (3.12) odnosząc się do indeksu wektorowego I_o^{abs} .

Trzecia grupa indeksów odnosi się do maksymalnej zmiany sztywności z elementów bezpośrednio sąsiadujących z elementem uszkodzonym:

$$I_{rs} = \max \left\langle I_o(n_{\max-1}, n_{\max+1}) \right\rangle$$
(3.13)

$$I_{rsd} = \max \left\langle \mathbf{I}_{o}(\mathbf{n}_{d-1}, \mathbf{n}_{d+1}) \right\rangle$$
(3.14)

$$I_{rs}^{abs} = \max \left\langle I_{o}^{abs} (n_{\max-1}, n_{\max+1}) \right\rangle$$
(3.15)

$$I_{rsd}^{abs} = \max \left\langle \mathbf{I}_{o}^{abs}(\mathbf{n}_{d-1}, n_{d+1}) \right\rangle$$
(3.16)

Indeks I_{rs} (3.13) jest maksymalną wartością z indeksu wektorowego I_o dla elementów sąsiadujących z elementem o maksymalnej zmianie parametrów projektowych. Indeks $I_{rs\,d}$ (3.14) jest maksymalną wartością z indeksu wektorowego I_o dla elementów sąsiadujących z elementem dowolnie wytypowanym. Analogicznie do powyższych indeksów zdefiniowano indeksy I_{rs}^{abs} (3.15) oraz $I_{rs\,d}^{abs}$ (3.16) odnosząc się do indeksu wektorowego I_o^{abs} .

Indeksy bezpośrednio sprawdzające jakość działania algorytmu podzielone zostały na dwie kategorie: bazowe i kontrolne.

Wykorzystując indeksy bazowe możliwe jest wyszukiwanie maksymalnej wartości w indeksie I_o lub I_o^{abs} , a następnie przyrównanie jej do odpowiadających wartości indeksów pośrednich. Indeksy bazowe umożliwiają sprawdzenie wzajemnych relacji pomiędzy zmianami parametrów projektowych we wszystkich elementach i na tej podstawie oszacowanie wielkości oraz zakresu uszkodzenia.

Indeks bazowy średni I_m oraz indeks bazowy średni bezwzględny I_m^{abs} odnoszą się do wartości średniej z elementów nieuszkodzonych i są zdefiniowane następująco:

$$I_m = \frac{I_o(n_{\max})}{I_{rm}},$$
(3.17)

$$I_{m}^{abs} = \frac{I_{o}(n_{\max})}{I_{m}^{abs}}.$$
 (3.18)
Indeks bazowy maksymalny I_{max} oraz indeks bazowy maksymalny bezwzględny I_{max}^{abs} odnoszą się do wartości maksymalnej z elementów nieuszkodzonych i są zdefiniowane następująco:

$$I_{\max} = \frac{\mathbf{I}_o(n_{\max})}{I_{r\max}},$$
(3.19)

$$I_{\max}^{abs} = \frac{I_o(n_{\max})}{I_{\max}^{abs}}.$$
(3.20)

Indeks bazowy sąsiedni I_s oraz indeks bazowy sąsiedni bezwzględny I_s^{abs} odnoszą się do wartości maksymalnej z elementów sąsiadujących z uszkodzonym i są zdefiniowane następująco:

$$I_s = \frac{I_o(n_{\max})}{I_{rs}},$$
(3.21)

$$I_{s}^{abs} = \frac{I_{o}(n_{\max})}{I_{rs}^{abs}}.$$
 (3.22)

Analogicznie zaproponowano definicję indeksów kontrolnych, które służą do weryfikacji działania algorytmu aktualizacji. Używa się ich w symulacjach, w których znamy dokładnie lokalizację uszkodzenia.

Indeks kontrolny średni I_{mk} oraz indeks kontrolny średni bezwzględny I_{mk}^{abs} odnoszą się do wartości średniej z elementów nieuszkodzonych i są zdefiniowane następująco:

$$I_{mk} = \frac{\mathbf{I}_o(n_d)}{I_{rm d}},$$
(3.23)

$$I_{mk}^{abs} = \frac{\mathbf{I}_o(n_d)}{I_{rm d}^{abs}}.$$
(3.24)

Indeks kontrolny maksymalny $I_{max k}$ oraz indeks kontrolny maksymalny bezwzględny $I_{max k}^{abs}$ odnoszą się do wartości maksymalnej z elementów nieuszkodzonych i są zdefiniowane następująco:

$$I_{\max k} = \frac{I_o(n_d)}{I_{r\max d}},$$
 (3.25)

$$I_{\max k}^{abs} = \frac{I_o(n_d)}{I_{rmax d}^{abs}}.$$
(3.26)

Indeks kontrolny sąsiedni I_{sk} oraz indeks kontrolny sąsiedni bezwzględny I_{sk}^{abs} odnoszą się do wartości maksymalnej z elementów sąsiadujących z uszkodzonym i są zdefiniowane następująco:

$$I_{sk} = \frac{I_o(n_d)}{I_{rsd}},$$
(3.27)

$$I_{sk}^{abs} = \frac{I_o(n_d)}{I_{rs\,d}^{abs}}.$$
 (3.28)

Opracowane autorskie indeksy są narzędziem wspomagającym proces identyfikacji uszkodzenia. Indeksy bazowe I_m , I_m^{abs} , I_{max} , I_s^{abs} , I_s , I_s^{abs} znajdują zastosowanie w sprawdzeniu czy w konstrukcji występuje uszkodzenie oraz pozwalają na oszacowanie jego intensywności. Indeksy kontrolne I_{mk} , I_{mk}^{abs} , $I_{max\,k}$, I_{sk}^{abs} , wyznaczane są dla z góry narzuconego elementu. Pozwalają na ustalenie, czy wybrany konkretny element modelu MES jest uszkodzony oraz na poznanie intensywności tego uszkodzenia. Mogą zostać wykorzystane również w poszukiwaniu najbardziej korzystnego rozmieszczenia czujników pomiarowych, na przykładzie testowym, gdy z góry znane jest miejsce uszkodzenia.

W niniejszej pracy uszkodzenie konstrukcji utożsamiane jest ze spadkiem pierwszej częstotliwości drgań własnych. W przypadku gdy aktualizowanym parametrem projektowym jest sztywność EI_i elementu modelu MES, uszkodzenie jest tożsame z jej redukcją. Kiedy akutalizowanym parametrem projektowym jest masa m_i segmentu, jej wzrost w danym elemencie jest tożsamy z jego uszkodzeniem. Tym samym dodatnie wartości zarówno indeksów kontrolnych jak i bazowych świadczą o uszkodzeniu konstrukcji. Związane są więc z redukcją sztywności, bądź przyrostem masy elementu modelu MES. Ujemne wartości indeksów świadczą natomiast o wzroście sztywności bądź redukcji masy danego segmentu modelu MES.

3.2 Aktualizacja parametrów projektowych na przykładzie belki swobodnie podpartej

Aktualizacje parametrów modelu MES przy użyciu częstotliwości i postaci drgań własnych wykonano na danych uzyskanych dla belki swobodnie podpartej. Belka zbudowana jest ze stalowego ceownika C 40 o długości 1,5 m. Przyjęto, że ciężar stali wynosi 7850 kg/m³. Siatka dyskretyzacyjna modelu MES składała się z 10 elementów skończonych równej długości (rysunek 3.1) posiadających 2 stopnie swobody w węźle – przemieszczenie pionowe oraz obrót. Z uwagi na sposób podparcia założono zerowe przemieszczenia pionowe na podporach. Całkowita liczba

stopni swobody wynosi 20, w tym 9 stopni swobody stanowią translacje, natomiast 11 rotacje. Sztywność *El*, nieuszkodzonego elementu belki wynosi 2171,6 Nm².Tłumienie belki zostało pominięte w niniejszych obliczeniach.

W pierwszym etapie obliczeń akutalizowanymi parametrami są sztywności giętne EI_i wszystkich elementów skończonych belki. Wektor akutalizowanych parametrów ma postać $\boldsymbol{\Theta} = [EI_1, EI_2, ..., EI_{10}]$. Dane wejściowe do procedury aktualizacji zostały wygenerowane numerycznie, przy założeniu braku szumu pomiarowego. Przeprowadzono analizy dla trzech typów belek: belki nieuszkodzonej, belki z uszkodzeniem trzeciego elementu modelu MES (rysunek 3.2) oraz belki z uszkodzeniem piątego elementu modelu MES (rysunek 3.3).

Rysunek 3.3 Model MES belki swobodnie podpartej z uszkodzonym 5 elementem

Uszkodzenie jest modelowane poprzez redukcję sztywności giętnej *EI*_i danego elementu. W przeprowadzonej analizie badano zbieżność rozwiązania - poprawność lokalizacji uszkodzenia w przypadku gdy uszkodzenie belki, redukcja sztywności *EI*_i, elementu wynosi odpowiednio 1%, 5%, 10% oraz 15%.

Dla belki nieuszkodzonej oraz z uszkodzeniem elementu 3 i 5 przeprowadzono analizę modalną. Wyznaczono postacie i częstotliwości drgań własnych konstrukcji. Pierwsza częstotliwość w przypadku belki nieuszkodzonej wynosi 19,61 Hz, druga 78,44 Hz, trzecia 176,57

Hz, a czwarta 314,26 Hz. Wyniki czterech pierwszych częstotliwości giętnych dla belki z różnym stopniem uszkodzenia wraz z odpowiadającym kryterium MAC i NMD zestawiono w tabeli 3.1. Na rysunkach 3.4 i 3.5 przedstawiono cztery pierwsze giętne postacie drgań belki z uszkodzeniem o intensywności 15% oraz belki bez uszkodzenia wraz z różnicami pomiędzy postacią drgań dla belki bez uszkodzenia oraz z uszkodzeniem, odpowiednio dla translacyjnych oraz rotacyjnych stopni swobody.

Rysunek 3.5 Porównanie postaci drgań własnych dla belki bez uszkodzenia i z uszkodzeniem trzeciego elementu o intensywności 15% bazujące na rotacyjnych stopniach swobody

Maksymalne różnice dla przedstawionych postaci drgań w przypadku translacyjnych stopni swobody wahają się w zakresie od 0,007 do 0,019, natomiast w przypadku rotacyjnych stopni swobody od 0,010 do 0,037. Największe zmiany w obu przypadkach występują dla postaci 2 oraz 3 i wynoszą odpowiednio dla translacyjnych stopni swobody 0,019 i 0,012 oraz dla rotacyjnych stopni swobody 0,050 i 0,037.

Stopień	Postać	El uszkodzonego			Тур	belki		
uszkodzenia	drgań	elementu		Uszkodzenie	El ₃		Uszkodzenie	EI5
[%]		Nm ²	<i>f</i> [Hz]	MAC [-]	NMD [%]	<i>f</i> [Hz]	MAC [-]	NMD [%]
	1		19,60	1,000	0,085	19,59	1,000	0,084
1	2	2140.0	78,37	1,000	0,159	78,43	1,000	0,059
1	3	2149,9	176,48	1,000	0,139	176,44	1,000	0,187
	4		314,22	1,000	0,035	314,14	1,000	0,161
	1		19,56	0,999	0,441	19,51	0,999	0,435
F	2	2002 1	78,05	0,999	0,821	78,39	0,999	0,305
5	3	2003,1	176,12	0,999	0,712	175,88	0,999	0,958
	4		314,06	1,000	0,185	313,64	0,999	0,822
	1		19,50	0,999	0,926	19,40	0,999	0,908
10	2	10545	77,62	0,999	1,704	78,34	0,999	0,638
10	3	1954,5	175,63	0,999	1,469	175,14	0,999	1,983
	4		313,83	0,999	0,390	312,97	0,999	1,694
	1		19,44	0,999	1,463	19,28	0,999	1,424
15	2	1945 0	77,16	0,999	2,657	78,28	0,999	1,001
15	3	1043,9	175,11	0,999	2,277	174,34	0,999	3,083
	4		313,58	0,999	0,621	312,25	0,999	2,621

Tabela 3.1 Zestawienie czterech pierwszych częstotliwości drgań własnych oraz kryterium MAC i NMD dla belki z uszkodzeniem 3 oraz 5 elementu

Procedura dla badań na danych numerycznych poszukiwania miejsca uszkodzenia składa się z następujących kroków:

- 1. wyboru liczby postaci drgań branych do procedury aktualizacji;
- 2. wyboru liczby translacji oraz rotacji;
- 3. stworzenia wektora numerycznych danych "pomiarowych";
- 4. redukcji macierzy **K** i **M** metodą SEREP względem niemierzonych stopni swobody;
- obliczenia częstotliwości i postaci drgań dla zredukowanych macierzy układu dynamicznego;
- normalizacji wektora pomierzonych postaci drgań względem numerycznej macierzy mas;
- obliczenia macierzy wrażliwości S, różnicy wektorów par modalnych, zdefiniowania macierzy wag i obliczenia perturbacji parametrów projektowych;
- 8. minimalizacji funkcji kary w odniesieniu do zmiany parametrów projektowych;
- 9. obliczenia aktualnej sztywności elementów skończonych układu i sprawdzenia poprawności zrealizowanych obliczeń.

Pierwszym wariantem zadania testowego jest przyjęcie do procedury aktualizacji dwóch pierwszych częstotliwości i postaci drgań, z uwagi na to, że są one relatywnie łatwe do uzyskania

podczas badań rzeczywistych konstrukcji. W celu zbadania wpływu pomiaru dodatkowych rotacyjnych stopni swobody i ich wpływu na poprawną detekcję lokalizacji i stopnia uszkodzenia zastosowano pięć różnych schematów rozmieszczenia punktów pomiarowych. Jako sztywność początkową dla wszystkich elementów, przyjęto *El*_i elementu nieuszkodzonego. W całej procedurze korzystano z pierwszego wariantu definicji macierzy wag opisanego w rozdziale 2.5. Macierz wag wartości mierzonych była definiowana zgodnie ze wzorem (2.144), a macierz wag paramentów korzystając z regularyzacji Tikonov'a (2.145).

Pierwszy schemat układu "pomiarowego" składa się z dwóch translacyjnych stopni swobody, w środku rozpiętości belki oraz w 1/5 długości belki (rysunek 3.6).

Wyniki symulacji wykazały, że aktualizacja paramentów modelu MES w przypadku, gdy iteracje wykonywane są wyłącznie na danych z dwóch translacyjnych stopni swobody nie jest możliwa, bez względu na wielkość i lokalizację uszkodzenia. Na rysunku 3.7 przedstawiono dodatnie wartości indeksu I_o oraz zmianę sztywności elementów belki bez uszkodzenia oraz dla różnie zlokalizowanych uszkodzeń o intensywności 1% i 15%.

Na podstawie szeregu przeprowadzonych analiz założono, że maksymalna wartość bezwzględna indeksu I_{oi} może wynosić 40%. Założenie to pozwala wyeliminować ze zbioru potencjalnych prawidłowych rozwiązań, już na wstępnym etapie te, których wynik wskazuje na nierealny spadek bądź wzrost sztywności lub masy. Wartość indeksu $I_{oi} = -40\%$ świadczy o stanie przedawaryjnym konstrukcji, natomiast $I_{oi} = 40\%$ świadczy o znacznym lokalnym przesztywnieniu konstrukcji. W konsekwencji tego maksymalna zmiana dowolnego elementu indeksu I_o może wynosić maksymalnie 40% co do wartości bezwzględnej.

Dla opisanego powyżej przykładu, niezależnie od intensywności uszkodzenia, indeks osiąga wartości znacznie przekraczające założoną wartość maksymalną równą 40%, co klasyfikuje rozwiązanie jako nieprawidłowe. Tym samym zastosowanie schematu bazującego na podstawie jednie dwóch translacji rozmieszczonych w zgodnie z rysunkiem 3.6 nie umożliwia nam poprawnej aktualizacji parametrów.

Rysunek 3.7 Indeks \mathbf{l}_o oraz zmiana sztywności dla schematu 1 usytuowania czujników pomiarowych dla elementów belki a) bez uszkodzenia b) przy uszkodzeniu elementu trzeciego o intensywności 15% c) przy uszkodzeniu elementu piątego o intensywności 1% d) przy uszkodzeniu elementu piątego o intensywności 15%

Drugi schemat rozmieszczenia punktów pomiarowych zakładał dodanie, do wcześniej zadanych translacji jednego punku pomiaru rotacji umieszczonego w pierwszym przypadku w 1/5 (rysunek 3.8), a w drugim w 1/2 (rysunek 3.9) rozpiętości belki.

Rysunek 3.8 Miejsca pomiaru translacyjnych stopni swobody (t1C, t2F) i rotacyjnego stopnia swobody (r1C) – 2 schemat rozmieszczenia czujników

Rysunek 3.9 Miejsca pomiaru translacyjnych stopni swobody (t1C, t2F) i rotacyjnego stopnia swobody (r2F) - 3 schemat rozmieszczenia czujników Dodanie jednego rotacyjnego stopnia swobody do procedury aktualizacji nie umożliwiło poprawnego wskazania uszkodzenia. Podobnie jak w przypadku schematu numer 1 rozmieszczenia czujników, otrzymano indeks I_o o wartościach znacznie większych niż 40%, a sztywność części elementów ma wartość ujemną. Na rysunku 3.10 oraz 3.11 przedstawiono, analogiczne jak dla pomiaru dwóch translacyjnych stopni swobody, wyniki dla schematów 2 i 3 rozmieszczenia czujników.

Rysunek 3.10 Indeks I_o oraz zmiana sztywności dla schematu 2 usytuowania czujników pomiarowych dla elementów belki a) bez uszkodzenia b) przy uszkodzeniu elementu trzeciego o intensywności 15% c) przy uszkodzeniu elementu piątego o intensywności 1% d) przy uszkodzeniu elementu piątego o intensywności 15%

Rysunek 3.11 Indeks \mathbf{I}_o oraz zmiana sztywności dla schematu 3 usytuowania czujników pomiarowych dla elementów belki a) bez uszkodzenia b) przy uszkodzeniu elementu trzeciego o intensywności 15% c) przy uszkodzeniu elementu piątego o intensywności 1% d) przy uszkodzeniu elementu piątego o intensywności 15%

Kolejnym etapem jest badanie schematu z dodanym czwartym punktem pomiarowym drugą rotacją. Tym samym procedura aktualizacji dla schematu 4 bazuje na pomiarze 2 translacji i 2 rotacji umieszczonych dla schematu 4 w 1/5 i w 1/2 rozpiętości belki (rysunek 3.12), natomiast dla schematu 5 w 1/5 oraz 9/10 rozpiętości belki (rysunek 3.13).

Rysunek 3.12 Miejsca pomiaru translacyjnych (t1C, t2F) i rotacyjnych (r1C,r2F) stopni swobody – 4 schemat rozmieszczenia czujników

Wyniki symulacji wykazały, że aktualizacja paramentów modelu MES w przypadku, gdy iteracje wykonywane są na danych z dwóch translacyjnych i dwóch rotacyjnych stopniach swobody jest możliwa. Otrzymane wartości sztywności belki oraz indeksu **I**_o mają realne wartości. Każdorazowo maksymalna wartość z indeksu **I**_o jest mniejsza od wielkości uszkodzenia i założonej na wstępie maksymalnej zmiany sztywności wynoszącej 40%.

W przypadku belki nieuszkodzonej, dla schematu 4 i 5 rozmieszczenia czujników, maksymalny spadek sztywności wskazuje na uszkodzenie elementu numer dwa (Rysunek 3.14). Z uwagi jednak na fakt, że maksymalna wartość indeksu I_o jest w obu przypadkach bliska zeru i wynosi odpowiednio $I_o = 2,30 \cdot 10^{-10}$ % dla schematu numer 4 rozmieszczenia czujników i $I_o = 2,32 \cdot 10^{-10}$ % dla schematu numer 5 rozmieszczenia czujników, aktualizacja parametrów wykazuje, że w belce nie występuje uszkodzenie.

Rysunek 3.14 Indeks \mathbf{I}_o oraz zmiana sztywności w przypadku belki nieuszkodzonej dla schematu a) 4 b) 5 usytuowania czujników pomiarowych

Wykresy przedstawione na rysunkach 3.15 i 3.16 przedstawiają wyniki aktualizacji parametrów dla belki z uszkodzeniem trzeciego elementu o intensywności 1% i 15%. Maksymalna wartość indeksu I_o w obu przypadkach występuje w elemencie trzecim, a więc $n_{max} = 3$ co świadczy o poprawnej identyfikacji miejsca uszkodzenia. W obu przypadkach wynik aktualizacji mylnie sugeruje również występowanie uszkodzenia w segmencie 8. Zestawione w tabelach 3.2 i 3.3 indeksy osiągają dokładnie takie same wartości dla indeksów bazowych jak dla odpowiadających im indeksów kontrolnych. Świadczy to o tym, że sugerowane miejsce uszkodzenia $n_d = 3$, jest zgodne z tym wyznaczonym przez algorytm. Najmniejszą, bliską jedności, wartość osiągnięto dla indeksów I_{max} , I_{maxk}^{abs} , I_{maxk}^{abs} . Wartość tych indeksów wskazuje, na to, że więcej niż jeden element uległ uszkodzeniu o podobnej intensywności. Niezależenie od stopnia uszkodzenia zmiany sztywności występujące w pozostałych elementach są niewielkie

w porównaniu do elementu numer 3 i 8, o czym świadczą wysokie wartości obliczonych indeksów bazowych i kontrolnych I_m , I_m^{abs} , I_{mk} , I_{mk}^{abs} oraz I_s , I_s^{abs} , I_{sk} I_{sk}^{abs} (tabela 3.2 i 3.3.). Występuje rozbieżność pomiędzy zadanymi wartościami uszkodzenia wynoszącymi odpowiednio 1% i 15%, a otrzymanymi zmianą sztywności elementów wynoszącymi około 0,5% oraz 7,9-8,4%.

Rysunek 3.15 Indeks \mathbf{I}_o oraz zmiana sztywności dla schematu 4 usytuowania czujników pomiarowych dla belki z uszkodzonym elementem 3 przy uszkodzeniu o intensywności a) 1% b) 15%

Rysunek 3.16 Indeks I_o oraz zmiana sztywności dla schematu 5 usytuowania czujników pomiarowych dla belki z uszkodzonym elementem 3 przy uszkodzeniu o intensywności a) 1% b) 15%

Tabela 3.2 Zestawienie kontrolnych oraz bazowych indeksów uszkodzenia dla procedury aktualizacji bazującej na schemacie 4 usytuowania czujników przy uszkodzeniu elementu numer 3 modelu MES

						Uszkod	zony 3 e	lemen	t					
St			Inde	ksy bazo	owe					Ind	leksy kon	trolne		
uszk. [%]	n _{max}	I _m	I_m^{abs}	I _{max}	l ^{abs} max	l _s	I_s^{abs}	n _d	I _{m k}	I ^{abs} m k	I _{maxk}	l ^{abs} _{maxk}	I _{sk}	l ^{abs} sk
1	3	10,17	4,71	1,01	1,01	10,75	10,75	3	10,17	4,71	1,01	1,01	10,75	10,75
5	3	10,69	5,00	1,05	1,05	10,16	10,16	3	10,69	5,00	1,05	1,05	10,16	10,16
10	3	11,41	5,39	1,11	1,11	9,75	9,75	3	11,41	5,39	1,11	1,11	9,75	9,75
15	3	12,21	5,72	1,18	1,18	9,65	9,65	3	12,21	5,72	1,18	1,18	9,65	9,65

						Uszkod	lzony 3 e	elemer	ıt					
St. Indeksy bazowe										Inc	leksy kor	trolne		
uszk. [%]	n _{max}	I _m	I_m^{abs}	I _{max}	l ^{abs} max	l _s	l ^{abs}	n _d	I _{m k}	l ^{abs} m k	 maxk	l ^{abs} _{maxk}	I _{sk}	l ^{abs} s k
1	3	10,04	4,67	1,00	1,00	11,07	11,07	3	10,04	4,67	1,00	1,00	11,07	11,07
5	3	10,03	4,79	1,01	1,01	11,64	11,64	3	10,03	4,79	1,01	1,01	11,64	11,64
10	3	10,01	4,95	1,03	1,03	12,53	12,53	3	10,01	4,95	1,03	1,03	12,53	12,53
15	3	10,01	55,12	1,04	1,04	13,70	13,70	3	10,01	55,12	1,04	1,04	13,70	13,70

Tabela 3.3 Zestawienie kontrolnych oraz bazowych indeksów uszkodzenia dla procedury aktualizacji bazującej na schemacie 5 usytuowania czujników przy uszkodzeniu elementu numer 3 modelu MES

W przypadku uszkodzenia elementu 5, algorytm przy rozmieszczeniu czujników zgodnie ze schematem numer 4 lub 5 wskazuje jedynie strefę uszkodzenia obejmującą zasięgiem elementy numer 5 i 6 (rysunek 3.17 i 3.18). Wskazują na to między innymi nieznaczne różnice występujące pomiędzy wartościami indeksów bazowych, a odpowiadających im indeksów kontrolnych (tabela 3.4 i 3.5). Relację pomiędzy sztywnością elementu 6, potencjalnie uszkodzonego, a elementu 5, który w rzeczywistości jest uszkodzony obrazują indeksy I_s , I_s^{abs} , I_{sk} , I_{sk}^{abs} (tabela 3.4 i 3.5). Ich wartości w tym wypadku są bliskie jedności co świadczy o zbliżonej zmianie sztywności obu elementów. Duże wartości indeksów I_{max} , I_{maxk}^{abs} , I_{max} , I_m^{abs} , I_m , I_m^{abs} , I_m , I_m^{abs} (tabela 3.4 i 3.5) świadczą o tym, że poza strefą środkową nie wykryto znaczącej zmiany sztywności innych elementów. We wszystkich przypadkach niedoszacowana jest również wielkość uszkodzenia i tak przy uszkodzeniu 1% wynosi ona nieco ponad 0,4%, a przy uszkodzeniu rzędu 15% wielkość ta waha się w granicach 7,3-7,4%.

Rysunek 3.17 Indeks **I**_o oraz zmiana sztywności dla schematu 4 usytuowania czujników pomiarowych dla belki z uszkodzonym elementem 5 o intensywności a) 1% b) 15%

Rysunek 3.18 Indeks **I**_o oraz zmiana sztywności dla schematu 5 usytuowania czujników pomiarowych dla belki z uszkodzonym elementem 5 o intensywności a) 1% b) 15%

Tabela 3.4 Zestawienie kontrolnych oraz bazowych indeksów uszkodzenia dla procedury aktualizacji bazującej na schemacie 4 usytuowania czujników przy uszkodzeniu elementu numer 5 modelu MES

						Uszkod	lzony 5 e	lemen	t					
St Indeksy bazowe										Ind	eksy kon	trolne		
uszk. [%]	n _{max}	I _m	I_m^{abs}	I _{max}	l ^{abs} max	l _s	l ^{abs}	n _d	I _{m k}	$\mathbf{I}_{m\ k}^{abs}$	 maxk	l ^{abs} _{maxk}	I _{sk}	l ^{abs}
1	5,6	41,22	17,41	7,68	7,68	1,00	1,00	5	41,32	17,36	7,66	7,66	1,00	1,00
5	6	43,64	18,59	7,57	7,57	1,01	1,01	5	44,25	18,26	7,51	7,51	0,99	0,99
10	6	47,34	20,45	7,60	7,60	1,02	1,02	5	48,96	19,64	7,47	7,47	0,98	0,98
15	6	52,10	22,21	7,80	7,80	1,03	1,03	5	55,47	20,8	7,58	7,58	0,97	0,97

Tabela 3.5 Zestawienie kontrolnych oraz bazowych indeksów uszkodzenia dla procedury aktualizacji bazującej na schemacie 5 usytuowania czujników przy uszkodzeniu elementu numer 5 modelu MES

						Uszkoc	dzony 5 e	elemer	nt					
St. Indeksy bazowe										Ind	leksy kon	trolne		
uszk. [%]	n _{max}	$\max_{\max} I_m I_m^{abs} I_m^{abs} I_{max} I_m^{abs} I_s I_s^{abs} I_s^{abs} n_d^{abs} I_m^{abs}$				l ^{abs} m k	l _{maxk}	l ^{abs} _{maxk}	I _{sk}	l ^{abs} s k				
1	5,6	41,24	17,31	7,74	7,74	1,00	1,00	5	41,24	17,31	7,74	7,74	1,00	1,00
5	5,6	43,75	18,00	7,83	7,83	1,00	1,00	5	43,75	18,00	7,83	7,83	1,00	1,00
10	5,6	47,67	19,06	7,97	7,97	1,00	1,00	5	47,67	19,06	7,97	7,97	1,00	1,00
15	5	52,85	20,17	8,14	8,14	1,01	1,01	5	52,85	20,17	8,14	8,14	1,01	1,01

W tabelach 3.6 oraz 3.7 zestawiono wartości częstotliwości drgań oraz kryterium NMD przy rozmieszczeniu czujników zgodnie ze schematem 4 i 5. Wartości kryterium NMD dla każdego z przeanalizowanych przypadków osiągają wartości znacznie poniżej 1% dla uszkodzeń o intensywności 1-5% oraz wartości poniżej 2,5% dla uszkodzeń o intensywności 10-15%. Wartości początkowe dwóch pierwszych częstotliwości drgań własnych były zgodne z wartościami dla belki nieuszkodzonej przedstawionej na rysunku 3.1. Wynosiły one odpowiednio 19,61 Hz oraz 78,44

Hz. W przypadku aktualizacji parametrów projektowych belki z uszkodzeniem 3 elementu, bez względu na intensywność uszkodzenia, uzyskano 100% zgodność częstotliwości drgań własnych otrzymanych po aktualizacji z dokładnymi wartości częstotliwości drgań własnych wyliczonymi dla belki o zadanym uszkodzeniu. W przypadku uszkodzenia elementu 5, różnice występujące miedzy częstotliwościami otrzymanymi po aktualizacji, a dokładnymi wartościami częstotliwości nie były większe od 0,3% (0,05 Hz).

Tabela 3.6 Zestawienie częstotliwości drgań własnych oraz wartości kryterium NMD dla procedury aktualizacji bazującej na schemacie 4 usytuowania czujników przy uszkodzeniu elementu numer 3 i 5 modelu MES

			Uszkod	zony 3 ele	ement				Uszkod	zony 5 ele	ement	
St.	War począ	tości tkowe:		f ₁ f ₂	=19,61 Hz =78,44 Hz		War począt	tości tkowe:		f ₁ f ₂	=19,61 Hz =78,44 Hz	
uszk. [%]	War doce	tości lowe		Wartości otrzymane po aktualizacji				tości lowe		Warto po	ości otrzymano aktualizacji	2
	f_1	f ₂	f_1	f ₂	NM	D [%]	f_1	f ₂	f_1	f ₂	NM) [%]
	[Hz]	[Hz]	[Hz]	[Hz]	1 postać	2 postać	[Hz]	[Hz]	[Hz]	[Hz]	1 postać	2 postać
1	19,60	78,37	19,60	78,37	0,069	0,072	19,59	78,43	19,59	78,43	0,145	0,015
5	19,56	78,05	19,56	78,05	0,354	0,369	19,51	78,38	19,53	78,39	0,755	0,071
10	19,50	77,62	19,50	77,62	62 0,731 0,753			78,34	19,43	78,34	1,579	0,134
15	19,44	77,16	19,44	77,16	1,128	1,141	19,28	78,28	19,33	78,28	2,484	0,193

Tabela 3.7 Zestawienie częstotliwości drgań własnych oraz wartości kryterium NMD dla procedury aktualizacji bazującej na schemacie 5 usytuowania czujników przy uszkodzeniu elementu numer 3 i 5 modelu MES

			Uszkod	zony 3 ele	ement				Uszkod	zony 5 ele	ement	
St.	War począt	tości tkowe:		f ₁ : f ₂ :	=19,6 1Hz =78,44 Hz		War począt	tości :kowe:		f ₁ : f ₂ :	=19,6 1Hz =78,44 Hz	
uszk. [%]	War doce	tości lowe		Warto po	sci otrzymane aktualizacji	2	War doce	tości lowe		Warto po	ości otrzymane aktualizacji	2
	f_1	f ₂	f_1	f ₂	NME	D [%]	f_1	f ₂	f_1	f ₂	NME	D [%]
	[Hz]	[Hz]	[Hz]	[Hz]	1 postać	2 postać	[Hz]	[Hz]	[Hz]	[Hz]	1 postać	2 postać
1	19,60	78,37	19,60	78,37	0,064	0,106	19,59	78,43	19,59	78,43	0,024	0,019
5	19,56	78,05	19,56	78,05	0,331	0,539	19,51	78,38	19,53	78,39	0,120	0,095
10	19,50	77,62	19,50	77,62	62 0,685 1,090			78,34	19,43	78,34	0,242	0,196
15	19,44	77,16	19,44	77,16	1,064	19,28	78,28	19,33	78,30	0,369	0,304	

Przy liczbie czujników "pomiarowych" mniejszej od 4, rozmieszczonych zgodnie ze schematami 1-3 oraz przy dostępności jedynie 2 częstotliwości i postaci drgań własnych dla belki swobodnie podpartej składającej się z 10 elementów skończonych, nie jest możliwa detekcja uszkodzenia za pomocą przedstawionej procedury.

Wartości zaprezentowanych indeksów oraz ich analiza wskazują, że możliwa jest poprawna detekcja uszkodzenia dla belki swobodnie podpartej składającej się z 10 elementów skończonych, jeżeli korzystamy co najmniej z 2 punktów pomiaru translacji i dwóch punktów pomiaru rotacji rozmieszczonych zgodnie ze schematami 4 i 5. Posługiwanie się indeksami opisanymi szczegółowo w rozdziale 3.1 pozwala na wiarygodną interpretację otrzymanych wyników oraz ocenę poprawności działania algorytmu jak i ocenę zakresu uszkodzenia. Indeksy pozwalają także oszacować, czy uszkodzenie występuje w jednym czy w większej liczbie elementów.

Indeksy bazowe, odnoszące się do maksymalnej wartości z indeksu wektorowego I_o , pozwalają na ocenę tego, czy w modelu występuje uszkodzenie. Potwierdzeniem występowania uszkodzenia są wartości indeksów I_m , I_m^{abs} większe od jedności. Indeksy bazowe I_s oraz I_s^{abs} pozwalają na sprawdzenie czy uszkodzona jest większa strefa "sąsiadująca" z elementem o największej zamianie parametru projektowego. Wskazują na to niskie, zbliżone do jedności, wartości tych indeksów. Wartości indeksów I_{max} i I_{max}^{abs} zbliżone do jedności są potwierdzeniem uszkodzeń występujących w innych strefach modelu MES.

Indeksy kontrolne, odnoszące się do wybranego elementu modelu MES, pozwalają na ocenę tego, czy w danym elemencie występuje uszkodzenie. Potwierdzeniem jest większa od jedności wartość indeksów I_{mk} , I_{mk}^{abs} . Indeksy kontrolne I_{sk} oraz I_{sk}^{abs} pozwalają na ocenę strefy "sąsiadującej" z wybranym elementem. Ich wartość mniejsza od jedności, sygnalizuje większe uszkodzenie w elemencie "sąsiadującym" niż w wybranym. Natomiast wartość zbliżona do jedności wskazuje na uszkodzenie strefy w pobliżu wytypowanego elementu. W przypadku gdy wartości tych indeksów są znacznie większe od jedności oznacza to, że największe uszkodzenie w danej strefie występuje w wybranym elemencie. Analogicznie do indeksów kontrolnych I_{sk} oraz I_{sk}^{abs} można intepretować wartości indeksów I_{maxk} i I_{max}^{abs} , odnosząc się w tym wypadku do elementów występujących w innych strefach modelu MES.

Przeprowadzone analizy wykazały, że bardziej zasadne wydaje się stosowanie indeksów odnoszących się do indeksu wektorowego I_o^{abs} niż I_o , zarówno w przypadku indeksów kontrolnych jak i bazowych. Z uwagi na możliwe wahania wszystkich paramentów projektowych, przypisanych do konkretnych elementów modelu MES, względem poziomu początkowego, nawet przy znacznych różnicach parametrów projektowych wartości indeksów pomocniczych I_{rm} oraz I_{rmd} mogą osiągać bardzo małe wartości. Przekłada się to na zawyżone wartości indeksów I_m , $I_{m,k}$, co w konsekwencji może prowadzić do błędnego wskazania dużego uszkodzenia w modelu MES. W przypadku pozostałych indeksów, odnoszenie się do wartości indeksów pomocniczych I_{rmax}^{abs} ,

 $I_{rmax d}^{abs}$, I_{rs}^{abs} , $I_{rs d}^{abs}$ związanych z indeksem I_{o}^{abs} zacznie ułatwia interpretację zmian paramentów w poszczególnych strefach modelu. Uwzględnienie przy obliczaniu indeksów pomocniczych wartości z indeksu I_{o}^{abs} pozwala na interpretację zarówno wzrostów jak i redukcji sztywności lub masy w pozostałych elementach. Stosowanie indeksów I_{max} , I_{maxk} , I_{s} i I_{sk} odnoszących się do indeksów pomocniczych I_{rmax} , $I_{rmax d}$, I_{rs} , $I_{rs d}$ pozwala na interpretację uszkodzenia w pozostałych elementach modelu tylko w przypadku redukcji sztywności bądź wzrostu masy.

Indeksy bazowe odnoszące się do wartości bezwzględnych, mogą być powszechnie stosowane w procedurach aktualizacji jako narzędzie do oceny uszkodzenia. Indeksy kontrolne, odnoszące się do wartości bezwzględnych mogą być stosowane, wtedy kiedy celowe wydaje się sprawdzenie, konkretnej wybranej strefy i relacji zmiany jej sztywności bądź masy w stosunku do pozostałych elementów modelu MES.

3.3 Wpływu modyfikacji macierzy wag na procedurę aktualizacji paramentów

Wynik aktualizacji parametrów uzależniony jest od odpowiedniego sformułowania macierzy wag wartości mierzonych \mathbf{W}_{ee} i parametrów projektowych $\mathbf{W}_{\theta\theta}$. W procedurze aktualizacji parametrów przedstawionej w rozdziale 3.2 korzystano z macierzy wag zdefiniowanych zgodnie ze wzorami (2.144) oraz (2.145) opisanym w rozdziale 2.5. Taka definicja macierzy wag, powoduje przypisanie jednakowej wagi do wszystkich paramentów projektowych związanych z macierzą $\mathbf{W}_{\theta\theta}$ i wartości mierzonych związanych z macierzą \mathbf{W}_{ee} .

Link (1993) proponuje wprowadzenie współczynników w_p , które umożliwiają skalowanie macierzy wag parametrów $\mathbf{W}_{\theta\theta}$. Podstawową trudnością jest dobór współczynników skalujących w_p . Autorską propozycją jest iteracyjny dobór współczynnika skalującego w_p . Macierz wag parametrów $\mathbf{W}_{\theta\theta}$ w tym przypadku zdefiniowana jest w następujący sposób:

$$\mathbf{W}_{\theta\theta} = w_{\rho} \mathbf{I},$$

$$w_{\rho} \in \left\langle 10^{-2}, 10^{-3}, ..., 10^{-10} \right\rangle.$$
 (3.29)

Współczynnik w_p zmienia się w kolejnych iteracjach. Taka macierz umożliwia stworzenie tablicy wyników aktualizacji parametrów w zależności od wartości współczynnika w_p .

Innym podejściem do definicji macierzy wag parametrów $\mathbf{W}_{\theta\theta}$ jest dobranie jej tak, aby odzwierciedlić niepewności wstępnych szacunków parametrów. W praktyce są one trudne do oszacowania. Z tego powodu w analizach często wykorzystywane jest sformułowanie macierzy wag zaproponowane przez Link'a (1993):

$$\mathbf{G} = \operatorname{diag}[\mathbf{S}_{i}^{T}\mathbf{W}_{\varepsilon}\mathbf{S}_{i}],$$

$$\mathbf{W}_{\theta\theta} = \frac{\operatorname{mean}(\operatorname{diag}\mathbf{G})}{\operatorname{mean}(\operatorname{diag}\mathbf{G}^{-1})}\mathbf{G}^{-1}.$$
(3.30)

Definicja ta pozwala na ograniczenie zmiany parametrów w zależności od ich wrażliwości. W związku z tym parametry pozostają bez zmian, jeżeli ich wrażliwość jest bliska zera.

Dodatkowo w obliczeniach wprowadzono autorską modyfikację blokową bazowej macierzy wag paramentów:

$$\mathbf{W}_{mm} = \begin{pmatrix} 10^{-5} & 0\\ 0 & 10^{-5} \end{pmatrix}, \tag{3.31}$$

$$\mathbf{W}_{\theta\theta_{k}}^{z}(i,j) = \begin{cases} \mathbf{W}_{mm}(1,1) \ dla \ i = k \land j = k, \\ \mathbf{W}_{mm}(2,2) \ dla \ i = k + 1 \land j = k + 1, \\ \mathbf{W}_{\theta\theta}^{z}(i,j) \ dla \ i \neq k \lor i \neq k + 1 \lor j \neq k \lor j \neq k + 1, \end{cases}$$
(3.32)
$$dla \ k = 1,3,5,...,N_{p} - 1.$$

Modyfikacja polega na iteracyjnym wprowadzeniu podstawienia blokowej macierzy diagonalnej \mathbf{W}_{mm} (3.31) o wymiarze 2x2 na kolejnych elementach diagonali. Macierz wag parametrów $\mathbf{W}_{\theta\theta}$ w *k*-tej iteracji można opisać wzorem (3.32). Zmodyfikowana macierz wag parametrów w drugiej iteracji przyjmuje postać:

Modyfikację blokową macierzy wag można zastosować dla dowolnej sformułowanej macierzy wag parametrów $\mathbf{W}_{\theta\theta}$, przy parzystej liczbie aktualizowanych parametrów projektowych.

Macierz wag wartości mierzonych $\mathbf{W}_{\varepsilon\varepsilon}$ jest trudna do oszacowania. Mottershead (2011) sugeruje, aby jej definicja obejmowała co najmniej takie skalowanie, aby wyrównać efekt amplitud i proponuje definiowanie jej jako kwadratu odwrotności wektora par modalnych:

$$\mathbf{W}_{\varepsilon\varepsilon} = \left[diag(\mathbf{z}_m) \right]^{-2} \tag{3.34}$$

W pracy zaproponowano zastosowanie 8 wariantów złożonych z zestawu dwóch macierzy wag: macierzy wag wartości mierzonych $\mathbf{W}_{\varepsilon\varepsilon}$ i macierzy wag parametrów projektowych $\mathbf{W}_{\theta\theta}$ Zostały one zdefiniowane w następujący sposób:

- ✓ Wariant 1 zakłada definicję obu macierzy wag w postaci macierzy jednostkowych. Tym samym macierz wag wartości mierzonych \mathbf{W}_{ee} zdefiniowana jest zgodnie ze wzorem (2.144), a macierz wag parametrów \mathbf{W}_{ee} zgodnie ze wzorem (2.145).
- Wariant 2 bazuje na wariancie 1 definicji macierzy wag, ale zakłada wprowadzenie modyfikacji blokowej opisanej wzorem (3.33) dla jednostkowej macierzy wag parametrów W_{θθ} (2.145). Macierz wag wartości mierzonych W_{εε} zdefiniowana jest zgodnie ze wzorem (2.144).
- ✓ Wariant 3 bazuje na wariancie 1 definicji macierzy wag, ale zakłada wprowadzenie iteracyjnego doboru współczynnika skalującego w_p w definicji macierz wag parametrów $\mathbf{W}_{\theta\theta}$. Macierz wag wartości mierzonych $\mathbf{W}_{\varepsilon\varepsilon}$ opisana jest więc wzorem (2.144), a macierz wag parametrów $\mathbf{W}_{\theta\theta}$ zgodnie ze wzorem (3.29).
- Wariant 4 bazuje na wariancie 3 definicji macierzy wag, ale zakłada wprowadzenie modyfikacji blokowej opisanej wzorem (3.33) dla jednostkowej macierzy wag parametrów W_{θθ} (3.29) z iteracyjnym doborem współczynnika skalującego w_p. Macierz wag wartości mierzonych W_{εε} zdefiniowana jest zgodnie ze wzorem (2.144).
- ✓ Wariant 5 zakłada definicję macierzy wag wartości mierzonych $\mathbf{W}_{\varepsilon\varepsilon}$ zdefiniowanej zgodnie ze wzorem (3.34) oraz macierzy wag parametrów $\mathbf{W}_{\theta\theta}$ zaproponowanej przez Link'a (3.30).
- ✓ Wariant 6 bazuje na wariancie 5 definicji macierzy wag, ale zakłada wprowadzenie modyfikacji blokowej opisanej wzorem (3.33) dla macierzy wag parametrów zaproponowanej przez Link'a $\mathbf{W}_{\theta\theta}$ (3.30). Macierz wag wartości mierzonych $\mathbf{W}_{\varepsilon\varepsilon}$ zdefiniowana jest zgodnie ze wzorem (3.34).

- ✓ Wariant 7 zakłada definicję jednostkowej macierzy wag wartości mierzonych \mathbf{W}_{ee} opisanej wzorem (2.144) oraz macierzy wag parametrów $\mathbf{W}_{\theta\theta}$ zaproponowanej przez Link'a (3.30).
- ✓ Wariant 8 bazuje na wariancie 7 definicji macierzy wag, ale zakłada wprowadzenie modyfikacji blokowej opisanej wzorem (3.33) dla macierzy wag parametrów zaproponowanej przez Link'a $\mathbf{W}_{\theta\theta}$ (3.30). Macierz wag wartości mierzonych $\mathbf{W}_{\varepsilon\varepsilon}$ jest macierzą jednostkową zdefiniowaną zgodnie ze wzorem (2.144).

W zaproponowanej procedurze aktualizacji parametrów, gdy używana jest macierz wag w wariantach 2, 3, 4, 6, 8 wynikiem jest tabela, w której kolejnych wierszach zapisane są wartości zaktualizowanych parametrów w zależności od wartości współczynnika skalującego w_p lub w zależności od położenia macierzy blokowej na przekątnej macierzy wag. W załączniku 1 przedstawiono schemat tabeli wynikowej wraz z tabelami uzyskanymi po procedurze aktualizacji parametrów dla wszystkich 8 wariantów macierzy wag. Procedura, która umożliwia wybranie wyniku aktualizacji parametrów z tabeli dokonywana jest poprzez jej uporządkowanie jako kryterium przyjmując kolejno:

- 1 kryterium J_p minimalna wartość funkcji kary J_p;
- 2 kryterium f_△ minimalna wartość różnicy wszystkich trzech częstotliwości drgań własnych pomiędzy wartością pomierzoną a zaktualizowaną f_△;
- 3 kryterium NMD3 minimalna wartość sumy kryterium NMD wszystkich trzech postaci drgań własnych pomiędzy wartością pomierzoną a zaktualizowaną;
- 4 kryterium NMD2 minimalna wartość sumy kryterium NMD dwóch pierwszych postaci drgań własnych pomiędzy wartością pomierzoną a zaktualizowaną;
- 5 kryterium NMD1 minimalna wartość sumykryterium NMD pierwszej postaci drgań własnych pomiędzy wartością pomierzoną a zaktualizowaną.

Na tej podstawie z całej tablicy wyników wybierany jest pierwszy wiersz, który najlepiej dla danego zestawu wyników spełniał dane kryterium.

Dla wszystkich przedstawionych wariantów macierzy wag przeprowadzono procedurę aktualizacji zgodnie z założeniami przedstawionymi w Rozdziale 3.2. W procedurze aktualizacji brano pod uwagę dwie pierwsze częstotliwości i postacie drgań własnych. Bazowano na modelu MES belki swobodnie podpartej z uszkodzeniem elementu trzeciego (rysunek 3.2) i piątego (rysunek 3.3) o intensywności 15%, przy rozmieszczeniu czujników zgodnie ze schematami 4 i 5 (rysunek 3.12 i 3.13).

W przypadku stosowania macierzy wag w wariancie 1, przy uszkodzeniu elementu numer 3 bez względu na sposób rozmieszczenia czujników otrzymujemy poprawny wynik aktualizacji parametrów modelu MES (rysunek 3.19). Wykresy wartości indeksu I, poprawnie wskazują na miejsce uszkodzenia, jednak z uwagi na wartość indeksu I_{max}^{abs} (tabela 3.8) zbliżoną do jedności, sugerują również możliwość występowania uszkodzenia w elemencie numer 8. W przypadku uszkodzenia elementu 5 wynik aktualizacji parametrów wskazuje jedynie strefę uszkodzenia, a jako element o największej zmianie sztywności n_{max} wskazuje element 5 lub 6 w zależności od schematu rozmieszczenia czujników (rysunek 3.20). Zbliżona do 1, wartość indeksu labs (tabela 3.9), mówi o uszkodzeniu więcej niż jednego elementu sąsiadującego z uszkodzonym. We wszystkich przypadkach wartości uszkodzenia są niedoszacowane. Zmiana sztywności uszkodzonych elementów po aktualizacji stanowi w przybliżeniu 50% intensywności założonego uszkodzenia. We wszystkich przedstawionych przypadkach, gdy w procedurze aktualizacji parametrów stosowna jest macierz wag w wariancie 1, otrzymujemy również bardzo wysoką zgodność pomiędzy częstotliwościami oraz postaciami drgań własnych dla modelu MES zaktualizowanego i modelu MES z uszkodzeniem wybranego elementu o intensywności 15% (tabela 3.8 i 3.9).

Rysunek 3.19 Indeks I_o dla elementów modelu MES z uszkodzeniem elementu numer 3 o intensywności 15% dla wariantu 1 macierzy wag przy rozmieszczeniu czujników według schematu a) numer 4 b) numer 5

Tabela 3.8 Zestawienie bazowych indeksów uszkodzenia, kryterium NMD oraz częstotliwości drgań własnych uzyskanych w wyniku procedury aktualizacji parametrów bazującej na schemacie 4 i 5 usytuowania czujników dla wariantu 1 definicji macierzy wag przy uszkodzeniu 3 elementu modelu MES o intensywności 15%

						DANE						
Uszkoc	Izenie	Macierz			f [Hz]					NMD [%]		
Element	Intens,	wag	1		2		3		1	2	3	;
3	15 %	1	19,4	14	77,16		175,11		1,463	2,657	2,2	77
					A	AKTUALIZ	ACJA					
E	at wv			f [Hz]			NMD [%]		h	ndeksy bazow	/e	e
Kryte riu	Schema czujnikć	Jp	1	2	3	1	2	3	I ^{abs}	l ^{abs} max	∣ ^{abs}	Detekcj
brok	4	58937	19,44	77,16	175,11	1,129	1,142	5,123	5,72	1,18	9,65	TAK
DLAK	5	58345	19,44	77,16	175,11	1,064	1,653	2,264	5,12	1,04	13,7	TAK

Rysunek 3.20 Indeks I_o dla elementów modelu MES z uszkodzeniem elementu numer 5 o intensywności 15% dla wariantu 1 macierzy wag przy rozmieszczeniu czujników według schematu a) numer 4 b) numer 5

Tabela 3.9 Zestawienie bazowych indeksów uszkodzenia, kryterium NMD oraz częstotliwości drgań własnych uzyskanych w wyniku procedury aktualizacji parametrów bazującej na schemacie 4 i 5 usytuowania czujników dla wariantu 1 definicji macierzy wag przy uszkodzeniu 5 elementu modelu MES o intensywności 15%

						DANE						
Uszkoc	Izenie	Macierz			f [Hz]					NMD [%]		
Element	Intens,	wag	1		2		3		1	2	3	
5	15 %	1	19,2	28	77,28		174,34		1,424	1,001	3,0	83
					A	AKTUALIZ.	ACJA					
E	at iw			f [Hz]			NMD [%]	li	ndeksy bazow	/e	ja
Kryteriu	Schem	Jp	1	2	3	1	2	3	I ^{abs}	l ^{abs} max	∣ ^{abs} s	Detekc
brok	4	56255	5 19,33 78,28 174,34			2,484	0,193	14,245	22,21	7,8	1,03	NIE
DIAK	5	56207	19,33	78,28	174,34	0,369	0,304	0,870	20,17	8,14	1,01	TAK

Macierz wag w wariancie 2 pozwala na uzyskanie poprawnych wyników aktualizacji parametrów. Na rysunkach 3.21 i 3.22 przedstawiono wykresy wartości indeksu wektorowego I_o Niezależnie od zastosowanego kryterium wyboru uszkodzony element jest wyraźnie zaznaczony, a n_{max} jest zgodne z miejscem występowania uszkodzenia. Wartości trzech indeksów bazowych osiągają wartości znacznie większe od jedności (tabela 3.10 i 3.11), co jest potwierdzeniem uszkodzenia tylko jednego elementu. Wartości kryterium NMD są równe zeru, a częstotliwości uzyskane po aktualizacji parametrów (tabela 3.10 i 3.11) zgodne są z wartościami oczekiwanymi, co świadczy o pełnej zgodności modelu MES zaktualizowanego z modelem MES z uszkodzonym elementem numer 3 lub 5 o intensywności 15 %. W tym przypadku algorytm również bardzo dobrze odwzorowuje założone intensywności uszkodzenia, szacując je na dokładnie 15%.

Rysunek 3.21 Indeks I_{σ} dla elementów modelu MES z uszkodzeniem elementu numer 3 o intensywności 15% dla wariantu 2 macierzy wag przy użyciu kryterium J_p, f_Δ, NMD3, NMD2 i NMD1 oraz rozmieszczeniu czujników według schematu a) numer 4 b) numer 5

Tabela 3.10 Zestawienie bazowych indeksów uszkodzenia, kryterium NMD oraz częstotliwości drgań własnych uzyskanych w wyniku procedury aktualizacji parametrów bazującej na schemacie 4 i 5 usytuowania czujników dla wariantu 2 definicji macierzy wag przy uszkodzeniu 3 elementu modelu MES o intensywności 15%

						DANE						
Uszkod	lzenie	Macierz			f [Hz]					NMD [%]		
Element	Intens,	wag	1		2		3		1	2	3	
3	15 %	2	19,4	14	77,16		175,11		1,463	2,657	2,2	77
					ļ	AKTUALIZ	ACJA					
E	at w			f [Hz]			NMD [%]		-	ndeksy bazow	'e	ŋ
Kryteriu	Schema czujnikó	Jp	1	2	3	1	2	3	l ^{abs}	l ^{abs} max	∣ ^{abs} s	Detekcj
J _{p,} f∆,	4	1,0611	19,44	77,15	175,11	0,000	0,000	0,000	5,78E+05	1,30E+05	2,37E+06	ТАК
NMD3, NMD2, NMD1	5	1,0611	19,44 77,15 175,11 0,000 0,000 0,000 5,78E+05 1,30E+05 2,37E+06							ТАК		

Rysunek 3.22 Indeks I_{σ} dla elementów modelu MES z uszkodzeniem elementu numer 5 o intensywności 15% dla wariantu 2 macierzy wag przy użyciu kryterium J_p, f_Δ, NMD3, NMD2 i NMD1 oraz rozmieszczeniu czujników według schematu a) numer 4 b) numer 5

Tabela 3.11 Zestawienie bazowych indeksów uszkodzenia, kryterium NMD oraz częstotliwości drgań własnych uzyskanych w wyniku procedury aktualizacji parametrów bazującej na schemacie 4 i 5 usytuowania czujników dla wariantu 2 definicji macierzy wag przy uszkodzeniu 5 elementu modelu MES o intensywności 15%

						DANE						
Uszkoc	Izenie	Macierz			f [Hz]					NMD [%]		
Element	Intens,	wag	1		2		3		1	2	3	
5	15 %	2	19,2	28	77,28		174,34		1,424	1,001	3,08	83
					А	KTUALIZA	ACJA					
E	at w			f [Hz]			NMD [%]		li li	ndeksy bazow	/e	a
Kryteriu	Schema czujnikó	Jp	1	2	3	1	2	3	l ^{abs}	l ^{abs} max	l ^{abs}	Detekcj
J _{p,} f∆,	4	1,0611	19,28	78,28	174,34	0,000	0,000	0,000	2,15E+06	8,62E+05	1,43E+05	ТАК
NMD3, NMD2, NMD1	5	1,0611	19,28	78,28	174,34	0,000	0,000	0,000	2,15E+06	8,62E+05	1,43E+05	ТАК

Stosując macierz wag zdefiniowaną według wariantu 3, poprawność uzyskanych wyników aktualizacji parametrów uzależniona jest od schematu rozmieszczenia czujników oraz od stosowanego kryterium wyboru wyniku z tabeli. W przypadku uszkodzenia elementu numer 3, nie

we wszystkich przypadkach jesteśmy w stanie uzyskać poprawny wynik aktualizacji parametrów (rysunek 3.23). Rozmieszczenie czujników zgodnie ze schematem numer 5, niezależnie od stosownego kryterium pozwala na uzyskanie poprawnego wyniku aktualizacji parametrów. Jednak w przypadku rozmieszczenia czujników zgodnie ze schematem numer 4, posługując się kryterium J_p, NMD3 lub NMD1 otrzymujemy błędny wynik aktualizacji parametrów, który wskazuje element numer 8 jako uszkodzony. W przypadku uszkodzenia elementu numer 5 modelu MES, niezależnie od sposobu rozmieszczenia czujników i stosowanego kryterium wyboru, otrzymujemy poprawny wynik aktualizacji parametrów (rysunek 3.24). Jedynie zastosowanie kryterium NMD2 lub NMD1 przy rozmieszczeniu czujników zgodnie ze schematem numer 5 może sugerować, z uwagi na wartość indeksu l^{abs} zbliżoną do jedności, uszkodzenie strefy modelu MES (tabela 3.13). We wszystkich przedstawionych przypadkach, gdy w procedurze aktualizacji parametrów stosowna jest macierz wag w wariancie 3, otrzymujemy również bardzo wysoką zgodność pomiędzy częstotliwościami oraz postaciami drgań własnych dla modelu MES zaktualizowanego i modelu MES z uszkodzeniem wybranego elementu o intensywności 15% (tabela 3.12 i 3.13). W zależności od przedstawionego przypadku, zmiana sztywności uszkodzonych elementów po aktualizacji stanowi w przybliżeniu 55–99 % intensywności założonego uszkodzenia. Porównując otrzymane wyniki uzyskane po procedurze aktualizacji parametrów dla macierzy wag w wariancie 1 i 3, można stwierdzić, że przy wyborze odpowiedniego kryterium, wprowadzenie zmiennej wartości współczynnika w_{p} znajdującego się na przekątnej macierz wag paramentów $\mathbf{W}_{\theta\theta}$, w większości przypadków dla opisanego zadania, może znacząco poprawić wynik aktualizacji parametrów.

Rysunek 3.23 Indeks I_o dla elementów modelu MES z uszkodzeniem elementu numer 3 o intensywności 15% dla wariantu 3 macierzy wag przy rozmieszczeniu czujników według schematu a) numer 4 i użyciu kryterium J_p , NMD3 i NMD1 b) numer 5 i użyciu kryterium J_p , f_{Δ} c) numer 4 i użyciu kryterium f_{Δ} i NMD2 d) numer 5 i użyciu kryterium NMD3, NMD2 i NMD1

Tabela 3.12 Zestawienie bazowych indeksów uszkodzenia, kryterium NMD oraz częstotliwości drgań własnych
uzyskanych w wyniku procedury aktualizacji parametrów bazującej na schemacie 4 i 5 usytuowania czujników
dla wariantu 3 definicji macierzy wag przy uszkodzeniu 3 elementu modelu MES o intensywności 15%

						DANE							
Uszkod	lzenie	Macierz			f [Hz]					NMD [%]			
Element	Intens,	wag	1		2		3		1	2	3		
3	15 %	3	19,4	14	77,16		175,11		1,463	2,657	2,2	77	
					A	KTUALIZACJA							
E	at w			f [Hz]			NMD [%]		I	ndeksy bazow	/e	ŋ	
Kryteriu	Schema czujnikó	Jp	1	2	3	1	2	3	I ^{abs}	l ^{abs} max	l ^{abs}	Detekcj	
	4	0,0079	19,44	77,15	175,11	0,777	1,455	4,093	4,10	1,23	15,8	NIE	
Jp	5	0,0018	19,44	77,15	175,11	0,650	0,693	0,248	6,46	2,68	11,37	TAK	
ſ	4	0,0142	19,44	77,15	175,11	0,843	1,353	4,130	5,14	1,21	4,57	TAK	
ΤΔ	5	0,0018	19,44	77,15	175,11	0,65	0,693	0,248	6,46	2,68	11,37	TAK	
	4	0,0079	19,44	77,15	175,11	0,777	1,455	4,093	4,10	1,23	15,8	NIE	
NIVID3	5	0,0018	19,44	77,15	175,11	0,275	0,402	0,090	9,38	6,11	9,50	TAK	
	4	0,0142	19,44	77,15	175,11	0,843	1,353	4,130	5,14	1,21	4,57	TAK	
NIVID2	5	0,0018	19,44	77,15	175,11	0,275	0,402	0,090	9,38	6,11	9,50	TAK	
	4	0,0079	19,44	77,15	175,11	0,777	1,455	4,093	4,10	1,23	15,8	NIE	
	5	0,0018	19,44	77,15	175,11	0,275	0,402	0,090	9,38	6,11	9,50	TAK	

Tabela 3.13 Zestawienie bazowych indeksów uszkodzenia, kryterium NMD oraz częstotliwości drgań własnych uzyskanych w wyniku procedury aktualizacji parametrów bazującej na schemacie 4 i 5 usytuowania czujników dla wariantu 3 definicji macierzy wag przy uszkodzeniu 5 elementu modelu MES o intensywności 15%

						DANE							
Uszkoc	Izenie	Macierz			f [Hz]					NMD [%]			
Element	Intens,	wag	1		2		3		1	2	3	3	
5	15 %	3	19,2	19,28 77,28			174,34		1,424	1,001	3,0	183	
				A			ACJA						
ε	₹ t			f [Hz]			NMD [%]		Ir	ndeksy bazov	ve	D.	
Kryteriu	Schema czujnikó	Jp	1	1 2		1	2	3	l ^{abs}	l ^{abs} max	I ^{abs}	Detekcj	
	4	0,034474	19,28	78,28	174,34	0,767	1,046	4,000	6,07	2,74	2,71	ТАК	
Jp	5	0,001137	19,28	78,28	174,34	0,463	0,489	0,502	10,34	3,76	3,03	ТАК	
c	4	0,034474	19,28	78,28	174,34	0,767	1,046	4,000	6,07	2,74	2,71	TAK	
ŤΔ	5	0,001137	19,28	78,28	174,34	0,463	0,489	0,502	10,34	3,76	3,03	ТАК	
	4	1,3094	19,28	78,28	174,29	0,319	0,954	3,289	6,02	4,77	4,72	ТАК	
NMD3	5	0,001137	19,28	78,28	174,34	0,353	0,348	0,434	17,55	6,04	4,40	TAK	
	4	1,3094	19,28	78,28	174,29	0,319	0,954	3,289	6,02	4,77	4,72	ТАК	
NIVID2	5	0,068411	19,28	78,28	174,34	0,218	0,374	0,648	22,83	11,01	1,17	TAK	
	4	1,3094	19,28	78,28	174,29	0,319	0,954	3,289	6,02	4,77	4,72	TAK	
NIVIDI	5	0,012283	19,28	78,28	174,34	0,170	0,49	0,844	11,59	5,29	1,58	TAK	

Rysunek 3.24 Indeks I_o dla elementów modelu MES z uszkodzeniem elementu numer 5 modelu MES o intensywności 15% dla wariantu 3 macierzy wag przy rozmieszczeniu czujników według schematu a) numer 4 i użyciu kryterium J_p i f_Δ b) numer 5 i użyciu kryterium J_p i f_Δ c) numer 4 i użyciu kryterium NMD3, NMD2 i NMD1 d) numer 5 i użyciu kryterium NMD2

Macierz wag w wariancie 4 pozwala na uzyskanie poprawnego wyniku aktualizacji parametrów niezależnie od stosowanego kryterium, schematu rozmieszczenia czujników oraz od lokalizacji elementu uszkodzonego (rysunek 3.25 i 3.26). W tym przypadku stosowanie kryterium NMD3, NMD2 i NMD1 pozwala na otrzymanie największych wartości wszystkich indeksów bazowych, jak również najmniejszych wartości kryterium NMD dla trzech postaci drgań (tabela 3.14 i 3.15). Również wybór wyniku aktualizacji parametrów oparty o wyżej przytoczone kryteria, pozwala na oszacowanie intensywności uszkodzenia na poziomie 100% wartości założonej.

Rysunek 3.25 Indeks I_o dla elementów modelu MES z uszkodzeniem elementu numer 3 o intensywności 15% dla wariantu 4 macierzy wag przy rozmieszczeniu czujników według schematu a) numer 4 i użyciu kryterium J_p, b) numer 5 i użyciu kryterium J_p, f_∆ c) numer 4 i użyciu kryterium NMD3, NMD2, NMD1 d) numer 5 i użyciu kryterium NMD3, NMD2 i NMD1

Tabela 3.14 Zestawienie bazowych indeksów uszkodzenia, kryterium NMD oraz częstotliwości drgań własnych
uzyskanych w wyniku procedury aktualizacji parametrów bazującej na schemacie 4 i 5 usytuowania czujników
dla wariantu 4 definicji macierzy wag przy uszkodzeniu 3 elementu modelu MES o intensywności 15%

						DANE						
Uszkod	Izenie	Macierz			f [Hz]					NMD [%]		
Element	Intens,	wag	1		2		3		1	2	3	
3	15 %	4	19,4	14	77,16		175,11		1,463	2,657	2,2	77
					ļ	AKTUALIZ	ACJA					
E	at			f [Hz]			NMD [%]		li	ndeksy bazow	re	a
Kryteriu	Schema czujnikć	Jp	1	2	3	1	2	3	l ^{abs}	l ^{abs} max	l ^{abs}	Detekcj
	4	0,0028	19,44	77,15	175,11	0,547	1,012	2,628	4,71	1,18	12,16	TAK
Jp	5	0,0015	19,44	77,15	175,11	0,619	0,628	0,194	7,85	2,67	8,49	TAK
ſ	4	0,0168	19,44	77,15	175,11	0,904	1,436	4,539	5,30	1,21	3,80	ТАК
ΤΔ	5	0,0019	19,44	77,15	175,11	0,663	0,632	0,284	7,13	2,94	11,74	TAK
NMD3	4	1,0611	19,44	77,15	175,11	0,000	0,000	0,000	5,78E+05	1,30E+05	2,37E+06	ТАК
NMD1	5	1,0611	19,44	77,15	175,11	0,000	0,000	0,000	5,78E+05	1,30E+05	2,37E+06	TAK

Tabela 3.15 Zestawienie bazowych indeksów uszkodzenia, kryterium NMD oraz częstotliwości drgań własnych uzyskanych w wyniku procedury aktualizacji parametrów bazującej na schemacie 4 i 5 usytuowania czujników dla wariantu 4 definicji macierzy wag przy uszkodzeniu 5 elementu modelu MES o intensywności 15%

						DANE						
Uszkoc	Izenie	Macierz			f [Hz]					NMD [%]		
Element	Intens,	wag	1		2		3		1	2	3	
5	15 %	4	19,2	28	77,28		174,34		1,424	1,001	3,0	83
					А	KTUALIZ#	ACJA					
E	at w			f [Hz]			NMD [%]		h	ndeksy bazow	/e	e
Kryteriu	Schema czujnikó	Jp	1	2	3	1	2	3	I ^{abs}	l ^{abs} max	Ι ^{abs}	Detekcj
	4	0,00494	19,28	78,28	174,34	0,029	0,275	1,251	9,02	3,38	9,15	TAK
Jp	5	0,001074	19,28	78,28	174,34	0,389	0,396	0,490	10,48	4,50	3,41	ТАК
£	4	0,00494	19,28	78,28	174,34	0,029	0,275	1,251	9,02	3,38	9,15	ТАК
IΔ	5	0,002729	19,28	78,28	174,34	0,071	0,192	0,544	10,74	3,21	4,00	ТАК
NMD3	4	1,0611	19,28	78,28	174,34	0,000	0,000	0,000	2,15E+06	8,62E+05	1,43E+05	ТАК
NMD1	5	1,0611	19,28	78,28	174,34	0,000	0,000	0,000	2,15E+06	8,62E+05	1,43E+05	TAK

Rysunek 3.26 Indeks I_o dla elementów modelu MES z uszkodzeniem elementu numer 5 o intensywności 15% dla wariantu 4 macierzy wag przy rozmieszczeniu czujników według schematu a) numer 4 i użyciu kryterium J_p, f_{Δ} b) numer 5 i użyciu kryterium J_p c) numer 4 i użyciu kryterium NMD3, NMD2, NMD1 d) numer 5 i użyciu kryterium NMD3, NMD2 i NMD1

Stosując macierz wag według wariantu 5, wynik aktualizacji paramentów w większości przypadków nie umożliwia poprawnego wskazania lokalizacji elementu uszkodzonego (rysunki 3.27-3.28). Jedynie przy uszkodzeniu elementu 3 i rozmieszczeniu czujników zgodnie ze schematem numer 4 maksymalna zmiana sztywności występuje w elemencie 3, co poprawnie wskazuje na lokalizację miejsca uszkodzenia. W drugim przypadku, przy uszkodzeniu elementu numer 3, wynik aktualizacji parametrów błędnie wskazuje na uszkodzenie elementu 6. W przypadku uszkodzenia elementu numer 3, zarówno wartości kryterium NMD dla poszczególnych postaci drgań, jak i częstotliwości drgań własnych przedstawione w tabeli 3.16, świadczą o wysokim stopniu zgodności modelu zaktualizowanego z modelem MES z uszkodzeniem elementu numer 3 o intensywności 15%. Przy uszkodzeniu występującym w elemencie numer 5, niezależnie od schematu rozmieszczenia czujników, wynik aktualizacji parametrów wskazuje na uszkodzenie elementu numer 8. W tym przypadku, pomimo niskich wartości kryterium NMD dla poszczególnych postaci drgań, pojawiają się rozbieżności w zgodności częstotliwości drgań własnych modelu zaktualizowanego z modelem MES z uszkodzeniem elementu numer 5 o intensywności 15% (tabela 3.17). Zmiana sztywności uszkodzonych elementów po aktualizacji stanowi w przybliżeniu 13-28 % intensywności założonego uszkodzenia.

Rysunek 3.27 Indeks I_o dla elementów modelu MES z uszkodzeniem elementu numer 3 o intensywności 15% dla wariantu 5 macierzy wag przy rozmieszczeniu czujników według schematu a) numer 4 b) numer 5

Tabela 3.16 Zestawienie bazowych indeksów uszkodzenia, kryterium NMD oraz częstotliwości drgań własnych
uzyskanych w wyniku procedury aktualizacji parametrów bazującej na schemacie 4 i 5 usytuowania czujników
dla wariantu 5 definicji macierzy wag przy uszkodzeniu 3 elementu modelu MES o intensywności 15%

	DANE													
Uszkoc	Izenie	Macierz			f [Hz]					NMD [%]				
Element	Intens,	wag	1		2		3		1	2	3			
3	15 %	5	19,4	14	77,16		175,11		1,463	2,657	2,2	2,277		
					A	KTUALIZ	ACJA							
E	at wv			f [Hz]			NMD [%]		h	ndeksy bazow	/e	e		
Kryteriu	Schema czujnikć	Jp	1	2	3	1	2	3	I ^{abs}	l ^{abs} max	l ^{abs}	Detekcj		
brok	4	58937	19,44 77,16 175,11			1,129	1,142	5,123	5,72	1,18	9,65	TAK		
DIAK	5	58345	19,44	77,16	175,11	1,064	1,653	2,264	5,12	1,04	13,70	NIE		

Rysunek 3.28 Indeks I_o dla elementów modelu MES z uszkodzeniem elementu numer 5 o intensywności 15% dla wariantu 5 macierzy wag przy rozmieszczeniu czujników według schematu a) numer 4 b) numer 5

Tabela 3.17 Zestawienie bazowych indeksów uszkodzenia, kryterium NMD oraz częstotliwości drgań własnych uzyskanych w wyniku procedury aktualizacji parametrów bazującej na schemacie 4 i 5 usytuowania czujników

Uszkod	lzenie	Macierz			f [Hz]					NMD [%]		
Element	Intens,	wag	1		2		3		1	2	3	
5	15 %	5	19,2	28	77,28		174,34		1,424	1,001	3,0	83
					A	AKTUALIZACJA						
E	at wv			f [Hz]		NMD [%]			I	ndeksy bazow	/e	a
Kryteriu	Schema czujnikć	Jp	1	2	3	1	2	3	l ^{abs}	l ^{abs} max	∣ ^{abs} s	Detekc
h na h	4	2,0938	19,60	78,36	176,47	2,480	0,388	13,260	4,95	1,94	1,77	NIE
ргак	5	0,1760	19,60	78,40	176,50	0,733	0,576	2,001	4,21	1,26	1,57	NIE

Zastosowanie macierzy wag w wariancie 6, czyli wprowadzenie modyfikacji blokowej (3.33) przy definicji macierzy wag paramentów $\mathbf{W}_{_{\!A\!\Theta}}$ według Linka (3.30), pozwala na otrzymanie poprawnych wyników aktualizacji. Przestawione na rysunkach 3.29 i 3.30 wykresy indeksu I, jednoznacznie wskazują na n_{max}, którego lokalizacja jest zgodna z założonym miejscem uszkodzenia. Pomimo rozbieżności w wartościach częstotliwości drgań własnych przedstawionych w tabelach 3.18 i 3.19 pomiędzy modelem zaktualizowanym a modelem MES z uszkodzeniem elementu numer 3 lub 5 o intensywności 15%, poprawna detekcja lokalizacji uszkodzenia możliwa jest prawie we wszystkich przypadkach niezależnie od stosowanego kryterium i schematu rozmieszczenia czujników. Zmiana sztywności uszkodzonych elementów po aktualizacji waha się w przedziale 28-68 % intensywności założonego uszkodzenia.

Tabela 3.18 Zestawienie bazowych indeksów uszkodzenia, kryterium NMD oraz częstotliwości drgań własnych uzyskanych w wyniku procedury aktualizacji parametrów bazującej na schemacie 4 i 5 usytuowania czujników dla wariantu 6 definicji macierzy wag przy uszkodzeniu 3 elementu modelu MES o intensywności 15%

						DANE							
Uszkoc	Izenie	Macierz			f [Hz]					NMD [%]			
Element	Intens,	wag	1		2		3		1	2	3		
3	15 %	6	19,4	44	77,16	175,11 1,463			1,463	2,657	2,2	77	
					Ą	KTUALIZA	ACJA						
E	at w			f [Hz]			NMD [%]		I	ndeksy bazow	/e	e	
Kryteriu	Schema czujnikó	Jp	1	2	3	1	2	3	I ^{abs}	l ^{abs} max	Ι ^{abs}	Detekcj	
J _{p,} f _{Δ,}	4	1,0047	19,51	77,76	175,95	0,380	0,855	2,846	16,16	8,86	11,78	TAK	
NMD3, NMD2, NMD1	5	0,4744	19,54	78,05	176,01	0,815	2,245	4,039	5,22	1,98	3,76	TAK	

Tabela 3.19 Zestawienie bazowych indeksów uszkodzenia, kryterium NMD oraz częstotliwości drgań własnych uzyskanych w wyniku procedury aktualizacji parametrów bazującej na schemacie 4 i 5 usytuowania czujników dla wariantu 6 definicji macierzy wag przy uszkodzeniu 5 elementu modelu MES o intensywności 15%

						DANE						
Uszkoc	Izenie	Macierz			f [Hz]					NMD [%]		
Element	Intens,	wag	1		2		3		1	2	3	
5	15 %	6	19,28 77,28				174,34		1,424	1,001	3,0	83
				Al			CJA					
E	at w			f [Hz]			NMD [%]		Ir	ndeksy bazow	/e	e
Kryteriu	Schema czujnikó	Jp	1	2	3	1	2	3	I_m^{abs}	l ^{abs} max	Ι ^{abs}	Detekcj
	4	0,85311	19,45	78,35	175,48	1,298	0,216	6,925	16,20	7,42	55,40	ТАК
Jp	5	0,13853	19,62	78,53	176,65	0,748	0,752	2,350	3,68	1,12	0,58	NIE
f∆ NMD3,	4	0,85311	19,45	78,35	175,48	1,298	0,216	6,925	16,2	7,42	55,40	ТАК
NMD2, NMD1	5	0,18629	19,52	78,38	175,96	0,546	0,434	1,521	6,06	2,85	51,62	ТАК

Rysunek 3.29 Indeks I_o dla elementów modelu MES z uszkodzeniem elementu numer 3 o intensywności 15% dla wariantu 6 macierzy wag przy użyciu kryterium J_P, f_∆, NMD3, NMD2 i NMD1 oraz rozmieszczeniu czujników według schematu a) numer 4 b) numer 5

Rysunek 3.30 Indeks I_o dla elementów modelu MES z uszkodzeniem elementu numer 5 o intensywności 15% dla wariantu 6 macierzy wag przy rozmieszczeniu czujników według schematu a) numer 4 i użyciu kryterium J_p, f_Δ, NMD3, NMD2 i NMD1 b) numer 5 i użyciu kryterium f_Δ, NMD3, NMD2 i NMD1

We wszystkich przypadkach, wariant 7 definicji macierzy wag, pozwala na wykrycie i poprawne wytypowanie lokalizacji uszkodzonego elementu (rysunek 3.31), bądź jedynie wskazanie położenia strefy uszkodzenia (rysunek 3.32). Otrzymane indeksy bazowe (tabela 3.20 i 3.21) mają znacznie niższą wartość niż w przypadku wariantu 2 lub 4 macierzy wag. Podobnie jak w przypadku definicji macierzy w wariancie 1, zmiana sztywności uszkodzonych elementów po aktualizacji stanowi w przybliżeniu 50% intensywności założonego uszkodzenia.

Rysunek 3.31 Indeks I_o dla elementów modelu MES z uszkodzeniem elementu numer 3 o intensywności 15% dla wariantu 7 macierzy wag przy rozmieszczeniu czujników według schematu a) numer 4 b) numer 5

Rysunek 3.32 Indeks I_o dla elementów modelu MES z uszkodzeniem elementu numer 5 o intensywności 15% dla wariantu 7 macierzy wag przy rozmieszczeniu czujników według schematu a) numer 4 b) numer 5

Tabela 3.20 Zestawienie bazowych indeksów uszkodzenia, kryterium NMD oraz częstotliwości drgań własnych uzyskanych w wyniku procedury aktualizacji parametrów bazującej na schemacie 4 i 5 usytuowania czujników dla wariantu 7 definicji macierzy wag przy uszkodzeniu 3 elementu modelu MES o intensywności 15%

	DANE														
Uszkod	zenie	Macierz			f [Hz]					NMD [%]					
Element	Intens,	wag	1		2		3		1	2	3	}			
3	15 %	7	19,4	14	77,16		175,11		1,463	2,657	2,2	77			
					Ą	KTUALIZA	ACJA								
E	at wv			f [Hz]			NMD [%]		h	ndeksy bazow	/e	e			
Kryteriu	Schema czujnikó	Jp	1	2	3	1	2	3	I ^{abs}	l ^{abs} max	l ^{abs}	Detekcj			
	4	-1,05E+06	19,44 77,04 175,21			1,073	1,097	4,796	5,60	1,19	13,08	TAK			
brak	5	0,0072	19,44	77,15	175,11	1,054	1,621	2,213	5,18	1,04	15,84	ТАК			

Tabela 3.21 Zestawienie bazowych indeksów uszkodzenia, kryterium NMD oraz częstotliwości drgań własnych uzyskanych w wyniku procedury aktualizacji parametrów bazującej na schemacie 4 i 5 usytuowania czujników dla wariantu 7 definicji macierzy wag przy uszkodzeniu 5 elementu modelu MES o intensywności 15%

	DANE													
Uszko	odzenie	Macierz			f [Hz]					NMD [%]				
Element	Inter	ns, wag	1		2		3		1	2	3	1		
5	15 9	% 7	19,2	28	77,28		174,34		1,424	1,001	3,0	83		
					ŀ	AKTUALIZ	ACJA							
Ę	at ów			f [Hz]			NMD [%]]	h	ndeksy bazow	/e	ija		
Kryteriu	Schem czujnika	Jp	1	2	3	1	2	3	I_m^{abs}	l ^{abs} max	Ι ^{abs}	Deteko		
brak	4	-3,5895	19,28	78,28	174,34	2,449	0,165	13,922	60,98	28,94	1,02	NIE		
DIAK	5	-4,09E+05	19,28	78,26	174,31	0,293	0,398	1,215	52,83	28,15	1,01	NIE		

Zastosowanie macierzy wag w wariancie 8, w przypadku uszkodzenia elementu numer 3, w większości przypadków pozwala na poprawną lokalizację miejsca uszkodzenia (rysunek 3.33). Duży wpływ na poprawny wynik aktualizacji parametrów ma jednak wybór schematu rozmieszczania czujników oraz odpowiedniego kryterium wyboru wyniku aktualizacji parametrów. Bazowanie na rozmieszczeniu czujników zgodnie ze schematem numer 4, w każdym przypadku pozwala na poprawną lokalizację miejsca uszkodzenia. W przypadku rozmieszczenia czujników zgodnie ze schematem numer 4, w każdym przypadku pozwala na poprawną lokalizację miejsca uszkodzenia. W przypadku rozmieszczenia czujników zgodnie ze schematem 5, tylko przy użyciu kryterium NMD3 i NMD2 otrzymujemy poprawny wynik aktualizacji parametrów (tabela 3.22). Przy uszkodzeniu zlokalizowanym w elemencie 5, nienależnie od kryterium wyboru wyniku aktualizacji parametrów oraz od schematu rozmieszczenia czujników, otrzymujmy w wyniku aktualizacji parametrów strefę uszkodzenia obejmującą swoim zasięgiem elementy 5 i 6 (rysunek 3.34). Potwierdzają to wartości indeksu l^{gbs}

zbliżone do jedności (tabela 3.23). W tym przypadku zmiana sztywności uszkodzonych elementów po aktualizacji waha się w granicach 50-616 % intensywności założonego uszkodzenia.

Rysunek 3.33 Indeks I_o dla elementów modelu MES z uszkodzeniem elementu numer 3 o intensywności 15% dla wariantu 8 macierzy wag przy rozmieszczeniu czujników według schematu a) numer 4 i użyciu kryterium J_p , i NMD2 b) numer 5 i użyciu kryterium J_p , f_{Δ} i NMD1 c) numer 4 i użyciu kryterium f_{Δ} i NMD3 d) numer 5 i użyciu kryterium NMD3

Tabela 3.22 Zestawienie bazowych indeksów uszkodzenia, kryterium NMD oraz częstotliwości drgań własnych uzyskanych w wyniku procedury aktualizacji parametrów bazującej na schemacie 4 i 5 usytuowania czujników dla wariantu 8 definicji macierzy wag przy uszkodzeniu 3 elementu modelu MES o intensywności 15%

DANE														
Uszkodzenie		Macierz	f [Hz]						NMD [%]					
Element	Intens,	wag	1		2		3		1	2	3	3		
3	15 %	8	19,44		77,16		175,11		1,463	2,657	2,2	2,277		
AKTUALIZACJA														
Kryterium	Schemat czujników	Jp	f [Hz]			NMD [%]			Indeksy bazowe			D.		
			1	2	3	1	2	3	l ^{abs}	l ^{abs} max	∣ ^{abs} s	Detekcj		
Jp	4	-1,98E+07	19,46	77,09	175,00	0,625	1,994	6,686	5,07	1,51	2,00	TAK		
	5	-1,79E+07	19,38	77,19	174,87	0,644	2,269	5,758	3,12	0,83	1,98	NIE		
f _Δ	4	-288,71	19,44	77,15	175,12	1,290	0,986	6,276	4,24	1,07	24,82	TAK		
	5	-1,79E+07	19,38	77,19	174,87	0,644	2,269	5,758	3,12	0,83	1,98	NIE		
NMD3	4	-288,71	19,44	77,15	175,12	1,29	0,986	6,276	4,24	1,07	24,82	TAK		
	5	-1,79E+07	19,38	77,19	174,87	1,099	1,553	1,783	2,29	1,26	2,94	TAK		
NMD2	4	-288,71	19,44	77,15	175,12	1,290	0,986	6,276	4,24	1,07	24,82	TAK		
	5	-1,79E+07	19,38	77,19	174,87	1,045	1,556	2,058	5,2	1,05	18,45	TAK		
NMD1	4	-1,98E+07	19,46	77,09	175,00	0,625	1,994	6,686	5,07	1,51	2,00	TAK		
	5	-1,79E+07	19,38	77,19	174,87	0,644	2,269	5,758	3,12	0,83	1,98	NIE		

97 | Strona

Rysunek 3.34 Indeks I_o dla elementów modelu MES z uszkodzeniem elementu numer 5 o intensywności 15% dla wariantu 8 macierzy wag przy rozmieszczeniu czujników według schematu a) numer 4 i użyciu kryterium f_{Δ} , NMD3 i NMD2 b) numer 5 i użyciu kryterium J_p , NMD3 i NMD2 c

Tabela 3.23 Zestawienie bazowych indeksów uszkodzenia, kryterium NMD oraz częstotliwości drgań własnych uzyskanych w wyniku procedury aktualizacji parametrów bazującej na schemacie 4 i 5 usytuowania czujników dla wariantu 7 definicji macierzy wag przy uszkodzeniu 5 elementu modelu MES o intensywności 15%

DANE													
Uszkodzenie		Macierz	f [Hz]						NMD [%]				
Element	Intens,	wag	1		2		3		1	2	3	3	
5	15 %	8	19,28		77,28		174,34		1,424	1,001	3,08	3,083	
AKTUALIZACJA													
Kryterium	Schemat czujników	Jp	f [Hz]				NMD [%]	Indeksy bazowe				
			1	2	3	1	2	3	I_m^{abs}	l ^{abs} max	^{abs} ₅	Detekcj	
Jp	4	-5,55E+06	19,61	78,44	176,57	2,457	0,435	13,937	1,88	0,66	1,64	NIE	
	5	-2,05E+06	19,30	78,27	174,32	0,314	0,333	0,889	27,98	10,88	1,02	TAK	
f∆	4	-200,72	19,61	78,44	176,57	2,457	0,435	13,937	31,55	13,11	1,04	NIE	
	5	-3,29E+04	19,28	78,28	174,34	0,274	0,424	1,300	13,89	4,09	1,13	TAK	
NMD3	4	-2,01E+02	19,61	78,44	176,57	2,457	0,435	13,937	31,55	13,11	1,04	NIE	
	5	-2,05E+06	19,30	78,27	174,32	0,314	0,333	0,889	27,98	10,88	1,02	TAK	
NMD2	4	-2,01E+02	19,61	78,44	176,57	2,457	0,435	13,937	31,55	13,11	1,04	NIE	
	5	-2,05E+06	19,30	78,27	174,32	0,314	0,333	0,889	27,98	10,88	1,02	TAK	
NMD1	4	-2,47E+02	19,61	78,44	176,57	2,457	0,435	13,937	26,83	12,05	1,10	NIE	
	5	-3,29E+04	19,28	78,28	174,34	0,266	0,417	1,231	52,21	25,98	1,02	TAK	

Poprawne sformułowanie macierzy wag ma niezwykle istoty wpływ na otrzymany wynik aktualizacji parametrów. Dla przedstawionego problemu belki swobodnie podpartej, najlepszą jakoś aktualizacji, a tym samym poprawne wykrycie lokalizacji uszkodzenia, wysokie wartości indeksów bazowych oraz wysoką zgodność otrzymanej wartości uszkodzenia z przyjętą w "eksperymencie" numerycznym, otrzymuje się w przypadku macierzy bazujących na regularyzacji Tikonov'a. Na znaczną poprawę dokładności aktualizacji parametrów modelu MES, wpływ ma również zastosowanie autorskiej modyfikacji z macierzą blokową. Dla wariantu 2 macierzy wag, niezależnie od zastosowanego kryterium wyboru wyniku aktualizacji parametrów, oraz dla wariantu 4 macierzy wag przy użyciu kryterium NMD3, NMD2 i NMD1, otrzymano najlepsze wyniki aktualizacji parametrów. Dla macierzy wag parametrów zaproponowanej przez Linka oraz macierz wag wartości mierzonych zaproponowanej przez Mottershead'a, czyli dla wariantu 5 macierzy wag, otrzymujemy najgorszy wynik aktualizacji, ponieważ tylko w jednym przypadku uszkodzenie zostało poprawnie zlokalizowane.

3.4 Wpływu szumu pomiarowego na procedurę aktualizacji paramentów

Nieodłącznym elementem rejestracji wszystkich rzeczywistych sygnałów jest obecność w nich szumów pomiarowych. Można je rozumieć jako różnego pochodzenia niepożądane składowe sygnału, utrudniające wyodrębnienie z sygnału pomiarowego szukanych informacji. Poziom szumów zależy od wielu czynników, miedzy innymi od stosowanej aparatury pomiarowej tzn. od czujników pomiarowych oraz przetworników sygnałów, jak również od czynników środowiskowych, czy sposobu i ewentualnych niedokładności zamocowania urządzeń pomiarowych.

Wprowadzenie szumu pomiarowego do danych numerycznych ma na celu zbliżenie przeprowadzonych symulacji numerycznych do rzeczywistych pomiarów i zbadania wpływu wielkości szumu pomiarowego na poprawność aktualizacji parametrów modelu MES. Do wszystkich serii danych numerycznych dodano, wygenerowany w programie MATLAB, numeryczny losowy szum pomiarowy o płaskim widmie. W celu zbadania wpływu poziomu szumów na wynik i na poprawność detekcji uszkodzenia badano sygnały o 4 poziomach zaszumienia 1%, 2%, 5% oraz 10% wartości skutecznej sygnałów (RMS) (rysunek 3.35), która została zdefiniowana dla układów dyskretnych zgodnie ze wzorem (Kucharski 2002):

$$y_{RMS} = \sqrt{\frac{1}{N} \sum_{k=1}^{N} y(k)^2}.$$
 (3.35)

Dla każdej nowej serii danych numerycznych, w zależności od miejsca i stopnia uszkodzenia i poziomu zaszumienia generowano 10 różnych sygnałów z szumem pomiarowym. Detekcję uszkodzeń przeprowadzono dla trzech typów belek opisanych w Rozdziale 3.2: nieuszkodzonej (rysunek 3.1), z uszkodzeniem trzeciego (rysunek 3.2) i z uszkodzeniem piątego elementu (rysunek 3.3) o intensywnościach odpowiednio 1%, 5%, 10% i 15%. Założono rozmieszczenie czujników pomiarowych zgodne ze schematem 4 (rysunek 3.12). W procedurze aktualizacji wzięto pod uwagę dwie pierwsze częstotliwości i postacie drgań własnych. Korzystano z macierzy wag w wariancie 2 opisanej w rozdziale 3.3 i bazowano na kryterium NMD3 wyboru wyniku aktualizacji parametrów.

Rysunek 3.35 Przebiegi czasowe przyspieszeń i prędkości kątowych belki swobodnie podpartej przy zaszumieniu sygnału na poziomie a) 1% b) 2% c) 5% d) 10% wartości skutecznej sygnałów (RMS)

W przypadku belki bez uszkodzenia, przy braku szumu pomiarowego algorytm nie wykazywał znaczących zmian sztywności żadnego z elementów modelu MES belki (rysunek 3.14). Dodanie szumu pomiarowego o wartości 1% znacząco zmienia wynik aktualizacji parametrów projektowych, który przy braku uszkodzeń, w zależności od serii danych, wykazuje uszkodzenia w losowych elementach dochodzące nawet do 2% (rysunek 3.36). Przy poziomie szumów rzędu 2% pojawiają się uszkodzenia o intensywności do 4%, natomiast przy poziomie szumów wynoszącym 5% o intensywności prawie 9%. Cechą charakterystyczną otrzymanych wyników jest losowość lokalizacji uszkodzenia, dla każdej z serii danych numerycznych. Przy powtórzeniu kilku serii pomiarów, występowanie dużej losowości i rozbieżności w wynikach może więc świadczyć o braku uszkodzenia w belce, a jednie o dużym poziomie zaszumienia sygnału pomiarowego.

Rysunek 3.36 Indeks **I**_o dla elementów belki bez uszkodzenia przy szumie pomiarowym na poziomie a) 1% b) 5% dla schematu 4 usytuowania czujników pomiarowych.
Zaszumienie sygnału pomiarowego ma więc znaczący wpływ na wykrywanie uszkodzeń, zwłaszcza kilkuprocentowego rzędu. Wykresy indeksu I_o , które otrzymano dla belki bez uszkodzenia z zaszumieniem sygnału wynoszącym 1% wskazują, że zaszumienie sygnału wykazuje większy wpływ na wynik aktualizacji niż uszkodzenie jednego elementu o wartości 1%. Tym samym, już przy stosunkowo niskim poziomie zaszumienia sygnału wykrywanie małych uszkodzeń staje się niemożliwe. Przedstawione na rysunku 3.37 wykresy przedstawiają reprezentatywne wyniki aktualizacji dla belki z uszkodzeniem o wartości 1% przy poziomie zaszumienia sygnału pomiarowego o wartościach 1% i 2%. Otrzymane zmiany sztywności nie wskazują na uszkodzenie wybranego elementu, a sugerują niewielkie uszkodzenia w kilku elementach belki.

Rysunek 3.37 Indeks I_o dla elementów belki z uszkodzeniem elementu 3 o intensywności 1% przy szumie pomiarowym na poziomie a) 1% b) 2% dla schematu 4 usytuowania czujników pomiarowych.

W przypadku gdy uszkodzenie o intensywność 5% zlokalizowane jest w elemencie numer 3 modelu MES, możliwe jest wykrywanie uszkodzeń za pomocą algorytmu bazującego na rozmieszczeniu czujników zgodnie ze schematem 4, tylko w przypadku szumu pomiarowego na poziomie 1% (rysunek 3.38). W tym wypadku dla dowolnej serii danych wartość n_{max} była zgodna z miejscem uszkodzenia. Uzyskana procentowa wielkość uszkodzenia również ma zbliżone wartości do oczekiwanych 5%. Występowanie szumów pomiarowych o większej wartości uniemożliwia poprawną detekcję uszkodzenia (rysunek 3.39). W zależności od serii danych uszkodzenie wykazywane jest w różnych elementach, a więc n_{max} przyjmuje różne wartości. Jednak w przypadku uszkodzenia elementu 5 algorytm przy szumie pomiarowym na poziomie 1% błędnie wskakuje uszkodzenie sąsiedniego szóstego elementu (rysunek 3.38) lub 8 (rysunek 3.39).

Rysunek 3.38 Indeks I_o dla elementów belki z uszkodzeniem elementu a) 3 b) 5 o intensywności 5% przy szumie pomiarowym na poziomie 1%, dla schematu 4 usytuowania czujników pomiarowych.

Rysunek 3.39 Indeks dla elementów belki z uszkodzeniem elementu a) 3 b) 5 o intensywności 5% przy szumie pomiarowym na poziomie 2% dla schematu 4 usytuowania czujników pomiarowych.

Podobna sytuacja występuje w przypadku uszkodzeń o intensywności 10%. Przy wielkości szumów na poziomie 1 i 2% dla wszystkich serii danych możliwa jest detekcja uszkodzeń w elemencie 3 (rysunek 3.40). Przy uszkodzeniu elementu 5, otrzymana zmiana sztywności w przedstawionym przypadku wykazywana jest w elemencie nr 6 i jest równa 114% założonego spadku sztywności. Przy szumach sięgających 5% zakłócenia sygnału są na tyle duże, że nie we wszystkich przypadkach umożliwią poprawną lokalizację uszkodzenia. Dla 20 różnych serii danych przy uszkodzeniu elementu 3 otrzymany wynik aktualizacji w 60% poprawnie wskazał miejsce bądź strefę uszkodzenia belki (rysunek 3.41). W przypadku uszkodzenia elementu 5 w 45% udawało się otrzymać wynik, który jako element uszkodzony wskazywał 5 lub 6 segment belki. Wielkość szumu wpływa na dokładność oszacowania stopnia uszkodzenia. W przypadku przedstawionym na rysunku 3.40 przy uszkodzenia elementu 3 oszacowana wartość wynosi 85% wartości zadanej, natomiast w przypadku uszkodzenia elementu 5 wynosi ona 114% wartości zadanej.

Rysunek 3.41 Indeks \mathbf{I}_o dla elementów belki z uszkodzeniem elementu a) 3 b) 5 o intensywności 10% przy szumie pomiarowym na poziomie 5% dla schematu 4 usytuowania czujników pomiarowych.

Uszkodzenia o intensywności 15% są relatywnie łatwo lokalizowane przy szumach sięgających nawet 10%. Na rysunku 3.42 przestawiono wynik aktualizacji parametrów przy zaszumieniu na poziomie 10%. Dla wszystkich serii danych numerycznych wynik aktualizacji poprawnie wskazuje na miejsce uszkodzenia. Występują jednak znaczne rozbieżności w szacowaniu stopnia uszkodzenia. W przypadku zaprezentowanych wyników dla belki

z uszkodzeniem 3 elementu wynoszą one 81%, natomiast dla elementu 5 tylko 74% wartości zadanej.

Rysunek 3.42 Indeks \mathbf{I}_o dla elementów belki z uszkodzeniem elementu a) 3 b) 5 o intensywności 15% przy szumie pomiarowym na poziomie 10% dla schematu 4 usytuowania czujników pomiarowych.

Przeprowadzone symulacje wykazały bardzo istotny wpływ szumów pomiarowych na wynik aktualizacji parametrów. Przy niewielkich uszkodzeniach, nawet niewielkie szumy pomiarowe uniemożliwiają poprawną detekcję uszkodzenia. Z uwagi na losowość generowanych wyników, przy kilku seriach danych możliwe jest ich odrzucenie jako niepoprawnych. Przy uszkodzeniach o intensywności rzędu 5%, ważne jest aby zapewnić sygnał pomiarowy o jak najmniejszym poziomie zaszumienia oraz wykonać kilka serii pomiarów, które zweryfikują miejsce uszkodzenia. Przy uszkodzeniach o intensywności powyżej 10% szumy pomiarowe poniżej poziomu 5% nie mają istotnego wpływu na wynik aktualizacji parametrów. Każdorazowo zauważalny jest jednak znaczący wpływ szumów pomiarowych na wielkość stopnia uszkodzenia.

3.5 Aktualizacja warunków podporowych i sztywności globalnej modelu

Celem poniższych analiz jest aktualizacja parametrów modelu belki dla ustroju opisanego w Rozdziale 3.2, z założeniem zerowych przemieszczeń pionowych oraz skrępowanej rotacji na podporach (rysunek 3.43). Wektor akutalizowanych parametrów składa się z trzech elementów i przyjmuje postać $\boldsymbol{\Theta} = \begin{bmatrix} El_g, r_1, r_2 \end{bmatrix}$, gdzie El_g jest sztywnością globalną belki, a r_1 i r_2 odpowiednio rotacyjnymi sztywnościami sprężyny na podporze lewej i prawej.

Rysunek 3.43 Model MES belki

W procedurze aktualizacji założono, że przeprowadzona ona zostanie na podstawie danych numerycznych z 5 stopni swobody, w tym dwóch translacyjnych i trzech rotacyjnych zgodnie ze schematem przedstawionym na rysunku 3.44. Procedura aktualizacji bazuje na dwóch pierwszych giętnych częstotliwościach i postaciach drgań własnych. Macierz wag parametrów mierzonych $\mathbf{W}_{\varepsilon\varepsilon}$ jest zdefiniowana zgodnie ze wzorem (2.144). Macierz wag parametrów $\mathbf{W}_{\theta\theta}$ została zdefiniowana zgodnie ze wzorem:

$$\mathbf{W}_{\theta\theta} = w_{\rho} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0.001 & 0 \\ 0 & 0 & 0.001 \end{pmatrix},$$
(3.36)
$$w_{\rho} \in \langle 10^{-2}, 10^{-3}, ..., 10^{-10} \rangle.$$

W ten sposób parametrom związanym z rotacyjnymi sztywnościami sprężyny na podporze lewej i prawej, jako trudniejszym w oszacowaniu, nadano mniejszą wagę niż sztywności globalnej belki EI_g . W zaproponowanej procedurze aktualizacji parametrów, wynikiem jest tabela, w której kolejnych wierszach zapisane są wartości zaktualizowanych parametrów w zależności od wartości współczynnika skalującego w_p . Procedura, która umożliwia wybranie wyniku aktualizacji parametrów z tabeli dokonywana jest poprzez jej porządkowanie jako kryterium przyjmując NMD3 - minimalną wartość sumy kryterium NMD trzech pierwszych postaci drgań własnych pomiędzy wartością pomierzoną a zaktualizowaną.

Rysunek 3.44 Miejsca pomiaru translacyjnych (t1C, t2F) i rotacyjnych (r1C,r2F,r3J) stopni swobody – 6 schemat rozmieszczenia czujników

W 2 kolumnie tabeli 3.24 zestawiono rzeczywiste wartości parametrów oraz wartości częstotliwości drgań własnych modelu MES belki. W kolumnie 3 zestawiono wartości startowe zadane w algorytmie aktualizacji, bazujące na sztywności modelu nieuszkodzonego. Jako sztywność rotacyjną podpór przyjęto bardzo małą wartości zbliżając się tym samym do nieskrępowanego obrotu belki w tych punkach. Zestawiono również wartości dwóch pierwszych częstotliwości drgań własnych belki o zadanych parametrach oraz wartość kryterium NMD w stosunku do rzeczywistego modelu belki. Wynik przeprowadzonej aktualizacji parametrów bazującej na 2 postaciach i częstotliwościach drgań własnych oraz czujnikach rozmieszczonych zgodnie ze schematem 6 rozmieszczenia czujników przedstawiono w kolumnie 4 tabeli 3.24.

kryterium NMD świadczą o zgodności modelu rzeczywistego z zaktualizowanym i potwierdzają dokładność uzyskanych w procedurze identyfikacji parametrów.

Tabela 3.24 Zastawnie wartość parametrów przed i po aktualizacji sztywności globalnej i sztywności rotacyjnej
podpór dla modelu MES belki swobodnie podpartej

Р	Parametr	Wartość rzeczywista	Wartość początkowa	Wartość zaktualizowana
		Parametry a	kutalizowane	
$\theta_{_{1}}$	$EI_g[Nm^2]$	2106,5	2171,6	2106,5
$\theta_{\rm 2}$	r ₁ [Nm/rad]	$1 \cdot 10^{-2}$	$1 \cdot 10^{-10}$	$1 \cdot 10^{-2}$
$\theta_{_{3}}$	r ₂ [Nm/rad]	2·10 ⁻²	$1 \cdot 10^{-10}$	2·10 ⁻²
		Często	tliwości	
	$f_1[Hz]$	19,31	19,61	19,31
	$f_2[Hz]$	77,26	78,44	77,26
		Kryteriu	um NMD	
Postać 1		-	7,4·10 ⁻³ %	0,0%
F	Postać 2	-	5,0·10 ⁻³ %	0,0%

Tabela 3.25 Zastawnie wartość częstotliwości drgań własnych i kryterium NMD dla modelu MES belki swobodnie podpartej w zależności od założonej sztywności rotacyjnej podpór

Р	arametr	Sztywność rotacyjna podpór przypadek 1	Sztywność rotacyjna podpór przypadek 2	Różnica
		Parametry ak	kutalizowane	
$\theta_{_{1}}$	$EI_g[Nm^2]$	2171,6	2171,6	0%
$\theta_{\rm 2}$	r ₁ [Nm/rad]	$1 \cdot 10^{0}$	$1 \cdot 10^{-10}$	$1 \cdot 10^{12} \%$
$\theta_{\scriptscriptstyle 3}$	r ₂ [Nm/rad]	$1 \cdot 10^{0}$	$1 \cdot 10^{-10}$	$1 \cdot 10^{12} \%$
		Częstot	liwości	
	$f_1[Hz]$	19,61	19,61	0%
	$f_2[Hz]$	78,44	78,44	0%
		Kryteriu	m NMD	
Р	ostać 1	-	7,1·10 ⁻³ %	$7,1 \cdot 10^{-3}$ %
P	ostać 2	-	4,8·10 ⁻³ %	4,8·10 ⁻³ %

Różnice w częstotliwościach i postaciach drgań własnych belki przedstawionej na rysunku 3.45, przy założeniu sztywności rotacyjnej obu podpór na poziomie $1 \cdot 10^{-10}$ oraz $1 \cdot 10^{0}$ i jednakowej sztywności globalnej *El_a* modelu MES, przedstawiono w tabeli 3.25. Wyniki zwarte

w tabeli świadczą o bardzo małym wpływie sztywności rotacyjnej podpór na model MES belki swobodnie podpartej w przedstawionym zakresie. Pozwala to na pominiecie aktualizacji parametru związanego z rotacyjnymi sztywnościami podpór w przeprowadzonych analizach.

4 Badania eksperymentalne

Badania laboratoryjne przeprowadzono na modelu eksperymentalnym stalowej belki wykonanej na potrzeby niniejszej pracy. Model opisano dokładniej w rozdziale 4.2. Belka poddawana była testom dynamicznym zgodnie z programem badań opisanym w rozdziale 4.3.

4.1 Aparatura pomiarowa

Podczas badań dynamicznych stosowano dwa rodzaje wzbudzenia dynamicznego obiektów eksperymentalnych: wzbudzenie impulsowe oraz wymuszenie harmoniczne. Wzbudzenie impulsowe wywoływane było przy użyciu młotka modalnego typu PCB 086C03 wyprodukowanego przez PCB Piezotronics (rysunek 4.1a). Młotek ten umożliwia wygenerowanie siły w zakresie ± 2224 N a jego częstotliwość rezonansowa jest wyższa niż 22 kHz. Wymuszenie harmoniczne generowane było za pomocą wzbudnika TIRA S 50009 (rysunek 4.2b) oraz wzbudnika VEB RFT MESSELEKTRONIK. Wzbudnik TIRA S 50009 umożliwia wygenerowanie funkcji sinusoidalnej o maksymalnej amplitudzie siły równej 9 N. Zakres dostępnych częstotliwości wynosi 2 - 20000 Hz, a maksymalne wychylenie masy jest równe 3 mm. Zakres dostępnych częstotliwości wzbudnika VEB RFT MESSELEKTRONIK wynosi od 1 Hz do 15 kHz. Umożliwia on wygenerowanie siły sinusoidalnej o maksymalnej amplitudzie 200 N. W badaniach korzystano z tak zwanego sweep-testu o różnych zakresach częstotliwości wywołanego za pomocą generatora RIGOL DG1022 (rysunek 4.1c).

Rysunek 4.1 a) Młotek modalny PCB 086C03 b) Wzbudnik TIRA S 50009 c) Wzbudnik VEB RFT MESSELEKTRONIK d) generator RIGOL DG1022.

Do pomiarów wykorzystano czujniki przyspieszenia, prędkości kątowej oraz siły. Zestaw służący do pomiaru przyspieszeń składał się z 12 trzyosiowych piezoelektrycznych akcelerometrów wysokoczęstotliwościowych PCB 356A16 (rysunek 4.2a) o zakresie pomiarowym ± 490 m/s2. Zakres mierzonych częstotliwości na osi z oraz y wynosi 0,5 – 5000 Hz a na osi x 0,5 – 4500 Hz. Częstotliwość rezonansowa czujników jest wyższa od 25 kHz. Do pomiaru prędkości kątowej użyto

żyroskopów prędkościowych LPY403AL wykonanych w technologii MEMS (rysunek 4.2b) wykorzystujących efekt Coriolisa. Ich zakres pomiarowy prędkości kątowej wynosi ± 30 dps, a maksymalna mierzona częstotliwość to 140 Hz. Pomiar siły wymuszenia dynamicznego przekazywanego przez wzbudnik na belkę wykonano przy użyciu belki tensometrycznej BTENS-N27-002 o zakresie do 20 N (rysunek 4.2c).

Rysunek 4.2 Aparatura pomiarowa : a) Akcelerometry PCB 356A16 b) Żyroskopy MEMS LPY403AL c) belka tensometryczna BTENS-N27-002

Dane pomiarowe rejestrowane były przy użyciu 40-kanałowego systemu LMS SCADAS (rysunek 4.3a) oraz 8-kanałowego wzmacniacza pomiarowego QUANTUM HBM 840a (rysunek4.3b).

Rysunek 4.3 Aparatura pomiarowa : a) systemu LMS SCADAS b) wzmacniacz pomiarowy QUANTUM HBM 840a

Stanowisko pomiarowe (rysunki 4.4 i 4.5) składało się również z dwóch laptopów służących do przetwarzania danych, ich wizualizacji oraz przechowywania rezultatów pomiarów.

Rysunek 4.4 Stanowsko pomiarowe

Rysunek 4.5 Schemat stanowiska pomiarowego

4.2 Model eksperymentalny belki swobodnie podpartej

Belka swobodnie podparta (rysunek 4.6) została wykonana z profilu walcowanego C40. Całkowita długość belki wynosi 1600 mm, a jej rozpiętość między podporami jest równa 1500 mm (rysunek 4.7). Belka została wykonana ze stali o module Younga 205 GPa i gęstości 7850 kg/m³. Częstotliwości drgań własnych belki zostały obniżone, ze względu na stosowane czujniki żyroskopowe, poprzez doklejenie do zewnętrznych krawędzi ceowników ołowianych blach o grubości 3 mm. Blachy zostały przyklejone w pakietach po 3 sztuki z każdej strony (rysunek 4.8). Następnie co 37,5 mm po długości belki wykonano szczelinę grubości ok 1 mm, aby nie powodować nadmiernego wzrostu sztywności belki. Cała belka, bez łożysk, po dociążeniu ważyła 12,05 kg.

Łożyska wykonano tak aby zapewnić swobodę obrotu belki na obu podporach. W tym celu wykonstruowano przeguby w formie walców z teflonu, z uwagi na bardzo mały współczynnik tarcia tego materiału. Dodatkowe użycie smaru na powierzchni teflonu zapewniło swobodny obrót walców w stalowej obudowie łożyska. Jedno z łożysk wykonano jako nieprzesuwne (rysunek 4.9b). Natomiast w łożysku przesuwnym (rysunek 4.9a) zastosowano dodatkowe powierzchnie ślizgowe wykonane z dwóch teflonowych płytek, umożliwiające swobodny przesuw podłużny jednego z końców belki.

Rysunek 4.6 Stalowa belka swobodnie podparta

Rysunek 4.8 Przekrój poprzeczny belki a) podstawowy b) po dodaniu masy w postaci blach ołowianych

Rysunek 4.9 Budowa łożysk liniowo stycznych: a) przegubowe przesuwne: 1 – przegub teflonowy w stalowej obudowie, 2 – podstawa łożyska, 3 – powierzchnie teflonowe umożliwiające przesuw b) przegubowe nieprzesuwne: 1 – przegub teflonowy w stalowej obudowie 2 – podstawa łożyska

4.3 Program badań

Badania eksperymentalne zostały przeprowadzone dla dwóch przypadków: belki bez uszkodzenia oraz belki z uszkodzeniem 3 lub 5 elementu. Belka została myślowo podzielona na 10 odcinków o długości 150 mm każdy (rysunek 4.10). Do badań użyto zestawów 12 akcelerometrów PCB 356A16 oraz 7 czujników żyroskopowych MEMS (rysunek 4.11).

Rysunek 4.11 Rozmieszczenie punków pomiarów przyspieszeń oraz prędkości kątowych

W badaniach eksperymentalnych uszkodzenie symulowane było poprzez dodanie dodatkowej masy skupionej. Podejście takie nie wymaga ingerencji w konstrukcję modelu, jak w przypadku symulowania uszkodzenia poprzez redukcję sztywności wybranych elementów. Pozwala ono na dodatkowe modyfikowanie uszkodzenia, poprzez zmniejszanie bądź zwiększanie jego intensywności oraz poprzez zmianę lokalizacji uszkodzenia w kolejnych testach dynamicznych.

W pierwszym etapie przeprowadzono badania na belkach nieuszkodzonych, bez dodatkowych mas skupionych. Następnie wszystkie testy powtórzono na belkach, których uszkodzenie symulowała dodatkowa masa skupiona złożona z elementów mocujących oraz płytek obciążających (rysunek 4.12). Wykorzystano 3 rodzaje masy:

- ✓ masa o symbolu 2 2 płytki o numerach 1 i 2,
- ✓ masa o symbolu 4 4 płytki o numerach 1 4,
- ✓ masa o symbolu 6 6 płytki o numerach 1 6.

Rysunek 4.12 a) Konstrukcja masy symulującej uszkodzenie o symbolu 6 oraz sposób montażu masy o symbolu b) 2 c) 4 d) 6 na belce

Jako reprezentatywne przedstawiono wyniki otrzymane podczas testów belki poddawanej obciążeniu harmonicznemu funkcją sweept - sine w zakresie częstotliwości od 6 Hz do 160 Hz, wywołanemu przy użyciu wzbudnika drgań VEB RFT MESSELEKTRONIK. Wzbudnik umieszczano kolejno w elementach belki o numerach 6 i 8 dokonując pomiaru przykładanej siły podczas każdego testu (rysunek 4.13). Z uwagi na szumy występujące w sygnałach każdy test powtarzano 4 krotnie. Sumarycznie wykonano 211 testów, dla belki bez uszkodzenia, z uszkodzeniem w elemencie 3 o symbolach 2, 4 i 6, oraz z uszkodzeniem w elemencie 5 o symbolach 2, 4 i 6 (rysunek 4.14).

Rysunek 4.13 Sposób połączenia wzbudnika z belką z jednoczesnym pomiarem siły

Rysunek 4.14 Zestawienie wykonanych testów

4.4 Wyniki badań eksperymentalnych

Przeprowadzone pomiary pozwoliły na zarejestrowanie przebiegów czasowych przyspieszeń oraz prędkości kątowych belki. Wszystkie otrzymane przebiegi poddano filtracji przy użyciu filtra Butterwortha odcinającego z sygnału składowe o częstotliwościach wyższych od 150 Hz. Reprezentatywne przebiegi wraz z wyznaczonymi na ich podstawie transformatami Fouriera (FFT) przedstawiono na rysunkach 4.15-4.18.

Rysunek 4.15 Przebieg czasowy przyspieszeń w punkcie pomiarowym t4D wraz z odpowiadającą transformatą Fouriera dla belki nieuszkodzonej (bez dodatkowej masy) przy wzbudniku umieszczonym w elemencie 6.

Rysunek 4.16 Przebieg czasowy przyspieszeń w punkcie pomiarowym t4D wraz z odpowiadającą transformatą Fouriera dla belki z uszkodzeniem elementu 5 o symbolu 2 (z dodatkową masą) przy wzbudniku umieszczonym w elemencie 6.

Rysunek 4.17 Przebieg czasowy prędkości kątowych w punkcie pomiarowym r2B wraz z odpowiadającą mu transformatą Fouriera dla belki nieuszkodzonej (bez dodatkowej masy) przy wzbudniku umieszczonym w elemencie 6.

Rysunek 4.18 Przebieg czasowy prędkości kątowych w punkcie pomiarowym r2B wraz z odpowiadającą mu transformatą Fouriera dla belki z uszkodzeniem elementu 5 o symbolu 2 (z dodatkową masą) przy wzbudniku umieszczonym w elemencie 6.

Transformaty Fouriera posłużyły do wyznaczenia częstotliwości drgań własnych belki oraz funkcji odpowiedzi częstotliwościowej \mathbf{H} dla pomierzonych sygnałów. Na podstawie funkcji odpowiedzi częstotliwościowej otrzymano giętne postaci drgań własnych belki. Pomiary wykonane za pomocą akcelerometrów pozwoliły na otrzymanie translacyjnych składowych wektora modalnego, natomiast pomiary wykonane za pomocą żyroskopów na otrzymanie rotacyjnych elementów wektora modalnego. Na rysunkach 4.19 i 4.20 przedstawiono numeryczne giętne postacie drgań własnych dla belki nieuszkodzonej oraz postacie drgań wyznaczone na podstawie badań eksperymentalnych dla belki nieuszkodzonej oraz belki z uszkodzeniem elementu 5 o symbolu 2. W tabeli 4.1 zestawiono, w zależności od symbolu uszkodzenia oraz położenia wzbudnika, pomierzone częstotliwości drgań własnych oraz kryterium NMD względem modelu numerycznego bez uszkodzeń.

Drgania podłoża były mierzone podczas wszystkich testów eksperymentalnych. Jednak z uwagi na bardzo małe amplitudy otrzymanych sygnałów nie mają one wpływu na wyniki badań i nie są w niemniejszej dysertacji przedstawione.

Rysunek 4.19 Translacyjne postacie drgań belki dla belki a) bez uszkodzenia b) z uszkodzeniem elementu 5 o symbolu 2

Rysunek 4.20 Rotacyjne postacie drgań belki dla belki a) bez uszkodzenia b) z uszkodzeniem elementu 5 symbolu 2

٨	iia	Częs	totliwości (drgań	Transla	cyjna posta	ać drgań	Rotacy	jna posta	nć drgań
:lement zkodzor	Symbol zkodzer		<i>f</i> [Hz]			NMD [%]			NMD [%]
E us	Isn	1	2	3	1	2	3	1	2	3
				WZBUDNI	K ELEMEN	NT 6				
brak	-	14,73	48,77	113,58	2,01	5,36	7,31	4,30	6,50	18,37
	2	13,90	43,22	108,28	7,44	25,95	17,69	2,86	5,73	121,96
3	4	13,48	42,11	110,48	1,23	42,68	29,09	4,41	9,93	30,60
	6	13,04	42,11	107,02	1,34	67,35	48,52	6,31	6,06	130,13
	2	13,20	48,12	107,40	1,62	9,31	22,08	5,21	5,14	75,58
5	4	12,87	44,13	107,40	1,64	16,14	37,60	9,35	5,12	26,40
	6	12,18	46,15	107,02	1,99	21,47	47,22	4,32	3,49	35,15
				WZBUDNI	K ELEMEN	NT 8				
Brak	-	14,31	47,60	112,04	2,38	2,76	7,94	5,03	5,52	15,60
	2	13,58	42,97	108,41	1,32	18,71	17,96	3,25	6,17	48,00
3	4	13,50	42,02	109,12	2,24	40,38	13,50	7,26	11,03	27,21
	6	12,63	42,06	107,14	0,98	47,63	34,88	6,02	9,18	48,05
	2	13,10	47,32	107,66	2,62	6,98	27,48	5,09	5,60	17,48
5	4	12,38	42,09	107,16	1,57	17,22	38,64	5,39	5,08	23,23
	6	11,73	42,09	107,51	1,91	13,11	57,88	4,90	4,07	25,39

Tabela 4.1 Zestawienie częstotliwości drgań własnych wraz z kryterium NMD dla modelu eksperymentalnego belki swobodnie podpartej o różnym symbolu uszkodzenia

4.5 Niepewności pomiarowe

Wszelkie prowadzone pomiary z założenia obarczone są pewnymi błędami. Nie istnieją pomiary, które w 100% dokładnie opisywały by rzeczywistość. Błędy w pomiarach mogą być różnego pochodzenia, w zależności miedzy innymi od typu i zakresu mierzonych wartości, stosowanych czujników pomiarowych, sposobu ich podłączenia i montażu czy czynników środowiskowych.

W przypadku szacowania niepewności dla opisanych powyżej badań pod uwagę wzięto: błąd wzmacniacza i przetwornika, wpływ drgań w innych kierunkach na wartość mierzoną, błędy spowodowane przez próbkowanie mierzonego sygnału oraz przez szumy czujników pomiarowych. Pominięto, z uwagi na stabilne warunki atmosferyczne panujące w laboratorium, błędy środowiskowe związane między innymi ze zmianą temperatury oraz wilgotności.

Niepewność pomiarowa dla akcelerometrów przy założeniu maksymalnego przyśpieszenia na poziomie $10\frac{m}{s^2}$ wyniosła $\pm 0,24\frac{m}{s^2}$, natomiast dla żyroskopów typu MEMS przy założeniu maksymalnej pomierzonej wartości rzędu 2,0 dps równą 0,15 dps.

5 Aktualizacja parametrów projektowych na podstawie badań eksperymentalnych

5.1 Procedura aktualizacji parametrów projektowych na podstawie badań eksperymentalnych

Aktualizacji parametrów projektowych na podstawie badań eksperymentalnych dokonano na podstawie sygnałów z 10 translacyjnych stopni swobody zlokalizowanych na belce (rysunek 5.1), wykorzystując trzy uzyskane częstotliwości i postacie drgań własnych konstrukcji (rozdział 4). Uszkodzenie belki symulowane było przez dodanie masy skupionej w wybranym elemencie. Akutalizowanymi parametrami były masy m_i wszystkich elementów modelu MES belki. Wektor akutalizowanych parametrów miał postać $\boldsymbol{\theta} = [m_1, m_2, ..., m_{10}]$

Rysunek 5.1 Rozmieszczenie punktów pomiarowych przyspieszeń (akcelerometrów) użytych do procedury aktualizacji parametrów

W badaniach wstępnych ograniczono zakres rozważanych danych pomiarowych do ośmiu zestawów:

- 1. belka z uszkodzeniem 3 elementu o symbolu 2 oraz wzbudnik umieszczony w elemencie 6,
- 2. belka z uszkodzeniem 3 elementu o symbolu 4 oraz wzbudnik umieszczony w elemencie 6,
- 3. belka z uszkodzeniem 5 elementu o symbolu 2 oraz wzbudnik umieszczony w elemencie 6,
- 4. belka z uszkodzeniem 5 elementu o symbolu 4 oraz wzbudnik umieszczony w elemencie 6,
- 5. belka z uszkodzeniem 3 elementu o symbolu 2 oraz wzbudnik umieszczony w elemencie 8,
- 6. belka z uszkodzeniem 3 elementu o symbolu 4 oraz wzbudnik umieszczony w elemencie 8,

- 7. belka z uszkodzeniem 5 elementu o symbolu 2 oraz wzbudnik umieszczony w elemencie 8,
- 8. belka z uszkodzeniem 5 elementu o symbolu 4 oraz wzbudnik umieszczony w elemencie 8.

W obliczeniach użyto macierzy wag w wariancie 3 oraz 4 opisanych w rozdziale 3.3. Każdorazowo wynikiem aktualizacji parametrów była tabela, w której zamiana parametrów projektowych zależała bezpośrednio od definicji macierzy wag parametrów $\mathbf{W}_{\theta\theta}$ i elementów mierzonych $\mathbf{W}_{\varepsilon\varepsilon}$. W celu wyboru elementów, które mogą występować w rzeczywistej konstrukcji w tabeli zapisywano jedynie te wyniki dla których spełnione zostały poniże warunki:

- uzyskane postacie drgań opisane były liczbami rzeczywistymi;
- ✓ uzyskane częstotliwości drgań opisane były liczbami rzeczywistymi;
- maksymalny spadek masy w dowolnym elemencie nie był większy niż 5% masy całej belki;
- maksymalny przyrost masy w dowolnym elemencie nie był większy niż 25% masy całej belki;
- minimalna wartość uszkodzenia (przyrostu masy) w jednym dowolnym elemencie wynosiła przynajmniej 0,5% masy całej belki;
- ✓ jedna z wartości NMD, dla dowolnej z trzech postaci drgań, była mniejsza niż 30%;
- ✓ wszystkie indeksy bazowe opisane były liczbami rzeczywistymi.

Wybór wyniku aktualizacji parametrów odbywał się przy użyciu kryteriów J_p , f_{Δ} , NMD3, NMD2 i NMD1 opisanych w rozdziale 3.3.

Wyniki aktualizacji parametrów dla modelu belki z uszkodzeniem w elementach o numerach 3 i 5 o symbolu 2 zostały przedstawione na rysunkach 5.2-5.21 oraz w tabelach 5.1-5.4. Przeprowadzając analizę wykresów przedstawionych na rysunkach 5.2-5.5 oraz 5.12-5.15, wyraźnie widać, że posługując się kryterium J_p oraz f_Δ każdorazowo, bez względu na wariant definicji macierzy wag, algorytm nie wskazuje uszkodzenia jednego elementu. W przypadku prowadzonych badań eksperymentalnych, zwiększenie masy jednego elementu powodowało wyraźnie inny jej rozkład w wybranym elemencie w stosunku do pozostałych, nieuszkodzonych elementów. Poprawne działanie procedury aktualizacji parametrów, powinno więc jednoznacznie wskazywać jeden uszkodzony element, przy jedynie stosunkowo nieznacznych wahaniach masy w pozostałych, nieuszkodzonych elementach. Analizując wyniki przedstawione w tabelach 5.1 -5.4 zaobserwowano, bardzo wysoką zgodność wartości 2 i 3 częstotliwości drgań własnych pomiędzy częstotliwościami eksperymentalnymi, a częstotliwościami uzyskanymi dla modelu zaktualizowanego posługując się kryterium J_p oraz f_{Δ} . Jednocześnie można jednak zaobserwować wzrost wartości kryterium NMD dla 2 i 3 postaci drgań własnych.

W przypadku stosowania kryteriów NMD3, NMD2 i NMD1, zaobserwowano, że najlepsze wyniki aktualizacji parametrów otrzymuje się korzystając z macierzy wag w wariancie 4 oraz kryterium NMD3, które bazuje na minimalizacji wszystkich 3 postaci drgań własnych (rysunki 5.6-5.11 oraz 5.16-5.21). Pomimo większych rozbieżności pomiędzy otrzymanymi po aktualizacji wartościami częstotliwościami drgań własnych, niż to było w przypadku kryteriów J_p oraz f_A, zaobserwowano że aktualizacja parametrów bazująca na kryterium NMD3 i NMD2 pozwala na znacznie lepsze wpasowanie się 2 i 3 postaci drgań otrzymanych po procedurze aktualizacji parametrów z postaciami drgań otrzymanymi z badań eksperymentalnych (tabela 5.1 i 5.2). Wynik aktualizacji parametrów, poprawnie wskazuje lokalizację uszkodzonego elementu, również w przypadku gdy wartość kryterium NMD dla pierwszej postaci wzrasta, natomiast wartości kryterium NMD dla postaci 2 i 3 zostają znacznie obniżone. Świadczy to o dużym znaczeniu drugiej i trzeciej postaci drgań w procedurze aktualizacji parametrów. Analizując wyniki, można stwierdzić, że użycie kryterium NMD2, w części przypadków również pozwala na poprawną detekcję uszkodzenia. Posługiwanie się jednak wyłącznie kryterium NMD1, bazującym na minimalizacji 1 postaci drgań, nie pozwala na osiągniecie zadawalających rezultatów.

Analiza zestawionych w tabelach 5.1 - 5.4 wyników aktualizacji parametrów oraz wykresów przedstawionych na rysunkach 5.2, 5.4, 5.6, 5.8, 5.10, 5.12, 5.14, 5.16, 5.18 i 5.20, dowodzi, że stosowanie macierzy wag w wariancie 3 nie pozwala uzyskać poprawnych wyników aktualizacji parametrów. Zasadne wydaje się więc użycie macierzy wag w wariancie 4, z autorską modyfikacją polegającą na wprowadzeniu macierzy blokowej.

Rysunek 5.2 Indeks **I**_o oraz zmiana masy elementów belki przy uszkodzeniu elementu trzeciego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium J_p dla macierzy wag w wariancie 3

Rysunek 5.3 Indeks **I**_o oraz zmiana masy elementów belki przy uszkodzeniu elementu trzeciego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium J_p dla macierzy wag w wariancie 4

Rysunek 5.4 Indeks I_o oraz zmiana masy elementów belki przy uszkodzeniu elementu trzeciego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium f_a dla macierzy wag w wariancie 3

Rysunek 5.5 Indeks I_o oraz zmiana masy elementów belki przy uszkodzeniu elementu trzeciego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium f_∆ dla macierzy wag w wariancie 4

Rysunek 5.6 Indeks **I**_o oraz zmiana masy elementów belki przy uszkodzeniu elementu trzeciego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 3

Rysunek 5.7 Indeks **I**_o oraz zmiana masy elementów belki przy uszkodzeniu elementu trzeciego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4

Rysunek 5.8 Indeks **I**_o oraz zmiana masy elementów belki przy uszkodzeniu elementu trzeciego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium NMD2 dla macierzy wag w wariancie 3

Rysunek 5.9 Indeks **I**_o oraz zmiana masy elementów belki przy uszkodzeniu elementu trzeciego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium NMD2 dla macierzy wag w wariancie 4

Rysunek 5.10 Indeks I_o oraz zmiana masy elementów belki przy uszkodzeniu elementu trzeciego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium NMD1 dla macierzy wag w wariancie 3

Rysunek 5.11 Indeks **I**_o oraz zmiana masy elementów belki przy uszkodzeniu elementu trzeciego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium NMD1 dla macierzy wag w wariancie 4

DANE											
Uszko	dzenie	Pole		f [Hz]			NMD [%]		Domior		
Element	Symbol	wzbudnik	1	2	3	1	2	3	Pomar		
3	2	6	13,90	43,22	108,28	7,44	25,95	17,69	148		
				AKTUALIZ	ACJA						
Kritarium	Macierz	In		f [Hz]			NMD [%]		Datakaia		
Krytenum	wag	ιμ	1	2	3	1	2	3	Detekcja		
	3	8,87*10 ⁶	12,33	43,32	108,28	6,58	28,06	23,78	NIE		
Jp	4	9,30*10 ⁶	12,42	43,35	108,27	6,54	30,29	24,62	NIE		
t	3	8,87*10 ⁶	12,33	43,32	108,28	6,58	28,06	23,78	NIE		
١Δ	4	9,30*10 ⁶	12,42	43,35	108,27	6,54	30,29	24,62	NIE		
	3	2,13*10 ⁸	11,95	46,31	108,22	6,65	25,71	14,27	NIE		
INIVID3	4	6,12*10 ⁷	11,73	44,86	108,03	7,13	9,81	5,02	ТАК		
	3	2,13*10 ⁸	11,95	46,31	108,22	6,65	25,71	14,27	NIE		
NIVIDZ	4	6,12*10 ⁷	11,73	44,86	108,03	7,13	9,81	5,02	ТАК		
	3	8,87*10 ⁶	12,33	43,32	108,28	6,58	28,06	23,78	NIE		
	4	9,30*10 ⁶	13,90	43,22	108,28	6,54	30,29	24,62	NIE		

Tabela 5.1 Zestawienie wyników aktualizacji parametrów belki z uszkodzeniem elementu 3 o symbolu 2 w zależności od definicji macierzy wag i kryterium wyboru wyniku przy wzbudniku umieszczonym w elemencie 6

Tabela 5.2 Zestawienie wyników aktualizacji parametrów belki z uszkodzeniem elementu 3 o symbolu 2 w zależności od definicji macierzy wag i kryterium wyboru wyniku przy wzbudniku umieszczonym w elemencie 8

				DANE					
Uszko	dzenie	Pole	f [Hz]				Domior		
Element	Symbol	wzbudnik	1	2	3	1	2	3	Pomiar
3	2	8	13,58	42,97	108,41	1,32	18,71	17,96	48
				AKTUALIZ	ACJA				
Kanata niyana	Macierz	l.		f [Hz]			NMD [%]		Deteluie
Kryterium	wag	ιp	1	2	3	1	2	3	Detekcja
	3	8,09*10 ⁶	12,16	43,07	108,41	1,30	23,25	26,72	NIE
Jp	4	7,40*10 ⁶	11,98	43,06	108,41	1,47	18,21	26,05	NIE
£	3	8,09*10 ⁶	12,16	43,07	108,41	1,30	23,25	26,72	NIE
١Δ	4	7,40*10 ⁶	11,98	43,06	108,41	1,47	18,21	26,05	NIE
	3	2,30*10 ⁸	11,93	46,20	108,34	1,27	20,42	16,40	NIE
INIVID3	4	7,50*10 ⁷	11,72	44,83	108,13	2,40	1,47	5,74	ТАК
	3	2,30*10 ⁸	11,93	46,20	108,34	1,27	20,42	16,40	NIE
INIVID2	4	7,50*10 ⁷	11,72	44,83	108,13	2,40	1,47	5,74	ТАК
	3	2,30*10 ⁸	11,93	46,20	108,34	1,27	20,42	16,40	NIE
INIVIDI	4	2,21*10 ⁸	12,04	45,94	108,40	1,22	22,01	15,64	NIE

Rysunek 5.12 Indeks I_o oraz zmiana masy elementów belki przy uszkodzeniu elementu piątego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium J_p dla macierzy wag w wariancie 3

Rysunek 5.13 Indeks **I**_o oraz zmiana masy elementów belki przy uszkodzeniu elementu piątego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium J_p dla macierzy wag w wariancie 4

Rysunek 5.14 Indeks I_o oraz zmiana masy elementów belki przy uszkodzeniu elementu piątego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium f_∆ dla macierzy wag w wariancie 3

Rysunek 5.15 Indeks I_o oraz zmiana masy elementów belki przy uszkodzeniu elementu piątego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium f_∆ dla macierzy wag w wariancie 4

Rysunek 5.16 Indeks **I**_o oraz zmiana masy elementów belki przy uszkodzeniu elementu piątego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 3

Rysunek 5.17 Indeks I_o oraz zmiana masy elementów belki przy uszkodzeniu elementu piątego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4

Rysunek 5.18 Indeks **I**_o oraz zmiana masy elementów belki przy uszkodzeniu elementu piątego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium NMD2 dla macierzy wag w wariancie 3.

Rysunek 5.19 Indeks **I**_o oraz zmiana masy elementów belki przy uszkodzeniu elementu piątego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium NMD2 dla macierzy wag w wariancie 4

Rysunek 5.20 Indeks I_o oraz zmiana masy elementów belki przy uszkodzeniu elementu piątego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium NMD1 dla macierzy wag w wariancie 3

Rysunek 5.21 Indeks I_o oraz zmiana masy elementów belki przy uszkodzeniu elementu piątego o symbolu 2 i wzbudniku umieszczonym w elemencie a) 6 b) 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium NMD1 dla macierzy wag w wariancie 4

Tabela 5.3 Zestawienie wyników aktualizacji belki z uszkodzeniem elementu 5 o symbolu 2 w zależności od definicji macierzy wag i kryterium wyboru wyniku przy wzbudniku umieszczonym w elemencie 6

				DANE					
Uszko	dzenie	Pole		f [Hz]			NMD [%]		Domior
Element	Symbol	wzbudnik	1	2	3	1	2	3	Pomar
5	2	6	13,20	48,12	107,40	1,62	9,31	22,08	86
				AKTUALIZ	ACJA				
Kanata ali una	Macierz	l e		f [Hz]			NMD [%]		Deteluie
Kryterium	wag	Jb	1	2	3	1	2	3	Detekcja
	3	0,16*10 ⁰	13,20	48,12	107,40	1,59	9,97	38,03	NIE
Jp	4	0,16*10 ⁰	13,20	48,12	107,40	1,57	9,81	38,87	NIE
£	3	0,16*10 ⁰	13,20	48,12	107,40	1,59	9,97	38,03	NIE
IΔ	4	0,16*10 ⁰	13,20	48,12	107,40	1,57	9,81	38,87	NIE
	3	2,33*10 ⁸	12,14	48,38	108,12	1,62	8,43	22,35	NIE
NIVID3	4	2,69*10 ⁸	11,72	49,41	107,38	1,73	10,13	12,19	ТАК
	3	2,33*10 ⁸	12,14	48,38	108,12	1,62	8,43	22,35	NIE
NIVIDZ	4	4,08*10 ⁶	12,15	48,14	107,41	1,62	8,40	23,54	NIE
	3	0,16*10 ⁰	13,20	48,12	107,40	1,59	9,97	38,03	NIE
	4	1,13*10 ⁶	12,62	48,14	107,40	1,47	8,73	31,74	NIE

DANE										
Uszko	dzenie	Pole		f [Hz]			NMD [%]		Domior	
Element	Symbol	wzbudnik	1	2	3	1	2	3	POITIIdi	
5	2	8	13,10	47,32	107,66	2,62	6,98	27,48	82-84	
				AKTUALIZ	ACJA					
Kastarium	Macierz	In		f [Hz]			NMD [%]		Deteksia	
Kryterium	wag	Jb	1	2	3	1	2	3	Detekcja	
	3	0,24*10 ⁰	13,10	47,32	107,66	2,68	7,97	51,01	NIE	
Jp	4	0,22*10 ⁰	13,10	47,32	107,66	2,67	8,22	51,89	NIE	
£	3	0,24*10 ⁰	13,10	47,32	107,66	2,68	7,97	51,01	NIE	
١Δ	4	0,22*10 ⁰	13,10	47,32	107,66	2,67	8,22	51,89	NIE	
	3	3,21*10 ⁷	12,06	47,78	107,71	2,61	7,07	28,35	NIE	
INIVID3	4	6,74*10 ⁶	11,76	49,43	107,61	2,75	5,25	17,25	TAK	
	3	3,21*10 ⁷	12,06	47,78	107,71	2,61	7,07	28,35	NIE	
NIVID2	4	6,74*10 ⁶	11,76	49,43	107,61	2,75	5,25	17,25	ТАК	
	3	4,86*10 ⁶	12,06	47,41	107,66	2,61	7,16	29,91	NIE	
	4	1,31*10 ⁶	12,46	47,33	107,66	2,51	9,40	38,03	NIE	

Tabela 5.4 Zestawienie wyników aktualizacji belki z uszkodzeniem elementu 5 o symbolu 2 w zależności od definicji macierzy wag i kryterium wyboru wyniku przy wzbudniku umieszczonym w elemencie 8

Analogiczna analiza została przeprowadzona dla uszkodzenia elementów o numerach 3 i 5 o symbolu 4. Użyto postaci i częstotliwości drgań własnych otrzymanych z pomiarów, w których wzbudnik umieszony był w elemencie 6 i 8 oraz macierzy wag w wariancie 4. W przypadku uszkodzenia elementu 3 poprawną lokalizację miejsca uszkodzenia otrzymano przy użyciu kryterium J_p, NMD3 i NMD2 (rysunki 5.22-5.23). Przy uszkodzeniu elementu numer 5 o symbolu 4, jedynie użycie kryterium NMD3 pozwala na poprawną detekcję lokalizacji uszkodzonego elementu (rysunki 5.24-5.25).

Zestawione na rysunkach 5.22-5.25 wykresy oraz wyniki zawarte w tabelach 5.5-5.8 wskazują, że jedynie użycie kryterium NMD3 daje gwarancję uzyskania poprawnych wyników aktualizacji parametrów, bez względu na miejsce uszkodzenia. Analizując zaprezentowane wyniki aktualizacji parametrów (tabele 5.5-5.8) można stwierdzić, że obniżenie wartości kryterium NMD, dla 2 i 3 postaci drgań własnych, daje możliwość poprawnej detekcji lokalizacji uszkodzenia. Dla wszystkich przedstawionych przypadków, gdy wartości kryterium NMD dla 2 i 3 postaci drgań własnych wzrastały, bądź tylko nieznacznie spadały, wynik aktualizacji parametrów był nieprawidłowy.

DANE												
Uszko	dzenie	Pole	f [Hz]				Domior					
Element	Symbol	wzbudnik	1	2	3	1	2	3	Porniar			
3	4	6	13,48	42,11	110,48	1,23	42,68	29,09	139			
				AKTUALIZ	ACJA							
Kristorium	Macierz	In		f [Hz]			NMD [%]		Detekcia			
Krytenum	wag	ιþ	1	2	3	1	2	3	Detekcja			
Jp	4	2,63*10 ⁸	11,95	45,73	109,99	0,81	24,39	12,94	TAK			
f_{Δ}	4	3,13*10 ⁸	12,52	45,86	110,29	1,14	37,57	16,42	NIE			
NMD3	4	2,63*10 ⁸	11,95	45,73	109,99	0,81	24,39	12,94	TAK			
NMD2	4	2,63*10 ⁸	11,95	45,73	109,99	0,81	24,39	12,94	TAK			
NMD1	4	2,63*10 ⁸	11,95	45,73	109,99	0,81	24,39	12,94	TAK			

Tabela 5.5 Zestawienie wyników aktualizacji belki z uszkodzeniem elementu 3 o symbolu 4 w zależności od kryterium wyboru wyniku dla macierzy wag w wariancie 4 przy wzbudniku umieszczonym w elemencie 6

Tabela 5.6 Zestawienie wyników aktualizacji belki z uszkodzeniem elementu 3 o symbolu 4 w zależności od kryterium wyboru wyniku dla macierzy wag w wariancie 4 przy wzbudniku umieszczonym w elemencie 8

	DANE												
Uszko	dzenie	Pole	f [Hz]				Domiar						
Element	Symbol	wzbudnik	1	2	3	1	2	3	Pomar				
3	4	8	13,50	42,02	109,12	2,24	40,38	30,22	21-22				
				AKTUALIZ	ACJA								
Kritarium	Macierz	In		f [Hz]			Detekcia						
Kiyteriulli	wag	Jh	1	2	3	1	2	3	Delekcja				
Jp	4	2,38*10 ⁸	11,79	45,03	108,75	3,21	19,86	11,54	ТАК				
f_{Δ}	4	3,32*10 ⁸	12,61	45,37	108,94	2,64	29,52	19,32	NIE				
NMD3	4	2,38*10 ⁸	11,79	45,03	108,75	3,21	19,86	11,54	ТАК				
NMD2	4	2,38*10 ⁸	11,79	45,03	108,75	3,21	19,86	11,54	ТАК				
NMD1	4	7,01*10 ⁸	12,10	48,67	109,16	2,21	40,41	29,85	NIE				

Rysunek 5.24 Indeks I_o oraz zmiana masy elementów belki przy uszkodzeniu elementu piątego o symbolu 4 i wzbudniku umieszczonym w elemencie 6 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium a) J_p b) f_Δ c) NMD3 d) NMD2 dla macierzy wag w wariancie 4.

Rysunek 5.25 Indeks I_o oraz zmiana masy elementów belki przy uszkodzeniu elementu piątego o symbolu 4 i wzbudniku umieszczonym w elemencie 8 przy wyborze z tabeli wynikowej wyniku spełniającego kryterium a) J_p b) f_{Δ} c) NMD3 d) NMD2 dla macierzy wag w wariancie 4.

DANE												
Uszko	dzenie	Pole	f [Hz]				Domior					
Element	Symbol	wzbudnik	1	2	3	1	2	3	POITIIdi			
5	4	6	12,87	44,13	107,40	1,64	16,14	37,60	100			
				AKTUALIZ	ACJA							
Kristorium	Macierz	In		f [Hz]			NMD [%]		Deteksie			
Krytenum	wag	ιμ	1	2	3	1	2	3	Detekcja			
Jp	4	0,73*10 ⁰	12,87	44,13	107,39	2,06	16,18	84,46	NIE			
f_{Δ}	4	0,73*10 ⁰	12,87	44,13	107,39	2,06	16,18	84,46	NIE			
NMD3	4	3,82*10 ⁸	11,70	49,40	107,26	1,63	13,25	25,10	TAK			
NMD2	4	3,23*10 ⁸	11,74	48,77	107,28	1,62	13,20	27,78	TAK			
NMD1	4	1,47*10 ⁸	11,79	46,57	107,34	1,61	13,82	38,24	NIE			

Tabela 5.7 Zestawienie wyników aktualizacji belki z uszkodzeniem elementu 5 o symbolu 4 w zależności od kryterium wyboru wyniku dla macierzy wag w wariancie 4 przy wzbudniku umieszczonym w elemencie 6

Tabela 5.8 Zestawienie wyników aktualizacji belki z uszkodzeniem elementu 5 o symbolu 4 w zależności od kryterium wyboru wyniku dla macierzy wag w wariancie 4 przy wzbudniku umieszczonym w elemencie 8

	DANE												
Uszko	dzenie	Pole	f [Hz]				Domior						
Element	Symbol	wzbudnik	1	2	3	1	2	3	Porniar				
5	4	8	12,38	42,09	107,16	1,57	17,22	38,64	71				
				AKTUALIZ	ACJA								
Kntorium	Macierz	a		f [Hz]			Dotoksia						
Kiytenum	wag	μ	1	2	3	1	2	3	Delekcja				
Jp	4	5,68*10 ⁶	11,74	42,22	107,15	2,11	14,39	73,39	NIE				
f_{Δ}	4	5,68*10 ⁶	11,74	42,22	107,15	2,11	14,39	73,39	NIE				
NMD3	4	6,94*10 ⁸	11,66	49,38	107,04	1,57	15,40	25,69	ТАК				
NMD2	4	4,44*10 ⁸	12,30	47,97	106,83	1,17	13,46	47,84	NIE				
NMD1	4	6,83*10 ⁸	11,67	49,29	107,05	1,57	15,37	26,14	ТАК				

Analiza zaprezentowanych wyników aktualizacji parametrów pozwala na sformułowanie wniosku, że posługiwanie się zaproponowaną macierzą wag w wariancie 4, z autorską modyfikacją blokową jest najkorzystniejsze. Wprowadzenie jej pozwoliło na otrzymanie prawidłowych wyników aktualizacji parametrów na podstawie danych eksperymentalnych. W przypadku stosowania macierzy wag w wariancie 3 otrzymane wyniki aktualizacji nie wskazywały wyraźnie żadnego konkretnego uszkodzonego elementu i dawały nieprawdziwy obraz zamiany masy elementów.

Definiowanie macierzy wag według wariantu 3 i 4 prowadzi w konsekwencji do otrzymania w wyniku aktualizacji parametrów nie jednego rozwiązania, a zbioru rozwiązań. Zbiór ten może

zwierać rozwiązania rzeczywiste, tzn. takie które mogą występować w konstrukcji inżynierskiej, oraz takie, które z uwagi na przykład na ujemną sztywność lub masę elementów, nie mogą opisywać istniejącej konstrukcji inżynierskiej. W celu usunięcia z tabeli wynikowej rozwiązań, które nie mogą występować w rzeczywistych konstrukcjach inżynierskich, dokonywano jej wstępnego porządkowania. Kolejnym etapem było wprowadzenie kryteriów porządkowania wyników, które pozwoliło na wybór jednego rozwiązania z tabeli. Przeprowadzone analizy pozwalają stwierdzić, że w przedstawionych powyżej przypadkach stosowanie kryterium najmniejszej funkcji kary Jp, bądź kryterium najmniejszej różnicy częstotliwości f_a pomiędzy wartościami pomierzonymi, a zaktualizowanymi, nie daje zadawalających wyników aktualizacji parametrów w większości przypadków. Wprowadzenie kryterium bazującego na najmniejszych wartościach kryterium NMD pozwala uzyskać poprawne wyniki aktualizacji parametrów. Należy jednak zwrócić uwagę, że jedynie dla dwóch kryteriów: NMD3 oraz NMD2 rezultaty są zadowalające. Zdecydowanie najlepsze wyniki aktualizacji parametrów otrzymano dla kryterium NMD3, które pozwalało na porównanie po procedurze aktualizacji parametrów, wszystkich 3 postaci drgań własnych. W tym przypadku poprawność uzyskanych wyników aktualizacji parametrów dla różnych zestawów danych wyniosła 100%. Zdecydowanie gorsze wyniki aktualizacji parametrów uzyskano w przypadku stosowania kryterium NMD1. Na tej podstawie można wnioskować, że informacje pochodzące jedynie z pierwszej postaci drgań własnych, nie są wystarczające do przeprowadzania poprawnego procesu aktualizacji parametrów i poprawnej detekcji uszkodzenia dla przedstawionego przypadku belki swobodnie podpartej.

5.2 Aktualizacja parametrów projektowych na podstawie 6 translacyjnych stopni swobody

Aktualizację parametrów projektowych w kolejnym etapie, przeprowadzono dla masy m_i wszystkich elementów modelu MES belki redukując liczbę translacyjnych stopni swobody do sześciu (rysunek 5.26). Uszkodzenie belki symulowane było przez dodanie masy skupionej o symbolu 2, 4 lub 6 w elemencie 3 lub 5. W obliczeniach posługiwano się macierzą wag w wariancie 4, a tabelę wynikową porządkowano korzystając z kryterium NMD3.

Na rysunkach 5.27-5.40 przedstawiono wartości indeksu wektorowego I_o oraz zmiany masy belki wraz z pierwszymi trzema postaciami drgań własnych. Translacyjne postacie drgań własnych uzyskane na podstawie badań eksperymentalnych oznaczono kolorem czarnym, natomiast postacie drgań własnych uzyskane dla modelu numerycznego po aktualizacji parametrów kolorem niebieskim. W tabeli 5.9 zestawiono wartości bazowych indeksów bezwzględnych oraz kryterium NMD dla poszczególnych przypadków uszkodzeń.

W przypadku belki bez uszkodzenia, maksymalna wartość indeksu wektorowego I_o jest mniejsza od 0,2%. Jest to równoznaczne z bardzo małą zmianą parametrów projektowych w analizowanym przypadku, czemu odpowiadają bardzo niskie wartości wszystkich indeksów zestawionych w tabeli 5.9. Potwierdza to otrzymanie poprawnych wyników aktualizacji parametrów w przypadku belki bez uszkodzenia.

W przypadku uszkodzenia elementu numer 3 o symbolu 2 i 4 (rysunki 5.28-5.32), wyniki aktualizacji parametrów poprawianie wskazują lokalizację uszkodzenia. Zestawione w tabeli 5.9 indeksy bazowe osiągają wysokie wartości. Przy uszkodzeniu elementu numer 3 o symbolu 6 (rysunki 5.33-5.34) wynik aktualizacji parametrów tylko w jednym przypadku poprawnie wskazuje miejsce uszkodzenia. Wartości indeksów bazowych osiągają jednak znacznie mniejsze wartości, sugerując uszkodzenia również w innych elementach. W przypadku uszkodzenia elementu numer 5, bez względu na symbol uszkodzenia, uzyskujemy poprawny wynik aktualizacji parametrów. Również wszystkie indeksy bazowe (tabela 5.9) osiągają bardzo duże wartości, jednoznacznie potwierdzając uszkodzenie tylko jednego elementu.

W zaprezentowanych przypadkach, oszacowane wartości uszkodzeń są mniejsze od założonych w badaniach eksperymentalnych i wahają się w zakresie od 6-91%.

Rysunek 5.27 a) Indeks **I**_o oraz zmiana masy elementów belki nieuszkodzonej przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.28 a) Indeks **I**_o oraz zmiana masy elementów belki nieuszkodzonej przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.29 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 3 o symbolu 2 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.30 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 3 o symbolu 2 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.31 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 3 o symbolu 4 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.32 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 3 o symbolu 4 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.33 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 3 o symbolu 6 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.34 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 3 o symbolu 6 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.35 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 5 o symbolu 2 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.36 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 5 o symbolu 2 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.38 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 5 o symbolu 4 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.39 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 5 o symbolu 6 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.40 a) Indeks **I**_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 5 o symbolu 6 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

AKTUALIZACJA											
Uszkodzenie			Indeksy			NMD [%]			Element z	Zgodność	
Ele- ment	Symbol	wzbudnik	I_m^{abs}	I_{\max}^{abs}	I_s^{abs}	1	2	3	zmianą u masy	uszkodzenia [%]	Detekcja
0	brak	6	1,05	0,69	0,72	1,95	10,96	5,34	-	100	TAK
		8	1,14	0,44	3,27	2,13	4,92	4,90	-	100	TAK
	2	6	72,79	35,08	108,24	8,30	14,88	4,25	3	91	TAK
3		8	63,99	31,55	86,29	2,45	2,10	4,88	3	95	TAK
	4	6	27,92	12,89	44,58	0,81	31,86	13,86	3	47	TAK
		8	44,16	20,45	78,30	2,59	28,16	12,14	3	54	ТАК
	6	6	2,16	1,15	2,10	1,78	41,03	8,38	3	6	TAK
		8	3,15	1,64	1,27	2,79	12,57	22,78	8	13	NIE
5	2	6	6521,20	3451,20	5423,20	1,95	11,43	9,58	5	44	TAK
		8	4975,21	2786,93	3682,17	3,01	7,58	13,55	5	41	ТАК
	4	6	3397,20	1630,40	1758,90	2,04	21,69	19,54	5	26	TAK
		8	1462,40	652,45	1670,93	1,93	21,93	21,60	5	27	TAK
	6	6	2802,53	1362,3	3034,21	1,82	17,11	27,38	5	20	ТАК
		8	2962,51	1531,85	1978,81	0,98	5,32	33,13	5	20	TAK

Tabela 5.9 Zestawienie indeksów bazowych bezwzględnych oraz kryterium NMD dla aktualizacji parametrów na postawie danych eksperymentalnych uzyskanych z translacyjnych stopni swobody

Na podstawie analizy przedstawionych powyżej wyników można stwierdzić, że aktualizacja przeprowadzona na podstawie postaci drgań uzyskanych z 6 translacyjnych stopni swobody, przy wykorzystaniu macierzy wag w wariancie 4 oraz przy wyborze wyników, które spełniają kryterium NMD3, umożliwia poprawną lokalizację miejsca uszkodzenia. Tylko w jednym przypadku wynik aktualizacji parametrów był niezadowalający. Przedstawione przykłady pokazują również, że nadmierny wzrost intensywności uszkodzenia, może prowadzić do otrzymania niepoprawnych wyników aktualizacji parametrów. Wyniki aktualizacji parametrów nie zapewniły

wysokiej zgodności szacowania intensywności uszkodzenia. W większości przypadku wartości są niedoszacowane, zwłaszcza w przypadku gdy strefa uszkodzenia znajduje się w środku rozważanego modelu belki.

5.3 Aktualizacja parametrów projektowych na podstawie 6 rotacyjnych stopni swobody

Trzeci etap analiz, zakładał zastąpienie 6 translacyjnych stopni swobody, rotacyjnymi stopniami swobody rozmieszczonymi w tych samych punkach pomiarowych (rysunek 5.41). Aktualizację parametrów przeprowadzono zgodnie z złożeniami przedstawionymi w rozdziale 5.2. Uszkodzenie belki symulowane było przez dodanie masy skupionej o symbolu 2, 4 lub 6 w elemencie 3 lub 5. W obliczeniach posługiwano się macierzą wag w wariancie 4, a tabelę wynikową porządkowano korzystając z kryterium NMD3.

Rysunek 5.41 Rozmieszczenie punktów pomiarowych prędkości kątowych (żyroskopów) użytych do procedury aktualizacji parametrów

Na rysunkach 5.42-5.55 przedstawiono wartości indeksu wektorowego I_o oraz zmiany masy belki wraz z pierwszymi trzema postaciami drgań własnych. Rotacyjne postacie drgań własnych uzyskane na podstawie badań eksperymentalnych oznaczono kolorem czarnym, natomiast postacie drgań własnych uzyskane dla modelu numerycznego po aktualizacji parametrów kolorem niebieskim. W tabeli 5.10 zestawiono wartości bazowych indeksów bezwzględnych oraz kryterium NMD dla poszczególnych przypadków uszkodzeń.

Dla belki nieuszkodzonej maksymalna wartość indeksu wektorowego I, jest mniejsza od 1,2% (rysunek 5.42-5.43). Uzyskana wartość jest 6-ktornie większa, niż w analogicznym przypadku przy zastosowaniu translacyjnych stopni swobody. Zmiana wartości parametrów jest jednak na tyle niewielka, że można ją traktować, jako brak znaczącej zmiany masy belki.

W przypadku uszkodzenia elementu numer 3, bez względu na jego symbol (rysunki 5.44-5.49), wyniki aktualizacji parametrów poprawnie wskazują lokalizację uszkodzenia. Zestawione w tabeli 5.10 indeksy bazowe, z uwagi na wartości znacznie większe od jedności, potwierdzają uszkodzenie tylko jednego elementu. Przy uszkodzeniu elementu numer 5, tylko w przypadku uszkodzenia o symbolu 2, uzyskujmy każdorazowo poprawny wynik aktualizacji parametrów(rysunki 5.50 i 5.51). W przypadku uszkodzeń o symbolach 4 i 6 (rysunki 5.52-5.55), poprawny wynik otrzymano tylko dla wzbudnika umieszczonego w elemencie numer 8. Może to świadczyć o trudności w oszacowaniu miejsca uszkodzenia, przy użyciu sygnałów pomiarowych z rotacyjnych stopni swobody, gdy wymuszenie znajduje się w pobliżu uszkodzonego elementu.

Analogicznie jak w przypadku przedstawionym w rozdziale 5.2, intensywność uszkodzeń jest znacznie niedoszacowana i waha się w granicach od 20 do 99% intensywności rzeczywistego uszkodzenia.

Rysunek 5.42 a) Indeks I_o oraz zmiana masy elementów belki nieuszkodzonej przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.43 a) Indeks I_o oraz zmiana masy elementów belki nieuszkodzonej przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.44 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 3 o symbolu 2 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.45 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 3 o symbolu 2 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.46 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 3 o symbolu 4 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.47 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 3 o symbolu 4 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.49 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 3 o symbolu 6 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.50 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 5 o symbolu 2 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.51 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 5 o symbolu 2 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.52 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 5 o symbolu 4 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.53 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 5 o symbolu 4 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.54 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 5 o symbolu 6 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.55 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 5 o symbolu 6 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

AKTUALIZACJA											
Uszkodzenie		Pole	Indeksy			NMD [%]			Element z	Zgodność	
Ele- ment	Symbol	wzbudni k	I_m^{abs}	l ^{abs} max	l ^{abs}	1	2	3	maksymainą zmianą masy	uszkodzenia [%]	Detekcja
0	brak	6	2,09	1,09	1,08	4,52	6,87	14,64	-	100	TAK
U		8	8,05	1,77	165,15	5,18	4,64	12,90	-	100	TAK
	2	6	7,91	3,67	7,28	3,68	6,66	188,05	3	94	TAK
		8	24,68	11,66	43,99	4,70	5,49	30,93	3	99	TAK
2	4	6	74,19	33,21	111,96	3,70	6,83	23,40	3	27	TAK
3		8	275,76	110,62	361,50	8,29	5,22	21,00	3	45	TAK
	6	6	3992,61	1696,83	4874,92	3,86	10,86	12,87	3	41	TAK
		8	2212,11	913,72	3867,23	4,75	7,95	35,61	3	38	TAK
	2	6	9569,84	5483,42	6040,12	5,33	6,44	15,95	5	47	TAK
		8	5956,82	3329,65	3386,54	5,15	5,58	15,55	5	47	ТАК
-	4	6	10,31	2,67	13,64	4,99	6,57	14,91	2	35	NIE
5		8	5246,00	3009,37	2925,52	5,40	4,55	20,86	5	28	TAK
	6	6	3,70	1,61	3,44	4,14	4,22	27,01	1	21	NIE
		8	2734,12	1555,96	1654,69	3,67	2,86	25,96	5	20	ТАК

Tabela 5.10 Zestawienie indeksów bazowych bezwzględnych oraz kryterium NMD dla aktualizacji parametrów na postawie danych eksperymentalnych uzyskanych z rotacyjnych stopni swobody

Przedstawione powyżej wyniki świadczą o tym, że aktualizacja przeprowadzona na podstawie postaci drgań uzyskanych na podstawie sygnałów pomiarowych z 6 rotacyjnych stopni swobody, przy podanych założeniach, pozwala na uzyskanie w większości przypadków poprawnych wyników aktualizacji parametrów. Tylko w dwóch przypadkach, wynik aktualizacji parametrów błędnie wskazał lokalizację uszkodzonego elementu. W większości przypadków jednak intensywność uszkodzenia jest niedoszacowana, szczególnie gdy uszkodzenie znajduje się w środkowej strefie rozważanego modelu.

Porównując powyższe wyniki aktualizacji parametrów, na podstawie rotacyjnych stopni swobody, uzyskiwanych poprzez pomiar sygnałów prędkości kątowych przy użyciu żyroskopów MEMS, z wynikami przedstawionymi w rozdziale 5.2, uzyskanymi na podstawie sygnałów przyspieszeń mierzonych za pomocą akcelerometrów, można stwierdzić, że czujniki żyroskopowe typu MEMS mogą stanowić alternatywę dla powszechnie stosowanych akcelerometrów w przedstawionym przypadku.

5.4 Aktualizacja parametrów projektowych na podstawie 6 translacyjnych i 6 rotacyjnych stopni swobody

Ostatni czwarty etap analiz, zakładał połączenie 6 translacyjnych stopni swobody z 6 rotacyjnymi stopniami swobody rozmieszczonymi w tych samych punkach pomiarowych (rysunek 5.56). Aktualizację parametrów przeprowadzono zgodnie z złożeniami przedstawionymi w rozdziale 5.2. Uszkodzenie belki symulowane było przez dodanie masy skupionej o symbolu 2, 4 lub 6 w elemencie 3 lub 5. W obliczeniach posługiwano się macierzą wag w wariancie 4, a tabelę wynikową porządkowano korzystając z kryterium NMD3.

Rysunek 5.56 Rozmieszczenie punktów pomiarowych przyspieszeń (akcelerometrów) i prędkości kątowych (żyroskopów) użytych do procedury aktualizacji parametrów

Na rysunkach 5.57-5.70 przedstawiono wartości indeksu wektorowego I_o oraz zmiany masy belki wraz z pierwszymi trzema postaciami drgań własnych. Translacyjne i rotacyjne postacie drgań własnych uzyskane na podstawie badań eksperymentalnych oznaczono kolorem czarnym, natomiast postacie drgań własnych uzyskane dla modelu numerycznego po aktualizacji parametrów kolorem niebieskim. W tabeli 5.11 zestawiono wartości bazowych indeksów bezwzględnych oraz kryterium NMD dla poszczególnych przypadków uszkodzeń.

Dla przypadku belki bez uszkodzenia (rysunek 5.57-5.58) maksymalna wartość indeksu wektorowego I_o wynosi 2,63%, co świadczy o bardzo małej zmianie masy elementów. W przypadku gdy w procedurze aktualizacji parametrów korzysta się jednocześnie zarówno z 6 translacyjnych jak i 6 rotacyjnych stopni swobody, we wszystkich przedstawionych przypadkach, bez względu na miejsce oraz symbol uszkodzenia otrzymujemy poprawny wynik aktualizacji parametrów (rysunki 5.59-5.70). Jednocześnie indeksy bazowe (tabela 5.10) osiągają wartości znacznie większe od jedności, co stanowi potwierdzenie uszkodzenia tylko jednego elementu.

Analogicznie jak dla aktualizacji parametrów prowadzonej wyłącznie na translacyjnych (rozdział 5.2) bądź rotacyjnych stopniach swobodny (rozdział 5.3), intensywność uszkodzeń jest w większości przypadków niedoszacowana i waha się w granicach od 23 do 225% intensywności rzeczywistego uszkodzenia.

Rysunek 5.57 a) Indeks I_o oraz zmiana masy elementów belki nieuszkodzonej przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska) c) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.58 a) Indeks I_o oraz zmiana masy elementów belki nieuszkodzonej przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska) c) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.59 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 3 o symbolu 2 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska) c) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.60 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 3 o symbolu 2 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska) c) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.61 a) Indeks I, oraz zmiana masy elementów belki z uszkodzeniem elementu numer 3 o symbolu 4 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska) c) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.62 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 3 o symbolu 4 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska) c) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.63 I a) Indeks I oraz zmiana masy elementów belki z uszkodzeniem elementu numer 3 o symbolu 6 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska) c) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.64 6 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 3 o symbolu 6 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska) c) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.65 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 5 o symbolu 2 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska) c) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska) c) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz

Rysunek 5.66 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 5 o symbolu 2 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska) c) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.67 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 5 o symbolu 4 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska) c) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.68 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 5 o symbolu 4 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska) c) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.69 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 5 o symbolu 6 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 6 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska) c) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

Rysunek 5.70 a) Indeks I_o oraz zmiana masy elementów belki z uszkodzeniem elementu numer 5 o symbolu 6 przy wyborze z tabeli wyniku spełniającego kryterium NMD3 dla macierzy wag w wariancie 4 i wzbudniku umieszczonym w elemencie 8 b) translacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska) c) rotacyjne postacie drgań eksperymentalne (linia czarna) oraz zaktualizowane (linia niebieska)

AKTUALIZACJA											
Uszkodzenie		Dala	Indeksy			NMD [%]			Element z	Zgodność	
Ele- ment	Symbol	wzbudnik	I_m^{abs}	l ^{abs} max	l ^{abs}	1	2	3	zmianą masy	uszkodzenia [%]	Detekcja
•	brak	6	0,01	2,03e-4	1,00	4,07	6,89	16,22	-	100	TAK
0		8	8,05	1,77	165,15	4,47	4,76	15,43	-	100	TAK
	2	6	147,38	36,18	68957,12	3,98	6,12	188,63	3	31	TAK
		8	31,83	6,59	2984,46	4,39	5,28	34,48	3	119	TAK
2	4	6	507,39	114,51	54401,32	3,18	6,84	19,44	3	51	TAK
3		8	81,08	21,09	2859,64	3,82	7,06	21,82	3	30	TAK
	6	6	116,14	25,15	33212,75	6,22	13,44	10,24	3	59	TAK
		8	85,65	19,24	15259,87	3,81	11,19	29,68	3	66	TAK
	2	6	93,45	23,24	1143,63	5,04	6,65	15,91	5	47	ТАК
		8	36,95	9,97	179,82	5,78	9,09	9,07	5	225	TAK
-	4	6	10,23	2,76	50,50	4,17	8,34	24,73	5	38	TAK
5		8	37241,56	9725,15	56003,78	5,21	6,41	19,56	5	26	ТАК
	6	6	20,64	5,56	103,62	3,42	6,71	28,78	5	23	ТАК
		6	6	8	36,74	9,52	265,92	3,36	3,27	24,46	5

Tabela 5.11 Zestawienie indeksów bazowych bezwzględnych oraz kryterium NMD dla aktualizacji parametrów
na postawie danych eksperymentalnych uzyskanych z translacyjnych i rotacyjnych $$ stopni swobody

Przedstawione powyżej wyniki stanowią potwierdzenie, że uzupełnienie translacyjnych stopni swobody, rotacyjnymi stopniami swobody, pozwala na uzyskanie poprawnych wyników aktualizacji parametrów. We wszystkich przenalizowanych przypadkach udało się poprawnie zlokalizować miejsce uszkodzenia. Podobnie jak we wcześniej opisanych przykładach, aktualizacja parametrów przy opisanych założeniach, umożliwia poprawną lokalizację uszkodzenia, jednak nie pozwala na poprawne oszacowanie jego intensywności.

6 Badania in situ na obiektach inżynierskich

Analizy dotyczące zastosowania diagnostyki wibracyjnej na rzeczywistych obiektach mostowych zrealizowano na czterech przykładach: trzech kładkach dla pieszych i jednym wiadukcie. W przedstawionych badaniach zastosowano różne typy wzbudzenia drgań w zależności od typu konstrukcji oraz możliwości technicznych i technologicznych dostępnych metod wprowadzania mostu w wibracje.

6.1 Opis aparatury

Najczęściej stosowane metody wzbudzenia drgań kładek dla pieszych to testy dynamiczne bazujące na ruchu człowieka lub grupy ludzi w formie marszu, biegu lub podskoków (rysunek 6.1). W przypadku obiektów takich jak wiadukty lub mosty drogowe najczęściej wykorzystuje się ciężkie samochody ciężarowe, a w przypadku obiektów kolejowych lokomotywy o dużej masie przejeżdzające przez obiekt w różnych konfiguracjach i z różnymi prędkościami (rysunek 6.2). Często, aby wzmocnić oddziaływanie dynamiczne pojazdu, w testach dynamicznych używa się specjalnych przeszkód w formie progu, które wywołują obciążenia semi-impulsowe. Drgania obiektów mostowych są także wywoływane przy pomocy impaktorów lub wzbudników drgań. Zastosowanie kontrolowanych źródeł drgań umożliwia precyzyjne przyłożenie siły i przeprowadzenie testów w większym zakresie częstotliwości drgań. Zastosowanie, w szczególności wzbudników, umożliwia wzbudzenie większej liczy postaci drgań niż w przypadku standardowych testów dynamicznych bazujących na wymuszeniach środowiskowych, do których zalicza się także przejazdy po obiekcie pojazdów kołowych. Wadą zastosowania impaktorów i wzbudników jest relatywnie mała masa tych urządzeń oraz sposób ich interakcji z konstrukcją, tak aby wymagana siła dynamiczna efektywnie pobudzała drgania mostu. W poniższych badaniach zastosowano dwa wzbudniki drgań: lekki wzbudnik o masie 13 kg oraz zaprojektowany i wykonany do niniejszych badań duży wzbudnik umożlwiający aplikację relatywnie dużych sił dynamicznych (rysunek 6.3).

Rysunek 6.1 Metody wzbudzenia dynamicznego kładek dla pieszych a) marsz b) bieg c) podskoki

Rysunek 6.2 Metody wzbudzenia dynamicznego mostów i wiaduktów a) przejazd samochodu po gładkiej nawierzchni z różnymi prędkościami b) przejazd samochodu przez próg c) przejazd lokomotywy z różnymi prędkościami

Rysunek 6.3 Stosowane wzbudniki drgań o masie wzbudzenia a) 300 kg b) 13 kg

W badaniach rzeczywistych obiektów mostowych posługiwano się trzema rodzajami czujników mierzących odpowiedz konstrukcji (rysunek 6.4). Do pomiaru prędkości kątowej zastosowano żyroskopy prędkościowe LPY403AL. Są to żyroskopy wykorzystujące efekt Coriolisa oddziaływający na drgający element wykonywane w technologii MEMS. Ich zakres pomiarowy prędkości kątowej wynosi ± 30 dps. Do pomiarów przyspieszeń konstrukcji wykorzystywano wykonywane w technologii MEMS akcelerometry pojemnościowe. Kontrolny pomiar przemieszczeń obiektów prowadzony był przy użyciu indukcyjnych czujników przemieszczeń PTX. Wszystkie otrzymane przebiegi poddano filtracji przy użyciu filtra Butterwortha odcinającego z sygnału składowe o częstotliwościach wyższych od 30 Hz. Dane pomiarowe rejestrowane były przy użyciu 8-kanłowych wzmacniaczy pomiarowych QUANTUM HBM 840a (rysunek 6.5b). Każdorazowo stanowisko pomiarowe (rysunek 6.5a) składało się również z generatora RIGOL DG1022 (rysunek 6.5c) oraz laptopa służącego do przetwarzania danych, ich wizualizacji oraz przechowywania rezultatów pomiarów.

Rysunek 6.4 Stosowane czujniki pomiarowe a) prędkości kątowej- żyroskopy MEMS b) przyspieszeń – akcelerometry c) przemieszczeń – czujniki indukcyjne

Rysunek 6.5 a) Stanowisko pomiarowe b) System akwizycji danych Quantum 840a c) generator RIGOL DG1022

6.2 Kładka nad drogą S8

Kładka dla pieszych KP-8.10 (rysunek 6.6) została zbudowana nad drogą ekspresową S-8 w km 194+353,04 (rysunek 6.7). Kładka znajduje się pomiędzy węzłem Walichnowy, a węzłem Wrocław A1. Jej zadaniem jest bezkolizyjne przeprowadzenie ruchu nad drogą S8

Rysunek 6.6 Widok na kładkę nad drogą S8.

Rysunek 6.7 Lokalizacja kładki nad drogą S8.

6.2.1 Opis obiektu

Konstrukcję nośną tworzy jednoprzęsłowy ustrój łukowy z jazdą dołem. Główne dźwigary łukowe zaprojektowano jako stalowe o przekroju kołowym. Do podwieszenia pomostu zastosowano wieszaki prętowe ø52mm (M56). Konstrukcję pomostu tworzy żelbetowy, monolityczny ustrój belkowo – płytowy: dwie podłużne belki skrajne, poprzecznice i płyta. Na każdej podporze zlokalizowano po 2 łożyska elastomerowe. Podpory kładki wykonano jako

ścianowe posadowione za pośrednictwem ław fundamentowych na palach wielkośrednicowych ø1200mm. Konstrukcja kładki została zaprojektowana na obciążenie tłumem pieszych wg PN- 85/S-10030.

Podstawowe parametry geometryczne konstrukcji nośnej kładki:

- ✓ Długość kładki: L_c = 51,60m
- ✓ Rozpiętość teoretyczna przęsła: Lt = 50,00m
- ✓ Szerokość użytkowa kładki: B_u = 3,00m
- ✓ Szerokość całkowita kładki: B_c = 4,50m
- ✓ Kąt skrzyżowania z przeszkodą: 90°
- ✓ Wysokość konstrukcyjna: $H_k = 0,60m$

6.2.2 Model MES

Model obliczeniowy obiektu (rysunek 6.8) utworzono w formalizmie Metody Elementów Skończonych jako przestrzenny układ belkowo - powłokowy. Obliczenia wykonano z wykorzystaniem komercyjnego programu SOFiSTiK.

Konstrukcję płyty pomostu, poprzecznice oraz kapy chodnikowe opisano 4- węzłowymi powłokowymi elementami skończonymi. Dźwigary łukowe oraz stężenia modelowano 2- węzłowymi elementami belkowymi z uwzględnieniem mimośrodów. Wieszaki modelowano elementami cięgnowymi – kablowymi. Parametry geometryczne i materiałowe konstrukcji przyjęto na podstawie rysunków konstrukcyjnych obiektu.

Wygenerowany model powłokowo - belkowy konstrukcji przęsła składał się z:

- ✓ siatki 5.750 węzłów,
- 7.008 elementów powłokowych,
- ✓ 682 elementów belkowych,
- ✓ 14 elementów cięgnowych,
- 7 więzów podporowych.

Rysunek 6.8 Wizualizacje modelu MES kładki nad drogą S8

6.2.3 Badania in situ

Kładka została poddana badaniom statycznym i dynamicznym. Badania statyczne były elementem badań odbiorowych kładki i polegały na sprawdzeniu odpowiedzi konstrukcji obciążanej pojemnikami wypełnionymi wodą. Podczas tych badań mierzono przemieszczenia pionowe - ugięcia konstrukcji przęsła, przyrosty odkształceń/naprężeń (sił normalnych) w wieszakach, temperaturę konstrukcji w czasie badań, przemieszczenia poziome konstrukcji na łożysku ruchomym oraz osiadania podpór.

Badania dynamiczne kładki obejmowały:

- ✓ pomiary przebiegów przemieszczeń pionowych ugięć konstrukcji przęsła,
- ✓ pomiary przebiegów przyspieszeń konstrukcji pomostu,
- ✓ pomiary prędkości kątowej wybranych punków przęsła.

Ogółem podczas badań dynamicznych mierzone i rejestrowane były przebiegi zmienności

dla:

- ✓ 7 punktów pomiarowych przemieszczeń pionowych ugięć,
- ✓ 8 punktów pomiarowych przyspieszeń konstrukcji przęsła,
- ✓ 7 punktów pomiarowych prędkości kątowej (żyroskopy MEMS).

Rozmieszczenie przekrojów i punktów pomiarowych przedstawiono na rysunku 6.9.

Przebiegi zmienności mierzonych parametrów rejestrowano przy następujących testach dynamicznych:

- ✓ marsz swobodny grupy 6-osobowej,
- ✓ marsz swobodny grupy 12-osobowej,
- ✓ bieg swobodny grupy 6-osobowej,
- ✓ bieg swobodny grupy 12-osobowej,
- ✓ marsz synchroniczny grupy 6-osobowej,
- ✓ marsz synchroniczny grupy 12-osobowej,
- ✓ bieg synchroniczny grupy 6-osobowej,
- ✓ bieg synchroniczny grupy 12-osobowej,
- ✓ podskoki synchroniczne grupy 6-osobowej w przekroju pomiarowym 2-2 (1/4 rozpiętości przęsła),
- ✓ podskoki synchroniczne grupy 6-osobowej w przekroju pomiarowym 4-4 (1/2 rozpiętości przęsła),
- ✓ przysiady synchroniczne grupy 6-osobowej w przekroju pomiarowym 4-4 (1/2 rozpiętości przęsła),
- ✓ obciążenie impulsowe upuszczenie pojemnika z wodą o ciężarze 10,5kN z wysokości 6 cm na środek pomostu w przekroju pomiarowym 1-1,

- ✓ obciążenie impulsowe− upuszczenie pojemnika z wodą o ciężarze 10,5kN z wysokości 6 cm na środek pomostu w przekroju pomiarowym 2-2,
- ✓ obciążenie impulsowe− upuszczenie pojemnika z wodą o ciężarze 10,5kN z wysokości 6 cm na środek pomostu w przekroju pomiarowym 3-3,

✓ wymuszenie małym wzbudnikiem drgań.

Rysunek 6.9 Rozmieszczenie punktów pomiarowych podczas badań dynamicznych kładki nad drogą S8

Procedura badań dynamicznych została tak opracowana, aby na obiekcie znajdował się tylko określony zestaw - grupa osób realizująca określony schemat dynamiczny. Kolejny test był realizowany dopiero po całkowitym wytłumieniu drgań wywołanych poprzednim testem dynamicznym.

6.2.4 Wyniki pomiarów

Wykresy reprezentatywnych przebiegów przyspieszeń dla poszczególnych punktów pomiarowych zarejestrowane podczas badań przedstawiono na rysunku 6.10. Natomiast wykresy reprezentatywnych przebiegów prędkości kątowych dla poszczególnych punktów pomiarowych przedstawiono na rysunku 6.11.

Rysunek 6.10 Przebiegi czasowe przyspieszeń kładki nad drogą S8 od wymuszenia podskokami synchronicznymi grupy 6 osób w osi wieszaka nr 2 a) a2z - składowa pionowa przyspieszeń pomostu w miejscu wpięcia wieszaka nr 2 b) a5z - składowa pionowa przyspieszeń pomostu w miejscu wpięcia wieszaka nr 5

Rysunek 6.11 Przebiegi czasowe prędkości kątowych kładki nad drogą S8 od wymuszenia podskokami synchronicznymi grupy 6 osób w osi wieszaka nr 2 a) ż2 - prędkość kątowa pomostu w miejscu wpięcia wieszaka nr 2 b) ż5 - prędkość kątowa pomostu w miejscu wpięcia wieszaka nr 5

Na podstawie analizy wyników badań przemieszczeń pionowych, przyspieszeń zarejestrowanych przy próbach dynamicznych wyznaczono następujące parametry dynamiczne konstrukcji przęsła:

- ✓ logarytmiczny dekrement tłumienia konstrukcji nośnej obiektu: $v_{pom} \approx 0,02$.
- częstotliwości drgań własnych konstrukcji kładki (rysunek 6.12)

f_{1,pom.}=1,7 Hz f_{1,teor.}=1,53 Hz

f_{3,pom.}=3,15 Hz f_{3,teor.}=2,80 Hz

f_{6,pom.}=4,9 Hz f_{6,teor.}=5,29 Hz

Rysunek 6.12 Zestawienie pomierzonych i numerycznych częstotliwości drgań kładki nad drogą S8.

W przedstawionym powyżej przypadku, bez względu na sposób wymuszenia drgań, sygnał otrzymany z czujników żyroskopowych charakteryzował się wysokim poziomem szumów w stosunku do wartości mierzonych. Zarejestrowane sygnały prędkości kątowych nie umożliwiły wyznaczenia na jego podstawie dokładnych wartości częstotliwości oraz postaci drgań, a tym samym przeprowadzenia dalszych procedur diagnostycznych.

6.3 Kładka nad trasą Ogińskiego w Bydgoszczy

Kładka (rysunek 6.13) znajduje się nad ul. Ogińskiego w Bydgoszczy i jest elementem projektu "Budowa ul. Ogińskiego w Bydgoszczy na odcinku od ul. Powstańców Wielkopolskich do ul. Wojska Polskiego wraz z obiektami inżynierskimi i dojazdami"(rysunek 6.14) .Celem całej inwestycji było stworzenie nowej przeprawy przez Brdę w centrum miasta. Jej zakres obejmował budowę 6 obiektów mostowych: estakady lewobrzeżnej E-1, mostu nurtowego przez Brdę MD-2, estakady prawobrzeżnej E-3, wiaduktów drogowych WD-5 i WD-6 zlokalizowanych na łącznicach oraz kładki widokowej nad ul. Ogińskiego znajdująca się za estakadą prawobrzeżną.

Rysunek 6.13 Widok na kładkę nad ul Ogińskiego w Bydgoszczy

Rysunek 6.14 Lokalizacja kładki nad ul Ogińskiego w Bydgoszczy

6.3.1 Opis obiektu

Konstrukcję kładki tworzą: żelbetowa płyta pomostu oraz dwa stalowe dźwigary łukowe wraz z wieszakami. Łuki kładki wykonano w formie przekroju zamkniętego o wysokości 0,6 m i szerokości 0,9 m. Pomost wykonstruowany został jako żelbetowa płyta o zmiennej grubości od 0,18 m w osi podłużnej konstrukcji do 0,45 m w strefach skrajnych. Wieszaki

wykonano z prętów zamkniętych o średnicy 0,06 m. Konstrukcję łuków posadowiono na trzech blokach podporowych posadowionych na palach. Płytę żelbetową pomostu oparto na żelbetowych przyczółkach posadowionych bezpośrednio.

Podstawowe parametry geometryczne konstrukcji nośnej kładki:

- ✓ Długość kładki: L_c = 34,40 m
- ✓ Długość pomostu: L_{cp} =32,4 m
- ✓ Rozpiętość teoretyczna konstrukcji łuku: Lt = 38,3 m
- ✓ Szerokość użytkowa kładki: B_u = 3,00 m
- ✓ Szerokość całkowita pomostu: B_c = 4,5 m
- ✓ Kąt skosu konstrukcji obiektu: 89,93°
- ✓ Kąt skrzyżowania z przeszkodą: 90°

6.3.2 Model MES

Model obliczeniowy obiektu stanowi przestrzenny układ belkowo – powłokowo cięgnowy (rysunek 6.15). Obliczenia przeprowadzono dla dwóch wariantów: z uwzględnieniem współpracy i bez uwzględnienia współpracy balustrady. Obliczenia wykonano Metodą Elementów Skończonych (MES) przy wykorzystaniu programu SOFiSTiK.

Konstrukcję płyty pomostu opisano 4- węzłowymi powłokowymi elementami skończonymi. Dźwigary łukowe opisano 2- węzłowymi elementami belkowymi z uwzględnieniem mimośrodów. Wieszaki modelowano elementami cięgnowymi - kablowymi. Bloki oporowe modelowano elementami bryłowymi.

Parametry geometryczne i materiałowe konstrukcji przyjęto na podstawie rysunków konstrukcyjnych obiektu.

Wygenerowany model konstrukcji przęsła składał się z:

- ✓ siatki 10.902 węzłów,
- ✓ 7.192 elementów powłokowych,
- ✓ 9.170 elementów belkowych,
- ✓ 14 elementów cięgnowych,
- ✓ 8 więzów podporowych.

Rysunek 6.15 Wizualizacje modelu MES kładki nad ul Ogińskiego w Bydgoszczy

6.3.3 Badania in situ

Kładka została poddana badaniom statycznym i dynamicznym. Badania statyczne były elementem badań odbiorowych kładki i polegały na sprawdzeniu odpowiedzi konstrukcji obciążanej pojemnikami wypełnionymi wodą. Podczas tych badań mierzono przemieszczenia pionowe - ugięcia konstrukcji przęsła, przyrosty odkształceń/naprężeń (sił normalnych) w wieszakach, temperaturę konstrukcji w czasie badań, przemieszczenia poziome konstrukcji na łożysku ruchomym, oraz osiadania podpór.

Badania dynamiczne kładki obejmowały pomiary:

- ✓ pomiary przebiegów przemieszczeń pionowych ugięć konstrukcji przęsła,
- ✓ pomiary przebiegów przyspieszeń konstrukcji pomostu,
- ✓ pomiary prędkości kątowej wybranych punków przęsła.

Ogółem podczas badań dynamicznych mierzone i rejestrowane były przebiegi zmienności

- 10 punktów pomiarowych przemieszczeń pionowych ugięć,
- 8 punktów pomiarowych przyspieszeń konstrukcji przęsła,
- 7 punktów pomiarowych prędkości kątowej (żyroskopy MEMS).

Rozmieszczenie przekrojów i punktów pomiarowych przedstawiono na rysunku 6.16.

dla:

Rysunek 6.16 Rozmieszczenie punktów pomiarowych podczas badań kładki nad ul Ogińskiego w Bydgoszczy

Dynamiczne pomiary przemieszczeń pionowych, przyspieszeń konstrukcji i prędkości kątowych przeprowadzono przy realizacji 16 różnych schematów dynamicznych złożonych z grup 6, 9 i 12- osobowych. Przebiegi zmienności mierzonych parametrów rejestrowano przy następujących testach dynamicznych:

- ✓ marsz swobodny grupy 6-osobowej,
- marsz swobodny grupy 12-osobowej,
- bieg swobodny grupy 6-osobowej,
- ✓ bieg swobodny grupy 12-osobowej,
- marsz synchroniczny grupy 6-osobowej z częstotliwością kroków zbliżoną do częstotliwości własnej konstrukcji,
- marsz synchroniczny grupy 9-osobowej z częstotliwością kroków zbliżoną do częstotliwości własnej konstrukcji,
- ✓ marsz synchroniczny grupy 12-osobowej z częstotliwością kroków zbliżoną do częstotliwości własnej konstrukcji,
- ✓ bieg synchroniczny grupy 6-osobowej z częstotliwością kroków zbliżoną do częstotliwości własnej konstrukcji,
- ✓ bieg synchroniczny grupy 9-osobowej z częstotliwością kroków zbliżoną do częstotliwości własnej konstrukcji
- ✓ bieg synchroniczny grupy 12-osobowej z częstotliwością kroków zbliżoną do częstotliwości własnej konstrukcji,
- ✓ podskoki synchroniczne grupy 6-osobowej w osi wieszaków nr 1,
- ✓ podskoki synchroniczne grupy 6-osobowej w osi wieszaków nr 2,
- ✓ podskoki synchroniczne grupy 6-osobowej w osi wieszaków nr 3,

- ✓ podskoki synchroniczne grupy 6-osobowej w osi wieszaków nr 4,
- wymuszenie małym wzbudnikiem drgań,
- ✓ obciążenie impulsowe upuszczenie masy skupionej 1000kg z wysokości 0,06m.

Procedura badań dynamicznych została tak opracowana, aby na obiekcie znajdował się tylko określony zestaw - grupa osób realizująca określony schemat dynamiczny. Kolejny test był realizowany dopiero po całkowitym wytłumieniu drgań spowodowanych poprzednim testem dynamicznym.

6.3.4 Wyniki pomiarów

Wykresy reprezentatywnych przebiegów przyspieszeń dla poszczególnych punktów pomiarowych zarejestrowane podczas badań przedstawiono na rysunkach 6.17, 6.19 i 6.21. Wykresy reprezentatywnych przebiegów prędkości kątowych dla poszczególnych punktów pomiarowych zarejestrowane podczas badań przedstawiono na rysunkach 6.18, 6.20 i 6.22.

Rysunek 6.17 Przebiegi czasowe przyspieszeń kładki nad ul. Ogińskiego w Bydgoszczy od wymuszenia podskokami synchronicznymi grupy 12 osób w osi wieszaka nr 1 a) a3z - składowa pionowa przyspieszeń pomostu w miejscu wpięcia wieszaka nr 3 b) a4z - składowa pionowa przyspieszeń pomostu w miejscu wpięcia wieszaka nr 4

Rysunek 6.18 Przebiegi czasowe prędkości kątowych kładki nad ul. Ogińskiego w Bydgoszczy od wymuszenia podskokami synchronicznymi grupy 12 osób w osi wieszaka nr 1 a) a3z - prędkość kątowa pomostu w miejscu wpięcia wieszaka nr 3 b) a4z - prędkość kątowa pomostu w miejscu wpięcia wieszaka nr 4

Rysunek 6.19 Przebiegi czasowe przyspieszeń kładki nad ul. Ogińskiego w Bydgoszczy od wymuszenia podskokami synchronicznymi grupy 6 osób w osi wieszaka nr 2 a) a4z - składowa pionowa przyspieszeń pomostu w miejscu wpięcia wieszaka nr 4 b) a5z składowa pionowa przyspieszeń pomostu w miejscu wpięcia wieszaka nr 5

Rysunek 6.20 Przebiegi czasowe prędkości kątowych kładki nad ul. Ogińskiego w Bydgoszczy od wymuszenia podskokami synchronicznymi grupy 6 osób w osi wieszaka nr 2 a) ż4 - prędkość kątowa pomostu w miejscu wpięcia wieszaka nr 4 b) ż5 - prędkość kątowa pomostu w miejscu wpięcia wieszaka nr 5

Rysunek 6.21 Przebiegi czasowe przyspieszeń kładki nad ul. Ogińskiego w Bydgoszczy od wymuszenia marszem synchroniczny grupy 12 osób a) a4z - składowa pionowa przyspieszeń pomostu w miejscu wpięcia wieszaka nr 4 b) a5z - składowa pionowa przyspieszeń pomostu w miejscu wpięcia wieszaka nr 5

Rysunek 6.22 Przebiegi czasowe prędkości kątowych kładki nad ul. Ogińskiego w Bydgoszczy od wymuszenia marszem synchroniczny grupy 12 osób a) ż4 - prędkość kątowa pomostu w miejscu wpięcia wieszaka nr 4 b) ż5 - prędkość kątowa pomostu w miejscu wpięcia wieszaka nr 5

Na podstawie analizy wyników badań przemieszczeń pionowych, przyspieszeń i prędkości kątowych zarejestrowanych przy próbach dynamicznych oszacowano następujące parametry dynamiczne konstrukcji przęsła:

- ✓ logarytmiczny dekrement tłumienia konstrukcji nośnej obiektu: $v_{pom} \approx 0,022$,
- ✓ częstotliwości drgań własnych konstrukcji kładki (rysunku 6.23 i 6.24).

Rysunek 6.24 Zestawienie pomierzonych i numerycznych częstotliwości drgań kładki nad ul. Ogińskiego w Bydgoszczy z uwzględnieniem współpracy barieroporęczy

W przedstawionym przypadku kładki nad ul. Ogińskiego w Bydgoszczy, pomierzone sygnały prędkości kątowych umożliwiły wyznaczenie zarówno częstotliwości drgań własnych jak i logarytmicznego dekrementu tłumienia przy wymuszeniach bazujących na poruszających się grupach ludzi. Uzyskano dobrą zgodność doświadczalnie wyznaczanych częstotliwości drgań własnych z pomiarów akcelerometrycznych i żyroskopowych. Jednak nie uzyskano zadowalających wyników przy wyznaczaniu eksperymentalnych postaci drgań własnych bazujących na pomiarach rotacji. Przy wymuszeniach bazujących na obciążeniach impulsowych, amplitudy pomierzonych sygnałów prędkości kątowych były zbyt małe, w stosunku do szumów pomiarowych, aby umożliwić wyznaczenie na ich podstawie postaci drgań własnych konstrukcji. Zarejestrowane podczas testów wyniki, mogą dostarczać dodatkowych danych o konstrukcji podczas badań pod próbnym obciążeniem, ale nie mogły być użyte do przeprowadzenia aktualizacji parametrów na postawie pomiarów rotacyjnych stopni swobody.

6.4 Wiadukt Briańskiego w Koninie

Wiadukt Briańskiego (rysunek 6.25) znajduje się w ciągu ulicy Kleczewskiej w Koninie nad ul. Kolejową oraz linią PKP Poznań-Warszawa, w km 0+550,00 – 0+850,00 (rysunek 6.26). Inwestycja ma na celu przeprowadzenie bezkolizyjnie ruchu drogowego nad ul. Kolejową oraz linią PKP Poznań-Warszawa w mieście Konin.

Rysunek 6.25 Widok wiaduktu Brańskiego z boku oraz od spodu konstrukcji.

Rysunek 6.26 Lokalizacja wiaduktu Brańskiego w Koninie.

6.4.1 Opis obiektu

Konstrukcję nośną stanowi dziewięcioprzęsłowy, zespolony ustrój ciągły belkowo płytowy. Przekrój poprzeczny składa się z 10 dźwigarów blachownicowych o stałej wysokości, w rozstawie co 2,10m, zespolonych z żelbetową płytą pomostu o grubości 0,21m i żelbetowymi poprzecznicami nad podporami skrajnymi i pośrednimi. Ustrój opiera się na łożyskach garnkowych (3 szt. na każdej podporze). Przyczółki wykonano jako masywne, z elementów prefabrykowanych zwieńczonych żelbetowym wieńcem. Każdy z filarów składa się z trzech słupów o przekroju prostokątnym. Przyczółki wiaduktu są masywne, wykonane z elementów prefabrykowanych. Konstrukcja wiaduktu została zaprojektowana na obciążenie klasy A wg PN-85/S-10030. Podstawowe parametry geometryczne konstrukcji nośnej wiaduktu:

- ✓ Długość obiektu: L_c = 202,15 m
- ✓ Rozpiętość teoretyczna przęseł: Lt = 24,40 + 24,80 + 6x21,80 + 21,35 m
- ✓ Szerokość całkowita: B_c = 21,40 ÷ 21,50 m
- ✓ Szerokość jezdni: B_j = 15,00 m
- ✓ Kąt skosu wiaduktu: α = 90,0°

6.4.2 Model MES

Model obliczeniowy obiektu to przestrzenny układ powłokowo - belkowy. Obliczenia wykonano Metodą Elementów Skończonych (MES) przy wykorzystaniu programu SOFiSTiK (rysunek 6.27).

Płytę pomostu oraz kapy chodnikowe opisano 4-węzłowymi powłokowymi elementami skończonymi. Dźwigary główne oraz poprzecznice opisano 2-węzłowymi elementami belkowymi z uwzględnieniem mimośrodów. Parametry geometryczne i materiałowe konstrukcji przyjęto na podstawie dokumentacji obiektu, a następnie po badaniach, na podstawie danych dotyczących betonu wbudowanego w płytę konstrukcji, zaktualizowano model obliczeniowy.

Wygenerowany model konstrukcji składał się z:

- ✓ siatki 17.808 węzłów,
- ✓ 21.112 elementów powłokowych,
- ✓ 5.116 elementów belkowych,
- ✓ 41 więzów podporowych.

Rysunek 6.27 Wizualizacje modelu MES wiaduktu Brańskiego w Koninie.

6.4.3 Program badań in situ

dla:

Wiadukt został poddany badaniom statycznym i dynamicznym. Badania statyczne były elementem badań odbiorowych wiaduktu i polegały na sprawdzeniu odpowiedzi konstrukcji obciążonej samochodami typu MERCEDES-BENZ 4140. Podczas badań mierzono przemieszczenia pionowe - ugięcia konstrukcji przęsła, odkształcenia/naprężenia w dźwigarach głównych, temperaturę konstrukcji w czasie badań, przemieszczenia poziome na łożysku ruchomym od strony Kalisza, oraz osiadania podpór.

Badania dynamiczne obejmowały:

- ✓ pomiary przebiegów przemieszczeń pionowych ugięć konstrukcji przęseł,
- ✓ pomiary przebiegów przyspieszeń konstrukcji ustroju,
- ✓ pomiary prędkości kątowej wybranych punków przęsła.

Ogółem podczas badań dynamicznych mierzone i rejestrowane były przebiegi zmienności

- ✓ 14 punktów pomiarowych przemieszczeń pionowych ugięć,
- ✓ 6 punktów pomiarowych przyspieszeń konstrukcji przęseł,
- ✓ 2 punktów pomiarowych prędkości kątowej (żyroskopy MEMS).

Dynamiczne pomiary przemieszczeń pionowych – ugięć, odkształceń/naprężeń, przyspieszeń i prędkości kątowych konstrukcji przeprowadzono przy realizacji 20 różnych testów – przejazdów obciążenia próbnego. Do badań dynamicznych przyjęto zestaw obciążenia próbnego złożony z jednego oraz dwóch samochodów 4-osiowych o charakterystyce pojazdu typu MERCEDES-BENZ 4140, poruszających się z różnymi prędkościami po obiekcie.

Przebiegi zmienności mierzonych parametrów rejestrowano przy:

- ✓ przejazdach jednego samochodu poruszającego się z prędkościami V = 10, 20, 40, 50 km/h po gładkiej nawierzchni,
- ✓ przejazdach jednego samochodu poruszającego się z prędkościami V = 10, 20 i 30 km/h przez sztuczną przeszkodę w formie progu wysokości 10cm ustawionego w przekroju pomiarowym 1-1 i 2-2,
- ✓ przejazdach dwóch samochodów, jeden za drugim, poruszających się z prędkościami V = 10, 20 i 30 km/h, przez sztuczną przeszkodę w formie progu wysokości 10cm ustawionego w przekroju pomiarowym 1-1 i 2-2,
- ✓ jednego samochodu poruszającego się po gładkiej nawierzchni z prędkościami
 V = 20, 30 km/h i hamującego w przekroju pomiarowym 1-1 i 2-2.

Rozmieszczenie przekrojów i punktów pomiarowych przedstawiono na rysunku 6.28.

Rysunek 6.28 Rozmieszczenie punktów pomiarowych podczas badań wiaduktu Briańskiego w Koninie.

Prędkości obciążenia próbnego uzależnione były od obiektywnych warunków wynikających z możliwości zastosowanych pojazdów oraz stanu technicznego i parametrów geometrycznych dojazdów oraz jezdni na obiekcie (spadki, łuki, stan techniczny dojazdów do obiektu itp.). Maksymalna prędkość poruszającego się obciążenia próbnego nie przekraczała wartości V=50 km/h. W każdym teście dynamicznym pojazdy przejeżdżały przez obiekt ze stałą prędkością. Procedura badań dynamicznych została tak opracowana, aby na obiekcie znajdował się tylko określony zestaw pojazdów obciążających. Kolejny przejazd zestawu następował dopiero po całkowitym wytłumieniu drgań spowodowanych poprzednim testem dynamicznym.

6.4.4 Wyniki pomiarów

Wykresy reprezentatywnych przebiegów przyspieszeń dla poszczególnych punktów pomiarowych zarejestrowane podczas badań dynamicznych przedstawiono na rysunkach 6.29, 6.31 i 6.33. Wykresy reprezentatywnych przebiegów prędkości kątowych dla poszczególnych punktów pomiarowych zarejestrowane podczas badań dynamicznych przedstawiono na rysunkach 6.30, 6.32 i 6,34.

Rysunek 6.29 Przebiegi czasowe przyspieszeń pionowych w punkcie a2z w przekroju 2-2 wiaduktu Brańskiego w Koninie od wymuszenia przejazdem dwóch samochodów, jeden za drugim, przez sztuczną przeszkodę w formie progu wysokości 10 cm ustawionego w przekroju pom. 1-1 a) z prędkością v=20 km/h b) z prędkością v=30 km/h.

Rysunek 6.30 Przebiegi czasowe prędkości kątowych w punkcie ż1 wiaduktu Brańskiego w Koninie od wymuszenia przejazdem dwóch samochodów, jeden za drugim, przez sztuczną przeszkodę w formie progu wysokości 10 cm ustawionego w przekroju pom. 1-1 a) z prędkością v=20 km/h b) z prędkością v=30 km/h.

Rysunek 6.31 Przebiegi czasowe przyspieszeń pionowych w punkcie a2z w przekroju 2-2 wiaduktu Brańskiego w Koninie od wymuszenia przejazdem dwóch samochodów, jeden za drugim, przez sztuczną przeszkodę w formie progu wysokości 10 cm ustawionego w przekroju pom. 2-2 a) z prędkością v=20 km/h b) z prędkością v=30 km/h.

Rysunek 6.32 Przebiegi czasowe prędkości kątowych w punkcie ż1 wiaduktu Brańskiego w Koninie od wymuszenia przejazdem dwóch samochodów, jeden za drugim, przez sztuczną przeszkodę w formie progu wysokości 10 cm ustawionego w przekroju pom. 2-2 a) z prędkością v=20 km/h b) z prędkością v=30 km/h.

Rysunek 6.33 Przebiegi czasowe przyspieszeń pionowych w punkcie a2z w przekroju 2-2 wiaduktu Brańskiego w Koninie od wymuszenia przejazdem jednego samochodu po gładkiej nawierzchni a) z prędkością v=40 km/h b) z prędkością v=50 km/h.

Rysunek 6.34 Przebiegi czasowe prędkości kątowych w punkcie ż1 wiaduktu Brańskiego w Koninie od wymuszenia przejazdem jednego samochodu po gładkiej nawierzchni a) z prędkością v=40 km/h b) z prędkością v=50 km/h.

Na podstawie analizy wyników badań przemieszczeń pionowych, przyspieszeń i prędkości kątowych zarejestrowanych przy próbach dynamicznych oszacowano następujące parametry dynamiczne konstrukcji przęsła:

- ✓ logarytmiczny dekrement tłumienia konstrukcji nośnej obiektu: v_{pom} ≈ 0,06,
- ✓ częstotliwości drgań własnych konstrukcji wiaduktu (rysunek 6.35).

Rysunek 6.35 Zestawienie pomierzonych i numerycznych częstotliwości drgań wiaduktu Briańskiego w Koninie.

Przedstawione powyżej przebiegi prędkości kątowych, potwierdzają że użycie żyroskopów podczas badań dynamicznych pod próbnym obciążeniem, pozwala na wyznaczenie częstotliwości drgań własnych i może stanowić dodatkowe źródło informacji o zachowaniu się konstrukcji.

6.5 Podsumowanie wyników pomiarów z użyciem czujników rotacji

Przeprowadzone, badania in situ na dwóch kładkach oraz wiadukcie drogowym potwierdziły, że pomiar prędkości kątowej przy użyciu żyroskopów typu MEMS dostarcza dodatkowych informacji o stanie konstrukcji. Należy jednak zwróci uwagę na to, że zastosowane czujniki żyroskopowe typu MEMS, charakteryzują się relatywnie dużym poziomem szumów w stosunku do wartości mierzonych w przypadku badań odbiorowych konstrukcji mostowych. Istnieją duże ograniczenia możliwości zastosowania czujników bazujących na pomiarze prędkości rotacji. Z praktycznego punktu widzenia, przeszkodą w pomiarze rotacji jest relatywnie duża sztywność przęsła badanej konstrukcji, która powoduje, że amplitudy prędkości rotacji, dla niskich częstotliwości drgań, są bardzo małe. Małe amplitudy pionowych drgań giętnych mostu, które są wzbudzane poprzez dynamiczne odziaływania środowiskowe lub dedykowane urządzenia typu wzbudniki, skutkują bardzo małymi amplitudami zmian prędkości kątowych wybranych punktów konstrukcji. Jednak, mając na uwadze bardzo szybki rozwój technologii pomiarowych jest bardzo prawdopodobne, że czujniki, które pojawią się wkrótce na rynku, pozwolą na znacznie dokładniejsze pomiary i korzystnym będzie wykorzystywanie ich w standardowych, objętych programem badań in situ, badaniach konstrukcji mostowych.

6.6 Kładka nad ulicą Chwarznieńską

Przedmiotowy obiekt (rysunek 6.36) to jednoprzęsłowa kładka dla pieszych nad ul. Chwarznieńską w km 0+966,21 w Gdyni (rysunek 6.37). Budowa kładki jest jednym z elementów rozbudowy ulicy Chwarznieńskiej w Gdyni mającej na celu połączenie jej z ul. Chwaszczyńską.

Rysunek 6.36 Widok na kładkę nad ul Chwarznieńską w Gdyni

Rysunek 6.37 Lokalizacja kładki nad ul Chwarznieńską w Gdyni

6.6.1 Opis obiektu

Ustrój nośny kładki stanowią cztery podłużne dźwigary i poprzecznice blachownicowe, w których w płaszczyźnie pasów górnych znajduje się pozioma blacha wzmocniona dodatkowo podłużnymi żebrami otwartymi z płaskowników. Konstrukcja przęsła oparta jest na filarach za pośrednictwem łożysk elastomerowych. Podpory główne wykonano w formie litery "T" ze słupem o przekroju spłaszczonego koła, które zamocowano w ławie fundamentowej w sposób sztywny. Konstrukcja kładki została zaprojektowana na obciążenie tłumem pieszych wg PN-85/S-10030.

Podstawowe parametry geometryczne konstrukcji nośnej kładki:

- ✓ Rozpiętość pomostu: Ltp =21,00 m
- ✓ Szerokość użytkowa kładki: B_u = 3,75 m
- ✓ Szerokość całkowita kładki: B_c = 4,968 m
- Kąt skrzyżowania z przeszkodą: 90°
- ✓ Wysokość konstrukcyjna: H_k = 0,530 ÷ 0,555m

6.6.2 Modele MES

Model obliczeniowy obiektu zdefiniowano jako przestrzenny układ powłokowo – belkowy (rysunek 6.38). Obliczenia wykonano Metodą Elementów Skończonych (MES) przy wykorzystaniu programu SOFiSTiK.

Konstrukcję płyty pomostu opisano 4-węzłowymi powłokowymi elementami skończonymi. Dźwigary główne, poprzecznice oraz żebra modelowano 2-węzłowymi elementami belkowymi z uwzględnieniem mimośrodów. Parametry geometryczne i materiałowe konstrukcji przyjęto na podstawie rysunków konstrukcyjnych obiektu. Dla modelu numerycznego wykonano analizę modalną , która pozwoliła na wyznaczenie częstotliwości i postaci drgań własnych modelu (Rysunek 6.39).

Wygenerowany model powłokowo-belkowy konstrukcji przęsła składał się z:

- ✓ siatki 5.551 węzłów,
- ✓ 5.632 elementów powłokowych,
- 3.190 elementów belkowych,
- ✓ 8 więzów podporowych.

Rysunek 6.38 Wizualizacje modelu MES kładki nad ul. Chwarznieńską w Gdyni

Dodatkowo stworzono uproszczony model belkowy kładki (rysunek 6.40). Składał się on z 81 węzłów, 80 elementów belkowych oraz 5 więzów kinematycznych. Wygenerowano jeden przekrój poprzeczny zgodny z rysunkiem 6.41. Dla modelu uproszczonego również przeprowadzono analizę modalną, której wyniki dla trzech pierwszych częstotliwości i postaci drgań zaprezentowano na rysunku 6.42.

Porównując odpowiadające sobie postacie drgań z modelu belkowo – powłokowego z modelem powłokowym, można zapisać, że dla modelu belkowo – powłokowego pierwsze trzy częstotliwości giętne drgań wynoszą odpowiednio 2,88 Hz, 10,94 Hz oraz 21,96 Hz. Dla modelu czysto belkowego zaś częstotliwości te wynoszą 2,84 Hz, 11,30 Hz oraz 25,28 Hz. Wskazuje to na wysoką zgodność charakterystyk dynamicznych obu modeli. Procentowe różnice pomiędzy modelami dla poszczególnych częstotliwości wynoszą odpowiednio: 1,4 %, 3,2 % oraz 13,1 %.

Rysunek 6.40 Schemat statyczny wraz z wizualizacją uproszczonego modelu MES kładki nad ulicą Chwarznieńską

Rysunek 6.41 Przekrój poprzeczny zaimplementowanych elementów belkowych w uproszczonym modelu MES kładki

f_{1,teor.}=2,84 Hz f_{2,teor.}=11,30 Hz f_{3,teor.}=25,28 Hz Rysunek 6.42 Zestawienie numerycznych częstotliwości drgań kładki nad ulicą Chwarznieńską dla modelu belkowego

6.6.3 Program badań in situ

Kładka została poddana badaniom in situ dwukrotnie. W pierwszym etapie przeprowadzono badania odbiorowe kładki, które obejmowały badania statyczne. Odbyły się one 03.04.2014 roku.

Badania statyczne obiektu podczas próbnego obciążenia obejmowały pomiary:

- przemieszczeń pionowych ugięć konstrukcji przęsła,
- ✓ pomiary przemieszczeń poziomych na łożysku ruchomym,
- pomiary przyrostów odkształceń/naprężeń w dźwigarze głównym,
- ✓ pomiary osiadania podpór.

Kolejnym etapem było przeprowadzenie badań dynamicznych, nie objętych programem próbnego obciążenia. Odbyły się one 22.09.2015 roku. Ich celem była identyfikacja paramentów modalnych kładki, w tym głównie jej częstotliwości i postaci drgań oraz diagnostyka obiektu. Badania swoim zakresem obejmowały pomiar (rysunek 6.43 i 6.44):

- 12 punktów pomiarowych przyspieszeń konstrukcji przęseł,
- 7 punktów pomiarowych prędkości kątowej (żyroskopy MEMS),
- ✓ 3 punktów pomiaru siły przekazywanej przez wzbudnik na konstrukcję (wybrane testy).

Rysunek 6.43 Rozmieszczenie punktów pomiarowych przyspieszeń (t1A-t12K) oraz prędkości kątowych (r1Ar7J) podczas badań kładki nad ul Chwarzenieńską w Gdyni

Rysunek 6.44 Stanowisko pomiarowe oraz montaż czujników na kładce na ul Chwarznieńską w Gdyni

Przebiegi zmienności mierzonych parametrów rejestrowano przy następujących testach (rysunek 6.45):

- ✓ marsz 1-osoby z częstotliwością kroków zbliżoną do częstotliwości własnej konstrukcji,
- ✓ marsz synchroniczny grupy 3-osobowej z częstotliwością kroków zbliżoną do częstotliwości własnej konstrukcji,
- ✓ marsz synchroniczny grupy 6-osobowej z częstotliwością kroków zbliżoną do częstotliwości własnej konstrukcji,
- ✓ marsz synchroniczny grupy 9-osobowej z częstotliwością kroków zbliżoną do częstotliwości własnej konstrukcji,
- ✓ bieg 1-osoby z częstotliwością kroków zbliżoną do częstotliwości własnej konstrukcji,
- ✓ bieg synchroniczny grupy 3-osobowej z częstotliwością kroków zbliżoną do częstotliwości własnej konstrukcji,
- ✓ bieg synchroniczny grupy 6-osobowej z częstotliwością kroków zbliżoną do częstotliwości własnej konstrukcji,
- ✓ podskoki synchroniczne grupy 7-osobowej w środku rozpiętości kładki,
- ✓ wymuszenie małym wzbudnikiem drgań w segmentach kładki 6(F-G) i 8(H-I),
- ✓ wymuszenie dużym wzbudnikiem drgań w segmentach kładki 6(F-G) i 8(H-I).

Procedura badań dynamicznych została tak opracowana, aby na obiekcie znajdował się tylko określony zestaw - grupa osób realizująca określony schemat dynamiczny, bądź koniecznie z uwagi na sposób prowadzenia badań elementy, które zostały uwzględnione w modelu numerycznym w postaci dodatkowych mas.

Kolejny test był realizowany dopiero po całkowitym wytłumieniu drgań spowodowanych wymuszeniem poprzednim. Sumarycznie przeprowadzono 47 testów dynamicznych.

Rysunek 6.45 Testy dynamiczne przeprowadzone na kładce nad ulicą Chwarznieńską a) marsz synchroniczny b) bieg synchroniczny c) podskoki d) wymuszenie małym wzbudnikiem drgań e) wymuszenie dużym wzbudnikiem drgań

W badaniach diagnostycznych wykonano dodatkowe testy symulujące uszkodzenie konstrukcji kładki, poprzez dodanie masy skupionej. Z uwagi na lokalizację kładki nad ruchliwą trasą i trudności z zainstalowaniem stałej masy skupionej, na przykład w postaci pojemników z wodą lub płyt drogowych, wykorzystywano grupę 11 osób o łącznej masie 778,4 kg. Masa podczas badań umieszczana była kolejno w polu 3 (C-D) i 5 (E-F) badanego obiektu (rysunek 6.46).

Rysunek 6.46 Położenie masy skupionej złożonej z grupy 11 osób na obiekcie w polu a) 3 (C-D) b) 5(E-F)

6.6.4 Wyniki pomiarów

Wykresy reprezentatywnych przebiegów przyspieszeń dla poszczególnych punktów pomiarowych zarejestrowane podczas badań przedstawiono na rysunkach 6.47b, 6.48b i 6.49b. Wykresy reprezentatywnych przebiegów prędkości kątowych dla poszczególnych punktów pomiarowych zarejestrowane podczas badań przedstawiono na rysunkach 6.47a, 6.48a i 6.49a.

Rysunek 6.48 Przebiegi czasowe prędkości kątowej i przyspieszeń kładki wraz z odpowiadającą im FFT z drgań swobodnych od wymuszenia marszem synchroniczny grupy 6 osób a) r2B - prędkość kątowa b) t4D - składowa pionowa przyspieszeń.

Rysunek 6.49 Przebiegi czasowe prędkości kątowej i przyspieszeń kładki wraz z odpowiadającą im FFT z drgań swobodnych od wymuszenia dużym wzbudnikiem drgań w polu nr 6 w zakresie częstotliwości 7-14Hz a) r5F - prędkość kątowa b) t4D - składowa pionowa przyspieszeń.

Pomierzone na podstawie drgań swobodnych częstotliwości drgań kładki wynoszą odpowiednio $f_1=2,88$ Hz, $f_2=10,45$ Hz oraz $f_3=23,00$ Hz. W tabeli 6.1 zamieszono porównanie wartości częstotliwości otrzymanych z badań eksperymentalnych z częstotliwościami z modelu numerycznego powłokowo- belkowo i belkowego.

Tabela 6.1 Porównanie wartości częstotliwości drgań własny z badań eksperymentalnych z częstotliwościami drgań własnych z modelu numerycznego belkowo – powłokowego i belkowego bez uszkodzenia

	Badania eksperymentalne	Model belkowo	- powłokowy	Model be	elkowy
Lp	Częstotliwość f _p	Częstotliwość f _{t p-b}	Błąd f _p /f _{t p-b}	Częstotliwość f _{t b}	Błąd f _p /f _{t b}
	Hz	Hz	%	Hz	%
1	2,88	2,88	0,0	2,84	1,4
2	10,45	10,94	4,7	11,30	8,1
3	23,00	21,96	4,5	25,28	9,9

Dodatkowo, zbadano odpowiedź dynamiczną konstrukcji z zasymulowanym, poprzez dodanie masy skupionej, uszkodzeniem w polu 3 (tabela 6.2) oraz w polu 5 (tabela 6.3).

	Badania eksperymentalne	Model belkowo	- powłokowy	Model belkowy		
Lp	Częstotliwość f _p	Częstotliwość f _{t p-b}	Błąd f _p /f _{t p-b}	Częstotliwość f _{t b}	Błąd f _p /f _{t p-b}	
	Hz	Hz	%	Hz	%	
1	2,82	2,84	0,7	2,80	0,7	
2	10,15	10,69	5,3	11,05	8,9	
3	22,90	21,70	5,2	25,05	9,4	

Tabela 6.2 Porównanie wartości częstotliwości drgań swobodnych z badań eksperymentalnych z częstotliwościami drgań własnych z modelu numerycznego belkowo – powłokowego i belkowego z uszkodzeniem (masa)w elemencie 3

Tabela 6.3 Porównanie wartości częstotliwości drgań swobodnych z badań eksperymentalnych z częstotliwościami drgań własnych z modelu numerycznego belkowo – powłokowego i belkowego z uszkodzeniem (masa)w elemencie 5

	Badania eksperymentalne	Model belkowo	- powłokowy	Model belkowy		
Lp	Częstotliwość f _p	Częstotliwość f _{t p-b}	Błąd f _p /f _{t p-b}	Częstotliwość f _{t b}	Błąd f _p /f _{t p-b}	
	Hz	Hz	%	Hz	%	
1	2,78	2,81	0,0	2,77	0,4	
2	10,42	10,90	4,7	11,28	8,3	
3	22,40	21,65	4,5	24,87	11,0	

6.6.5 Analiza modalna

Analiza modalna kładki pozwoliła na wyznaczanie, poza częstotliwościami drgań własnych, odpowiadających im postaci drgań własnych. Postacie drgań własnych z badań eksperymentalnych porównano z wynikami z obliczeń numerycznych dla dwóch modeli MES: belkowo – powłokowego oraz belkowego. Podczas analizy wyznaczono postacie drgań własnych kładki bez uszkodzenia, z uszkodzeniem w elemencie 3 oraz z uszkodzeniem w elemencie 5. Podczas wyznaczania charakterystyk dynamicznych kładki uwzględniono wszystkie dodatkowe masy, znajdujące się na obiekcie podczas badań, niezbędne do wykonania badań w danym etapie. Wyniki analiz przedstawiono w tabelach 6.4 i 6.5 oraz na rysunkach 6.50 – 6.61. W celu porównania postaci drgań własnych posługiwano się kryterium NMD z uwagi na jego większą czułość od kryterium MAC.

Rysunek 6.50 Postacie drgań belki bez uszkodzenia przy wymuszeniu drgań dużym wzbudnikiem umieszczonym w polu 6 a) translacyjne b) rotacyjne

Rysunek 6.51 Postacie drgań belki bez uszkodzenia przy wymuszeniu drgań dużym wzbudnikiem umieszczonym w polu 8 a) translacyjne b) rotacyjne

Rysunek 6.52 Postacie drgań belki z uszkodzeniem w segmencie 3 przy wymuszeniu drgań dużym wzbudnikiem umieszczonym w polu 6 a) translacyjne b) rotacyjne

Rysunek 6.53 Postacie drgań belki z uszkodzeniem w segmencie 3 przy wymuszeniu drgań dużym wzbudnikiem umieszczonym w polu 8 a) translacyjne b) rotacyjne

Rysunek 6.54 Postacie drgań belki z uszkodzeniem w segmencie 5 przy wymuszeniu drgań dużym wzbudnikiem umieszczonym w polu 6 a) translacyjne b) rotacyjne

Rysunek 6.55 Postacie drgań belki z uszkodzeniem w segmencie 5 przy wymuszeniu drgań dużym wzbudnikiem umieszczonym w polu 8 a) translacyjne b) rotacyjne

Rysunek 6.56 Postacie drgań belki bez uszkodzenia przy wymuszeniu drgań małym wzbudnikiem umieszczonym w polu 6 a) translacyjne b) rotacyjne

Rysunek 6.57 Postacie drgań belki bez uszkodzenia przy wymuszeniu drgań małym wzbudnikiem umieszczonym w polu 8 a) translacyjne b) rotacyjne

Rysunek 6.58 Postacie drgań belki z uszkodzeniem w segmencie 3 przy wymuszeniu drgań małym wzbudnikiem umieszczonym w polu 6 a) translacyjne b) rotacyjne

Rysunek 6.59 Postacie drgań belki z uszkodzeniem w segmencie 3 przy wymuszeniu drgań małym wzbudnikiem umieszczonym w polu 8 a) translacyjne b) rotacyjne

Rysunek 6.60 Postacie drgań belki z uszkodzeniem w segmencie 5 przy wymuszeniu drgań małym wzbudnikiem umieszczonym w polu 6 a) translacyjne b) rotacyjne

Rysunek 6.61 Postacie drgań belki z uszkodzeniem w segmencie 5 przy wymuszeniu drgań małym wzbudnikiem umieszczonym w polu 8 a) translacyjne b) rotacyjne

Tabela 6.4 Porównanie wartości częstotliwości oraz kryterium NDM dla translacyjnych i rotacyjnych stopni
swobody, pomiędzy danymi eksperymentalnymi a numerycznymi w zależności od położenia wzbudnika
i miejsca uszkodzenia przy wzbudzeniu dużym wzbudnikiem drgań

Badania Model belkowo - powłokowy eksp,							Model I	oelkowy	
Lp	Częstotliwość	Częstotliwość	Błąd	NMD _{trans}	NMD _{rot}	Częstotliwość	Błąd	NMD _{trans}	NMD _{rot}
	fp	f _{t p-b}	f _p /f _{t p-b}			f _{t b}	fp/ftp-b		
	Hz	Hz	%	%	%	Hz	%	%	%
				WZBUDNI	K DUŻY POLE	6			
				BEZ US	ZKODZENIA				
1	2,68	2,78	3,7	7,16	12,77	2,74	2,2	7,03	12,61
2	10,34	10,88	5,2	7,36	19,01	11,25	8,8	7,41	18,16
3	22,70	21,44	5,6	19,00	89,92	24,68	8,7	11,86	79,35
				USZKOD	ZENIE POLE 3	3			
1	2,68	2,75	2,6	7,68	8,66	2,71	1,1	7,64	8,79
2	10,20	10,64	4,3	7,36	10,34	11,00	7,8	6,46	11,86
3	22,20	21,23	4,4	21,07	53,98	24,45	10,1	10,98	50,78
	USZKODZENIE POLE 5								
1	2,63	2,72	3,4	7,44	11,38	2,68	1,9	7,31	11,26
2	10,33	10,85	5,0	7,71	15,95	11,23	8,7	6,78	15,92
3	22,46	21,22	5,5	21,63	63,89	24,35	8,4	14,90	69,62
				WZBUDNI	K DUŻY POLE	8			
				BEZ US	ZKODZENIA				
1	2,84	2,83	0,4	7,41	10,56	2,79	1,8	7,26	10,61
2	10,01	10,59	5,8	6,80	13,63	10,95	9,4	9,04	15,03
3	22,12	21,71	1,9	36,27	61,14	24,88	12,5	33,34	67,47
				USZKOD	ZENIE POLE 3	3			
1	2,78	2,80	0,7	8,70	11,21	2,75	1,1	8,66	11,42
2	10,25	10,36	1,1	8,93	11,97	10,70	4,4	8,75	12,00
3	22,56	21,49	4,7	30,33	70,66	24,63	9,2	23,76	75,98
				USZKOD	ZENIE POLE 5	5			
1	2,72	2,76	1,5	8,04	12,77	2,72	0,0	7,88	12,77
2	10,32	10,56	2,3	8,37	13,65	10,91	5,7	6,94	15,09
3	22,35	21,45	4,0	22,32	61,17	24,48	9,5	21,48	66,71

	Badania eksp.	Мо	del belkow	o - powłokow	vy		Model belkowy			
Lp	Częstotliwość f _p	Częstotliwość f _{t p-b}	Błąd f _p /f _{t p-b}	NMD _{trans}	NMD _{rot}	Częstotliwość f _{t b}	Błąd f _p /f _{t p-b}	NMD _{trans}	NMD _{rot}	
	Hz	Hz	%	%	%	Hz	%	%	%	
				WZBUDNI	K MAŁY POLE	E 6				
				BEZ US	ZKODZENIA					
1	2.80	2,83	1.1	5,58	13,40	2,79	0.4	5,55	13,20	
2	10.20	10,75	5.4	9,73	13,62	11,12	9.0	8,67	12,92	
3	23.52	21,44	8.8	21,64	42,42	24,63	4.7	15,94	51,78	
				USZKODZ	ZENIE POLE 3	3				
1	2.80	2,80	0.0	7,31	11,04	2,76	1.4	7,40	11,10	
2	10.02	10,51	4.9	9,68	11,59	10,87	8.5	8,61	11,75	
3	22.60	21,22	6.1	23,77	42,65	24,40	8.0	20,50	47,68	
USZKODZENIE POLE 5										
1	2.73	2,77	1.5	6,72	13,21	2,73	0.0	6,72	13,15	
2	10.20	10,72	5.1	9,91	16,12	11,09	8.7	8,51	18,44	
3	22.10	21,14	4.3	28,30	79,35	24,18	9.4	19,75	81,80	
				WZBUDNI	K MAŁY POLE	E 8				
				BEZ US	ZKODZENIA					
1	2.87	2,85	0.7	7,32	11,75	2,80	2.4	7,29	11,53	
2	10.22	10,66	4.3	9,83	13,25	11,02	7.8	8,45	14,08	
3	22.65	21,53	4.9	24,70	71,73	24,68	9.0	15,62	52,53	
				USZKODZ	ZENIE POLE 3	3				
1	2.73	2,81	2.9	7,20	13,11	2,77	1.5	7,27	13,36	
2	10.05	10,43	3.8	9,56	13,05	10,78	7.3	8,78	13,55	
3	22.45	21,30	5.1	22,53	129,83	24,44	8.9	16,57	128,75	
				USZKODZ	ZENIE POLE 5	5				
1	2.80	2,78	0.7	6,77	11,23	2,74	2.1	6,74	11,07	
2	10.76	10,62	1.3	9,93	12,42	10,99	2.1	8,408	13,37	
3	22.2	21,21	4.5	28,25	55,95	24,21	9.1	26,01	50,92	

Tabela 6.5 Porównanie wartości częstotliwości oraz kryterium NDM dla translacyjnych i rotacyjnych stopni swobody, pomiędzy danymi eksperymentalnymi a numerycznymi w zależności od położenia wzbudnika i miejsca uszkodzenia przy wzbudzeniu małym wzbudnikiem drgań.

6.6.6 Aktualizacja modelu MES kładki

Zastosowana procedura aktualizacji parametrów kładki była analogiczna do tej opisanej w rozdziale 5. Procedura bazowała na macierzy wag w wariancie 4, a wyboru wyników dokonywano za pomocą kryterium NMD2. Z uwagi na małą zgodność rotacyjnej 3 postaci drgań zdecydowano się wykorzystać jedynie 2 postacie drgań do procedury aktualizacji. Cała procedura bazowała na 7 translacyjnych stopniach swobody lub na 7 rotacyjnych stopniach swobody w analogicznych punkach pomiarowych.

Wyniki przeprowadzonej aktualizacji dla wszystkich przypadków zastawiono na rysunkach 6.62-6.73. W celu poprawnej interpretacji wyników wykorzystano indeksy bazowe bezwzględne, które wraz z wartościami kryterium NMD oraz numerem elementu uszkodzonego oraz procentową zgodnością intensywności uszkodzenia zestawiono w tabelach 6.6-6.9.

Rysunek 6.62 Masa początkowa segmentów kładki, indeks **I**_o oraz zmiana masy elementów kładki nieuszkodzonej przy dużym wzbudniku umieszczonym w polu 6 w przypadku aktualizacji na podstawie: a) translacyjnych stopni swobody b) rotacyjnych stopni swobody.

Rysunek 6.63 Masa początkowa segmentów kładki, indeks I_o oraz zmiana masy elementów kładki nieuszkodzonej przy dużym wzbudniku umieszczonym w polu 6 w przypadku aktualizacji na podstawie: a) translacyjnych stopni swobody b) rotacyjnych stopni swobody.

Rysunek 6.64 Masa początkowa segmentów kładki, indeks **I**_o oraz zmiana masy elementów kładki przy uszkodzeniu segmentu 3 oraz dużym wzbudniku umieszczonym w polu 6 w przypadku aktualizacji na podstawie: a) translacyjnych stopni swobody b) rotacyjnych stopni swobody.

Rysunek 6.65 Masa początkowa segmentów kładki, indeks **I**_o oraz zmiana masy elementów kładki przy uszkodzeniu segmentu 3 oraz dużym wzbudniku umieszczonym w polu 8 w przypadku aktualizacji na podstawie: a) translacyjnych stopni swobody b) rotacyjnych stopni swobody.

Rysunek 6.66 Masa początkowa segmentów kładki, indeks **I**_o oraz zmiana masy elementów kładki przy uszkodzeniu segmentu 5 oraz dużym wzbudniku umieszczonym w polu 6 w przypadku aktualizacji na podstawie: a) translacyjnych stopni swobody b) rotacyjnych stopni swobody.

Rysunek 6.67 Masa początkowa segmentów kładki, indeks **I**_o oraz zmiana masy elementów kładki przy uszkodzeniu segmentu 5 oraz dużym wzbudniku umieszczonym w polu 8 w przypadku aktualizacji na podstawie: a) translacyjnych stopni swobody b) rotacyjnych stopni swobody.

Rysunek 6.68 Masa początkowa segmentów kładki, indeks **I**_o oraz zmiana masy elementów kładki nieuszkodzonej przy małym wzbudniku umieszczonym w polu 6 w przypadku aktualizacji na podstawie: a) translacyjnych stopni swobody b) rotacyjnych stopni swobody.

Rysunek 6.69 Masa początkowa segmentów kładki, indeks **I**_o oraz zmiana masy elementów kładki nieuszkodzonej przy małym wzbudniku umieszczonym w polu 8 w przypadku aktualizacji na podstawie: a) translacyjnych stopni swobody b) rotacyjnych stopni swobody.

Rysunek 6.70 Masa początkowa segmentów kładki, indeks **I**_o oraz zmiana masy elementów kładki przy uszkodzeniu segmentu 3 oraz małym wzbudniku umieszczonym w polu 6 w przypadku aktualizacji na podstawie: a) translacyjnych stopni swobody b) rotacyjnych stopni swobody.

Rysunek 6.71 Masa początkowa segmentów kładki, indeks **I**_o oraz zmiana masy elementów kładki przy uszkodzeniu segmentu 3 oraz małym wzbudniku umieszczonym w polu 8 w przypadku aktualizacji na podstawie: a) translacyjnych stopni swobody b) rotacyjnych stopni swobody.

MOST WIEDZY Pobrano z mostwiedzy.pl

Rysunek 6.72 Masa początkowa segmentów kładki, indeks **I**_o oraz zmiana masy elementów kładki przy uszkodzeniu segmentu 5 oraz małym wzbudniku umieszczonym w polu 6 w przypadku aktualizacji na podstawie: a) translacyjnych stopni swobody b) rotacyjnych stopni swobody.

Rysunek 6.73 Masa początkowa segmentów kładki, indeks **I**_o oraz zmiana masy elementów kładki przy uszkodzeniu segmentu 5 oraz małym wzbudniku umieszczonym w polu 8w przypadku aktualizacji na podstawie: a) translacyjnych stopni swobody b) rotacyjnych stopni swobody.

Tabela 6.6 Zestawienie indeksów bazowych bezwzględnych oraz kryterium NMD dla aktualizacji na postawie danych eksperymentalnych z translacyjnych stopni swobody przy wzbudzeniu przy użyciu dużego wzbudnika drgań

	AKTUALIZACJA WYMUSZENIE DUŻYM WZBUDNIKIEM - TRANSLACJE								
Uszkodzenie			Indeksy		NMI	D [%]	Element z	Zgodność	
Element	Pole wzbudnik	l ^{abs}	^{abs} max	I ^{abs}	1	2	maksymalną zmianą masy	wielkości uszkodze nia [%]	Detekcja
0	6	0,63	0,36	0,29	6,25	6,92	8	0	NIE
brak	8	1,26	0,56	1,34	6,20	8,89	4,5,10	0	NIE
	6	4,12	2,10	5,88	4,56	5,87	3	218	ТАК
3	8	1,85	0,86	9,80	5,21	8,77	1,3	156	NIE
-	6	4,37	1,58	1,58	5,10	5,55	5	187	ТАК
5	8	2.57	1,06	1,94	6,10	6,01	5	116	ТАК

Tabela 6.7 Zestawienie indeksów bazowych bezwzględnych oraz kryterium NMD dla aktualizacji na postawie danych eksperymentalnych z translacyjnych stopni swobody przy wzbudzeniu przy użyciu małego wzbudnika drgań

AKTUALIZACJA WYMUSZENIE MAŁYM WZBUDNIKIEM - TRANSLACJE									
Uszkodzenie			Indeksy		NMI	D [%]	Element z	Zgodność	
Element	Pole wzbudnik	l ^{abs}	l ^{abs} max	I ^{abs}	1	2	maksymalną zmianą masy	wielkości uszkodze nia [%]	Detekcja
0	6	0,92	0,40	0,63	3,28	9,12	9	0	NIE
brak	8	2,14	0,65	1,42	5,52	7,12	2	0	NIE
	6	0,81	0,28	1,16	4,12	7,40	3	71	ТАК
3	8	1,70	0,65	0,65	6,52	7,13	3	40	ТАК
-	6	3,77	1,45	9,28	6,10	5,52	5	276	ТАК
5	8	0,84	0,37	1,34	5,49	8,60	8	93	NIE

Tabela 6.8 Zestawienie indeksów bazowych bezwzględnych oraz kryterium NMD dla aktualizacji na postawie danych eksperymentalnych z rotacyjnych stopni swobody przy wzbudzeniu przy użyciu dużego wzbudnika drgań

AKTUALIZACJA WYMUSZENIE DUŻYM WZBUDNIKIEM - ROTACJE										
Uszkodzenie			Indeksy		NM	D [%]	[%] Element z		Zgodność	
Element	Pole wzbudnik	l ^{abs} m	l ^{abs} max	∣ ^{abs} s	1	2	maksymalną zmianą masy	wielkości uszkodze nia [%]	Detekcja	
0	6	2,07	1,07	0,71	10,29	18,50	9	0	NIE	
brak	8	3,04	1,55	1,01	8,67	14,00	9	0	NIE	
2	6	2,38	1,40	3,15	8,20	10,56	1	245	NIE	
3	8	1,70	0,68	1,62	10,12	9,82	3	205	ТАК	
_	6	6,13	2,02	8,06	8,73	9,88	5	307	ТАК	
3	8	1,82	1,03	1,63	11,01	12,54	4	16	NIE	

AKTUALIZACJA WYMUSZENIE MAŁYM WZBUDNIKIEM - ROTACJE										
Uszkodzenie			Indeksy		NM	D [%]	Element z	Zgodność		
Element	Pole wzbudnik	l ^{abs} m	l ^{abs} max	I ^{abs}	1	2	maksymalną zmianą masy	wielkości uszkodze nia [%]	Detekcja	
0	6	1,84	0,71	1,61	13,03	10,84	4	0	NIE	
brak	8	2,07	0,63	1,92	9,47	13,07	4	0	NIE	
2	6	1,58	0,65	0,65	10,74	11,23	5	138	NIE	
3	8	1,03	0,61	1,29	8,77	10,12	3	147	ТАК	
	6	0,59	0,27	1,60	12,98	15,67	9	53	NIE	
5	8	1,36	0,48	0,92	10,59	12,53	8	133	NIE	

Fabela 6.9 Zestawienie indeksów bazowych bezwzględnych oraz kryterium NMD $$ dla aktualizacji na postawie
danych eksperymentalnych z rotacyjnych stopni swobody przy wzbudzeniu przy użyciu małego wzbudnika
drgań

Aktualizacja wykonana na rzeczywistym obiekcie inżynierskim daje mniej satysfakcjonujące wyniki niż w przypadku badań modelowych. Wynika to przede wszystkim ze skali uszkodzenia, która w tym wypadku była znacznie mniejsza niż w przypadku badań modelowych. Studiując wartości indeksów bazowych (tabela 6.6-6.9) można zaobserwować, że osiągają one znacznie mniejsze wartości niż w przypadku badań modelowych opisanych w rozdziale 5. Świadczy to o mniej precyzyjnej i mniej jednoznaczniej lokalizacji uszkodzenia.

Analizując wykresy przedstawione na rysunkach 6.62, 6.63, 6.68 i 6.69 oraz w tabelach 6.6-6.9 można stwierdzić, że wynik aktualizacji parametrów każdorazowo wskazuje uszkodzony element, nawet w przypadku obiektu nieuszkodzonego. Może to prowadzić do mylnych wniosków o stanie awaryjnym samego obiektu, ale może tez stanowić wskazówkę do zainicjowania kontroli obiektu w pewnych tylko wybranych obszarach, zawężając tym samym zakres poszukiwań ewentualnej usterki.

W przypadku badań na postawie translacyjnych stopni swobody, zaobserwowano że uszkodzenie wykrywane jest poprawnie w prawie wszystkich przypadkach, bez względu na rodzaj użytego wzbudnika, a tym samym na siłę wymuszenia drgań. Tylko w dwóch przypadkach otrzymano niepoprawną lokalizację uszkodzenia.

W przypadku aktualizacji na postawie rotacyjnych stopni swobody, wyniki aktualizacji parametrów są mniej zadowalające. W tym przypadku przy użyciu dużego wzbudnika drgań w dwóch przypadkach udało się poprawnie zlokalizować uszkodzenie. Natomiast, przy mniejszej sile wzbudzenia, a więc przy użyciu małego wzbudnika drgań tylko w jednym przypadku udało się uzyskać poprawną lokalizację uszkodzonego segmentu. Dysproporcja w poprawności wyników spowodowana jest stosunkowo małą czułością czujników żyroskopowych w stosunku do amplitud

drgań rotacyjnych konstrukcji, a tym samym stosunkowo dużym poziomem szumów w stosunku do wartości mierzonych. Na podstawie otrzymanych sygnałów udało się odtworzyć z dużą zgodnością tylko dwie pierwsze postacie drgań. Analizy opisane w rozdziale 5, pokazują, że najlepsze wyniki aktualizacji parametrów uzyskuje się korzystając z kryterium NMD3 bazującego na trzech postaciach drgań. Zastosowanie czujników o mniejszym szumie pomiarowym, który umożliwiłby dokładne odwzorowanie trzeciej postaci drgań, prawdopodobnie umożliwiłoby poprawę wyników aktualizacji parametrów na podstawie rotacyjnych stopni swobody. Jednak te negatywne doświadczenia dotyczą relatywnie tanich czujników rotacji w technologii MEMS, które były osiągalne na potrzeby tych badań. Rotacyjne czujniki MEMS stały się elementem składowym większości nowoczesnych telefonów oraz są powszechnie stosowane w robotyce oraz mechatronice i bez wątpienia ich rozwój, w tym poprawa czułości i rozdzielczości, będzie przedmiotem intensywnych prac.

6.7 Wnioski

Przedstawione powyżej przykłady badań obiektów inżynierskich przy użyciu czujników żyroskopowych typu MEMS potwierdzają, że są one dobrym źródłem danych o charakterystykach dynamicznych konstrukcji. Ich niewielkie rozmiary, niska cena, prostota montażu, zwłaszcza w przypadku konstrukcji stalowych, brak potrzeby instalowania bazy pomiarowej, czy też zajmowania skrajni pod obiektem, czynią je bardzo przydatnym narzędziem pomiarowym. Pozwalają one przy niewielkim nakładzie pracy, przy mniejszym natężeniu ruchu nawet bez wyłączania obiektu z eksploatacji, dokonać rzetelnych pomiarów, które stanowią cenną informację o stanie konstrukcji. Analizując przedawniony przykład kładki nad ulica Chwarznieńską, czujniki pozwalają nie tylko na poznanie częstotliwości drgań własnych, ale również na wierne odwzorowanie wybranych postaci drgań własnych. Można powiedzieć, że ciągle jednak niedoścignionym wzorem czujników do badań dynamicznych obiektów inżynierskich są akcelerometry. Jednak przy obecnym szybkim rozwoju techniki, żyroskopy mają duża szanse dogonić stopniem zaawansowania i dokładnością pomiaru nawet obecnie występujące bardzo czułe akcelerometry. System pomiarowy, na bazie którego wykonano badania w niniejszej pracy, jest już w użyciu od 2012 roku. Od tego czasu na rynku pojawiły się już bardziej zaawansowane czujnik o znacznie większej dokładności pomiarowej i niższym poziomie szumów. Żyroskopy MEMS użyte do badań charakteryzowały się deklarowanym przez producenta poziomem szumów równym 0.01 dps/VHz i czułością równą 33.3 mV/dps. Obecnie dostępne są czujniki MEMS G150Z Gyro (produkowane przez Gladiator Technologies Division LKD Aerospace, Inc, USA) charakteryzujące się 10- krotnie niższym poziomem szumów i czułością równą 45 mV/dps.

Rozbudowa systemu i wzbogacenie go o bardziej dokładne czujniki, charakteryzujące się mniejszym poziomem szumów pomiarowych jest planowane w następnych etapach badań diagnostycznych.

7 Podsumowanie

W pracy omówiono wybrane problemy i zagadania związane z aktualizacją parametrów projektowych na podstawie częstotliwości i postaci drgań własnych przy użyciu iteracyjnej procedury bazującej na macierzy wrażliwości.

Badania naukowe i prace rozwojowe ukierunkowano na aplikację sygnałów pomiarowych uzyskanych na podstawie pomiarów prędkości kątowych przy użyciu czujników rotacji MEMS zastosowanych do procedury aktualizacji parametrów. Czujniki te wzbogacają możliwości pomiarowo - diagnostyczne metod wibracyjnych bazujących głównie na czujnikach akcelerometrycznych.

W pierwszej części pracy opracowano i wdrożono do procedury diagnostycznej 12 autorskich indeksów umożliwiających precyzyjną ocenę uszkodzeń. Indeksy podzielono na dwie kategorie: indeksy bazowe i indeksy kontrolne. Po przeprowadzeniu analiz na paru przykładach belek swobodnie podpartych wykazano, że najlepszą skuteczność w poprawnym wykrywaniu uszkodzeń umożliwiają indeksy bazujące na wartościach bezwzględnych zmian parametrów projektowych. Indeksy bazowe, odnoszące się do maksymalnej zamiany parametrów projektowych dla dowolnego elementu modelu MES, pozwalają na ogólną ocenę zamian parametrów badanej konstrukcji. Indeksy kontrolne pozwalają na ocenę dowolnego wybranego elementu konstrukcji, w stosunku do pozostałych elementów modelu MES. Obie grupy indeksów wykazują duży potencjał diagnostyczny i pozwalają na ocenę tego, czy w konstrukcji uszkodzony jest tylko jeden element, czy uszkodzenie występuje w pewnej strefie oraz jaki jest stopień uszkodzenia danego elementu w stosunku do pozostałych.

W dysertacji opracowano autorskie definicje macierzy wag parametrów oraz macierzy wag wartości mierzonych. Zaproponowano osiem różnych wariantów definicji macierzy wag i przeprowadzono ich analizy porównawcze. Opracowane modyfikacje macierzy wag okazały się najbardziej skutecznym narzędziem umożliwiającym poprawną aktualizację szukanych paramentów. Najlepsze wyniki uzyskano dla macierzy wag parametrów, z iteracyjnym doborem współczynnika na jej przekątnej oraz modyfikacją blokową. Poprawne wyniki otrzymano zarówno dla danych numerycznych jak i danych eksperymentalnych w przypadku belki modelowej oraz rzeczywistego obiektu inżynierskiego, kładki nad ulicą Chwarznieńską w Gdyni.

Procedury diagnostyczne bazujące na autorskich macierzach wag uzupełniono o tabele zestawiające wyniki aktualizacji i umożliwiające systematyczne przeglądanie wyników oraz ocenę

ich poprawności. W rozprawie zaproponowano algorytmy umożliwiające wybór odpowiedniego wyniku z zaproponowanych zestawień tabelarycznych. Najlepsze wyniki otrzymano korzystając z kryteriów bazujących na minimalizacji kryterium NMD dla postaci drgań. W zależności od dostępnej liczby par modalnych, poprawne rezultaty otrzymano korzystając z kryterium NMD3 i NMD2. W przypadku analiz przeprowadzonych na danych numerycznych oraz na modelowej belce swobodnie popartej, z uwagi na dużą zgodność wszystkich trzech pomierzonych postaci i częstotliwości drgań z postaciami i częstotliwościami drgań własnych otrzymanymi z modelu numerycznego, najlepsze wyniki aktualizacji parametrów uzyskano korzystając z kryterium NMD3. W przypadku rzeczywistego obiektu inżynierskiego, kładki nad ulicą Chwarznieńską w Gdyni, z uwagi na niski poziom zgodności trzeciej rotacyjnej postaci drgań pomiędzy wartością pomierzoną, a uzyskaną na podstawie analiz numerycznych, poprawne wyniki aktualizacji uzyskano bazując na kryterium NMD2.

Ocena efektywności procedur zaproponowanej diagnostyki nieniszczącej na podstawie rotacyjnych stopni swobody wykazała, że stosowanie czujników rotacji może być uzupełnieniem standardowego rozwiązania bazującego na pomiarach wyłącznie translacyjnych stopni swobody. Przeprowadzone analizy wykazały, że zastąpienie pomiaru przyśpieszeń pomiarami prędkości kątowych, pozwala na uzyskanie poprawnych wyników aktualizacji parametrów. W każdym jednak przypadku, dla wyników uzyskanych na podstawie badań eksperymentalnych niezależnie od stosowanych czujników, intensywności uszkodzeń były niedoszacowane.

Postawione cele pracy zostały osiągnięte i potwierdzone pozytywnymi wynikami przeprowadzonych analiz aktualizacji parametrów modeli MES, zarówno na danych numerycznych jak i na danych eksperymentalnych uzyskanych na podstawie badań belki modelowej oraz rzeczywistego obiektu kładki nad ulicą Chwarznieńską w Gdyni. Użycie nowoczesnych i stosunkowo tanich czujników rotacji w postaci żyroskopów MEMS umożliwia precyzyjne pomiary rotacji i może służyć, jako dodatkowe narzędzie do diagnostyki konstrukcji inżynierskich.

Kontynuacja prac przedstawionych w niniejszej dysertacji będzie ukierunkowana na:

- rozwinięciu algorytmu do poszukiwania uszkodzeń o niskich intensywnościach dla rzeczywistych konstrukcji inżynierskich;
- rozwinięciu algorytmu identyfikującego intensywność uszkodzenia;
- uwzględnieniu w algorytmach poza postaciami giętymi skrętnych postaci drgań dla modeli przestrzennych MES;

- ✓ dopracowaniu algorytmu optymalnego wyboru rozmieszczenia czujników pomiarowych, zarówno translacji jak i rotacji, w zależności od schematu statycznego konstrukcji;
- ✓ rozbudowie systemu pomiarowego oraz wprowadzeniu do badań żyroskopów niskoszumowych o większym zakresie mierzonych częstotliwości;
- ✓ badaniach konstrukcji o innych schematach statycznych takich jak ramy, kratownice i łuki;
- ✓ rozszerzeniu badań na obiekty inżynierskie o większym rozmiarze i bardziej skomplikowanej konstrukcji.

204 | Strona

8 Streszczenie

W pracy przedstawiono aktualizację parametrów na podstawie częstotliwości i postaci drgań własnych przy użyciu iteracyjnej procedury bazującej na macierzy wrażliwości z wykorzystaniem pomiarów rotacyjnych i translacyjnych stopni swobody.

W rozdziale 1 pracy opisano rozwój mostownictwa w przeciągu kilku ostatnich lat w Polsce oraz dokonano przeglądu literatury dotyczącej uszkodzeń, awarii i diagnostyki konstrukcji mostowych w Polsce oraz zamieszczono przegląd metod aktualizacji modeli MES stosowanych na świecie. Opisano również czujniki stosowane w badaniach diagnostycznych obiektów mostowych, szczególną uwagę poświęcając czujnikom MEMS.

Rozdział 2 pracy poświecono zagadnieniom teoretycznym. Opisano metody redukcji bazy stosowane w aktualizacji parametrów, kryteria walidacji postaci drań własnych, aktualizację przy użyciu par modalnych, podstawowe definicje macierzy wag oraz funkcję odpowiedzi częstotliwościowej (FRF). Dodatkowo dokonano szczegółowego przeglądu metod optymalizacji w inżynierii.

Zagadnienia zawarte w rozdziale 3 koncertują się na aktualizacji parametrów modelu MES na podstawie danych numerycznych. W pierwszej części rozdziału zdefiniowano 12 autorskich indeksów. Dokonano aktualizacji sztywności giętnych elementów modelu MES na podstawie sygnałów z różnej liczby czujników "pomiarowych" translacji i rotacji rozmieszczonych zgodnie z pięcioma schematami dla modelu belki swobodnie podpartej. Następnie zaproponowano autorskie definicje macierzy wag w 8 wariantach oraz opisano kryteria wyboru poprawnego wyniku aktualizacji parametrów. Dokonano aktualizacji paramentów i opisano wpływ wyboru wariantu macierzy wag i stosowanego kryterium na wynik aktualizacji parametrów. Zbadano także wpływ szumów pomiarowych na wynik aktualizacji parametrów. Następnie wykonano analizy na danych numerycznych dotyczące aktualizacji warunków podporowych oraz sztywności globalnej modelu MES.

W rozdziale 4 opisano stanowisko pomiarowe do badan laboratoryjnych. Przedstawiono model doświadczalny belki swobodnie podpartej, stosowane czujniki pomiarowe, sposób wzbudzenia drgań oraz systemy akwizycji danych. W rozdziale tym zawarto przykładowe wyniki sygnałów pomiarowych wraz z ich transformatami Fouriera oraz wybrane postacie drgań własnych belki. Rozdział 5 poświęcony jest aktualizacji parametrów na podstawie danych uzyskanych z badań eksperymentalnych belki swobodnie podpartej. W pierwszej części rozdziału dokonano analizy wyników aktualizacji parametrów na podstawie 11 translacyjnych stopni swobody w zależności od wariantu macierzy wag oraz od kryterium wyboru wyniku aktualizacji parametrów. Na tej podstawie w kolejnych podrozdziałach dokonano aktualizacji parametrów na podstawie 6 translacyjnych stopni swobody, 6 rotacyjnych stopni swobody oraz 6 translacyjnych i 6 rotacyjnych stopni swobody.

W rozdziale 6 przedstawiono badania rzeczywistych konstrukcji inżynierskich przy użyciu żyroskopów MEMS. Rozdział rozpoczyna się od opisu czujników stosowanych do pomiaru rzeczywistych konstrukcji inżynierskich. Przedstawiono sposoby wzbudzenia konstrukcji mostowych z użyciem wzbudników, pojazdów, pieszych i innych metod specjalnych w zależności od typu użytkowego obiektu. Następnie przedstawiono wyniki badań in situ dla: kładki łukowej nad drogą S8, kładki nad trasą Ogińskiego w Bydgoszczy oraz wiaduktu Brańskiego w Koninie. Rozdział zakończony jest szczegółowymi wynikami badań przeprowadzonych na kładce nad ulicą Chwarznieńską w Gdyni. Na podstawie uzyskanych sygnałów przyspieszeń oraz prędkości kątowych przeprowadzono aktualizację parametrów kładki z dodatkowymi masami zlokalizowanym w wybranych elementach.

Rozdział 7 jest podsumowaniem pracy oraz wskazaniem dalszych kierunków rozwoju zaprezentowanej tematyki, związanej z użyciem czujników żyroskopowych do celów diagnostyki nieniszczącej.

9 Abstract

The thesis is devoted to development of diagnostic procedures for civil engineering structures. The nondestructive method is based on updating of FEM model parameters on the basis of natural frequencies and mode shapes. The presented iterative method uses the sensitivity matrix as well as the measurements of rotational and translational degrees of freedom of the structure.

Chapter 1 describes the achievements of the bridge engineering society in the past few years in Poland. It consists of a review of literature focused on the damage detection and diagnostics of bridge structures in Poland as well as update methods of FEM models. Brief information on sensors used in in situ tests of bridges, with particular attention to the MEMS sensors, have also been presented.

Chapter 2 is devoted to theoretical issues. It describes Model Reduction Methods, Eigenvectors Validation Criteria, definitions of Weighting Matrix, updating of parameters using modal pairs and the frequency response function (FRF). In addition, a review of methods of optimization is presented.

Chapter 3 focuses on updating of parameters of the FEM model of the simply supported beam based on numerical data. In this Chapter new indices are proposed, definitions of Weighting Matrices are developed and the criteria for selecting the correct result of updating of parameters has been proposed. The influence of noise of the measurement signals on updating of parameters result has been examined. The subsequent analysis of parameter updating with respect to the support conditions and global rigidity of FEM model have been performed.

Chapter 4 describes the experimental setup including the model of a simply supported beam, used sensors, vibration excitation methods and data acquisition systems. Selected results of the measured signals are presented.

Chapter 5 is devoted to the updating of parameters on the basis of data obtained from experimental studies of the simply supported beam. The results have been analyzed on the basis of the updating of parameter using 11 translational degrees of freedom, 6 translational degrees of freedom, 6 rotational degrees of freedom and both: 6 translational and 6 rotational degrees of freedom.

The Chapter 6 presents the in situ tests of real engineering structures using MEMS gyroscopes. The results of in situ tests for the arched footbridge over the road S8, footbridges over the route Ogińskiego in Bydgoszcz and viaduct Brański in Konin are presented. Chapter is summarized by detailed results of the tests carried out on the footbridge above the Chwarznieńska street in Gdynia. On the basis of the signals of the accelerations and angular velocities, updating of the FEM model parameters with additional masses located in selected locations is performed.

Chapter 7 contains the concluding remarks drawn from the analysis conducted in the thesis. It is stated that the aim of the thesis has been achieved since the study proved that the measurements of the rotational degrees of freedom enrich the iterative updating procedure based on modal pairs. Some indications of the further directions of research related to the use of MEMS gyroscopes sensors for non-destructive diagnostics are presented.
Bibliografia

Allemang, R. J. (2003) 'The Modal Assurance Criterion - Twenty Years of Use and Abuse', Journal of Sound and Vibration, 1(August), pp. 14–21.

Allemang, R. J. & Brown, D. L. (1982) 'A correlation coefficient for modal vector analysis', *First International Modal Analysis Conference*, pp. 110–116.

Alvin, K. F. (1997) 'Finite Element Model Update via Bayesian Estimation and Minimization of Dynamic Residuals', *AIAA Journal*, 35(5), pp. 879–886.

Amborski, K. (2009) *Podstawy metod optymalizacji*. Oficyna Wydawnicza Politechniki Warszawskiej.

Bakir, P. G., Reynders, E. & De Roeck, G. (2007) 'Sensitivity-based finite element model updating using constrained optimization with a trust region algorithm', *Journal of Sound and Vibration*, 305(1–2), pp. 211–225.

Barcik, W. & Sieńko, R. (2012) 'System monitorowania konstrukcji Mostu Rędzińskiego we Wrocławiu', *Mosty*, 2, pp. 56–62.

Baruch, M. & Bar-Itzhack, I. Y. (1978) 'Optimal Weighted Orthogonalization of Measured Modes', *AIAA Journal*, 16(4), pp. 346–351.

Bayraktar, A., Altunisik, A., Sevim, B. & Turker, T. (2009) 'Finite Element Model Updating of Komurhan Highway Bridge', *Technical Journal of turk Chamb of Civil eng*, 20, pp. 4675–4700.

Ben-Haim, Y. & Prells, U. (1993) 'Selective sensitivity in the frequency domain--I. Theory', *Mechanical Systems and Signal Processing*, 7(5), pp. 461–475.

Berman, A. & Nagy, E. J. (1983) 'Improvement of a Large Analytical Model Using Test Data', *AIAA Journal*, 21(8), pp. 1168–1173.

Bętkowski, P., Bednarski, Ł. & Sieńko, R. (2015) 'Doświadczenia z użytkowania systemu monitorowania konstrukcji mostu kolejowego poddanego oddziaływaniu eksploatacji górniczej', *Przegląd Górniczy*, (March), pp. 7–13.

Bień, J. (2010) *Uszkodzenia i diagnostyka obiektów mostowych*. 1st edn. Warszawa: Wydawnictwa Komunikacji i Łączności. Biliszczuk, J. (2003) *Most III Tysiąclecia im. Jana Pawła II w Gdańsku*. Wrocław: Dolnośląskie Wydawnictwo Edukacyjne.

Biliszczuk, J. (2007) *Podwieszony most przez Wisłę w Płocku*. Wrocław: Dolnośląskie Wydawnictwo Edukacyjne.

Biliszczuk, J., Hildebrand, M. & Hawryszków, P. (2006) 'System obserwacji ciągłej mostu podwieszonego przez Wisłę w Płocku', *Inżynieria i Budownictwo*, 7–8, pp. 364–367.

Biliszczuk, J. & Onyks, J. (2012) 'Most Rędziński w ciągu Autostradowej Obwodnicy Wrocławia', *Przegląd Komunikacyjny*, 5–6, pp. 30–37.

Bouhaddi, N. & Fillod, R. (1992) 'A method for selecting master DOF in dynamic substructuring using the Guyan condensation method', *Computers & Structures*, 45, pp. 941–946.

Caesar, B. & Peter, J. (1987) 'Direct update of dynamic mathematical models from modal test data', *AIAA Journal*, 25(11), pp. 1494–1499.

Carvalho, J., Datta, B. N., Gupta, A. & Lagadapati, M. (2007) 'A direct method for model updating with incomplete measured data and without spurious modes', *Mechanical Systems and Signal Processing*, 21(7), pp. 2715–2731.

Cawley, P. & Adams, R. (1979) 'The location of defects in structures from measurements natural frequencies', *Journal of Strain Analysis*, 14, pp. 49–57.

Chen, H.-P. (2008) 'Application of regularization methods to damage detection in large scale plane frame structures using incomplete noisy modal data', *Engineering Structures*, 30(11), pp. 3219–3227.

Chróścielewski, J., Banaś, A., Malinowski, M., Sitarski, A. & Sochacki, J. (2014) 'Stan awaryjny wiaduktu kolejowego w Bydgoszczy', *Przegląd Budowlany*, (R. 85, nr 2), pp. 44--50.

Chróścielewski, J., Klasztorny, M., Wilde, K., Miśkiewicz, M. & Romanowski, R. (2014) 'Kompozytowa kładka pieszo-rowerowa o konstrukcji przekładkowej', *Materiały Budowlane*, 7, pp. 40–41.

Chróścielewski, J., Mariak, A., Sabik, A., Meronk, B. & Wilde, K. (2016) 'Monitoring of concrete curing in extradosed bridge supported by numerical simulation', *Advances in Science and Technology Resarch Journal*, 10(32), pp. 254–262.

Chróścielewski, J., Rucka, M., Banaś, A., Malinowski, M., Miśkiewicz, M. & Rutkowski, R. (2011) 'Systemy monitorowania stanu technicznego konstrukcji na przykładzie trzech mostów', *Mosty*, 2, pp. 24–32.

Chróścielewski, J., Witkowski, W., Banaś, A., Daszkiewicz, K., Malinowski, M. & Wąchalski, K. (2013) 'Kontrola i monitoring tensometryczny w trakcie budowy mostu łukowego przez rzekę Wisłę w Toruniu', *Archiwum Instytutu Inżynierii Lądowej Politechniki Poznańskiej*, 16, pp. 37–48.

Chróścielewski, J., Żółtowski, K., Kozakiewicz, A., Miśkiewicz, M., Szafrański, M. & Żółtowski, P. (2005) 'Awaria wiaduktu drogowego nad torami kolejowymi w Gdańsku', *XXII konferencja naukowo-techniczna "Awarie budowlane"*. Szczecin - Międzyzdroje.

Cywiński, Z. & Kido, E. (2000) 'Urban Bridge Aesthetics: Major Challenge of the 21st Century', *IABSE Congress Report*, Lucerne: International Association for Bridge and Structural Engineering, pp. 56–63.

D'Ambrogio, W. & Zobel, P. B. (1994) 'Damage detection in truss structures using a direct updating technique', *The 19th Tnternational Seminar for Modal Analysys*, pp. 489–497.

Das, A. S. & Dutt, J. K. (2008) 'Reduced model of a rotor-shaft system using modified SEREP', *Mechanics Research Communications*, 35(6), pp. 398–407.

Douka, E., Loutridis, S. & Trochidis, A. (2004) 'Crack identification in plates using wavelet analysis', *Journal of Sound and Vibration*, 270, pp. 279–295.

Ewins, D. J. (1990) 'Modal testing as an aid to vibration analysis', 23th Conference on Mechanical Engineering.

Ewins, D. J. (2000) 'Adjustment or updating of models', Sadhana, 25(3), pp. 235–245.

Ewins, D. J. (2000) *Modal testing : theory, practice, and application*. Research Studies Press.

Fasel, T. R., Sohn, H. & Farrar, C. R. (2003) 'Application of frequency domain ARX models and extreme value statistics to damage detection', Liu, S.-C. (ed.) *SPIE--The International Society for Optical Engineering*, p. 145.

Filipiuk, S. (2005) *Most przez Dziwnę w Wolinie*. Bydgoszcz-Gdańsk: qax manufaktura artystyczna.

Filipiuk, S. & Stefanowski, T. (2014) 'Most extradosed przez Wisłę koło Kwidzyna', *Inżynieria i Budownictwo*, 70(1), pp. 3–5. Flaga, K. & Januszkiewicz, K. (2010) *Piękno konstrukcji mostowych*. Kraków: Politechnika Krakowska.

Flaga, K., Januszkiewicz, K., Hrabiec, A. & Cichy-Pazder, E. (2005) *Estetyka konstrukcji mostowych*. Politechnika Krakowska.

Flores-Santiago, O. & Link, M. (1993) 'Localization Techniques for Parametric Updating of Dynamic Mathematical Models', *International Forum on Areoelasticity and Structural Dynamics*. Strasbourg.

Fox, R. & Kapoor, M. (1968) 'Rate of Change of Eigenvalues and Eigenvectors', AIAA Journal, 6, pp. 2426–2429.

Friswell, M. I., Garvey, S. D. & Penny, J. E. T. (1995) 'MODEL REDUCTION USING DYNAMIC AND ITERATED IRS TECHNIQUES', *Journal of Sound and Vibration*, 186(2), pp. 311–323.

Friswell, M. I., Garvey, S. D. and Penny E T (1998) 'The convergence of the iterated IRS method', *Journal of Sound and Vibration*, 211(1), pp. 123–132.

Friswell, M. I. & Mottershead, J. (1995) *Finite Element Model Updating in Structural Dynamics*. Nowell: Kluwer Academic Publishers Group.

Gawrylczyk, K. M. (2011) 'Metody Optymalizacji - wykład'. Szczecin: Zachodniopomorski Uniwersytet Technologiczny w Szczecinie.

Gökdağ, H. & Kopmaz, O. (2009) 'A new damage detection approach for beam-type structures based on the combination of continuous and discrete wavelet transforms', *Journal of Sound and Vibration*, 324(3–5), pp. 1158–1180.

Góra, P. (2010) 'Komputerowa analiza zagadnień różniczkowych - 10. Dygresje matematycze- Wykład'. Kraków: Instytut Fizyki, Uniwersytet Jagieloński.

Góra, P. (2012) 'Wstęp do metod numerycznych - Uwarunkowanie - Eliminacja Gaussa - wykład'. Kraków: Instytut Fizyki, Uniwersytet Jagieloński.

Grej, K., Bąk, J., Sałach, W. & Olesiak, C. (2008) 'Projekt nowego mostu drogowego przez rzekę Wisłę w Puławach', *Inżynieria i Budownictwo*, 64(1–2), pp. 32–36.

Grotte, B., Karwowski, W., Mossakowski, P., Wróbel, M., Zobel, H. & Żółtowski, P. (2009) 'Stalowa łukowa kładka dla pieszych z podwieszonym pomostem z kompozytów polimerowych', *Inżynieria i Budownictwo*, 65(1–2), pp. 69–73. Guyan, R. J. (1965) 'Reduction of stiffness and mass matrices', AIAA Journal, 3(2), pp. 380–380.

Hildebrand, M., Malinowski, M. & Żółtowski, K. (2009) 'Monitoring mostów podwieszonych', *Mosty*, 3, pp. 16–24.

Hirsz, M. (2008) Finite element model updating on experimental modal parameters. Politechnika Gdańska.

Hirsz, M. & Wilde, K. (2004) 'Plate mode shape identification by frequency response function', *International Workshop on Simulations in Urban Engineering*. Gdańsk, pp. 125–128.

Hirsz, M. & Wilde, K. (2005) 'Experimental study on plate modal parameters', *Zeszyty Naukowe Politechniki Rzeszowskiej. Mechanika*, pp. 153–158.

Hirsz, M. & Wilde, K. (2005) 'Identification of plate dynamic parameters for structural health monitoring', *Shell structures : theory and applications : proceedings of the 8th SSTA Conference*. Gdańsk-Jurata: Taylor & Francis, pp. 327–331.

Hirsz, M. & Wilde, K. (2006) 'Kalibracja parametrów modeli MES z użyciem postaci drgań własnych dla układów belkowych', *Zeszyty Naukowe Politechniki Gdańskiej. Budownictwo Lądowe*, pp. 239–246.

Hirsz, M. & Wilde, K. (2010) 'Updating of steel plate FE model on experimental modal pairs', in Pietraszkiewicz, *Shell structures : theory and applications. Volume 2*. CRC Press, p. 344.

Hong, J.-C., Kim, Y., Lee, H. & Y.W, L. (2002) 'Damage detection using Lipschitz exponent estimated by the wavelet transform: applications to vibration modes of beam.', *Journal of Solid and Structures*, 39, pp. 1803–1846.

Huang, M., Guo, W., Zhu, H. & Li, L. (2008) 'Dynamic test and finite element model updating of bridge structures based on ambient vibration', *Frontiers of Architecture and Civil Engineering in China*. SP Higher Education Press, 2(2), pp. 139–144.

Huang, Y. & Nemat-Nasser, S. (2006) 'Damage detection with spatially distributed 2D continuous wavelet transform', Tomizuka, M., Yun, C.-B., and Giurgiutiu, V. (eds), p. 61742M.

Ibrahim, S. R. (1988) 'Correlation of Analysis and Test in Modeling of Structures: Assessment and Review', *Structural Safety Evaluation Based on System Identification Approaches*. Wiesbaden: Vieweg+Teubner Verlag, pp. 195–211. Irons, B. (1965) 'Structural eigenvalue problems - elimination of unwanted variables', AIAA Journal, 3(5), pp. 961–962.

Jaishi, B. & Ren, W.-X. (2007) 'Finite element model updating based on eigenvalue and strain energy residual using multiobjective optimization technique', *Mechanical Systems and Signal Processing*, 21(5), pp. 2295–2317.

Jung, D.-S. & Kim, C.-Y. (2009) 'FE model updating based on hybrid genetic algorithm and its verification on numerical bridge model', *Structural Engineering and Mechanics*. Techno-Press, 32(5), pp. 667–683.

Kabe, A. M. (1985) 'Stiffness matrix adjustment using mode data', *AIAA Journal*, 23(9), pp. 1431–1436.

Kaliński, W., Kiedrowski, R., Prądzyński, S. & Malinowski, M. (2004) 'Realizacja projektu wzmocnienia mostu przez rzeke wisłe w Kiezmarku', *Współczesne metody wzmacnania i przebudowy mostów XIV seminarium*. Poznań: Wydawnictwo Politechniki Poznańskiej, pp. 145–154.

Kim, H. & Cho, M. (2008) 'Sub-domain reduction method in non-matched interface problems', *Journal of Mechanical Science and Technology*. Korean Society of Mechanical Engineers, 22(2), pp. 203–212.

Kim, J.-T., Ryu, Y.-S., Cho, H.-M. & Stubbs, N. (2003) 'Damage identification in beam-type structures: frequency based method vs mode-shape-based method.', *Engineering Structures*, 25, pp. 57–67.

Klikowicz, P., Salamak, M. & Łaziński, P. (2016) 'Monitoring mostów betonowych przy użyciu metod akustycznych', *Materiały Budowlane*, 4, pp. 44–46.

Klikowicz, P., Salamak, M. & Poprawa, G. (2016) 'Structural Health Monitoring of Urban Structures', *Procedia Engineering*, 161, pp. 958–962.

Kucharski, T. (2002) *System pomiaru drgań mechanicznych*. Wydawnictwa Naukowo-Techniczne.

Lee, J. & Kim, S. (2007) 'Structural Damage Detection in the Frequency Domain using Neural Networks', *Journal of Intelligent Material Systems and Structures*. Sage PublicationsSage UK: London, England, 18(8), pp. 785–792.

Li, H., Zhang, M. & Hu, S.-L. J. (2008) 'Refinement of reduced-models for dynamic systems', *Progress in Natural Science*, 18(8), pp. 993–997.

Li, Y.-Q. & Du, Y.-L. (2009) 'Dynamic finite element model updating of stay-cable based on the most sensitive design variable', *Journal of Vibration and Shock*, 28(3), pp. 141–143.

Lieven, N. A. & Waters, T. P. (1994) 'Error Location Using Normalised Cross Orthogonality', Proceeding of the 12th International Modal Analysis Conference (IMAC XII). Honolulu, pp. 761– 764.

Lin, R. M., Lim, M. K. & Du, H. (1995) 'Improved Inverse Eigensensitivity Method for Structural Analytical Model Updating', *Journal of Vibration and Acoustics*. American Society of Mechanical Engineers, 117(2), p. 192.

Lin, R. M., Lim, M. K. & Du, H. (1995) 'Improved inverse eigensensitivity method for structural analytical model updating.', *Journal of Vibration and Acoustic*, 117, pp. 192–198.

Link, M. (1993) 'Updating of analytical models – procedures and experiments', *Conference* on Modern Practice in Stress and Vibration Analysis, pp. 35–52.

Liu, Y., Duan, Z. D. & Li, H. (2009) 'Updating of Finite Element Model in Considering Mode Errors with Fuzzy Theory', *Key Engineering Materials*. Trans Tech Publications, 413–414, pp. 785– 792.

Łagoda, M. & Łagoda, G. (2014) Piękno mostów / Beauty of bridges. IBDiM Studia i materiały, zeszyt 75.

Łapko, A. (2010) 'Estetyka mostów a postęp naukowo-techniczny', *Czasopismo Techniczne. Architektura*, 107(7–A/2), pp. 230–232.

Maia, N. M. M. & Silva, J. M. M. (1997) *Theoretical and Experimental Modal Analysis*. Letchworth: Research Studies Press.

Majumder, L. & Manohar, C. S. (2003) 'A time-domain approach for damage detection in beam structures using vibration data with a moving oscillator as an excitation source', *Journal of Sound and Vibration*, 268(4), pp. 699–716.

Malinowski, M. (2003) 'Monitoring der "Brücke des III. Jahrtausends" in Danzig', *Stahlbau*, 72(8), pp. 567–573.

Malinowski, M., Banaś, A., Cywiński, Z. & Wąchalski, K. (2015) 'Die neue Straßenbrücke in Toruń, Polen - Teil 2: Nachweise', *Stahlbau*, 84(5), pp. 305–313.

215 | Strona

Malinowski, M., Banaś, A., Kosecki, W. & Windorpski, H. (2016) 'Drogowy most przez rzekę Wisłę w Tczewie przeszłość – teraźniejszość – przyszłość', *Duże Mosty Wieloprzesłowe*. Wrocław: Dolnośląskie Wydawnictwo Edukacyjne, pp. 447–456.

Malinowski, M., Klocek, T. & Wysiatycki, K. (1988) 'Uszkodzenia przęseł zalewowych mostu przez Wisłę w Kiezmarku.', *Konferencja naukowo - techniczna pt. Naprawa i wzmacnianie betonowych i zespolonych konstrukcji mostowych*'. Kielce, pp. 93–100.

Malinowski, M., Sitarski, A., Banaś, A. & Rutkowski, R. (2015) 'Monitoring technologicznych ram zabezpieczenia przejść poprzecznych tunelu pod martwą Wisłą w Gdańsku', *Archiwum Instytutu Inżynierii Lądowej / Politechnika Poznańska*, 19, pp. 165–175.

Marwala, T. (2000) Fault Identification Using Neural Networks And Vibration Data. St. John's College.

Marwala, T. (2009) Computational Intelligence for Missing Data Imputation, Estimation, and Management. IGI Global.

Marwala, T. (2010) *Finite element model updating using computational intelligence techniques: applications to structural dynamics.* Springer-Verlag London.

McConnell, K. G. (2008) Vibration testing : theory and practice. Wiley.

Minshui, H. & Hongping, Z. (2008) 'Finite element model updating of bridge structures based on sensitivity analysis and optimization algorithm', *Wuhan University Journal of Natural Sciences*. Wuhan University, 13(1), pp. 87–92.

Mottershead, J. E., Link, M. & Friswell, M. I. (2011) 'The sensitivity method in finite element model updating: A tutorial', *Mechanical Systems and Signal Processing*, 25(7), pp. 2275–2296.

Mottershead, J. & Friswell, M. I. (1993) 'Model Updating in Structural Dynamics: A Survey', Journal of Sound and vibration, 167(2), pp. 347–375.

Nelwamondo, F. V. & Marwala, T. (2006) 'Faults Detection Using Gaussian Mixture Models, Mel-Frequency Cepstral Coefficients and Kurtosis', *2006 IEEE International Conference on Systems, Man and Cybernetics*. IEEE, pp. 290–295.

Noor, A. K. (1994) 'Recent Advances and Applications of Reduction Methods', *Applied Mechanics Reviews*. American Society of Mechanical Engineers, 47(5), p. 125.

O'Callahan, J. C. (1989) 'A Procedure for an Improve Reduced System (IRS) Model', 7th International Modal Conference. Las Vegas, pp. 17–21.

O'Callahan, J. C., Avitabile, O. & Riemer, R. (1989) 'System Equivalent Reduction Expansion Process', 7th International Modal Conference. Las Vegas, pp. 29–37.

Ojalvo, I. & Pilon, D. (1988) 'Diagnostics for geometrically locating structural math model errors from modal test data', *29th Structures, Structural Dynamics and Materials Conference*. Reston, Virigina: American Institute of Aeronautics and Astronautics.

Olaszek, P. (2015) *Cyfrowe metody pomiarowe w zastosowaniu do badań mostów*. Warszawa: Komitet Inżynierii Lądowej i Wodnej PAN.

Olaszek, P. & Łagoda, M. (2011) 'Uniknięcie awarii mostu w wyniku badań pod próbnym obciążeniem', *XXV Konferencja 'Awarie budowlane'*. Zeszyt 'Zapobieganie, diagnostyka, naprawy, rekonstrukcje', pp. 1219–1226.

Onysyk, H. (2011) 'Analiza wybranych wyników pomiarów elektronicznych mostu przez Wisłę w Puławach', *Inżynieria i Budownictwo*, 67(7–8), pp. 426–428.

Park, W., Park, J. & Kim, H.-K. (2015) 'Candidate model construction of a cable-stayed bridge using parameterised sensitivity-based finite element model updating', *Structure and Infrastructure Engineering*, 11(9), pp. 1163–1177.

Prakash, B. G. & Prabhu, M. S. S. (1986) 'Reduction techniques in dynamic substructures for large problems', *Computers & Structures*, 22(4), pp. 539–552.

Qu, W. and Peng, Q. (2007) 'Damage detection method for vertical bars of mast structure in time domain', *Journal of Earthquake Engineering and Engineering Vibration*, 27, pp. 110–116.

Regińska, T. (2013) 'Zastosowanie metod numerycznych'. Warszawa: Instytut Matematyczny PAN, Politechnika Warszawska.

Rudzik, A., Pradelok, S. & Poprawa, G. (2014) 'Changes natural frequency of the truss railway bridge due to the progressive damage', *Journal of Civil Engineering, Environment and Architecture*, XXXI(61 (4/14)), pp. 179–191.

Salamak, M. & Fross, K. (2010) 'Mosty, które zmieniają miasta', Mosty, 3, pp. 70–77.

Sastry, C. V. S., Roy Mahapatra, D., Gopalakrishnan, S. & Ramamurthy, T. S. (2003) 'An iterative system equivalent reduction expansion process for extraction of high frequency response from reduced order finite element model', *Computer Methods in Applied Mechanics and Engineering*, 192(15), pp. 1821–1840.

Schlune, H., Plos, M. & Gylltoft, K. (2009) 'Improved bridge evaluation through finite element model updating using static and dynamic measurements', *Engineering Structures*, 31(7), pp. 1477–1485.

Schultz, M. J., Pai, P. F. & Abdelnaser, A. S. (1996) 'Frequency Response Function Assignment Technique for Structural Damage Identificatio (7 pages) – Society for Experimental Mechanics', *IMAC XIV – 14th International Modal Analysis Conference*, pp. 105–111.

Schwarz, B., Richardson, M. & Formenti, D. L. (2007) 'FEA Model Updating Using SDM', Journal of Sound And Vibration, 41, pp. 18–23.

Shahdin, A., Mezeix, L., Bouvet, C., Morlier, J. & Gourinat, Y. (2009) 'Monitoring the effects of impact damages on modal parameters in carbon fiber entangled sandwich beams', *Engineering Structures*, 31(12), pp. 2833–2841.

Sieńko, R. (2013) 'Systemy monitorowania mostów– przykładowe realizacje w Polsce', *Mosty*, 5, pp. 24–29.

Siwowski, T. & Czarnik, K. (2014) 'Most podwieszony przez Wisłok w Rzeszowie', *Mosty*, 4, pp. 26–29.

Siwowski, T., Kaleta, D., Kulpa, M. & Poneta, P. (2014) 'Pierwszy polski most kompozytowy – koncepcja techniczna i badania wstępne', *Archiwum Instytutu Inżynierii Lądowej / Politechnika Poznańska*.

Sohn, H., Farrar, C. R., Hemez, F., Stinemates, D. W., Nedler, B. & Czarnecki, J. (2004) *A Review of Structural Health Monitoring Literature 1996 – 2001*. Los Alamos National Laboratory. doi: LA-13976-MS.

Stachurski, A. (2009) *Wprowadzenie do optymalizacji*. Oficyna Wydawnicza Politechniki Warszawskiej.

Stefanowski, T. & Filipiuk, S. (2015) 'Most Uniwersytecki przez Brdę w Bydgoszczy', *Mosty*, 2, pp. 58–60.

Szymczak, C. (1998) Elementy teorii projektowania. Wydawnictwo Naukowe PWN.

Waters, T. P. (1995) *Finite Element Model Updating Using Measured Frequency Response Function*. University of Bristol.

Wąchalski, K. & Cywiński, Z. (2015) 'Die neue Strassenbruecke in Torun, Polen. Teil 1: Planung und Bau', *Stahlbau*, 84(4), pp. 267–274.

Wenzel, H. (2008) Health Monitoring of Bridges. John Wiley & Sons.

Weseli, J., Radziecki, A. & Salamak, M. (2007) 'Monitoring mostów autostradowych na terenach podlegających wpływom eksploatacji górniczej', *Magazyn Autostrady*, 5, pp. 126–135.

Wilde, K. (2014) 'systemy Monitoringu Konstrukcji obiektów budowlanych cz. 1', *Builder Budownictwo-Architektura*, 5, pp. 66–69.

Wilde, K. (2016) 'Systemy monitoringu technicznego w obiektach mostowych - niezbędne czy przydatne?', *Duże Mosty Wieloprzesłowe*. Wrocław: Dolnośląskie Wydawnictwo Edykacyjne, pp. 497–506.

Wong, J.-M., Mackie, K. & Stojadinovic, B. (2006) 'Bayesian updating of bridge fragility curves using sensor data', *Third International Conference on Bridge Maintenance, Safety and Management*. Porto,: CRC Press 2006, pp. 613–614.

Xiao, X., Xu, Y. L. & Zhu, Q. (2015) 'Multiscale Modeling and Model Updating of a Cable-Stayed Bridge. II: Model Updating Using Modal Frequencies and Influence Lines', *Journal of Bridge Engineering*, 20(10), p. 4014113.

Yan, G., Duan, Z., Ou, J. & De Stefano, A. (2010) 'Structural damage detection using residual forces based on wavelet transform', *Mechanical Systems and Signal Processing*. Academic Press Inc., 24(1), pp. 224–239.

Yue, L. N. & Li, S. (2014) 'The Finite Element Model Updating of Long Span Cable-Stayed Bridge Based on Static and Dynamic Loading Test', *Applied Mechanics and Materials*. Trans Tech Publications, 644–650, pp. 5014–5018.

Zheng, Y. M., Sun, H. H., Zhao, X., Chen, W., Zhang, R. H. & Shen, X. D. (2009) 'Finite element model updating of a long-span steel skybridge', *Journal of Vibration Engineering*, 22, pp. 105–110.

Zhong, R., Zong, Z., Niu, J., Liu, Q. & Zheng, P. (2016) 'A multiscale finite element model validation method of composite cable-stayed bridge based on Probability Box theory', *Journal of Sound and Vibration*, 370, pp. 111–131.

Zienkiewicz, O. C. (1986) The Finite Element Method. New York: McGraw-Hill.

Zimin, V. D. & Zimmerman, D. C. (2009) 'Structural Damage Detection Using Time Domain Periodogram Analysis', *Structural Health Monitoring*. SAGE PublicationsSage UK: London, England, 8(2), pp. 125–135.

Zimmerman, D. C. & Kaouk, M. (1992) 'Eigenstructure assignment approach for structural damage detection', *AIAA Journal*, 30(7), pp. 1848–1855.

Živanović, S., Pavic, A. & Reynolds, P. (2007) 'Finite element modelling and updating of a lively footbridge: The complete process', *Journal of Sound and Vibration*, 301(1), pp. 126–145.

Zobel, H., Karwowski, W. & Wróbel, M. (2003) 'Kładka z kompozytu polimerowego zbrojonego włóknem szklanym', *Inżynieria i Budownictwo*, 59(2), pp. 108–109.

Żółtowski, K. (2015) 'Monitoring konstrukcji mostu podwieszonego i extradosed', *Mosty*, 6, pp. 34–38.

Żółtowski, K., Binczyk, M. & Kalitowski, P. (2016) 'Most Cłowy w Szczecinie. Historia i przyszłość', *Duże Mosty Wieloprzesłowe*. Wrocław: Dolnośląskie Wydawnictwo Edukacyjne, pp. 467–474.

Słowniki i encyklopedie

Słownik PWN- Słownik języka polskiego PWN (http://sjp.pwn.pl/)

Normy i przepisy prawne:

PB 1994 - Prawo budowlane a dnia 7 lipca 1994r. (Dz.U. Nr 89, poz 414) tj. z dnia 9 lutego 2016r. (Dz.U. z 2016r. poz 290) zm. Dz.U.z 2016r. poz.1250, Dz.U. z 2016r. poz 1165, Dz.U.z 2016r. poz. 961

I1 2005 – Instrukcje przeprowadzania przeglądów drogowych obiektów inżynierskich,
 Załącznik do Zarządzenia nr 14 Generalnego Dyrektora Dróg Krajowych i Autostrad z dnia 7 lipca
 2005 roku, Warszawa 2005

Załącznik 1

Budowa tabeli wynikowej aktualizowanych parametrów

								macie	rz wag dla wybranego	o wainatu - rozmieszo	zenie czujr	ików wg sch	ematu nr 5									
NP.	liczba postaci brana do	postacie	n _{max}	n _d	in	deksy bazo	we		kryterium NMD [%]			f [Hz]		funkcja kary	liczba iteracji	współczynnik w _p	położenie macierzy	sztywr akutali	iość elemti zacji parar	nów po netrów	indeks Ic elemtno	dla poszególnych w po aktualizacji
	procedury				l ^{abs} m	l ^{abs} l	abs s	1	2	3	1	2	3	"p			blokowej	1		n	1	n
								kryterium NMD 1				kryterium f_{Δ}	L.	kryterium J _p								
liczba wierszy macierzy wag w zależności od wybranego wariantu	liczba postaci drgań własnych wykorzystywana w procedurze aktualizacji parametrów	postacie drgań własnych wykorzystyw ane procedurze aktualizacji parametrów	numer elementu modelu MES o największej bezwzględnej zamianie sztywności lub masy otrzymanej w wyniku procedury aktualizacji	numer dowolnego elementu modelu MES wytypowanego (potencjalnie uszkodzonego)	zesta bazow si weł	awienie inde vych odnos ię do indek ktorowego	eksów zących su I _o ^{abs}	minimalna wartość różnicy kryterium NMD pierwszej postaci drgań własnych pomiędzy wartością pomierzona a zaktualizowaną kryterium minimalna wartość NMD dwóch pierw własnych pomi pomierzona a z minimalna wartość postaci drgań włas	ć różnicy kryterium szych postaci drgań iędzy wartością zaktualizowaną kryterium NMD 3	AD wszystkich trzech ością pomierzona a	minima wszystkic drgań warto z	alna wartość h trzech częs własnych po iścią pomierz aktualizowar	różnicy totliwości między zona a ną	wybór minimalnej wartości funkcji kary	liczba iteracji procedury aktualizacji parametrów	wartość współczynnika w _p skalującego macierz wag parametrów W ₉₉	numer iteracji podstawienia blokowej macierzy diagonalnej W mm	wartoś element proce	ci sztywno ów modelu durze aktu barametróv	ści El _i n u MES po alizacji w	wartości elemen	indeksu I _o ^{abs} dla <i>n</i> tów modelu MES

Tabele wynikowe aktualizacji parametrów dla zestawów macierzy wag w wariantach 1-3 5-8 przy uszkodzeniu elementu numer 3 o intensywności 15%

|
 |

 | | | | | macierze wag wariant 1 - rozmieszo | enie czujników wg schematu
 | nr 5 | | |
 | | | | | | |
 |

--
---|--|--
--	---	--	--	--	---
--	---	--			
liczba postaci NP. brana do postacie n _{max} n _d indeksy bazowe					
 | kryterium NMD [%] f [Hz] fur

 | nkcja kary
liczba iteracji współczynnik wp macierzy | | | sztyw | ność elemtnów po akutalizacji parame | rów
 | | | |
 | | indek | l _o dla poszególnych eler | ntnów po aktualizacji | | |
 |
| procedury rim rim <thrim< th=""> rim <thrim< th=""> <thrim<< td=""><td>1 2 3 1 2 3 1.064 1.653 2.264 19.44 77.16 175.11</td><td>58345 101 1 0</td><td>1 2
2197.2 2159.1</td><td>3
1999.8</td><td>4 2167.4</td><td>5 6
2175.6 2173.1</td><td>7
2166.3</td><td>8
2007.0</td><td>9
2164.0</td><td>10
2198.1</td><td>1 2
-1.18 0.58</td><td>3 7.91</td><td>4 0.19</td><td>5</td><td>6
-0.07</td><td>7
0.25</td><td>8 9
7.58 0.35</td><td>10</td></thrim<<></thrim<></thrim<>
 | 1 2 3 1 2 3 1.064 1.653 2.264 19.44 77.16 175.11

 | 58345 101 1 0 | 1 2
2197.2 2159.1 | 3
1999.8 | 4 2167.4 | 5 6
2175.6 2173.1 | 7
2166.3
 | 8
2007.0 | 9
2164.0 | 10
2198.1 | 1 2
-1.18 0.58 | 3 7.91 | 4 0.19 | 5
 | 6
-0.07 | 7
0.25 | 8 9
7.58 0.35 | 10
 |
|
 |

 | | | | | macierze wag warlant 2 - rozmieszo | enie czujników wg schematu
 | nr 5 | | |
 | | | | | | |
 |
| liczba postaci postaci n _{max} n _d indeksy bazowe
 | kryterium NMD [%] f [Hz] fur

 | nkcja kary
liczba iteracji współczynnik wo macierzy | | | sztyw | ność elemtnów po akutalizacji parame | rów
 | | | |
 | | indek | l _o dla poszególnych eler | mtnów po aktualizacji | | |
 |
| procedury
1 2 1 2 3 3 189 0.42 2.31
 | 1 2 3 1 2 3
1 210 1 301 6 807 19 42 77 16 175 11

 | 50368 101 1 1 | 1 2
2546 3 2102 7 | 3 2012 7 | 4 | 5 6
2176 6 2165 5 | 7 2145 1
 | 8 2042 3 | 9 | 10 | 1 2
 | 3 | 4 | 5 | 6 | 7 | 8 9 | 10
 |
| 2 2 1 2 3 3 5.01 1.20 3.77 3 2 1 2 3 3 5.01 1.20 3.77 4 2 1 2 3 3 577700.00 129700.00 2371000.01
 | 1.096 1.424 4.993 19.45 77.16 175.11
0 0.000 0.000 0.000 19.44 77.16 175.11
1.099 1.135 5.118 19.44 77.16 175.11

 | 58739 101 1 2 1.0611 101 1 3 58877 101 1 4 | 2203.3 2123.5
2171.6 2171.6
2196.7 2153.3 | 1990.2
1845.9
1989.6 | 2169.4
2171.6
2164.5 | 2181.0 2171.5
2171.6 2171.6
2177.6 2168.7 | 2164.8
2171.6
2167.8
 | 2020.3
2171.6
2017.2 | 2190.6
2171.6
2171.7 | 2206.5
2171.6
2199.9 | -1.46 2.22
0.00 0.00
-1.16 0.84
 | 8.35
15.00 | 0.10 0.00 0.33 | -0.43
0.00 | 0.00 0.00 0.14 | 0.32 | 6.97 -0.87
0.00 0.00
7.11 0.00 | -1.60
0.00
 |
| 1 2 3 3 5.33 1.18 9.72
 | 1.035 1.135 5.116 13.44 77.16 175.11 1.224 1.139 5.694 19.44 77.16 175.11

 | 50077 101 1 4 58832 101 1 5 | 2196.4 2153.0 | 1990.0 | 2168.6 | 2186.2 2162.5 | 2165.2
 | 2017.1 | 2169.9 | 2199.2 | -1.14 0.86
 | 8.36 | 0.14 | -0.67 | 0.42 | 0.30 | 7.12 0.08 | -1.27
 |
|
 |

 | | | | | macierze wag wariant 3 - rozmieszo | enie czujników wg schematu
 | nr 5 | | |
 | | | | | | |
 |
| NP. brana do postacie procedury later later later
 | kryterium NMD [%] f [Hz] fur

 | nkcja kary
J _p liczba iteracji współczynnik wp położenie
macierzy
blokowej | | | sztyw | ność elemtnów po akutalizacji parame | rów
 | | | |
 | | indek | a dla poszególnych eler | ntnów po aktualizacji | | 1 |
 |
| 1 2 1 2 3 5.12 1.04 13.70 2 2 1 2 2 5.12 1.04 13.70
 | 1 2 3 1 2 3
1.064 1.653 2.264 19.44 77.16 175.11
1.066 1.635 2.320 19.44 77.16 175.11

 | 58345 101 1 0
5840.2 101 0.1 0 | 1 2
2197.2 2159.1
2107.7 2160.5 | 3
1999.8
1000 4 | 4
2167.4
2166 2 | 5 6
2175.6 2173.1
2174.0 2171.7 | 7 2166.3 2165.5
 | 8
2007.0
2006.8 | 9
2164.0
2165.5 | 10
2198.1
2108.6 | 1 2
-1.18 0.58
 | 3
7.91
7.02 | 4
0.19 | -0.18 | -0.07 | 7 0.25 | 8 9
7.58 0.35
7.50 0.38 | -1.22
 |
| 1 2 1 2 3 5 5 5 5 100 1581 3 2 1 2 3 3 5.18 1.04 1581 4 2 1 2 3 3 5.18 1.04 1581 7 2 4 2 2 2 7.18 1.04 1587
 | 1.050 1.625 1.120 1.044 77.16 175.11 1.055 1.622 2.213 19.44 77.16 175.11 1.055 1.621 2.212 19.44 77.16 175.11 1.055 1.621 2.212 19.44 77.16 175.11

 | 50513 101 0.1 0 585.13 101 0.01 0 58.521 101 0.001 0 | 2197.8 2160.7
2197.8 2160.7
2197.8 2160.8 | 1999.4
1999.4 | 2166.2
2166.2 | 2173.8 2171.5
2173.8 2171.5
2173.8 2171.5 | 2165.3
2165.3
2165.3
 | 2006.7
2006.7 | 2165.7
2165.7
2165.7 | 2198.7
2198.7
2198.7 | -1.21 0.50
-1.21 0.50
 | 7.93 | 0.25 | -0.10 | 0.01 | 0.29 0.29 | 7.59 0.27
7.59 0.27
7.59 0.27 | -1.25
 |
| J 2 1 2 3 3 5.17 1.04 1021 6 2 1 2 3 3 5.06 1.04 20.32 7 2 1 2 3 3 4.38 1.05 23.62
 | 1.033 1.013 2.202 19.44 77.16 175.11 1.062 1.602 2.109 19.44 77.16 175.11 0 1.110 1.482 1.426 19.44 77.16 175.11 0

 | 5.5384 101 0.0001 0 0.59196 101 0.00001 0 0.064138 101 0.000001 0 | 2197.5 2101.0
2198.6 2163.2
2204.2 2178.9 | 1999.4
1999.4
1999.4 | 2166.6
2169.5 | 2173.5 2171.4
2175.1 2170.1
2184.5 2161.0 | 2163.3
2164.9
2161.8
 | 2006.7
2006.9 | 2163.3
2147.6 | 2198.0
2197.9
2192.4 | -1.21 0.49
-1.24 0.39
-1.50 -0.34
 | 7.93 7.93 7.93 | 0.23 | -0.16 -0.59 | 0.07 0.49 | 0.25 0.31 0.45 | 7.60 0.38
7.59 1.10 | -1.24
-1.21
-0.96
 |
| 8 2 1 2 3 3 3.80 1.21 4.79 9 2 1 2 3 3 6.46 2.68 11.37 10 2 1 2 3 3 8.68 5.03 8.15
 | 1.121 1.181 0.113 19.44 77.16 175.11 0 0.650 0.693 0.248 19.44 77.16 175.11 0 0.325 0.478 0.141 19.44 77.16 175.11 0

 | 0.010014 101 0.0000001 0 .0018014 101 0.00000001 0 .0018014 9 0.000000001 0 | 2216.3 2210.0
2214.4 2192.9
2211.6 2180.0 | 1987.9
1930.1
1897.6 | 2171.3
2155.8
2138.0 | 2206.2 2140.9
2213.3 2133.7
2207.7 2139.0 | 2158.4
2175.9
2196.6
 | 2019.8
2081.4
2117.1 | 2117.4
2134.6
2147.2 | 2181.0
2179.6
2179.8 | -2.05 -1.77
-1.97 -0.98
-1.84 -0.38
 | 8.46
11.12
12.62 | 0.01 0.73 1.55 | -1.59
-1.92
-1.66 | 1.42
1.75
1.50 | 0.61
-0.19
-1.15 | 6.99 2.50
4.16 1.71
2.51 1.13 | -0.43
-0.37
-0.38
 |
| 11 2 1 2 3 9.38 6.11 9.50 12 2 1 2 1 3 120.70 16.53 0.74 13 2 1 2 4 3 1.04 0.16 9.99
 | 0.275 0.402 0.090 19.44 77.16 175.11 0. 105.860 51.185 65.851 19.44 77.16 175.11 0. 106.640 53.182 228.800 19.44 77.16 175.11 0.

 | .0018014 13 1E-10 0 .0018014 6 1E-11 0 .0018014 8 1E-12 0 | 2208.5 2173.0
-1407400000000000 19140000000
-291850000000000 -14077000000 | 1890.0
0000.0 85128000000000.0
0000.0 14055000000000.0 | 2142.0
6334400000000.0
-1125800000000000.0 - | 2212.8 2133.7
4418600000000.0 -410300000
11265000000000.0 -6460500000 | 2193.9
00.0 -1649400000000.0
000.0 7170300000000.0
 | 2125.5
-241890000000000
-5304400000000000 - | 2154.5
426120000000.0 -4
168960000000000.0 7205 | 2180.3
182390000000.0 64807
5800000000000.0 13439 | -1.70 -0.06
000000000000 -88138000000000
00000000000 6482100000000.
 | 12.97
.00 -3920000000000.00
.6472000000000.00 | 1.36
-291690000000.00
51841000000000.00 | -1.90
-2034700000000.00
51872000000000.00 | 1.75
18894000000.00
2975000000000.00 | -1.02
75952000000.00
-330180000000.00 | 2.12 0.79
111390000000.00 -1962200000
244260000000.00 77805000000 | -0.40
0.00 22213000000.00
0.00 -331810000000000.00
 |
| 14 2 1 2 7 3 1.71 0.33 0.63 15 2 1 2 10 3 0.31 0.04 425.54 16 2 1 2 10 3 6386 799 96.01
 | 132.640 250.970 59.164 19.44 77.16 175.11 0. 143.360 36.904 187.250 19.44 77.16 175.11 0. 275.920 741.930 539.920 19.44 77.16 175.11 0.

 | .0018014 7 1E-13 0 .0018014 8 1E-14 0 .0018014 8 1E-15 0 | 39693000000000.0 -7266200000
1340900000000.0 -9436900000
-1782400000000.0 540940000000 | 000.0 -2148000000000.0
000.0 932780000000000000.0
0000.0 1108100000000.0 | -3177700000000.0
0 2875500000000.0
7548400000000.0 | 739920000000.0 -10135000000
-312610000000.0 66812000000
1134500000000.0 -6289700000 | 000.0 -13007000000000.0
000.0 4448000000000.0
00.0 -169960000000.0
 | 207090000000000.0
-253220000000000.0
-33524000000000.0 | -1769400000000.0 14
-84662000000000.0 -3602
45030000000000.0 -4323 | 092000000000.0 -1827
28000000000000.0 -617
34000000000000.0 820 | 8000000000.00 334600000000.0
460000000.00 4345500000000.0
720000000.00 -249990000000000
 | 0 989120000000.00
0 -42953000000000000000000000000000000000000 | 14633000000.00
-132410000000.00
-347590000000.00 | -340720000000.00
143950000000.00
-52244000000.00 | 4667000000000.00
3076600000000.00
289630000000.00 | 5989500000000.00
-2048200000000.00
78263000000.00 | -953630000000.00 81477000000
11660000000000.00 38986000000
1543700000000.00 -207360000000 | .00 -648900000000.00
0.00 1659000000000000.00
00.00 19908000000000000.00
 |
| 17 2 1 2 10 3 0.05 0.01 7.57 18 2 1 2 3 3 69.57 15.79 0.09 10 2 1 2 3 59.57 15.79 0.06 10 2 2 2 55.56 15.07 0.64
 | 5880.300 51.212 154.360 19.44 77.16 175.11 0. 5880.300 51.212 154.360 19.44 77.16 175.11 0. 5880.300 51.212 154.360 19.44 77.16 175.11 0. 5880.300 51.212 154.360 19.44 77.16 175.11 0.

 | 0018014 8 1E-16 0
.0018014 8 1E-17 0 | -633520000000000 301880000000
-774250000000000 31089000000 | -1687700000000000000
00000.0 -2842800000000000.0 | -3569400000000000
-3657400000000000 | 1917300000000.0 -9450800000
1862400000000.0 -9588200000 | 00.0 768060000000.0
00.0 719960000000.0
 | -1284000000000000
-1284000000000000000000000000000000000000 | 2325500000000000 -176
236940000000000 -180 | 51100000000000 2917
00700000000000 3565 | 200000000000 -13901000000000
20000000000 -143160000000000
 | 0.00 77717000000000.00
0.00 13091000000000.00 | 1643600000000.00
1684100000000.00 | -882900000000.00
-857590000000.00 | 43519000000.00
441520000000.00
415310000000.00 | -353680000000.00
-331530000000.00 | 59125000000.00 -10708000000
59125000000.00 -10911000000
55504000000.00 11315000000 | 0.00 81097000000000.00
0.00 8292000000000.00
 |
|
 | 366U 30U 317777 1370 3000 137777 10 1773 11 10

 | 10130177 × 1F-1X 0 | -//9//2010/01/01/01/01/01/01/01/01/01/01/01/01/ | -1950600000000000000000000000000000000000 | -3559/010000000000000000000000000000000000 | 1917300000000000000000000000000000000000 | 00 d 7715000000000 d
 | -1220000000000000000 | 2/35/00000000000000000000000000000000000 | 220000000000000000000000000000000000000 | 200000000000000000000000000000000000000
 | 1 CHI XXX / / WWWWWWWWWWWWW | D/13D/1010000000000000000000000000000000 | -00/00000000000000000000000000000000000 | | | | *119 ///5/************
 |
| 13 2 1 2 3 3 33,33 113,57 0.04 20 2 1 2 3 3 3427,20 690,59 3.90
 | 5880.300 51.212 154.360 19.44 77.16 175.11 0. 5880.300 51.212 154.360 19.44 77.16 175.11 0.

 | 0018014 8 1E-18 0
0018014 8 1E-19 0 | -492780000000000 305380000000
-422410000000000 304130000000 | -1950600000000000000000000000000000000000 | .0 -356940000000000000.0
.0 -356940000000000.0 | 19173000000000.0 -9038500000
1889900000000.0 -9313400000 | 00.0 771500000000.0
00.0 764620000000.0
 | -12290000000000.0
-11878000000000.0 | 2435400000000000 -168
234750000000000 -171 | 32000000000000000000000000000000000000 | 2000000000.00 -141080000000000
1000000000.00 -140050000000000
 | 0.00 8982200000000000000000000000000000000 | 1643600000000.00 | -870240000000.00 | 42886000000.00 | -352100000000.00 | 5469500000000 -1081000000 | 0.00 77452000000000.00
10.00 7907200000000.00
 |
| 15 2 1 2 3 3 302.50 102.57 000.00 20 2 1 2 3 3 3427.20 660.59 3.90
 | 3680.300 51.212 154.360 19.44 77.16 175.11 0.
5880.300 51.212 154.360 19.44 77.16 175.11 0.

 | 0018014 8 1E-18 0
0018014 8 1E-19 0 | -492780000000000 305380000000
-422410000000000 304130000000 | -195050000000000000000000000000000000000 | | 191730000000.0 -903850000 1889900000000.0 -9313400000 macierze wag warlant 5 - rozmieszo | 00.0 7715000000000.0
00.0 7646200000000.0
 | -12290000000000.0
-11878000000000.0 | 24354000000000.0 -168
23475000000000.0 -171 | 22000000000000.0 22693
17200000000000.0 19453 | 2000000000.00 -14108000000000
(000000000.00 -140050000000000
 | 0.00 \$\$606000000000000000000000000000000 | 10 1643600000000.00
10 1643600000000.00 | -88290000000.00 | 42886000000.00 | -35210000000.00 | 54695000000.00 -10810000000 | 0.00 77452000000000.00
 |
| 19 2 1 2 3 3 322.20 660.59 3.90 20 2 1 2 3 3 3427.20 660.59 3.90 Index postad NP brana do
procedury postade prime prime prime
 | 3860.300 31.2.12 134.360 13.4.4 17.10 17.511 0. 3880.300 51.212 154.360 19.44 17.16 17.511 0. kryterium NMD [%] f [H2] fut fut fut

 | 0018014 8 1E-18 0
0018014 8 1E-19 0
nkcja kary
j, liczba Iteracji współczynnik wp
spółczynnik wp | -492780000000000 30580000000
-42241000000000. 304130000000 | 0000.0 -195000000000000000000000000000000000000 | 2 -35694000000000000000000000000000000000000 | 1917300000000.0 9038500000
188990000000.0 9313400000
maclerze wag warlant 5 - rozmieszc
ność elemtnów po akutalizacji parame | 00.0 771500000000.0
00.0 764620000000.0
renie czujników wg schematu
 | -1229000000000.0
-11878000000000.0 | 24354000000000.0 -168
23475000000000.0 -171 | 220000000000.0 2269.
7720000000000.0 1945: |
 | 0.00 \$982200000000000000000000000000000000000 | indek | -822900000000000000000000000000000000000 | 42286000000.00 | -35210000000.00 | 5469500000000 -118100000000
54695000000000 -108100000000 | 0.00 7745200000000.00 7907200000000.00
 |
| 15 2 1 2 3 3 3.02-20 12.05/2 COUNT 20 2 1 2 3 3 3427.20 660.59 3.90 Include protection proceedury postacle postacle nem nem nem indeksy bazowe 1 2 1 2 6 3 4.17 1.87 1.46
 | 3860.300 31.2.12 134.360 134.4 7.16 175.11 0. 3860.300 51.212 154.360 194.4 77.16 175.11 0. kryterium NMD [%] f [Hz] fut 1 2 3 1 2 3 1 2 3 1.131 3.187 5.594 19.58 78.37 176.24 6

 | 00180214 8 1E-18 0
00180214 8 1E-19 0
nkcja kary
J, liczba teracji współczynnik wp macierzy
biokowej
0.68479 101 1 0 | -492780000000000 3063800000000 -4224100000000000 3041300000000 1 2 2176.8 2124.0 | 3
21412
21412 | -355940000000000 0 C -3569400000000000 0 sztyw 4 2169.6 | 191730000000000 -9938500000 18899000000000 -99313400000 maclerze weg warfant 5 - rosmieszc - mość elemtnów po akutalizacji parame 5 6 2232.6 2082.4 2082.4 | 00.0 771500000000.0
00.0 764620000000.0
eenie czujników wg schematu
rów 7
2173.8
 | -122900000000000
-1187800000000000
nr 5
8
2199.1 | 24334000000000.0 -168
23475000000000.0 -171
9
2203.3 | 22000000000000000000000000000000000000 | 2000000000.00 -141080000000000
000000000.00 -14005000000000
-140050000000000
-1400500000000000
-140050000000000000000000000000000000000
 | 3
1.40 | indeks
0.09 | -87024000000000
 | 41021000000000
428860000000.00
mtnów po aktualizacji
6
4.11 | -35210000000.00
-352100000000.00
7
-0.10 | 346950000000 -10810000000 5469500000000 -108100000000 8 9 -1.26 -1.46 | 10 0.00 774520000000000 00 75972000000000.00 10 10 10 10 10 10 10 10 10 10 10 10 1
 |
| 15 2 1 2 3 3 347720 600.59 3.90 2 1 2 3 3 347200 600.59 3.90 NP Incoha on procedury potacle Prana do procedury Indekty bazowe Indekty bazowe 1 2 1 2 6 3 4.17 1.87 1.46
 | 2880.300 31.2.2 193.800 194.4 7.16 175.11 0. 3880.300 51.2.22 154.300 194.4 77.16 175.11 0. knyterium NMD [%] f [Hz] fur fur fur fur 1 2 3 1 2 3 1 2 3 1.131 3.187 5.594 19.58 78.37 176.24 0

 | 0.180/14 8 11-18 0
00180214 8 11-19 0
nkcja kary
J, luczba iteracji współczynnik w połczenie
macierzy
biokowej
0.68479 101 1 0 | -49/280000000000 26538000000000 -4224100000000000 3041300000000 1 2 2176.8 212440 | 3
3
2141.2 | -356940000000000 3569400000000000 cl -3569400000000000 stływ 4 2169.6 | 19173000000000 -9913400000 18899000000000.0 -9913400000 maclerze weg warlant 5 - rozmiesz -rozmiesz ność elemtnów po akutalizacji parame 5 6 232.6 2082.4 - maclerze weg warlant 6 - rozmiesz - - | 00.0 771500000000.0 00.0 764520000000.0 enic cujników wg schematu rów 7
2173.8 | -1229000000000 0
-1187800000000 0
nr 5
8
2199.1 | 24354000000000.068
2347500000000.0171
9
2203.3 | 200000000000.0 2269.
720000000000.0 1945
10
2165.9 | 1 2
-0.24 2.20
 | 3
3
1.40 | indek:
4 0.09 | -88290000000000
-87024000000000
- L dla poszególnych eler
5
-2.81 | 4102100000000
428860000000.00
mtnów po aktualizacji
6
4.11 | -35210000000.00
-35210000000.00
7
-0.10 | 8 9 -1.26 -1.46 | 10 0.00 7/35/00000000000000000000000000000000000
 |
| 15 2 1 2 3 3 3.02.20 10.25 / 10.05 3.09 20 2 1 2 3 3 3.427.20 660.59 3.99 Indextra postadi procedury postade nem n_m n_m indeksy bazowe 1 2 1 2 6 3 4.17 1.467 Inciba postadi postadi postade postade n_m n_m indeksy bazowe indeksy bazowe
 | 3880.300 31.2.12 134.360 134.4 7.16 175.11 0. 3880.300 51.2.12 154.360 194.4 77.16 175.11 0. kryterium NMD [K] f(Hz) f(Hz) fut fut 1 2 3 1 2 3 1 2 3 1.131 3.187 5.594 19.58 78.37 176.24 6

 | 00180214 8 1E-18 0
00180214 8 1E-19 0
nkcja kary
J,
0.688479 101 1 0
nkcja kary
liczba iteracji współczynnik wp
nkcja kary
liczba iteracji współczynnik wp
macierzy
blokowej
0.688479 101 1 0
101 1 0
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010010
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
0010000
001000
0010000
001000
000000
000000
000000
00000
000000 | -492780000000000 3063800000000 -422410000000000 3041300000000 1 2 2176.8 2124.0 | 30000 - 195500000000000000000000000000000000000 | 2 -356940000000000
3 -356940000000000
StTyM
4
2169.6
StTyM
StTyM | 19173000000000 -9038500000 18899000000000.0 -931400000 maclerze wag warlant 5 - rozmieszc -rozmieszc ność elemtnów po akutalizacji parame 5 6 2232.6 2082.4 - maclerze wag warlant 6 - rozmieszc - - maclerze wag warlant 6 - rozmieszc - - | 00.01 771500000000.0
00.01 74620000000.0
enie czujników wg schematu
rów 7
2173.8
enie
czujników wg schematu
rów | -122900000000000000000000000000000000000 | 24354000000000.0 -168
2347500000000.0 -171
9
2201.3 | 200000000000.0 2269.
720000000000.0 1945
10
2165.9 | 1 2
-0.24 2.20
 | 3
3460500000000000000000000000000000000000 | indek | -8270200000000
-87024000000000
-87024000000000
-
-
-
-
-
-
-
2.81
-
-
-
2.81
-
-
-
2.81
-
-
-
2.81
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | 4228000000000
4288600000000
mtnów po aktualizacji
6
4.11 | -352100000000000
-3521000000000000000000000000000000000000 | 8 9
-1.26 -1.46 | 0.00 7/45,000000000000
750720000000000000000000000
 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
 | 3880 300 31.2.2 193.80 194.4 7.16 175.11 0. 3880 300 51.2.22 154.360 194.4 77.16 175.11 0. kryterium NMD [%] f [Hz] fur fur fur 1 2 3 1 2 3 1.133 3.187 5.594 195.8 78.37 176.24 kryterium NMD [%] f [Hz] fur fur fur 1 2 3 1 2 3 1.33 3.196 5.629 19.73.8 176.26 fur

 | 0.0180/14 8 11-18 0
00180/14 8 11-19 0
nkcja kary
<i>li</i> , biczba iteracji współczynnik wp
nkcja kary
<i>li</i> , biczba iteracji współczynnik wp
nkcja kary
<i>li</i> , biczba iteracji współczynnik wp
<i>li</i> , biczba iteracji współczynnik wp
<i>li</i> , biczba iteracji współczynnik wp
<i>li</i> , biczba iteracji straturzy i bickowej
0.67858 101 1 1 | -4927800000000000 30638000000000 -42241000000000000 3041300000000 1 2 2176.8 2124.0 1 2 21776.8 2124.0 | 3
3
3
21412
3
21412 | 4 -356940000000000 stryw
3569400000000000 stryw
4 2169.6 stryw
52794 stryw
52794 stryw
52795 stryw | 191730000000000 -9038500000 18889000000000.0 -9318400000 maclerze weg warlant 5 - rozmiesz -021820000 5 6 2232.6 2082.4 maclerze weg warlant 5 - rozmiesz -02212.0 ność elemtnów po akutalizacji parame -02014 5 6 2332.6 2082.4 maclerze weg warlant 5 - rozmiesz -02014 maclerze weg warlant 5 - rozmiesz -02014 5 6 232.0 2083.5 | 00.00 771500000000.0
00.0 764620000000.0
enele czujników wg schematu
rów
7
2173.8
enele
czujników wg schematu
rów
7
2173.9 | -1220000000000000
-1187800000000000
mr 5
 | 24358000000000000000000000000000000000000 | 20000000000 2269
27000000000 1 1945
100
2165 9 | 1 2
-0.24 2.20
1 2
-0.24 2.20
 | 3
3
1.39 | 164360000000.00
 164360000000.00
 indek
 4
 0.09
 164860000000.00 | -262900000000
-27024000000000
-270240000000000
-270240000000000
-2702400000000000
-2702400000000000
-2702400000000000000
-270240000000000000000
-27024000000000000000000
-27024000000000000000000
-270240000000000000000000
-27024000000000000000000
-270240000000000000000000
-2702400000000000000000000000
-27024000000000000000000000000
-27024000000000000000000000000000
-270240000000000000000000000000000000000 | 42886000000000
428860000000000
mtnów po aktualizacji
6
4.11
mtnów po aktualizacji
6
4.06 | 7
-0.10 | 346950000000 00 -1.0810000000 546950000000 00 -1.0810000000 8 9 -1.26 -1.46 8 9 -1.26 -1.46 | 10
10
10
10
10
0.27
10
10
0.27
 |
| 15 2 1 2 3 3 342720 60559 3.90 20 2 1 2 3 3 342720 60559 3.90 Indeky bazowe procedury potatel Pean Pean <td>2880.300 3.1.2.2 193.400 194.4 7.16 175.11 0. 3880.300 51.2.22 154.300 194.4 77.16 175.11 0. 1 2 154.300 194.4 77.16 175.11 0. 1 2 3 1 2 3 1 2 3 1 1.3 3.187 5.594 19.58 78.37 176.24 6 kryterium NMD [%] f [Hz] fut fut 1 2 3 1 2 3 1 6.529 19.58 78.38 176.26 6 1 2 3 1 2 3 1 75.40 6.031 175.54 6 0.313 2.46 4.393 155.769 176.30 175.54 6 0.313 2.46 4.393 157.563 175.56 175.54 6 0.313 175.54 1.556 1.556.17 1.556 1.556.17</td> <td>0.0180/14 8 11-18 0
00180214 8 11-19 0
nkcja kary
1, liczba iteracji współczynnik w połczenie
macierzy
0.68479 101 1 0
nkcja kary
1, liczba iteracji współczynnik w połczenie
macierzy
0.69468 101 1 1
0.68410 1 1
0.68410 1
0.1 1
0.68410 1
0.68410 1
0.1 1
0.68410 1
0.68410 1
0.1 1
0.68410 1
0.1 1
0.68410 1
0.1 1
0.1 1
0.68410 1
0.1 1
0.1 1
0.1 1
0.1 1
0.68410 1
0.1 1
0.1 1
0.1 1
0.68410 1
0.1 1
0.1 1
0.68410 1
0.1 1
0.1 1
0.1 1
0.68410 1
0.1 1
0.1 1
0.68410 1
0.1 1
0.1 1
0.1 1
0.68410 1
0.1 1
0.1 1
0.1 1
0.1 1
0.68410 1
0.1 1</td> <td>-49/280000000000 3063800000000 -4224100000000000 3041300000000 1 2 2176.8 2124.0 2175.9 2142.0 2175.2 21400</td> <td>3
3
21412
3
21412
3
21414
21408
2025</td> <td>4
2169.6
2169.6
2169.6
2169.6
2169.6</td> <td>19173000000000 40038500000 18890000000000 -9313400000 18890000000000 -9313400000 maclerze weg warlant 5 - rozmiesz notź elemtnów po akutalizacji parame 5 6 2232.6 2082.4 maclerze weg warlant 6 - rozmiesz notź elemtnów po akutalizacji parame 5 6 2232.0 2082.7 2232.0 2086.7 2232.0 2086.7 2232.0 2086.7 2232.0 2086.7 2237.0 2086.7</td> <td>0.0.1 771500000000.0 0.0.2 76420000000.0 0.0.1 7642000000.0 venie czujników wę schematu 7 2173.8 2173.8 venie czujników wę schematu 7 2173.8 2174.2 2173.0 2174.2 2173.0 2173.0</td> <td>- 1220000000000 11878000000000</td> <td>2435400000000000 3 -38
23475000000000 3 -371
9
9
2203.3
9
2205.1
2217.7
2197.8</td> <td>200000000000 2259
2720000000000 1 1945
2720000000000 1 1945
100
2165 9</td> <td>1 2
-0.72 2.31
-1.20
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.400500000000000
-1.400500000000000
-1.40050000000000000000000000000000000000</td> <td>3
3
3
140
3
140
3
140
3
140
3
140</td> <td>1 1043600000000000000000000000000000000000</td> <td></td> <td>42886000000000
42886000000000
6
6
4.11
1
1
1
6
6
4.06
3.91
2.277
2.77</td> <td>7
-0.10
7
-0.10
7
-0.10
-0.10
-0.10
-0.10
-0.06
-0.12</td> <td>8 9 -1.26 -1.46 8 9 -1.26 -1.46 -1.26 -1.46 -1.26 -1.46</td> <td>10 10 7362000000000000000000000000000000000000</td>
 | 2880.300 3.1.2.2 193.400 194.4 7.16 175.11 0. 3880.300 51.2.22 154.300 194.4 77.16 175.11 0. 1 2 154.300 194.4 77.16 175.11 0. 1 2 3 1 2 3 1 2 3 1 1.3 3.187 5.594 19.58 78.37 176.24 6 kryterium NMD [%] f [Hz] fut fut 1 2 3 1 2 3 1 6.529 19.58 78.38 176.26 6 1 2 3 1 2 3 1 75.40 6.031 175.54 6 0.313 2.46 4.393 155.769 176.30 175.54 6 0.313 2.46 4.393 157.563 175.56 175.54 6 0.313 175.54 1.556 1.556.17 1.556 1.556.17

 | 0.0180/14 8 11-18 0
00180214 8 11-19 0
nkcja kary
1, liczba iteracji współczynnik w połczenie
macierzy
0.68479 101 1 0
nkcja kary
1, liczba iteracji współczynnik w połczenie
macierzy
0.69468 101 1 1
0.68410 1 1
0.68410 1
0.1 1
0.68410 1
0.68410 1
0.1 1
0.68410 1
0.68410 1
0.1 1
0.68410 1
0.1 1
0.68410 1
0.1 1
0.1 1
0.68410 1
0.1 1
0.1 1
0.1 1
0.1 1
0.68410 1
0.1 1
0.1 1
0.1 1
0.68410 1
0.1 1
0.1 1
0.68410 1
0.1 1
0.1 1
0.1 1
0.68410 1
0.1 1
0.1 1
0.68410 1
0.1 1
0.1 1
0.1 1
0.68410 1
0.1 1
0.1 1
0.1 1
0.1 1
0.68410 1
0.1 1 | -49/280000000000 3063800000000 -4224100000000000 3041300000000 1 2 2176.8 2124.0 2175.9 2142.0 2175.2 21400 | 3
3
21412
3
21412
3
21414
21408
2025 | 4
2169.6
2169.6
2169.6
2169.6
2169.6 | 19173000000000 40038500000 18890000000000 -9313400000 18890000000000 -9313400000 maclerze weg warlant 5 - rozmiesz notź elemtnów po akutalizacji parame 5 6 2232.6 2082.4 maclerze weg warlant 6 - rozmiesz notź elemtnów po akutalizacji parame 5 6 2232.0 2082.7 2232.0 2086.7 2232.0 2086.7 2232.0 2086.7 2232.0 2086.7 2237.0 2086.7 | 0.0.1 771500000000.0 0.0.2 76420000000.0 0.0.1 7642000000.0 venie czujników wę schematu 7 2173.8 2173.8 venie czujników wę schematu 7 2173.8 2174.2 2173.0 2174.2 2173.0 2173.0 | - 1220000000000 11878000000000 | 2435400000000000 3 -38
23475000000000 3 -371
9
9
2203.3
9
2205.1
2217.7
2197.8
 | 200000000000 2259
2720000000000 1 1945
2720000000000 1 1945
100
2165 9 | 1 2
-0.72 2.31
-1.20
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.4005000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.40050000000000
-1.400500000000000
-1.400500000000000
-1.40050000000000000000000000000000000000 | 3
3
3
140
3
140
3
140
3
140
3
140 | 1 1043600000000000000000000000000000000000 | |
42886000000000
42886000000000
6
6
4.11
1
1
1
6
6
4.06
3.91
2.277
2.77 | 7
-0.10
7
-0.10
7
-0.10
-0.10
-0.10
-0.10
-0.06
-0.12 | 8 9 -1.26 -1.46 8 9 -1.26 -1.46 -1.26 -1.46 -1.26 -1.46 | 10 10 7362000000000000000000000000000000000000 |
| 15 2 1 2 3 3 3.02.20 102.7 0.00 3.00 20 2 1 2 3 3 3.02.20 660.59 3.00 Indextor postaci
brana do
procedury postacie n _{am} n _i nideksy bazowe nideksy bazowe I 2 1 2 6 3 4.17 1.87 1.46 Indextor postaci
procedury postacie postacie n _m n _m nideksy bazowe Inclusion procedury postacie postacie n n n 1.87 1.46 Inclusion procedury postacie postacie n n n n 1.46 Inclusion procedury postacie postacie n n n n 1.46 Inclusion procedury postacie postacie n n n 1.46 Inclusion procedury 1 2 6 3 3.05 1.16 1.46
 | 380.300 3.1.2.2 19-3.00 19-4.4 7.16 17.5.11 0. 380.300 51.2.12 154.360 19-4.4 7.16 175.11 0. 380.300 51.2.12 154.360 19-4.4 7.16 175.11 0. 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1.133 3.187 5.594 19.58 78.37 176.26 6 1 2 3 1 2 3 1 2 3 1.12 3.162 5.594 19.58 78.38 176.26 6 1.067 2.893 5.268 19.58 78.38 176.56 6 0.815 2.425 4.039 19.55 76.03 176.54 1 1.113 3.100 5.472 15.75.4 7.834 16.56 6 1.152

 | 0.080/14 8 11-18 0
00180/14 8 11-19 0
nkcja kary
liczba iteracji współczynnik wp
nkcja kary
liczba iteracji współczynnik wp
nkcja kary
liczba iteracji współczynnik wp
nkcja kary
liczba iteracji współczynnik wp
nacierzy
blokowej
0.69868 101 1 1
0.67868 101 1
0.7868 100 100 100 100 1 | -49278000000000000000000000000000000000000 | 3
3
2141.4
2141.4
2141.8 | 4
- 35694000000000 0
StTyw
4
2169.6
StTyw
4
2169.6
2169.1
2170.8
2169.6 | 19173000000000 -933830000 18899000000000 -931840000 maclerze wag warlant 5 - rozmiesz - ność elemtnów po akutalizacji parame 5 6 2232.6 2082.4 - maclerze wag warlant 5 - rozmiesz - - ność elemtnów po akutalizacji parame 5 6 2232.0 2083.5 - 2231.0 2083.5 - 2231.0 2083.5 - 2231.0 2083.5 - 2232.0 2083.4 - 2232.0 2083.5 - 2232.0 2083.5 - 2232.0 2083.5 - 2232.0 2083.5 - 2232.0 2083.5 - 2232.0 2081.4 - 2232.4 2084.3 - | 00.0 771500000000.0 enie czujników wg schematu
enie czujników wg schematu
rów 7 2173.8 enie czujników wg schematu
rów 7 2173.9 2173.9 2174.2 2173.9 2174.2 2173.8 2173.
 | 123000000000000000000000000000000000000 | 2435300000000000000000000000000000000000 | 200000000000 2299
22000000000 0 1945
22000000000 0 1945
10
2165 9
10
2166 0
2166 8
2167.8
2167.8
2166 0 | 1 2 -0.24 2.20 1 2 -0.24 2.20 -0.21 2.31 -0.22 2.31 -0.23 2.25 | 3
3
1.00
3
3
1.40
1.40
1.40
1.40
1.40 | 1 105100000000.00
164360000000.00
indek
4
0.09
indek
4
0.10
0.12
0.04
0.45 | -827000000000
-87024000000000
-87024000000000
-
1, dla poszególnych eler
5
-2.81
-
1, dla poszególnych eler
5
-2.78
-2.69
-2.69
-2.69
-2.69
-2.82
-3.67
 | 42886000000000
428860000000000
6
4.11
7
7
7
6
6
4.06
3.91
2.77
4.17
4.02 | 7
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10 | 8 9 -1.26 -1.46 8 9 -1.26 -1.46 9 -1.26 -1.26 -1.46 -1.26 -1.46 -1.26 -1.54 -1.26 -1.54 -1.26 -1.54 -1.26 -1.54 -1.26 -1.54 | 10
10
10
10
10
0.27
10
0.27
10
0.27
0.28
0.22
0.28
0.27 |
| 19 2 1 2 3 3 3.02.20 100.7 000.5 3.90 10 2 1 2 3 3 1427.20 606.50 3.90 Indextrain potaci potaci potaci potaci Permit Permit Indextrain Permit Indextrain Permit Indextrain Permit Permit Indextrain Permit Permit Indextrain Permit Permit Permit Indextrain Permit Permit Indextrain Permit Permit Indextrain Permit Indextrain Permit Indextrain Permit Indextrain Permit Indextrain Permit Indextrain Indextrain Permit Indextrain Permit Indextrain Permit Indextrain Indextrain Permit Indextrain Indextrain Permit Indextrain Indextrain <td< td=""><td>3803.00 31.2.2 193.00 194.4 77.16 175.11 0. 38003.00 51.2.22 154.360 194.4 77.16 175.11 0. 38003.00 51.2.22 154.360 194.4 77.16 175.11 0. 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1.131 3.187 5.594 19.58 78.37 176.24 6 1 2 3 1 2 3 1 2 3 1.128 3.196 5.679 158 78.38 176.26 6 1.067 2.893 5.268 19.58 7.843 176.54 6 0.815 2.245 4.091 19.57 7.838 176.54 6 1.132 3.200 5.673 19.59 7.838 176.36 6</td><td>0.0180/14 8 11-18 0
00180/14 8 11-19 0
ntcja kary
<i>l</i>, liczba iteracji współczynnik wp
nkcja kary
<i>l</i>, liczba iteracji współczynnik wp
nkcja kary
<i>l</i>, liczba iteracji współczynnik wp
nkcja kary
<i>l</i>, liczba iteracji współczynnik wp
noserzy
blokowej
0.67858 101 1 0
0.68479 101 5 2
0.68479 101 5 2
0.68495 101 5 4
0.68495 101 5 5</td><td>-49278000000000000000000000000000000000000</td><td>3
3
21412
3
21414
21414
21418</td><td>4 </td><td>19173000000000 -903850000 18899000000000.0 -931840000 maclerze weg warlant 5 - rozmiesz -021820000 5 6 2232.6 2082.4 maclerze weg warlant 6 - rozmiesz -020140 6 elemtnów po akutalizacji parame -020140 5 6 2232.6 2082.4 maclerze weg warlant 6 - rozmiesz 2232.0 2085.5 2230.0 2086.7 2232.9 2081.0 2232.4 2084.3 maclerze weg warlant 7 - rozmiesz</td><td>0.0.1 771500000000.0 0.0.1 77450000000.0 0.0.1 764620000000.0 view 7 2.173.8 2173.8 enie czujników wg schematu rów 7 2173.8 2174.2 2174.9 2174.2 2174.9 2174.2 2174.8 2173.8 2173.8 zenie czujników wg schematu 2173.8</td><td>122900000000000000000000000000000000000</td><td>2435400000000000000000000000000000000000</td><td>200000000000 2269
272000000000 1 1945
2720000000000 1 1945
100
2165.9</td><td>1 2
-0.24 2.00
1 2
-0.24 2.00
1 2
-0.24 2.00
1 2
-0.24 2.00
1 2
-0.24 2.00
1 2
-0.24 2.00
1 2
-0.24 2.01
-0.23 2.25
-0.24 2.04
-0.24 2.05
-0.16 1.46
-0.24 2.05
-0.16 1.46
-0.24 2.05
-0.16 1.46
-0.24 2.05
-0.16 1.46
-0.24 2.05
-0.16 1.46
-0.24 2.05
-0.16 1.46
-0.24 2.05
-0.16 1.46
-0.25 2.55
-0.16 1.46
-0.25 2.55
-0.16 1.46
-0.25 2.55
-0.16 1.46
-0.25 2.55
-0.16 2</td><td>3 3 1.40 3 1.40 1.40 1.39 1.42 5.49 1.40</td><td>(144500000000.00)
(144500000000.00)
(indek
4
0.09
(indek
4
0.10
0.12
0.04
0.45
0.09</td><td>-262900000000
-27024000000000
-270240000000000
-270240000000000
-2702400000000000
-270240000000000
-2812
-278
-209
-209
-282
-3.67</td><td>428860000000 00
428860000000 00
6
4.11
6
4.11
6
6
4.06
3.91
2.77
4.17
4.02</td><td>7
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10</td><td>8 9 -1.26 -1.6810000000 8 9 -1.26 -1.46 9 -1.26 -1.26 -1.46 -1.28 -2.30 -1.26 -1.51 -1.25 -1.51</td><td>10
10
10
10
10
0.27
10
0.27
0.28
0.28
0.28
0.28
0.27
0.26</td></td<>
 | 3803.00 31.2.2 193.00 194.4 77.16 175.11 0. 38003.00 51.2.22 154.360 194.4 77.16 175.11 0. 38003.00 51.2.22 154.360 194.4 77.16 175.11 0. 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1.131 3.187 5.594 19.58 78.37 176.24 6 1 2 3 1 2 3 1 2 3 1.128 3.196 5.679 158 78.38 176.26 6 1.067 2.893 5.268 19.58 7.843 176.54 6 0.815 2.245 4.091 19.57 7.838 176.54 6 1.132 3.200 5.673 19.59 7.838 176.36 6

 | 0.0180/14 8 11-18 0
00180/14 8 11-19 0
ntcja kary
<i>l</i> , liczba iteracji współczynnik wp
nkcja kary
<i>l</i> , liczba iteracji współczynnik wp
nkcja kary
<i>l</i> , liczba iteracji współczynnik wp
nkcja kary
<i>l</i> , liczba iteracji współczynnik wp
noserzy
blokowej
0.67858 101 1 0
0.68479 101 5 2
0.68479 101 5 2
0.68495 101 5 4
0.68495 101 5 5 | -49278000000000000000000000000000000000000 | 3
3
21412
3
21414
21414
21418 | 4 | 19173000000000 -903850000 18899000000000.0 -931840000 maclerze weg warlant 5 - rozmiesz -021820000 5 6 2232.6 2082.4 maclerze weg warlant 6 - rozmiesz -020140 6 elemtnów po akutalizacji parame -020140 5 6 2232.6 2082.4 maclerze weg warlant 6 - rozmiesz 2232.0 2085.5 2230.0 2086.7 2232.9 2081.0 2232.4 2084.3 maclerze weg warlant 7 - rozmiesz | 0.0.1 771500000000.0 0.0.1 77450000000.0 0.0.1 764620000000.0 view 7 2.173.8 2173.8 enie czujników wg schematu rów 7 2173.8 2174.2 2174.9 2174.2 2174.9 2174.2 2174.8 2173.8 2173.8 zenie czujników wg schematu 2173.8
 | 122900000000000000000000000000000000000 | 2435400000000000000000000000000000000000 | 200000000000 2269
272000000000 1 1945
2720000000000 1 1945
100
2165.9 | 1 2
-0.24 2.00
1 2
-0.24 2.00
1 2
-0.24 2.00
1 2
-0.24 2.00
1 2
-0.24 2.00
1 2
-0.24 2.00
1 2
-0.24 2.01
-0.23 2.25
-0.24 2.04
-0.24 2.05
-0.16 1.46
-0.24 2.05
-0.16 1.46
-0.24 2.05
-0.16 1.46
-0.24 2.05
-0.16 1.46
-0.24 2.05
-0.16 1.46
-0.24 2.05
-0.16 1.46
-0.24 2.05
-0.16 1.46
-0.25 2.55
-0.16 1.46
-0.25 2.55
-0.16 1.46
-0.25 2.55
-0.16 1.46
-0.25 2.55
-0.16 2 | 3 3 1.40 3 1.40 1.40 1.39 1.42 5.49 1.40 | (144500000000.00)
(144500000000.00)
(indek
4
0.09
(indek
4
0.10
0.12
0.04
0.45
0.09 | -262900000000
-27024000000000
-270240000000000
-270240000000000
-2702400000000000
-270240000000000
-2812
-278
-209
-209
-282
-3.67
 | 428860000000 00
428860000000 00
6
4.11
6
4.11
6
6
4.06
3.91
2.77
4.17
4.02 | 7
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10 | 8 9 -1.26 -1.6810000000 8 9 -1.26 -1.46 9 -1.26 -1.26 -1.46 -1.28 -2.30 -1.26 -1.51 -1.25 -1.51 | 10
10
10
10
10
0.27
10
0.27
0.28
0.28
0.28
0.28
0.27
0.26 |
| 15 2 1 2 3 3 342720 60559 3.99 120 2 1 2 3 3 342720 60559 3.99 Icroba postad
procedury postacle Permit Permit Permit Indeksy bazowe II 2 1 2 6 3 4.17 1.87 1.46 II 2 1 2 6 3 4.17 1.87 1.46 II 2 1 2 6 3 4.17 1.87 1.46 II 2 1 2 6 3 4.17 1.68 1.46 II 2 1 2 6 3 4.05 1.70 1.46 II 2 1 2 6 3 3.05 1.76 1.46 2 1 2 6 3 4.06 1.70 1.46 5 2 1
 | 2803.300 31.2.2 193.400 193.41 7.16 175.11 0. 2808.300 51.2.22 154.300 194.4 77.16 175.11 0. 3808.300 51.2.22 154.300 194.4 77.16 175.11 0. 1 2 3 1 2 3 1 2 3 1 1.3 3.187 5.594 19.58 78.32 176.24 6 kryterium NMD [%] f [Hz] fut fut 1 1 2 3 1 7.524 6 1.128 3.196 5.629 19.58 78.38 176.26 6 1.061 2.643 135.5 176.36 176.30 176.34 6 0.0131 2.424 1.957 1.959 178.38 176.26 6 1.133 3.100 5.673 1.959 176.31 176.34 6 1.133 3.200 5.673 1.959 176.31 <td< td=""><td>0.030/04 8 11-13 0
0030/04 8 11-13 0
nkcja kary
1. liczba iteracji współczynnik w polożenie
macierzy
0.686/79 101 1 0
0.686/79 101 1 0
0.686/79 101 1 1
0.686/81 101 1 1
0.686/81 101 1 1
0.686/81 101 1 5
0.686/85 101 1 4
0.686/85 101 1 6
0.686/85
101 1 6
0.686/85 101 1 6
0.686/85 101 1 6
0.686/85 101 1 8
0.686/85 101 1 6
0.686/85 101 1 6
0.686/85 101 1 6
0.686/85 101 1 6
0.686/85 101 1 7
0.686/85 100 1 7
0.686/85 100 1 7
0.786/85 100 100 1 7
0.786/85 100 100 100 100 100</td><td>-49/280000000000 -40.580000000000 -4224100000000000 3041300000000 -1 2 2176.8 2124.0 2175.9 2145.0 2175.9 2145.0 2176.8 2121.4 2176.6 2127.3 2176.6 2122.4</td><td>3
3
21412
3
21412
3
21414
21414
21418</td><td>4 </td><td>1917300000000000000000000000000000000000</td><td>00.00 771500000000.0
7040000000.0
renie czujników wę schematu
rów
7
2173.8
renie czujników wę schematu
rów
7
2173.9
2174.2
2173.8
roku
2173.9
2174.2
2173.8
roku
2173.9
2173.8
roku
2173.9
2173.8
roku
2173.9
2173.8
roku
2173.9
2173.8
roku
2173.9
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.9
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.9
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2175</td><td>-1220000000000 -1378000000000 rt S 8 2199.1 rt S 8 2199.1 2199.2 2199.4 2199.4 2199.5 2199.6 2199.8 2198.8 art S</td><td>2435400000000000 3 -372
23475000000000 3 -372
9
2203.3 -
2203.3 -
2203.3 -
2203.3 -
2203.4 -
2204.5 -
2204.4 -
2204.5 -
2204.4 -
2204.5 -
2204.5 -
2204.5 -
2204.5 -
2204.5 -
2004.5 -</td><td>200000000000 2259
220000000000 11945
220000000000 11945
10
2165 9</td><td>1 2
-0.24 2.00
-1400500000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-140050000000000
-140050000000000
-140050000000000
-140050000000000
-140050000000000
-140050000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-140050000000000
-140050000000000
-140050000000000
-14005000000000000
-14005000000000000000
-1400500000000000
-140050000000000000000000000000000000000</td><td>3
3
3
140
3
140
3
140
3
140
3
140
3
140
3
140
140
140
140
140
140
140
140</td><td>10436000000000 10436000000000 104460000000000 104460000000000 1046 4 0.09 1046 4 0.10 0.12 0.04 0.45 0.09 1046</td><td>22.500000000 2702400000000 2702400000000 2702400000000 1, dla poszególnych eler 5 -2.61 1, dla poszególnych eler 5 -2.78 2.69 -</td><td>42886000000000
428860000000000
6
4.11
ntnów po aktualizacji
6
4.06
4.06
4.06
4.07
4.17
4.17
4.02
ntnów po aktualizacji</td><td>7
-0.10
7
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10</td><td>8 9 -1.26 -1.6810000000 8 9 -1.26 -1.46 8 9 -1.26 -1.46 9 -1.26 -1.26 -1.46 -1.26 -1.54 -1.28 -1.28 -1.20 -1.54 -1.20 -1.54 -1.20 -1.54 -1.20 -1.54 -1.20 -1.54 -1.25 -1.54</td><td>10 7342000000000000000000000000000000000000</td></td<> | 0.030/04 8 11-13 0
0030/04 8 11-13 0
nkcja kary
1. liczba iteracji współczynnik w polożenie
macierzy
0.686/79 101 1 0
0.686/79 101 1 0
0.686/79 101 1 1
0.686/81 101 1 1
0.686/81 101 1 1
0.686/81 101 1 5
0.686/85 101 1 4
0.686/85 101 1 6
0.686/85 101 1 6
0.686/85 101 1 6
0.686/85 101 1 6
0.686/85 101 1 8
0.686/85 101 1 6
0.686/85 101 1 6
0.686/85 101 1 6
0.686/85 101 1 6
0.686/85 101 1 7
0.686/85 100 1 7
0.686/85 100 1 7
0.786/85 100 100 1 7
0.786/85 100 100 100 100 100 | -49/280000000000 -40.580000000000 -4224100000000000 3041300000000 -1 2 2176.8 2124.0 2175.9 2145.0 2175.9 2145.0 2176.8 2121.4 2176.6 2127.3 2176.6 2122.4 | 3
3
21412
3
21412
3
21414
21414
21418
 | 4 | 1917300000000000000000000000000000000000 | 00.00 771500000000.0
7040000000.0
renie czujników wę schematu
rów
7
2173.8
renie czujników wę schematu
rów
7
2173.9
2174.2
2173.8
roku
2173.9
2174.2
2173.8
roku
2173.9
2173.8
roku
2173.9
2173.8
roku
2173.9
2173.8
roku
2173.9
2173.8
roku
2173.9
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.9
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.9
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.9
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2173.8
roku
2175 | -1220000000000 -1378000000000 rt S 8 2199.1 rt S 8 2199.1 2199.2 2199.4 2199.4 2199.5 2199.6 2199.8 2198.8 art S | 2435400000000000 3 -372
23475000000000 3 -372
9
2203.3 -
2203.3 -
2203.3 -
2203.3 -
2203.4 -
2204.5 -
2204.4 -
2204.5 -
2204.4 -
2204.5 -
2204.5 -
2204.5 -
2204.5 -
2204.5 -
2004.5 - | 200000000000 2259
220000000000 11945
220000000000 11945
10
2165 9 | 1 2
-0.24
2.00
-1400500000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-140050000000000
-140050000000000
-140050000000000
-140050000000000
-140050000000000
-140050000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-14005000000000
-140050000000000
-140050000000000
-140050000000000
-14005000000000000
-14005000000000000000
-1400500000000000
-140050000000000000000000000000000000000 | 3
3
3
140
3
140
3
140
3
140
3
140
3
140
3
140
140
140
140
140
140
140
140 | 10436000000000 10436000000000 104460000000000 104460000000000 1046 4 0.09 1046 4 0.10 0.12 0.04 0.45 0.09 1046 | 22.500000000 2702400000000 2702400000000 2702400000000 1, dla poszególnych eler 5 -2.61 1, dla poszególnych eler 5 -2.78 2.69 - | 42886000000000
428860000000000
6
4.11
ntnów po aktualizacji
6
4.06
4.06
4.06
4.07
4.17
4.17
4.02
ntnów po aktualizacji | 7
-0.10
7
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10 | 8 9 -1.26 -1.6810000000 8 9 -1.26 -1.46
 8 9 -1.26 -1.46 9 -1.26 -1.26 -1.46 -1.26 -1.54 -1.28 -1.28 -1.20 -1.54 -1.20 -1.54 -1.20 -1.54 -1.20 -1.54 -1.20 -1.54 -1.25 -1.54 | 10 7342000000000000000000000000000000000000 |
| 19 2 1 2 3 3 3.03-20 F60.59 3.09 20 2 1 2 3 3 3.427.20 F60.59 3.09 Indextra postaci
procedury postacie
procedury postacie R _m R _s R _s indexty bazowe Indext postaci
procedury postacie R _m R _s R _s Indexty bazowe Indext postaci
procedury postacie R _m R _s R _s Indexty bazowe Indext postaci
procedury postacie R _m R _s R _s Indexty bazowe Indext postaci
procedury postacie R _m R _s Indexty bazowe Indexty bazowe Indext postacie postacie R _m R _s 3 3.75 1.76 1.46 2 1 2 6 3 4.06 1.79 1.49 3 2 1 2 6 3 4.04 1.79 1.09 Inczba postaci
procedury postacie <th>3803.00 31.2.2 19.3.60 19.4.4 7.16 17.5.11 0. 3800.300 51.2.12 154.360 19.4.4 7.16 175.11 0. 3800.300 51.2.12 154.360 19.44 77.16 175.11 0. kryterium NMD [N] F(Hz) fut fut fut 1 1 2 3 1 2 3 1 1.3 3.187 5.594 19.58 78.37 176.24 0 1 2 3 1 2 3 1 2 3 1.128 1.306 5.69 158 7.837 176.24 0 1.128 1.306 5.69 155 76.37 176.26 0 1.131 1.130 5.472 19.57 78.36 176.23 0 1.113 1.300 5.472 19.57 78.36 176.23 0 1.113 3.200 5.673 19.59 78.38</th> <th>00180214 8 11E-18 0
00180214 8 11E-19 0
nkcja kary
<i>j</i>, liczba iteracji współczynnik we połczenie
macierzy
blokowej
0688479 101 1 0
0688479 101 1 0
068849 101 2 1
068849 101 2 2
068849 101 2 3
068849 101 3 4
068849 101 3 5
068849 101 3 4
068849 101 3 4
068849 101 3 0
068849 101 1 0
068849 101 1 0
068495 101 1
0
0
0
0
0
0
0
0
0
0
0
0
0</th> <th>-49278000000000000000000000000000000000000</th> <th>3
3
21414
21414
21414
21418
3
21418
3
21418
3
1999.4</th> <th>4 </th> <th>191730000000000 -9038500000 188990000000000 -9318400000 maclerze wsg warlant 5 - rozmlesz -9318400000 ność elemtnów po akutalizacji parame 5 6 2232.6 2082.4 - maclerze wsg warlant 5 - rozmlesz - - 2232.6 2082.4 - - 2232.6 2082.7 - - - 5 6 -</th> <th>00.0 771500000000.0 enel cupiliów wg schematu
rów 7 2173.8 enel cupiliów wg schematu
rów 2173.8 enel cupiliów wg schematu
rów 2173.9 2173.9 2173.9 2173.9 2173.9 2173.9 2173.9 2173.9 2173.9 2173.8</th> <th>12300000000000 1187800000000000 rt 5 8 2199.1 nr 5 2199.2 2199.3 2199.4 2199.5 2199.7 rr 5 8 2199.7 2199.8 2199.8 2199.7 2199.7 2199.7 2199.7 2199.7 2199.7 2199.7 2199.7 8 2006.7</th> <th>2435300000000000000000000000000000000000</th> <th>2000000000000 2269
2270000000000 1 1945
1945
10
2165.9
2165.9
2166.0
2166.5
2166.5
2166.5
2166.5
2166.5
2166.5
2166.5
2166.5
2166.5
2166.5
2166.5
2166.5
2166.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
21</th> <th>1 2 -0.24 2.20 1 2 -0.24 2.20 -0.24 2.20 -0.24 2.20 -0.24 2.20 -0.24 2.20 -0.23 2.25 -0.24 2.04 -0.23 2.25 -0.24 2.04 -0.24 2.05</th> <th>3
3
3
1.40
3
1.40
3
1.40
3
1.40
3
1.40
3
1.39
1.42
1.38
3
1.40
1.38
3
1.40
1.38
1.40</th> <th> 165000000000000000000000000000000000000</th> <th>-262900000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-270240000000000 -
-2702400000000000 -
-270240000000000 -
-270240000000000 -
-27024000000000
-
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-2702400000000 -
-270240000000 -
-2702400000000 -
-270240000000 -
-2702400000000 -
-270240000000 -
-270240000000 -
-27024000000 -
-270240000000 -
-270240000000 -
-270240000000 -
-27024000000 -
-270240000000 -
-270240000000 -
-270240000000 -
-27024000000 -
-270240000000 -
-2702400000000 -
-2702400000000 -
-2702400000000 -
-27000000 -
-2700000000000 -
-270000000000000 -
-2700000000000000000000000000000000000</th> <th>4288600000000000000000000000000000000000</th> <th>7
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.1</th> <th>8 9 -1.26 -1.0810000000 8 9 -1.26 -1.46 9 -1.26 -1.26 -1.46 -1.26 -1.46 -1.28 -2.26 -1.26 -1.51 -1.26 -1.51 -1.25 -1.51 -1.25 -1.51 -1.25 -0.51 -1.25 -0.51 -1.25 -0.51 -1.25 -0.51 -1.25 -0.51 -1.25 -0.51 -1.25 -0.51 -1.25 -0.51</th> <th>10
10
10
10
10
10
0.27
10
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.26
0.25
0.22
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.</th> | 3803.00 31.2.2 19.3.60 19.4.4 7.16 17.5.11 0. 3800.300 51.2.12 154.360 19.4.4 7.16 175.11 0. 3800.300 51.2.12 154.360 19.44 77.16 175.11 0. kryterium NMD [N] F(Hz) fut fut fut 1 1 2 3 1 2 3 1 1.3 3.187 5.594 19.58 78.37 176.24 0 1 2 3 1 2 3 1 2 3 1.128 1.306 5.69 158 7.837 176.24 0 1.128 1.306 5.69 155 76.37 176.26 0 1.131 1.130 5.472 19.57 78.36 176.23 0 1.113 1.300 5.472 19.57 78.36 176.23 0 1.113 3.200 5.673 19.59 78.38

 | 00180214 8 11E-18 0
00180214 8 11E-19 0
nkcja kary
<i>j</i> , liczba iteracji współczynnik we połczenie
macierzy
blokowej
0688479 101 1 0
0688479 101 1 0
068849 101 2 1
068849 101 2 2
068849 101 2 3
068849 101 3 4
068849 101 3 5
068849 101 3 4
068849 101 3 4
068849 101 3 0
068849 101 1 0
068849 101 1 0
068495 101 1
0
0
0
0
0
0
0
0
0
0
0
0
0 | -49278000000000000000000000000000000000000 | 3
3
21414
21414
21414
21418
3
21418
3
21418
3
1999.4 | 4 | 191730000000000 -9038500000 188990000000000 -9318400000 maclerze wsg warlant 5 - rozmlesz -9318400000 ność elemtnów po akutalizacji parame 5 6 2232.6 2082.4 - maclerze wsg warlant 5 - rozmlesz - - 2232.6 2082.4 - - 2232.6 2082.7 - - - 5 6 - | 00.0 771500000000.0 enel cupiliów wg schematu
rów 7 2173.8 enel cupiliów wg schematu
rów 2173.8 enel cupiliów wg schematu
rów 2173.9 2173.9 2173.9 2173.9 2173.9 2173.9 2173.9 2173.9 2173.9 2173.8
2173.8 | 12300000000000 1187800000000000 rt 5 8 2199.1 nr 5 2199.2 2199.3 2199.4 2199.5 2199.7 rr 5 8 2199.7 2199.8 2199.8 2199.7 2199.7 2199.7 2199.7 2199.7 2199.7 2199.7 2199.7 8 2006.7 | 2435300000000000000000000000000000000000 | 2000000000000 2269
2270000000000 1 1945
1945
10
2165.9
2165.9
2166.0
2166.5
2166.5
2166.5
2166.5
2166.5
2166.5
2166.5
2166.5
2166.5
2166.5
2166.5
2166.5
2166.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
2165.5
21 | 1 2 -0.24 2.20 1 2 -0.24 2.20 -0.24 2.20 -0.24 2.20 -0.24 2.20 -0.24 2.20 -0.23 2.25 -0.24 2.04 -0.23 2.25 -0.24 2.04 -0.24 2.05 | 3
3
3
1.40
3
1.40
3
1.40
3
1.40
3
1.40
3
1.39
1.42
1.38
3
1.40
1.38
3
1.40
1.38
1.40 | 165000000000000000000000000000000000000 | -262900000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-270240000000000 -
-2702400000000000 -
-270240000000000
-
-270240000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-2702400000000 -
-270240000000 -
-2702400000000 -
-270240000000 -
-2702400000000 -
-270240000000 -
-270240000000 -
-27024000000 -
-270240000000 -
-270240000000 -
-270240000000 -
-27024000000 -
-270240000000 -
-270240000000 -
-270240000000 -
-27024000000 -
-270240000000 -
-2702400000000 -
-2702400000000 -
-2702400000000 -
-27000000 -
-2700000000000 -
-270000000000000 -
-2700000000000000000000000000000000000 | 4288600000000000000000000000000000000000 | 7
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.1 | 8 9 -1.26 -1.0810000000 8 9 -1.26 -1.46 9 -1.26 -1.26 -1.46 -1.26 -1.46 -1.28 -2.26 -1.26 -1.51 -1.26 -1.51 -1.25 -1.51 -1.25 -1.51 -1.25 -0.51 -1.25 -0.51 -1.25 -0.51 -1.25 -0.51 -1.25 -0.51 -1.25 -0.51 -1.25 -0.51 -1.25 -0.51 |
10
10
10
10
10
10
0.27
10
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.26
0.25
0.22
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0. |
| 15 2 1 2 3 3 342720 606.59 3.99 120 2 1 2 3 3 342720 606.59 3.99 Indextra postaci
procedury pottacie Para Pr Indeksy bazowe Pr Indeksy bazowe Indextra postaci
procedury postacie Pr Indeksy bazowe Pr 1.66 Indextra postaci
procedury postacie Pr Indeksy bazowe Pr 1.46 Indextra postaci
procedury postacie Pr Indeksy bazowe Pr 1.46 Indextra postaci
procedury postacie Pr Indeksy bazowe Pr 1.46 Indextra postaci
procedury postacie Pr Indeksy bazowe Indeksy bazowe Indeksy bazowe Indextra postaci
procedury postacie Pr Indeksy bazowe Indeksy bazowe Indeksy bazowe Indextra postaci
procedury postacie Pr Indeksy bazowe Indeksy bazowe Indeksy bazowe Indextra postaci
procedury postacie
 | 3803.00 31.2.2 193.00 193.4 7.16 175.11 0. 38603.00 51.2.22 154.300 194.4 77.16 175.11 0. 38603.00 51.2.22 154.300 194.4 77.16 175.11 0. 1 2 3 1 2 3 1 2 3 1 1.3 3.187 5.594 19.58 78.39 176.24 0 1 1.2 3 1 2 3 1 2.6 1 1.128 3.166 5.629 19.58 78.39 176.24 0 1.128 3.166 5.629 19.58 78.49 176.54 0 0.815 2.248 4.09 19.57 78.39 176.54 0 0.815 2.424 4.09 19.57 78.38 176.54 0 0.815 2.424 4.09 19.57 78.38 176.54 0 1.152

 | 0.0180/14 8 11-13 0
00180/14 8 11-19 0
nkcja kary
1, liczba iteracji współczynnik w połczenie
macierzy
0.68479 101 1 0
0.68479 101 1 0
0.68479 101 1 2
0.68479 101 1 2
0.68479 101 1 3
0.68491 101 1 0
0.68491 101 1 0 | -49/28000000000000000000000000000000000000 | 3
21412
3
21412
3
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21418
21414
21418
21414
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418 | 4 | 19173000000000 4903850000 18890000000000 9313400000 18890000000000 9313400000 18890000000000 9313400000 188900000000000 9313400000 188900000000000000000 931400000000000 188900000000000000000 9314000000000000000000000000000000000000 | 00.00 771500000000.0
70.00 76462000000.0
enie czujników wę schematu
rów 7
2173.8
enie czujników wę schematu
rów 7
2173.9
2173.9
2173.9
2173.9
2173.9
2173.9
2173.8
enie czujników wę schematu
rów 7
7
2173.8
enie czujników wę schematu
 | 12200000000000 13780000000000 nr 5 8 2199.1 nr 5 8 2199.0 2199.4 2199.4 2199.0 2199.4 2199.5 100.9 2199.6 2199.7 x5 | 9 | 10 2269 10 2265.9 10 2265.9 2166.0 2265.7 2165.7 216.0 210 216.0 | 1 2 -0.22 2.31 -0.24 2.20 1 -2 -0.24 2.20 1 -2.23 -0.23 2.25 1 -2.23 -1.23 -0.23 -2.24 2.04 -0.23 2.25 | 3 3 1.00 546050000000000000000000000000000000000 | 105000000000 16436000000000 16436000000000 164360000000000 164860000000000 1648 4 0.10 0.12 0.04 0.45 0.09 indek 4 0.25 | -262900000000 -
-8702400000000 -
-8702400000000 -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
 | 428860000000000
4288600000000000000000000000000000000000 | 7
-0.10
7
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0 | 8 9 -1.26 -1.6810000000 8 9 -1.26 -1.46 8 9 -1.26 -1.46 9 -1.26 -1.28 -2.30 -0.83 -1.28 -1.26 -1.54 -1.26 -1.54 -1.28 -2.30 -0.83 -1.25 -1.25 -1.51 -1.25 -1.51 -1.25 -1.51 -1.25 -0.27 -8 9 7.59 0.27 | 10
0.06
7507200000000.00
10
10
0.27
10
0.27
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0. |
| 19 2 1 2 3 3 3.02.20 100.7 0.06 120 2 1 2 3 3 120.7 0.06.50 3.90 120 2 1 2 3 3 120.7 0.06.50 3.90 1 2 1 2 3 3 120.7 0.06.50 3.90 Indextroportical
procedury postacle postacle Rem Rem Rem Indextroportical Rem Indextroportical Rem
 | 3880.300 31.2.2 19.3.60 19.44 77.16 175.11 0. 8880.300 51.2.22 154.360 19.44 77.16 175.11 0. 8880.300 51.2.22 154.360 19.44 77.16 175.11 0. kryterium NMD [N] F [Hz] fur fur 1 2 3 1 2 3 1.131 3.187 5.594 19.58 78.37 176.24 0 1 2 3 1 2 3 1 2 3 1.128 3.196 5.629 1958 7.831 176.26 0 1.128 3.196 5.629 195.7 7.838 176.26 0 1.131 3.190 5.472 195.7 7.838 176.26 0 1.132 3.200 5.673 195.9 7.838 176.26 0 1.132 3.200 5.673 195.9 7.838 175.56

 | 0.030/04 8 11-18 0
0.030/04 8 11-19 0
nkcja kary
<i>l</i> , biczba iteracji współczynnik we
nkcja kary
hiczba iteracji współczynnik we
położenie
macerzy
hiczba iteracji współczynnik we
położenie
macerzy | -49278000000000000000000000000000000000000 | 3
3
21412
3
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21418
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21418
21414
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21418
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458
21458 | 4 | 19173000000000 -903850000 188990000000000 -931840000 maclerze weg warlant 5 - rozmiesz - ność elemtnów po akutalizacji parame 5 6 2232.6 2082.4 - maclerze weg warlant 5 - rozmiesz - - ność elemtnów po akutalizacji parame 5 6 2232.0 2080.5 - 2232.0 2080.5 - 2232.0 2085.7 - 2232.0 2085.7 - 2232.9 2081.0 - 2232.4 2084.3 - mość elemtnów po akutalizacji parame 5 6 2173.8 2171.5 - maclerze weg warlant 8 - rozmieszc - 6 2173.8 2171.5 - - maclerze weg warlant 8 - rozmieszc - maclerze weg warlant 8 - rozmieszc | 0.0.0 771500000000.0 0.0.0 771500000000.0 0.0.0 764220000000.0 venie czujników wg schematu 7 rów 7
 | 12290000000000 118780000000000 rt 5 8 2199.1 nr 5 2199.1 2199.1 2199.1 rt 5 8 2199.1 rt 5 8 2199.1 rt 5 8 2006.7 xt 5 | 2435300000000000000000000000000000000000 | 2000000000000 2269
227000000000 1 1945
10
2165.9 | 1 2
000000000000 -144080000000000
1 4005000000000
-1 40050000000000
-1 2 -1 2 -1 2 -1 2 -1 2 -1 2 -1 2 -1 2 | 3 3 1.49 3 1.40 3 1.40 3 1.40 3 1.39 1.42 5.49 1.40 1.38 3 7.93 7.93 | 10500000000000000000000000000000000000 | -262500000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-270240000000000 -
-2702400000000000 -
-270240000000000 -
-270240000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-2702400000000 -
-27024000000000 -
-270240000000 -
-270240000000 -
-2702400000000 -
-270240000000 -
-270240000000 -
-27024000000 -
-270240000000 -
-270240000000 -
-270240000000 -
-27024000000
-
-27024000000 -
-270240000000 -
-27024000000 -
-27024000000 -
-2702400000000 -
-2702400000000 -
-27024000000000 -
-2702400000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-27024000000000 -
-270240000000000 -
-2702400000000000000000
-
-270240000000000000000000000000000000000 | 122826000000000 00 4288600000000000 00 ntnów po aktualizacji 6 4.11 1 6 4.06 3.91 2.77 4.17 4.02 1000 po aktualizacji 6 0.01 | 7
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.1 | 8 9 -1.26 -1.0810000000 8 9 -1.26 -1.46 9 -1.26 -1.28 2.90 -0.29 2.20 -1.25 -1.51 -1.25 -1.51 -1.25 -1.51 -1.25 0.27 -7.59 0.27 | 10
10
10
10
10
10
10
0.27
10
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.26
0.27
0.27
0.26
0.27
0.27
0.26
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.27
0.27
0.26
0.27
0.26
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27 |
| 13 2 1 2 3 3 342720 606.50 3.90 Image: Second
 | 3880 300 31.2.2 19.3.60 19.44 77.16 175.11 0. 3880 300 51.2.22 154.360 19.44 77.16 175.11 0. 3880 300 51.2.22 154.360 19.44 77.16 175.11 0. kryterium NMD [%] F(Hz) fur fur fur 1 1 2 3 1 2 3 1 1.3 3.187 5.594 19.58 78.37 176.26 6 1 2 3 1 2 3 1 2 3 1.128 3.196 5.629 19.58 78.37 176.26 6 0.615 2.243 4.039 195.78.37 176.54 6 0.615 2.245 4.039 195.77 178.38 176.54 6 1.152 3.200 5.673 19.50 178.38 176.54 6 1.152 3.200 5.673 19.50 178.38 176

 | 0.0120/14 8 11E-18 0
00120214 8 11E-19 0
nkcja kary
<i>l., bi</i> liczba iteracji współczynnik we połczenie
nkcja kary
liczba iteracji współczynnik we połczenie
macierzy
biokowej
0.65879 101 1 0
0.65879 101 1 0
0.65878 101 1 2
0.65868 101 1 2
0.65868 101 1 2
0.65868 101 1 4
0.65810 1 3
0.65829 101 1 4
0.65829 101 1 0
0.65829 101 1 0
0
0
0
0
0
0
0
0
0
0
0
0
0 | -49/28000000000000000000000000000000000000 | 3
3
21412
3
21414
21414
21412
3
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21414
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
21416
215
216
216
216
216
216
216
216
216 | 4 | 191730000000000 -0038500000 188900000000000 -0313400000 maclerze weg warlant 5 - rozmiesz -0313400000 solation -0314000000 solation -0314000000 solation -0314000000 solation -03140000000 solation -031400000000 solation -031400000000000000000000000000000000000 | 0.0.0 771500000000 0
0.0 76402000000 0
enel czujników wg schematu
rów 7
2173.8
enie czujników wg schematu
rów 7
2173.9
2173.9
2174.2
2173.8
enie czujników wg schematu
rów 7
7
2173.8
enie czujników wg schematu
rów 8
7
7
2165.3
enie czujników wg schematu
rów 7
7
2165.3
 | 12200000000000000000000000000000000000 | 9 | 2000000000000 2269
2269
10
10
2165 9
10
2265 9
10
2265 0
2265 0
2265 8
2265 0
2265 8
2265 7
2265 0
2265 9
2265 9
200
200
200
200
200
200
200
20 | 1 2 -1 2 | 3 3 1.39 3 1.39 1.40 3 1.42 5.49 1.42 1.39 1.42 5.49 1.40 1.38 3 7.93 7.93 | 10500000000000000000000000000000000000 | -26.2900000000
-97024000000000
-97024000000000
-
1, dla poszególnych
eler
5
-2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.81
-
2.99
-
2.99
-
2.09
-
2.010
-
2.92
-
2.09
-
2.010
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
-
2.92
- | *22886000000000
**************************** | 7
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.0 | 8 9 -1.26 -1.0810000000 8 9 -1.26 -1.46 -1.26 -1.46 -1.28 -2.30 -0.83 -1.23 -1.26 -1.54 -1.26 -1.54 -1.26 -1.54 -1.25 -1.51 -1.26 -1.35 -1.25 -1.51 -1.25 -1.51 -1.25 -1.51 -1.25 -1.51 -1.26 -1.35 -1.27 -1.51 -1.28 -2.30 -1.29 -1.21 -1.20 -1.25 -1.25 -1.51 -1.26 -1.35 -1.27 -1.27 -1.28 -2.27 -1.29 -2.27 -1.20 -2.27 -1.21 -2.21 -1.22 -2.21 -1.23 -2.21 -1.24 -2.25 -1.25 |
10
10
10
10
10
0.27
10
10
0.27
0.27
0.28
0.28
0.27
0.26
10
0.27
0.26
10
0.27
0.26
0.22
0.28
0.27
0.25
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.27
0.26
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.27
0.26
0.27
0.27
0.26
0.27
0.27
0.26
0.27
0.27
0.26
0.27
0.27
0.26
0.27
0.27
0.26
0.27
0.25
0.27
0.25
0.27
0.26
0.27
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.27
0.26
0.26
0.27
0.26
0.26
0.26
0.27
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26 |
| 12 2 1 2 3 3 3.427.20 606.50 3.90 Interba postaci
procedury postacie Para
 | 3880.300 31.2.2 193.40 193.41 7.16 175.11 0. 3880.300 51.2.22 154.300 194.4 77.16 175.11 0. 3880.300 51.2.22 154.300 194.4 77.16 175.11 0. 1 2 3 1 2 3 1 2 3 1 1.3 3.187 5.594 19.58 78.39 176.24 6 kryterium NMD [%] f(Hz) fut fut 1 1 2 3 1 6.26 19.58 78.39 176.54 6 0.618 2.42 4.09 19.57 78.39 176.54 6 157.51 6.01 1.113 3.100 5.673 19.57 78.39 176.54 6 157.51 6.01 1.113 3.200 5.673 19.57 78.39 176.23 6 1 1.05 1.621 2.213 19.44 7.10 1.551.10

 | 0.030/04 8 11-18 0
00100014 8 11-19 0
nkcja kary
1, liczba iteracji współczynnik w polożenie
macierzy
0.68479 101 1 0
0.68479 101 1 0
0.68479 101 1 0
0.68479 101 1 1
0.68411 101 1 2
0.68495 101 1 1
0.68441 101 1 3
0.68495 101 1 4
0.68495 101 1 4
0.68495 101 1 0
0.68495 101 1 0
0.002746 101 1 0
0
002746 101 1 0
0
0
0
0
0
0
0
0
0
0
0
0
0 | -49/28000000000000000000000000000000000000 | 3
3
21412
3
21412
3
21412
3
21414
21414
21418
3
1999.4
3
1999.4
3
1999.4 | 4 | 19173000000000 9039350000 1917300000000 931340000 18890000000000 931340000 18890000000000 9313400000 188900000000000 9313400000 18890000000000000 9313400000 18890000000000000 931410000 188900000000000000000000000000 9314010000000000000000000000000000000000 | 0.0.1 771500000000.0 0.0.2 774620000000.0 0.1 76420000000.0 value czujników wg schematu 7 2.173.8 2173.8 enie czujników wg schematu 7 2.173.8 2173.9 2.174.2 2173.0 2.173.8 2173.8 enie czujników wg schematu 7 2.173.8 2173.8 enie czujników wg schematu 7 vów 7 2.165.3 2165.3 enie czujników wg schematu rów 7 1.883.9 2.138.1 2138.1
 | 12200000000000000000000000000000000000 | 9 | 10 2269. 10 1945 10 2266.0 2266.0 2266.0 2166.7 2266.3 2166.7 2266.3 2165.7 2 10 2 2165.7 2 2165.7 2 2165.7 2 2165.7 2 2165.7 2 2265.3 2 10 2 2265.5 2 2265.4 2 | 1 2 -0.24 2.00 -1 -2 -0.24 2.20 -1 -2 -0.24 2.20 -1 -2 -1.1 -2 -0.24 2.04 -0.23 2.25 1 -2 -1.21 0.50 -1.23 -2.05 -3.21 0.50 | 31 32 32 3460500000000000000000000000000000000000 | 1 105300000000000000000000000000000000000 | -26.300000000 - -87024000000000 - -87024000000000 - -87024000000000 - -1 - -1 - -2 - -2.61 - -2.69 - -2.69 - -2.69 -
-2.69 - -2.69 - -2.69 - -2.69 - -2.69 - -2.69 - -2.69 - -2.69 - -2.69 - -2.61 - -2.62 - -2.63 - -2.64 - -2.65 - -2.61 - -2.62 - -2.63 - -2.64 - -2.65 - -2.61 - -2.62 - -3.67 - | 42886000000000
428860000000000
ntnów po aktualizacji
6
4.11
ntnów po aktualizacji
6
4.06
3.91
2.77
4.17
4.02
ntnów po aktualizacji
6
0.01
ntnów po aktualizacji
6
18.77
2.63
-0.36 | 7
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.10
-0.1 | 8 9 -1.26 -1.081000000 8 9 -1.26 -1.46 -1.26 -1.46 -1.26 -1.46 -1.26 -1.46 -1.28 -2.30 -1.28 -1.31 -1.25 -1.54 -1.26 -1.54 -1.25 -1.51 -1.26 -1.53 -1.25 -1.51 -1.26 -1.53 -1.27 -1.51 -1.28 -2.30 -1.29 -1.51 -1.26 -1.54 -1.27 -1.51 -1.28 -2.30 -1.29 -1.51 -1.20 -1.51 -1.20 -1.25 -1.017 -1.027 -1.027 -5.85 14.33 7.97 |
10
10
10
10
10
0.27
10
0.27
10
0.27
0.27
0.27
0.27
0.27
0.28
0.27
0.28
0.27
0.28
0.27
0.28
0.27
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0.28
0. |

Tabela wynikowa akutalizacji parametrów dla zestawów macierzy wag w wariancie 4 przy uszkodzeniu elemtnu numer 3 o intensywności 15%

												macierz	e wag wariant 4 - rozmiesz	czenie czujników wg schema	tu nr 5												
liczba postac	:i	_{max} n _d	indeksy bazowe	kryterium NMD [%]	f [Hz]		położe	enie				sztywność elemtnów po	o akutalizacii parametrów									indeks I. dla poszególny	ch elemtnów po aktualizacii				
NP. brana do procedury	postacie	-484	Late Late		. ,	kary J, iteracji	nik wp bloko	erzy wei	1			, ,		-	1	1	1		1		1	,				1	1
1 2	1 2	3 3 1.60	0.36 2	1 2 3 2 31 1 186 1 932 1 558	1 2 3 19.43 77.16 175.11	49447 101	1 1	2577.4	2 2108 7	3	4	5 2175 3	6	7	8 2032 8	9 2113 3	10 2173.0	-18.68	2	3	4	5	6	7	8	9	-0.06
2 2	1 2	3 3 1.67 2 3 1.70	0.38 2	2.29 1.201 1.983 1.705 2.22 1.200 1.982 1.721	19.44 77.16 175.11 19.44 77.16 175.11	4970.9 101 498.72 101	0.1 1	2552.3	2107.7	2025.1	2151.7	2179.7	2173.9	2148.9	2031.7	2112.3	2173.0	-17.53	2.94	6.75	0.92	-0.37	-0.10	1.05	6.45	2.73	-0.06
4 2	1 2	3 3 1.94	0.40 2	2.33 1.200 1.383 1.731 2.71 1.179 1.931 1.797	19.44 77.16 175.11 19.44 77.16 175.11	50.977 101	0.001 1	2485.1	2108.5	2024.6	2152.4	2180.2	2174.4	2145.5	2031.1 2027.5	2113.1 2120.5	2173.3	-14.43	2.51	6.94	0.80	-0.35	-0.13	0.91	6.64	2.36	-0.25
5 2 6 2	1 2	3 3 3.15 3 3 5.06	1.05 5	5.32 1.110 1.756 2.012 10.32 1.062 1.602 2.109	19.44 77.16 175.11 19.44 77.16 175.11	5.5139 101 0.59196 101	0.0001 1 0.00001 1	2316.5	2141.0 2163.2	2008.9 1999.4	2160.8 2166.6	2176.5 2175.1	2172.3 2170.1	2159.5 2164.9	2015.9 2006.7	2145.0 2163.3	2188.8 2197.9	-6.67 -1.24	0.39	7.49	0.50	-0.22 -0.16	-0.03	0.56	7.17 7.60	0.38	-0.79 -1.21
7 2 8 2	1 2 1 2	3 3 5.01 3 3 4.50	1.05 1 1.21 4	3.90 1.096 1.446 1.476 4.01 1.099 1.124 0.068	19.44 77.16 175.11 19.44 77.16 175.11	0.064719 101 0.009599 101	0.000001 1 1E-07 1	2175.3 2172.1	2184.2 2218.4	1996.9 1983.8	2171.0 2173.8	2183.9 2205.9	2160.7 2139.7	2163.3 2160.7	2004.5 2016.3	2153.0 2125.3	2195.0 2184.7	-0.17 -0.02	-0.58 -2.15	8.05	0.03	-0.56 -1.58	0.51	0.38	7.70 7.15	0.86 2.13	-1.07 -0.60
9 2 10 2	1 2	3 3 7.85 3 3 10.84	2.67 8 5.02 8	8.49 0.619 0.628 0.194 8.73 0.290 0.409 0.106	19.44 77.16 175.11 19.44 77.16 175.11	0.001534 101	1E-08 1 1E-09 1	2171.7	2200.7 2187.2	1924.9 1892.1	2158.1 2139.6	2212.7 2206.7	2132.7 2138.6	2178.4 2199.7	2079.3 2116.0	2142.4 2154.5	2183.3 2183.2	0.00	-1.34 -0.72	11.36 12.87	0.62	-1.89 -1.61	1.79	-0.31 -1.29	4.25	1.35	-0.54 -0.53
11 2	1 2	3 3 11.69	6.18 1	0.87 0.246 0.331 0.108	19.44 77.16 175.11 19.44 77.16 175.11	0.001534 14	1E-10 1	2171.6	2178.6	1884.5	2145.2	2212.9	2132.2	2195.1	2125.2	2162.1	2183.5	0.00	-0.32	13.22	1.22	-1.90	1.82	-1.08	2.14	0.44	-0.55
13 2	1 2	2 3 26.18	4.12 0	0.08 105.490 73.862 212.710	19.44 77.16 175.11 19.44 77.16 175.11	0.001534 9	1E-12 1	1403600000000000	-956700000000000000	12617000000000000000000	105620000000000.0	-5071500000000.0	-2924000000000.0	1566300000000.0	-3292800000000.0	114800000000000000000	2324800000000000.0	-646320000000.00	440540000000000.00	-5810000000000000000000	-486370000000.00	233540000000.00	13465000000.00	-72127000000.00	151630000000.00	-528660000000.00	-10705000000000000000
14 2	1 2	6 3 6372.40	1483.00 4	1.80 103.380 30.749 230.030 19.78 134.080 252.780 226.870	19.44 77.16 175.11 19.44 77.16 175.11	0.001534 11	1E-13 1 1E-14 1	-78295000000.0	-607010000000.0	230920000000.0	2361400000000.0	5884200000000000	-189150000000000000000	0 -379990000000000000000	-127550000000000.0	373770000000000000	3958000000000.0	3605300000.00	27952000000.00	-10634000000.00	-108740000000.00	-2709600000000.00	871010000000000000000000000000000000000	17498000000000000000000000000000000000000	587320000000.00	-1721100000000.00	-182260000000.00
16 2 17 2	1 2	6 3 0.32 10 3 1400.10	183.80 2	0.90 179.110 249.910 85.487 16.16 180.290 250.760 230.000	19.44 77.16 175.11 19.44 77.16 175.11	0.001534 8	1E-15 1 1E-16 1	-1040600000000.0	-14476000000000.0 219190000000000.0	241740000000000.0 1035400000000000.0	7628800000000000000000000000000000000000	-533650000000.0	-1009200000000000.0 264560000000000.0	-21954000000000000000000000000000000000000	-601610000000000.0	211940000000000000 4935900000000000000000000000000000000000	31586000000000000000000000000000000000000	47919000000.00	-1009300000000.00	-1113200000000.00 -47677000000000.00	-823920000000.00	-805510000000000000000000000000000000000	4647300000000.00	-5144700000000.00	2770300000000.00 32352000000000000.00	-9759400000000000000000000000000000000000	-145450000000.00 59461000000000000000000000000000000000000
18 2 19 2	1 2	3 3 31.78 2 3 245.47	9.96 3 62.25 3	3.06 186.530 50.898 225.140 11.87 105.490 55.228 982.850	19.44 77.16 175.11 19.44 77.16 175.11	0.001534 11	1E-17 1 1E-18 1	-4013200000000.0 223120000000.0	-231610000000000.0 -1798600000000000.0	-708670000000000.0 564320000000000.0	-31175000000000.0 28891000000000.0	-71147000000000.0 20151000000000.0	-38231000000000.0	-1245300000000.0 6534700000000.0	124560000000.0 -77073000000000.0	-3839800000000.0 -9937800000000.0	-29230000000000.0 -72063000000000.0	184800000000.00 -10274000000.00	10665000000000.00 828220000000000.00	32633000000000.00 -25986000000000.00	1435600000000.00 -1330400000000.00	327620000000.00 -927920000000.00	-477360000000.00 1760500000000.00	57343000000.00 -300910000000.00	-5735700000.00 354910000000.00	176810000000.00 457620000000.00	134600000000.00 331840000000.00
20 2 21 2	1 2	10 3 8388.30 3 3 4.86	3013.70 10 1.04 5	6.00 169.520 369.260 230.180 5.18 1.057 1.828 2.966	19.44 77.16 175.11 19.45 77.16 175.11	0.001534 12 58008 101	1E-19 1 1 2	1319700000000.0 2201.9	-379050000000.0 2138.8	-17726000000000.0 2001.4	72332000000000.0 2167.9	-9564100000000.0 2176.9	5282700000000.0 2175.6	-7031700000000.0 2166.5	14437000000.0 2007.9	18014000000000000000 2177.2	-288230000000000000.0 2202.9	-60771000000.00 -1.39	17455000000.00 1.51	81625000000.00 7.84	-333080000000.00 0.17	440410000000.00 -0.24	-24326000000.00 -0.18	323800000000.00 0.23	-664800000.00 7.54	-82953000000000.00 -0.26	1327200000000000.00 -1.44
22 2	1 2	3 3 4.97	1.04 6	6.51 1.044 1.743 2.748 6.73 1.043 1.733 2.720	19.44 77.16 175.11 19.44 77.16 175.11	5830.9 101 583.46 101	0.1 2	2201.9	2145.4	2000.5	2166.0	2173.8	2172.6	2165.1	2007.3	2177.1	2202.9	-1.39	1.21	7.88	0.26	-0.10	-0.04	0.30	7.57	-0.25	-1.44
24 2	1 2	3 3 5.00	1.04 6	6.85 1.043 1.729 2.704	19.44 77.16 175.11 10.44 77.16 175.11	58.361 101	0.001 2	2201.8	2146.6	2000.4	2165.7	2173.4	2172.1	2164.9	2007.2	2176.7	2202.8	-1.39	1.15	7.89	0.27	-0.08	-0.02	0.31	7.57	-0.24	-1.43
26 2	1 2	3 3 5.06	1.04 2	1.046 1.704 2.393 10.32 1.062 1.602 2.109	19.44 77.16 175.11 19.44 77.16 175.11	0.59196 101	0.00001 2	2198.6	2145.8	1999.4	2165.5	2175.1	2171.8	2164.9	2005.7	2174.2 2163.3	2197.9	-1.33	0.39	7.93	0.23	-0.16	0.07	0.31	7.60	0.38	-1.35
27 2 28 2	1 2	3 3 4.34 3 3 2.57	1.04 8	13.30 1.110 1.520 1.618 18.84 1.283 1.427 0.839	19.44 77.16 175.11 19.44 77.16 175.11	0.064407 101 0.010736 101	1E-07 2	2206.7	2173.1 2173.4	2000.1 2004.1	2169.6 2180.5	2185.1 2237.3	2160.5 2114.6	2161.3 2143.3	2006.9 2012.7	2151.8 2132.1	2194.0 2188.5	-1.61 -4.11	-0.07	7.90	-0.41	-0.62 -3.02	2.63	0.48	7.59	0.91	-1.03 -0.78
29 2 30 2	1 2 1 2	3 3 2.92 3 3 5.23	2.87 6	9.29 1.022 1.051 0.248 6.63 0.506 0.663 0.196	19.44 77.16 175.11 19.44 77.16 175.11	0.002616 101 0.002616 20	1E-08 2 1E-09 2	2294.3 2259.9	2171.9 2171.7	1969.8 1918.7	2161.2 2133.5	2263.9 2232.2	2092.0 2117.9	2159.0 2194.8	2054.7 2102.7	2123.2 2136.8	2182.9 2180.9	-5.65 -4.06	-0.01 0.00	9.30 11.65	0.48	-4.25 -2.79	3.67	0.58	5.38 3.17	2.23	-0.52 -0.43
31 2 32 2	1 2	10 3 80.43 1 3 20540.00	14.24 2 6169.50 59	2.33 132.600 250.910 119.210 38.70 105.320 50.140 60.676	19.44 77.16 175.11 19.44 77.16 175.11	0.002616 24	1E-10 2 1E-11 2	17715000000000000.0 -3112900000000000000000.	26742000000000000 0 -524170000000000000	-193540000000000.0 3662900000000000.0	-71623000000000.0 5045600000000000.0	38256000000000.0 97966000000000.0	-1515500000000000.0	28212000000000.0	-225180000000000.0 11002000000000.0	108090000000000000000000000000000000000	-25220000000000000000000000000000000000	-815760000000000.00 1433400000000000000000000000000000000	-123140000000000.00 241370000000000.00	8912200000000.00 -168670000000000.00	329810000000.00 -232340000000000.00	-1761600000000.00 -45112000000000.00	6978600000000.00 2188800000000.00	-1299100000000.00 1164000000000.00	10369000000000.00 -506600000000.00	-497710000000000.00 576390000000.00	1161300000000000.00 97270000000000.00
33 2 34 2	1 2	1 3 1.93 10 3 3300.90	0.46 2	2.28 27.452 50.740 215.700 56.95 176.450 122.130 231.880	19.44 77.16 175.11 19.44 77.16 175.11	0.002616 11	1E-12 2 1E-13 2	-14678000000000000000000000000000000000000	-64390000000000.0 -26443000000000.0	-25445000000000.0 41883000000000.0	-28091000000000.0	56972000000000.0 8444000000000000000000000000	-66327000000000.0 -52756000000000.0	-60039000000000.0 -590620000000000.0	-540060000000.0 20969000000000.0	316840000000000.0 7325700000000000.0	-53048000000000.0 -1149800000000000000000000000000000000000	6759100000000.00 -5247900000000.00	2965100000000.00	1171700000000.00	1293500000000.00	-2623400000000.00 -38883000000000.00	305420000000.00	2764700000000.00	24869000000.00	-14590000000000.00 -337330000000000.00	2442800000000.00
35 2	1 2	1 3 939.79	135.04 28	180.00 105.310 50.708 233.060	19.44 77.16 175.11 10.44 77.16 175.11	0.002616 10	1E-14 2	-37999000000000000.0	1319400000000.0	5640700000000.0	-8217000000000.0	1698600000000.0	260290000000.0	-4695200000000.0	1649400000000.0	228670000000.0	-28139000000000.0	174980000000000000000	-60757000000.00	-25974000000.00	37838000000.00	-782190000000.00	-11986000000.00	21621000000.00	-75952000000.00	-105300000000.00	1295700000000.00
37 2	1 2	3 3 458.55	85.35 3	12.00 105.300 50.811 55.192	19.44 77.16 175.11 19.44 77.16 175.11	0.002616 9	1E-15 2 1E-16 2	78796000000000.0	-492670000000000.0	-7205600000000000000000000000000000000000	-225190000000000000000	844240000000000000000000000000000000000	-35165000000000.0	1716300000000.0	-6528500000000.0	45544000000000000000	-87963000000000.0	-3628400000000.00	2268600000000000000	331800000000000000000000000000000000000	10370000000000000000	-38876000000000.00	1619300000000.00	-79034000000.00	300630000000.00	-2097200000000.00	4050500000000.00
38 2 39 2	1 2 1 2	10 3 201.00 8 3 0.53	0.17 C	04.50 152.460 269.190 216.980 0.41 106.490 250.880 59.348	19.44 77.16 175.11 19.44 77.16 175.11	0.002616 6	1E-17 2 1E-18 2	-7562400000000.0	-448350000000000.0 27441000000000.0	-36189000000000000000000000000000000000000	2561200000000000000000000000000000000000	-8928700000000.0	10343000000000.0 5677900000000.0	228660000000000000000000000000000000000	-43843000000000000000.0	-7036800000000000000000000000000000000000	-25364000000000000000000000000000000000000	-567740000000.00 348230000000.00	-1263600000000.00	464340000000000000000000000000000000000	-1532700000000.00	411150000000.00	-476290000000.00 -261460000000.00	-105300000000000000000000000000000000000	-307800000000000000000000000000000000000	-4882700000000.00	-3365800000000000000000000000000000000000
40 2 41 2	1 2	9 3 300.11 3 3 577700.00	76.76 0 129700.00 2371	0.00 132.540 250.740 233.500 1000.00 0.000 0.000 0.000	19.44 77.16 175.11 19.44 77.16 175.11	0.002616 7 1.0611 101	1E-19 2 1 3	-92768000000000.0 2171.6	-1187600000000.0 2171.6	-1972100000000000000 1845.9	1273500000000.0 2171.6	-148180000000.0 2171.6	-1578800000000000 2171.6	2815000000000000000000000000000000000000	-18013000000000000000 2171.6	-216090000000000000000 2171.6	5903100000000000000000000000000000000000	4271800000000.00 0.00	54685000000.00 0.00	9081100000000.00 15.00	-5864000000.00 0.00	6823300000.00 0.00	726990000000.00	-12963000000000000000000000000000000000000	829480000000000000000 0.00	9950700000000000.00 0.00	-27183000000000000000000000000000000000000
42 2 43 2	1 2 1 2	3 3 58744.00 3 3 5871.50	12990.00 336 1298.90 356	i390.00 0.000 0.000 0.000 642.00 0.002 0.002 0.003	19.44 77.16 175.11 19.44 77.16 175.11	1.061 101 1.0604 101	0.1 3	2171.6	2171.6 2171.6	1845.9 1846.1	2171.6 2171.6	2171.6 2171.6	2171.6 2171.6	2171.6 2171.6	2171.6 2171.4	2171.6 2171.6	2171.6 2171.7	0.00	0.00	15.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
44 2 45 2	1 2	3 3 586.17 3 3 57.66	129.53 35 12.61 32	48.90 0.016 0.023 0.028 21.90 0.152 0.223 0.275	19.44 77.16 175.11 19.44 77.16 175.11	1.0543 101	0.001 3	2172.1	2171.5	1848.0	2171.6	2171.7	2171.6	2171.4	2169.1	2171.5	2172.1	-0.02	0.00	14.90	0.00	0.00	0.00	0.01	0.12	0.01	-0.02
46 2	1 2	3 3 5.06	1.04 2	10.32 1.062 1.602 2.109 7.02 2.026 2.787 2.943	19.44 77.16 175.11 19.44 77.16 175.11	0.59196 101	0.00001 3	2198.6	2163.2	1999.4 2146.2	2166.6	2175.1	2170.1	2164.9	2006.7	2163.3	2197.9	-1.24	0.39	7.93	0.23	-0.16	0.07	0.31	7.60	0.38	-1.21
47 2 48 2	1 2	8 3 6.50	3.58 2	2.62 2.380 2.551 0.203	19.44 77.16 175.11 19.44 77.16 175.11	0.027024 101	1E-07 3	2224.0	2180.2	2146.2	2107.3	2156.6	2130.7	2154.7	1875.2	2054.7	2184.2	-3.94	-3.60	0.14	0.15	-3.76	3.16	0.52	13.47	5.39	-1.48 -0.58
49 2 50 2	1 2	8 3 3.59 8 3 2.27	0.85 2	2.28 2.353 2.462 0.603 2.96 2.319 2.498 0.882	19.44 77.16 175.11 19.44 77.16 175.11	0.008493 101	1E-08 3 1E-09 3	2301.5	2184.6	2171.5	2087.3	2505.5	1934.0	2185.7 2212.1	18/6.6 1888.3	2042.3 2076.0	2190.2 2212.3	-5.98 -7.50	-3.24 -0.60	0.03	3.88	-8.03 -15.37	6.35 10.94	-0.65	13.59	4.40	-0.85
51 2 52 2	1 2	8 <u>3</u> 5.42 2 <u>3</u> 5771.60	1.41 0 1481.50 3	0.14 105.180 51.771 155.340 3.30 929.860 255.290 1652.000	19.44 77.16 175.11 19.44 77.16 175.11	0.008493 17 0.008493 8	1E-10 3 1E-11 3	-5300000000000.0	3302800000000.0 -333270000000000000000	402410000000.0 0 182660000000000.0	-5042700000000.0 -749040000000000.0	-7057200000000.0 139780000000000.0	-2249500000000000000000000000000000000000	1022500000000000.0 -167050000000000.0	-140100000000000.0 -15582000000000.0	-26134000000000.0 678690000000000.0	9908700000000.0 4233100000000.0	244060000000.00 46454000000000000.00	-152090000000.00 153460000000000000.0	-18530000000.00 -8411300000000.00	232210000000.00 3449200000000.00	324970000000.00 -6436500000000.00	-2791200000000.00 103580000000000.00	-47082000000000.00 7692500000000.00	6451300000000.00 717530000000.00	1203400000000.00 -31252000000000.00	-4562800000000.00 -1949300000000.00
53 2 54 2	1 2 1 2	10 3 488.55 1 3 NaN	103.93 41 NaN M	15.96 166.850 321.800 230.710 NaN 105.270 28.715 49.842	19.44 77.16 175.11 19.44 77.16 175.11	0.008493 9 0.008493 2	1E-12 3 1E-13 3	-3521200000000.0 NaN	703680000000000.0 NaN	4221500000000000000000000000000000000000	450650000000000000000000000000000000000	-946660000000000000000000000000000000000	-70154000000000.0 NaN	422210000000000.0 NaN	562950000000000.0 NaN	-112600000000000000000000000000000000000	-46837000000000000000000000000000000000000	1621400000000.00 NaN	-32403000000000.00 NaN	-1943900000000000000000000000000000000000	-207520000000000.00 NaN	43592000000000.00 NaN	323050000000.00 NaN	-19442000000000.00 NaN	-2592300000000000000000000000000000000000	518500000000000000000000000000000000000	21568000000000000000000000000000000000000
55 2 56 2	1 2 1 2	10 3 579.96 5 3 32.35	240.94 3 7.03 1	16.57 129.400 136.730 212.500 1.48 133.840 251.020 59.166	19.44 77.16 175.11 19.44 77.16 175.11	0.008493 6	1E-14 3 1E-15 3	-4503600000000000.0 -194740000000000000.0	-745170000000.0 3627500000000000.0	-112590000000000000000 5425800000000000000000000000000000000000	900700000000000000000000000000000000000	135110000000000000000000000000000000000	-450730000000000.0 0 32697000000000000.	-1685000000000000000000000000000000000000	191410000000000000000000000000000000000	-126100000000000000000 1282900000000000000000000000000000000000	-4611700000000000000000000000000000000000	20738000000000.00 896730000000000.00	34314000000.00 -1670400000000000.00	51846000000000000000000000000000000000000	-414760000000000.00 -1188600000000000000.00	-622140000000000.00 175700000000000000.00	20755000000000.00 -1505600000000000.00	775900000000000000000000000000000000000	-881400000000000000000000000000000000000	5806500000000000.00 -59076000000000.00	2123600000000000000000000000000000000000
57 2 58 2	1 2	9 3 497.56 1 3 NaN	130.54 1 NaN N	1.91 133.480 246.790 296.870 NaN 105.290 50.731 59.212	19.44 77.16 175.11 19.44 77.16 175.11	0.008493 7 0.008493 4	1E-16 3 1E-17 3	-13207000000000.0 NaN	-422120000000000.0 NaN	-65642000000.0 NaN	-15208000000000.0 NaN	-23579000000000.0 NaN	1541300000000000000000000000000000000000	751060000000000.0 NaN	-51328000000000000000000000000000000000000	-980450000000000000.0 NaN	83754000000000.0 NaN	608140000000.00 NaN	19438000000000.00 NaN	3022700000.00 NaN	700310000000.00 NaN	1085800000000.00 NaN	-7097500000000.00 NaN	-34585000000000.00 NaN	236360000000000000000000000000000000000	4514800000000000000000000000000000000000	-3856700000000.00 NaN
59 2 60 2	1 2	10 3 822.56 10 3 697430.00	329.38 8 241200.00 3135	1.82 133.530 52.823 230.920 8000.00 107.770 248.800 234.430	19.44 77.16 175.11 19.44 77.16 175.11	0.008493 7	1E-18 3 1E-19 3	-105970000000000.0	10254000000000.0	-14277000000000.0 -679500000000000.0	-53027000000000.0	2102800000000.0	-72710000000000.0	-36554000000000.0 -214280000000000000	25639000000000.0 -242220000000000.0	-426570000000000.0 -23457000000000.0	-349030000000000000000000000000000000000	487950000000.00	-472170000000.00	657420000000.00	2441800000000.00	-968300000000.00 54651000000000.00	3348200000000.00	1683300000000.00	-118060000000.00	19643000000000.00	1607200000000000000000000000000000000000
61 2 62 2	1 2	3 3 5.19	1.04 1	4.07 1.047 1.653 2.261	19.44 77.16 175.11 19.44 77.16 175.11	58307 101	1 4	2197.7	2159.4	2000.0	2163.0	2175.3	2172.8	2170.3	2006.9	2163.9	2198.5	-1.20	0.56	7.90	0.40	-0.17	-0.06	0.06	7.59	0.36	-1.24
62 2 63 2	1 2	3 3 5.25 3 3 5.25	1.04 1	5.93 1.035 1.628 2.219	19.44 77.16 175.11 19.44 77.16 175.11	584.43 101	0.01 4	2198.4	2160.8	1999.7	2161.2	2174.0	2171.5	2170.5	2006.6	2165.2	2199.0	-1.23	0.50	7.92	0.48	-0.11	0.01	0.05	7.60	0.30	-1.26
65 2	1 2	3 3 5.25 3 3 5.23	1.04 1	1.036 1.627 2.217 16.30 1.040 1.624 2.207	19.44 77.16 175.11 19.44 77.16 175.11	58.452 101 5.8527 101	0.001 4	2198.4	2160.9 2161.1	1999.7	2161.0 2161.9	2173.8 2173.9	2171.5 2171.4	2170.4 2169.5	2006.6	2165.2 2165.1	2199.1 2198.9	-1.23	0.50	7.92	0.49	-0.10 -0.11	0.01	0.06	7.60	0.30	-1.26
66 2 67 2	1 2 1 2	3 3 5.06 3 3 4.36	1.04 21	1.062 1.602 2.109 13.73 1.117 1.479 1.424	19.44 77.16 175.11 19.44 77.16 175.11	0.59196 101 0.064178 101	0.00001 4	2198.6	2163.2 2178.9	1999.4 1999.3	2166.6 2171.2	2175.1 2184.4	2170.1 2161.1	2164.9 2160.1	2006.7 2006.9	2163.3 2147.8	2197.9 2192.3	-1.24 -1.49	0.39 -0.33	7.93	0.23	-0.16 -0.59	0.07 0.49	0.31 0.53	7.60	0.38	-1.21 -0.95
68 2 69 2	1 2 1 2	3 3 3.80 3 3 7.13	1.21 4 2.94 1	4.79 1.122 1.180 0.113 1.74 0.663 0.632 0.284	19.44 77.16 175.11 19.44 77.16 175.11	0.010018 101 0.001905 101	1E-07 4 1E-08 4	2216.2 2211.7	2210.0 2192.7	1987.9 1924.1	2171.6 2171.6	2206.2 2206.7	2140.9 2139.5	2158.1 2160.8	2019.8 2087.5	2117.5 2136.6	2180.9 2177.3	-2.05 -1.85	-1.77 -0.97	8.46 11.40	0.00	-1.59 -1.61	1.41 1.48	0.62	6.99 3.88	2.49 1.62	-0.43 -0.26
70 2 71 2	1 2	3 3 7.92 6 3 29.49	4.43 8/ 8.64 3	IA.81 0.571 0.505 0.309 3.62 133.830 250.800 59.109	19.44 77.16 175.11 19.44 77.16 175.11	0.001905 15	1E-09 4 1E-10 4	2210.4	2174.9 4557600000000.0	1895.2	2171.6	2234.0 3991500000000000.0	2113.4	2163.7 7608500000000.0	2121.7 -1092100000000.0	2151.3 1775100000000.0	2178.4 95832000000.0	-1.78 3878800000000.00	-0.15	12.73	0.00 3863700000000.00	-2.87	2.68 6648100000000000000000	0.37	2.30 50291000000.00	0.94	-0.31 -44129000000.00
72 2	1 2	2 3 4256.30	1229.00 2	4.00 105.290 50.700 104.140 0.11 105.200 50.561 222.410	19.44 77.16 175.11 19.44 77.16 175.11	0.001905 6	1E-11 4	288230000000000000000000000000000000000	-69175000000000000000	0 2161900000000000000000000000000000000000	-56284000000000000000000000000000000000000	10401000000000.0	209230000000000.0	1539300000000.0	-36284000000000.0 1604200000000.0	2568600000000000.0	-2814700000000000.0	-132730000000000000000	3185400000000000000000	0 -9955300000000000.00 641170000000.00	25918000000000.00	-478940000000.00 1425800000000.00	-9634700000000.00	-708830000000.00	167080000000.00	-118280000000000.00	12961000000000.00
74 2	1 2	1 3 1.13	0.20 1	1.44 133.450 244.350 59.140	19.44 77.16 175.11 19.44 77.16 175.11	0.001905 8	1E-13 4	-10597000000000000000	-73449000000000000000	158380000000000000000	168670000000000000000	5178800000000000000000000000000000000000	4457400000000000.0	433750000000000.0	-2144500000000.0	-5220100000000.0	-87822000000000.0	487980000000000.00	33822000000000.00	-7293300000000.00	-7766700000000000000	-2384700000000000000000	-205250000000000.00	-19973000000000.00	98749000000.00	240380000000.00	40440000000000000
75 2	1 2	2 3 50549.00 8 3 0.74	0.12 1	1.53 352.710 256.580 58.947	19.44 77.16 175.11 19.44 77.16 175.11	0.001905 8	1E-14 4 1E-15 4	27339000000000	-490660000000000000000000000000000000000	102510000000000000000000000000000000000	31566000000000.0	-14101000000000.0	405140000000.0	6487300000000.0	-11848000000000.0	7752400000000000000000000000000000000000	-44540000000000.0	-125890000000.00	2259400000000000000000000000000000000000	-4720500000000.00	-212650000000.00	36884000000.00	-40536000000.00	-298730000000.00	545570000000.00	-3569800000000.00	205100000000.00
77 2 78 2	1 2 1 2	7 3 25010.00 1 3 NaN	8422.00 6 NaN N	6.64 105.640 250.560 28.301 NaN 105.310 49.150 59.138	19.44 77.16 175.11 19.44 77.16 175.11	0.001905 10	1E-16 4 1E-17 4	1036100000000.0 NaN	66645000000000.0 NaN	17326000000000.0 NaN	170490000000000.0 NaN	-554270000000.0 NaN	35471000000000.0 NaN	-56128000000000000000000000000000000000000	0 84498000000000000000000000000000000000	-43117000000000.0 NaN	2046600000000.0 NaN	-477110000000.00 NaN	-306890000000.00 NaN	-797810000000.00 NaN	-785070000000.00 NaN	25523000000.00 NaN	-1633400000000.00 NaN	25846000000000000000000000000000000000000	0 -3891000000000000.00 NaN	198550000000.00 NaN	-94241000000.00 NaN
79 2 80 2	1 2 1 2	5 3 43.56 5 3 43.56	9.30 1. 9.30 1.	2.00 105.310 250.650 59.174 2.00 105.310 250.650 59.174	19.44 77.16 175.11 19.44 77.16 175.11	0.001905 6	1E-18 4 1E-19 4	-321060000000000.0 -32106000000000.0	-1143500000000000 -1143500000000000000000000000000000000000	-85075000.0 -85075000.0	-17592000000000.0 -17592000000000.0	-1308900000000000000 -1308900000000000000000000000000000000000	-109070000000000000000000000000000000000	-245460000000000.0 -245460000000000.0	1318100000000.0 1318100000000.0	200780000000.0 200780000000.0	-1407100000000000.0 -1407100000000000.0	14784000000000.00 14784000000000.00	526560000000.00 5265600000000.00	3917600.00 3917600.00	81009000000.00 81009000000.00	602710000000000.00 602710000000000.00	5022600000000.00 5022600000000.00	1130300000000.00 1130300000000.00	-606980000000.00 -606980000000.00	-92457000000.00 -92457000000.00	6479500000000.00 6479500000000.00
81 2 82 2	1 2	3 3 4.98 3 3 5.08	1.04 1	3.31 1.074 1.653 2.243 5.58 1.060 1.621 2.201	19.44 77.16 175.11 19.44 77.16 175.11	58309 101 5849.1 101	1 5 0.1 5	2197.2	2158.7 2160.6	1999.8 1999.4	2167.7 2166.3	2180.8 2176.5	2169.1 2169.3	2166.6 2165.5	2007.2 2006.8	2163.3 2165.3	2197.9 2198.6	-1.18 -1.21	0.59	7.91	0.18 0.25	-0.42	0.12	0.23	7.57	0.39	-1.21 -1.24
83 2	1 2	3 3 5.09	1.05 1	5.90 1.058 1.617 2.196 5.97 1.058 1.617 2.195	19.44 77.16 175.11 19.44 77.16 175.11	585.12 101 58.52 101	0.01 5	2197.9	2160.8	1999.4	2166.1	2175.9	2169.4	2165.4	2006.8	2165.6	2198.7	-1.21	0.50	7.93	0.25	-0.20	0.10	0.29	7.59	0.28	-1.25
85 2	1 2	3 3 5.09 3 2 5.05	1.05 1	6.30 1.058 1.615 2.187	19.44 77.16 175.11 19.44 77.16 175.11	5.8584 101	0.0001 5	2198.0	2161.1	1999.4	2166.2	2175.8	2169.5	2165.3	2006.8	2165.4	2198.6	-1.21	0.49	7.93	0.25	-0.19	0.10	0.29	7.59	0.29	-1.24
87 2	1 2	3 3 5.06 3 3 4.72	1.04 2	1.002 1.002 2.109 11.53 1.097 1.497 1.466	19.44 77.16 175.11 19.44 77.16 175.11	0.064351 101	0.00001 5	2198.0	2103.2 2179.6	1999.4	2160.0	21/5.1 2174.1	2170.1 2171.2	2164.9	2006.6	2103.3	2197.9	-1.24 -1.49	-0.37	7.93	0.08	-0.16	0.02	0.31	7.60	1.12	-1.21 -0.94
88 2 89 2	1 2 1 2	3 3 4.64 3 3 11.66	1.24 3 3.88 9	3.94 1.074 1.192 0.287 9.79 0.472 0.562 0.497	19.44 77.16 175.11 19.44 77.16 175.11	0.011727 101 0.00264 101	1E-07 5 1E-08 5	2218.7 2216.2	2219.0 2198.5	1985.2 1909.2	2174.2 2161.4	2172.4 2171.8	2173.1 2174.1	2156.6 2171.0	2021.9 2103.9	2110.0 2131.2	2177.1 2173.3	-2.17 -2.05	-2.18 -1.23	8.58	-0.12 0.47	-0.04	-0.07	0.69	6.90	2.84	-0.25
90 2 91 2	1 2 1 2	3 3 22.89 3 3 28.03	7.71 1 8.29 1	8.62 0.111 0.267 0.185 7.31 0.054 0.166 0.268	19.44 77.16 175.11 19.44 77.16 175.11	0.00264 10 0.00264 12	1E-09 5 1E-10 5	2211.0 2209.5	2177.8 2173.8	1868.2 1857.8	2155.3 2153.5	2171.7 2171.6	2174.2 2174.3	2180.6 2183.5	2151.5 2164.0	2151.2 2154.9	2173.0 2173.3	-1.81 -1.74	-0.29	13.98 14.45	0.75	0.00	-0.12	-0.41 -0.55	0.93	0.94	-0.06
92 2 93 2	1 2 1 2	8 3 56.26 1 3 490.55	9.25 4 106.60 2	4.80 133.750 249.670 231.270 6.67 105.460 50.757 241.320	19.44 77.16 175.11 19.44 77.16 175.11	0.00264 5 0.00264 8	1E-11 5 1E-12 5	-24189000000000.0 -1125900000000000.0	-10995000000000.0 -422210000000000.0	-4321100000000.0 -4385600000000.0	-206960000000.0 -2201700000000.0	235360000000.0 -280310000000.0	1145700000000000000000000000000000000000	-152000000000000000000000000000000000000	-729020000000000000000 5654000000000000	-387040000000000.0 -43718000000000.0	788130000000000.0 10562000000000.0	111390000000.00 51846000000000.00	50630000000.00 1944200000000.00	19898000000.00 201950000000.00	9530000000.00 101390000000.00	-10838000000.00 12908000000.00	-5275700000000.00 -24333000000.00	699920000000000.00 -64891000000.00	335700000000000000000000000000000000000	17822000000000.00 2013200000000.00	-362920000000000.00 -4863700000000.00
94 2	1 2	4 3 10.83 10 3 1199.40	2.14 0	0.27 105.390 5747.800 228.500	19.44 77.16 175.11 19.44 77.16 175.11	0.00264 6	1E-13 5	8343100000000000000000000000000000000000	-2937000000000000.0 -615720000000000.0	23539000000000000.0	-6297700000000000.0	0 782270000000000.0 -439800000000.0	-147610000000000.0	-4311500000000.0	-5464100000000.0 -4503600000000000000000000000000000000000	8303000000000.0	1996600000000.0	-3841800000000.00	13525000000000.00	-1083900000000000.00	290000000000000000000000000000000000000	-36022000000000.00 202520000000.00	679700000000.00	1985400000000.00	25161000000.00	-382340000000.00	-919410000000.00 3119000000000000000000000000000000000
96 2	1 2	2 3 2327.20	373.70 0	0.98 105.380 50.977 59.527	19.44 77.16 175.11 10.44 77.16 175.11	0.00264 7	1E-15 5	5815300000000000000000000000000000000000	-571960000000000000	0 -501030000000000000000000000000000000000	153050000000000000000000000000000000000	-90153000000000.0	-2497500000000.0	-3528300000000.0	4085900000000.0	-66493000000000.0	-23088000000000.0	-2677800000000000000000	2633800000000000000000000000000000000000	230710000000000.00	-70478000000000.00	415140000000.00	11501000000.00	162470000000.00	-188150000000.00	306190000000.00	1063200000000.00
98 2	1 2	9 3 422.83	550.03 11 68.27 0	0.91 133.830 250.670 226.310 141 142 142 142 142 142 142 142 142 142	19.44 77.16 175.11 19.44 77.16 175.11	0.00264 5	1E-10 5 1E-17 5	-28147000000000.0	-140740000000000000000	57614000000000000000000000000000000000000	-2814800000000000000000000000000000000000	2674000000000000000000000000000000000000	-4503600000000000000000000000000000000000	-844420000000000000000000000000000000000	270220000000000000000000000000000000000	-5764600000000000000000000000000000000000	-6243000000000000000000000000000000000000	1296100000000.00	648070000000.00	-265300000000000000	129610000000000000	-12313000000000000000	207380000000000000000	388840000000000000000000000000000000000	-1244300000000000000000000000000000000000	2654500000000000000000000000000000000000	-291990000000000000000000000000000000000
99 2 100 2	1 2	1 3 NaN 1 3 NaN	NaN M NaN M	NaN 105.310 50.674 58.752 NaN 105.310 50.674 58.752	19.44 77.16 175.11 19.44 77.16 175.11	0.00264 3	1E-18 5 1E-19 5	NaN	NaN	NaN	NaN NaN	NaN NaN	NaN NaN	NaN	NaN	NaN NaN	NaN NaN	NaN NaN	NaN	NaN NaN	NaN NaN	NaN	NaN	NaN NaN	NaN NaN	NaN NaN	NaN NaN

												macierze wa	ng wariat 1 - rozmieszczer	ie czujników wg schema	u nr 5												
NP.	aci postacie	n _{max} n _d	indeksy bazowe	kryterium NMD [%]	f [Hz]	funkcja licz	ba współczyn ma	loženie acierzy				sztywność elemtnów p	o akutalizacji parametrów									indeks l _o dla poszególnyci	h elemtnów po aktualizac	i			
proce	i do ' dury 1	2 5 5	cos	1 2 3	1 2	3 kary J, iter	acji nikwp blo	1 2169.9	2	3	4	5	6 2014 2	7	8	9 2155 8	10	1	2	3	4	5	6	7	8	9	10
	*		10.17 0.14 1.0.	1 0.00 0.000 0.000	17.33 70.10	174.34 30207 1		1 105.5	L AJA-A	£ #7 #1.3	1105.1	macierz wa	wariant 2 - rozmieszczer	ie czujników wa schema	u or 5	1155.0	1170.0	0.00	0.50	0.01	0.55	1.34	7.63	0.04	0.14	0.75	0.04
licz	a	n _{max} n _d	indeksy hazowe	kosterium NMD [%]	f [Hz]		pol	oženie				sztnenné elemtnów r	o akutalizacii parametrów									indeks I dla noszególnyct	n elemtnów no aktualizac	1			
NP. posta brana proce	aci postacie do dury		Pot Pot Pot	1 2 3	1 2	funkcja licz kary J, iter	ba współczyn ma acji nik wp blo	acierzy skowej 1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
1 2 2 2	1 1	2 5 5 2 5 5	16.18 7.92 1.01 12.97 3.24 1.02	1 0.362 0.310 0.839 2 0.359 0.580 0.757	19.33 78.28 19.34 78.28	174.34 56190 10 174.34 55390 10	11 1 11 1	1 2151.5 2 2177.2	2155.1 2123.1	2169.6 2173.7	2184.3 2183.1	2012.4 2014.6	2014.5 2017.4	2186.7 2186.4	2173.0 2177.0	2158.8 2174.1	2172.6 2177.7	0.93	0.76	0.09	-0.58 -0.53	7.33 7.23	7.24 7.10	-0.70 -0.68	-0.06 -0.25	0.59 -0.11	-0.04 -0.28
3 2 4 2 5 2	1 1 1	2 5 5 2 5 5 2 5 5	19.93 8.15 1.01 23.79 8.12 1.01 2148300.00 862400.00 143250	1 0.367 0.304 0.873 1 0.422 0.322 0.885 0.00 0.000 0.000 0.000	19.33 78.28 19.33 78.28 19.28 78.28	174.34 56209 10 174.34 55866 10 174.34 1.0611 10	11 1 11 1 11 1	3 2169.9 4 2168.6 5 2171.6	2152.1 2152.1 2171.6	2171.0 2171.4 2171.6	2183.1 2195.7 2171.6	2012.3 2013.1 1845.9	2014.2 2014.8 2171.6	2185.6 2174.1 2171.6	2175.1 2174.5 2171.6	2155.9 2155.4 2171.6	2170.8 2169.4 2171.6	0.08 0.14 0.00	0.90 0.90 0.00	0.03 0.01 0.00	-0.53 -1.11 0.00	7.34 7.30 15.00	7.25 7.22 0.00	-0.64 -0.11 0.00	-0.16 -0.13 0.00	0.73 0.75 0.00	0.04 0.10 0.00
												maclerz wa	wariant 3 - rozmieszczer	ile czujników wg schema	u nr 5												
licz' pos'	ba aci	n _{max} n _d	indeksy bazowe	kryterium NMD [%]	f [Hz]	funkcja licz	ba współczyn poł	loženie				sztywność elemtnów p	o akutalizacji parametrów	,								indeks L , dla poszególnycł	n elemtnów po aktualizac	i			
NP. brana proce	i do postacie dury		n n n n n n n n n n n n n n n n n n n	1 2 3	1 2	kary Ĵ, iter 3	acji nik wp blo	scierzy skowej 1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
1 2 2 2 3 7	1 1	2 5 5 2 5 5 2 5 5	20.17 8.14 1.01 52.70 32.28 1.00 52.29 28.38 1.00	1 0.369 0.304 0.870 2 0.286 0.375 1.170 2 0.276 0.400 1.217	19.33 78.28 19.29 78.28 19.28 78.28	174.34 56207 10 174.34 6209.5 10 174.34 628.7 10	11 1 11 0.1	1 2169.9 1 2175.9 1 2176.7	2152.1 2167.0 2169.0	2171.3 2168.6 2168.2	2183.1 2173.8 2172.6	2012.3 1995.2 1993.0	2014.2 1998.4 1996.3	2185.6 2177.0 2175.8	2174.8 2172.3 2172.0	2155.8 2171.6 2173.6	2170.8 2177.1 2177.9	0.08 -0.19 -0.23	0.90 0.21 0.12	0.01 0.14 0.16	-0.53 -0.10 -0.05	7.34 8.12 8.23	7.25 7.98 8.08	-0.64 -0.25 -0.19	-0.14 -0.03 -0.02	0.73 0.00 -0.09	0.04 -0.25 -0.29
4 2 5 7	1 1	2 5 5 2 5 5	52.13 28.01 1.00 51.24 27.71 1.00	2 0.275 0.403 1.221 2 0.274 0.403 1.214	19.28 78.28 19.28 78.28	174.34 62.954 10 174.34 6.301 10	1 0.001 1 0.001 1 0.0001	1 2176.7 1 2176.7	2169.1 2169.0	2168.2 2168.2	2172.5	1992.7 1992.5	1996.1 1996.2	2175.7 2175.8	2171.9 2171.9	2173.9 2174.1	2178.0 2178.1	-0.23	0.11 0.12	0.16	-0.04	8.24 8.25	8.08	-0.19	-0.01 -0.01	-0.10	-0.29
6 2 7 2	1	2 5 5 2 5 5	44.14 25.36 1.04 22.83 11.01 1.17	4 0.267 0.395 1.140 7 0.218 0.374 0.648	19.28 78.28 19.28 78.28	174.34 0.63489 10 174.34 0.068411 10	1 0.00001 1 0.000001	1 2176.0 1 2171.3	2167.2 2154.3	2168.1 2167.8	2172.1 2169.2	1991.1 1980.4	1997.7 2008.7	2176.1 2178.7	2172.0 2172.6	2175.9 2188.9	2178.8 2183.5	-0.20 0.01	0.21	0.16 0.18	-0.02	8.31 8.81	8.01 7.50	-0.21 -0.32	-0.02 -0.04	-0.20 -0.79	-0.33 -0.55
8 2 9 2 10 7	1	2 5 5 2 5 5 2 5 5	11.59 5.29 1.58 9.81 5.59 2.15 10.34 3.76 3.00	8 0.170 0.490 0.844 5 0.364 0.467 0.827 3 0.463 0.489 0.502	19.28 78.28 19.28 78.28 19.28 78.28	174.34 0.003606 10 174.34 0.003606 10 174.34 0.001137 10	11 1E-07 11 1E-08 11 1E-09	1 2161.9 1 2161.1 1 2163.8	2131.1 2147.7 2168.7	2174.5 2214.4 2241 1	2164.4 2168.5 2163.9	1956.2 1932.8 1910.3	2035.0 2060.5 2085.5	2181.8 2178.2 2184.8	2167.2 2129.0 2104.8	2212.4 2195.5 2173.4	2193.2 2191.7 2186.5	0.45	1.87	-0.13 -1.97 -3.20	0.33 0.15 0.36	9.92 11.00 12.03	6.29 5.12 3.97	-0.47 -0.30 -0.61	0.21 1.96 3.08	-1.88 -1.10 -0.08	-0.99 -0.93 -0.68
11 2 12 7	1 1	2 5 5 2 9 5	17.55 6.04 4.40 48.38 21.14 0.61	0 0.353 0.348 0.434 1 136.010 278.660 240.05	19.28 78.28 0 19.28 78.28	174.34 0.001137 9 174.34 0.001137 9	1E-10 1E-11	1 2171.4 1 -199860000000	2165.7 000.0 136700000000000.0	2217.9 28642000000000000.0	2174.3 1872000000000000.0	1892.4 36346000000000000.0	2108.1 687860000000000.0	2172.8 34067000000000000.0	2126.4 12659000000000000000000000000000000000000	2176.1 -76843000000000000000000	2179.7 25220000000000000000000000000000000000	0.01 92034000000000.00	0.27	-2.13	-0.12	12.86	2.92	-0.05	2.08	-0.21 3538500000000000.00	-0.37 -116130000000000000000000000000000000000
13 2 14 2	1	2 2 5 2 1 5	1235.40 189.90 4.33 4546.00 1363.60 2.00	3 120.630 50.781 64.513 0 104.300 47.079 246.470	19.28 78.28 0 19.28 78.28	174.34 0.001137 6 174.34 0.001137 9	1E-12 1E-13	1 -77012000000000 1 -14412000000000	0000.0 -33327000000000000000.0 0000.0 7205800000000000.0	-2499500000000000000000000000000000000000	-3619000000000000000000000000000000000000	-18346000000000.0 -105690000000000.0	2166400000000.0 1805500000000.0	-17549000000000000000000000000000000000000	-747130000000000.0 1263300000000.0	-44878000000000.0 6526200000000.0	-140740000000000.0 -48371000000000.0	3546300000000000000000000000000000000000	15346000000000000000000000000000000000000	908800000.00	1666500000000.00 -3233400000000.00	844800000000.00 4866800000000.00	-997580000000.00 -831390000000.00	80812000000000.00 -151660000000.00	34404000000000.00 -58172000000.00	2066600000000.00 -300520000000.00	6480900000000.00 2227400000000.00
15 2 16 2 17 5	1	2 1 5 2 9 5 2 10 5	3817.40 610.22 8.30 0.14 0.02 3.77 982.48 145.09 1222	0 147.910 30.969 33.642 7 170.350 380.780 30.692 40 146.210 294.260 97.177	19.28 78.28 19.28 78.28 19.28 78.28	174.34 0.001137 8 174.34 0.001137 8	1E-14 1E-15 1E-16	1 -15425000000000 1 1300400000000 1 .9436100000000	0000.0 -18577000000000000000 0000.0 47243000000000000000.0 000.0 -1231400000000000000000	-2527800000000000000000000000000000000000	-1469400000000000 -5659500000000000	-507100000000000000000000000000000000000	-8/5300000000.0 14873000000000.0	-39090000000000000 -494090000000000000 442290000000000000000	145460000000000000 41957000000000000000000000000000000000000	-11632000000000 -998180000000000000000000000000000000000	-12486000000000000000000000000000000000000	-5988200000000000000000000000000000000000	-21754000000000000000000000000000000000000	116400000000000000000000000000000000000	6/6650000000.00 2606100000000.00	-47552000000.00 2335100000000.00	40306000000.00 -684880000000.00 712770000000.00	22752000000000.00	-669840000000.00 -193210000000000.00	5356400000000000000000000000000000000000	5749800000.00 121840000000000.00 6304400000000000000000000000000000000
19 2 19 2	1 1	2 10 5 2 2 2 5	15361.00 2048.00 25.6 13633.00 3276.30 51.1	140 140110 154100 57177 50 135.530 270.540 1199.60 19 104.510 48.051 63.289	19.28 78.28 19.28 78.28 19.28 78.28	174.34 0.001137 6 174.34 0.001137 6	1E-17 1E-18	1 25670000000 1 11259000000000	123100000000000000000000000000000000000	-351840000000000.0 -422210000000000.0	-70369000000000.0 -2639000000000.0	99255000.0 2180800000000.0	117460000.0 721550000000.0	-281480000000000.0 -3838600000000.0	-900720000000000000000000000000000000000	-7205800000000000000000000000000000000000	-1844700000000000000000000000000000000000	-118210000000000000000000000000000000000	9812800000000.00 2654100000000000.00	1620200000000.00 19442000000000.00	3240400000000.00 121520000000.00	-4570400.00 -100420000000.00	-5408600.00 -33226000000.00	12961000000000.00 176760000000.00	414770000000000000000000000000000000000	3318100000000000000000 38483000000000000000	849440000000000000000000000000000000000
20 2	1	2 5 5	0.00 0.00 0.10	0 104.310 47.028 64.760	19.28 78.28	174.34 0.001137 6	1E-19	1 10088000000000	0000.0 57648000000000000.0	2251900000000000000000000000000000000000	295540000000000000000	-281390000000000.0	7503300000000.0	1786700000000.0	1252600000000.0	-47558000000000.0	-60473000000000.0	-464540000000000000000000	-2654600000000000000000000000000000000000	-1036900000000000.00	-1360900000000000000000000000000000000000	0 12957000000000.00	-345510000000.00	-82275000000.00	-576810000000.00	219000000000.00	2784700000000.00
												macierz waj	wariant 5 - rozmieszczer	ie czujników wg schema	ม nr 5			1									
NP. bran	aci postacie i do	rinax ria	indeksy bazowe	kryterium NMD [%]	f [Hz]	funkcja licz kary J, iter	ba współczyn ma acji nikwp bło	loženie acierzy			<u>.</u>	sztywność elemtnów p	o akutalizacji parametrów						1	- <u>-</u>		indeks I., dla poszególnyci	h elemtnów po aktualizac	i			
procer	dury 1	2 8 5	4.21 1.26 1.57	1 2 3 7 0.733 0.576 2.001	1 2 19.60 78.40	3 176.50 0.17603 10	1 1	1 1 2170.7	2 2140.5	3 2206.8	4 2171.0	5 2169.3	6 2174.0	7 2172.2	8 2127.5	9 2199.7	10 2172.6	1 0.04	2	3	4	5 0.11	6 -0.11	7 -0.03	8 2.03	9 -1.29	10 -0.05
												macierz waj	; wariant 6 - rozmieszczer	ile czujników wg schema	u nr 5												
liczł posł	ba aci	n _{max} n _d	indeksy bazowe	kryterium NMD [%]	f [Hz]	funkcja licz	ba współczyn poł	loženie				sztywność elemtnów p	o akutalizacji parametrów	,								indeks I _o dla poszególnyci	h elemtnów po aktualizac	i			
proce	i do dury		len len let	1 2 3	1 2	kary J, iter	acji nikwp blo	okowej 1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
1 2 2 2	1 1	2 8 5 2 8 5	2.95 1.15 1.90 3.70 1.02 2.65	0 0.731 0.542 1.910 5 0.775 0.739 2.254	19.60 78.39 19.60 78.34	176.45 0.14614 10 176.32 0.15137 10	11 1 11 1	1 2136.3 2 2170.9	2148.8 2126.9	2204.5 2207.7	2171.2 2171.2	2169.7 2169.7	2173.6 2173.6	2172.1 2172.0	2131.0 2125.9	2193.0 2188.9	2172.4 2172.4	1.63 0.03	1.05 2.06	-1.51 -1.66	0.02	0.09 0.09	-0.09 -0.09	-0.02	1.87 2.11	-0.98 -0.79	-0.04 -0.03
3 2 4 2	1	2 2 5 2 8 5 2 5 5	3.68 1.12 0.58 3.69 1.25 1.91 6.05 2.85 51.6	8 0.748 0.752 2.351 1 0.696 0.465 1.791 52 0.546 0.434 1.521	19.62 78.53 19.59 78.36 19.52 78.38	176.65 0.13853 10 176.50 0.15117 10 175.96 0.18629 10	1 1	3 2170.8 4 2170.8 5 2170.9	2138.9 2146.9 2148.4	2228.0 2206.3 2198.8	2171.0 2154.9 2171.2	2169.8 2169.6 2079.9	2173.5 2173.8 2173.4	2172.2 2172.1 2172.0	2144.6 2128.4 2139.4	2201.0 2194.3 2193.2	2172.5 2172.5	0.04	1.51 1.14	-2.59 -1.60	0.03	0.09 0.09 4.23	-0.09 -0.10	-0.03 -0.02	1.24 1.99	-1.35 -1.04	-0.04 -0.04
												macierz wa	t wariant 7 - rozmieszczer	ie czujników wz schema	u nr 5				+	+		+ ····					
licz	3a	n _{max} n _d	indeksy hazowe	kryterium NMD (%)	f [Hz]		pol	oženie				sztywność elemtnów r	o akutalizacii narametrów									indeks L, dla poszególnvri	h elemtnów po aktualizac	i			
NP. posta brana proce	aci postacie i do dury		pbr ebr labr	1 2 3	1 2	funkcja licz kary J, iter	ba współczyn ' acji nik wp blo	acierzy okowej 1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
1 2	1	2 5 5	52.83 28.15 1.01	1 0.293 0.398 1.215	19.28 78.26	174.31 -408800	1	1 2176.8	2169.3	2168.3	2172.5	1993.3	1995.5	2175.7	2171.9	2173.7	2178.0	-0.24	0.11	0.16	-0.04	8.21	8.11	-0.19	-0.01	-0.10	-0.29
												macierz wa	wariant 8 - rozmieszczer	le czujników wg schema	u nr 5												
liczł		la la		1														1									
NP. pos. brana	aci postacie	n _{max} n _d	indeksy bazowe	kryterium NMD [%]	f [Hz]	funkcja licz kary J, iter	ba współczyn ma nik wp	lożenie acierzy				sztywność elemtnów p	o akutalizacji parametrów									indeks I o dla poszególnycł	h elemtnów po aktualizac	I			
NP. brani proces	aa aci ado dury 1	n _{max} n _d	indeksy bazowe	kryterium NMD [%]	f [Hz]	funkcja licz kary J, iter 3 174.32	ba współczyn nik wp bło	loženie acierzy kowej 1 1 2171 6	2	3	4	sztywność elemtnów p 5 2006 0	o akutalizacji parametrów 6 2009 1	7 2183.0	8	9 2163.8	10	1	2	3	4	indeks L, dla poszególnych	h elemtnów po aktualizac 6 7.48	i 7 -0.52	8	9	10
NP. pos bran proce 1 2 2 2 3 2	2a aci g do g dury 1 1 1 1	n _{ess} n _s 2 5 5 2 5 5 2 5 5	indeksy bazowe #** for the form of the fo	kryterium NMD [%] 1 2 3 2 0.314 0.333 0.888 3 0.274 0.424 1.300 2 0.311 0.354 1.269	f [Hz] 1 2 19.30 78.27 19.28 78.28 19.28 78.28	funkcja licz kary I, 174.32 -2047500 2 174.34 -32887 8 174.34 -32887 5	ba współczyn nik wp blc nik wp lible 1 1 1 1	boženie scierzy kowej 1 1 2171.6 2 2179.4 3 2178.6	2 2156.4 2171.6 2175.5	3 2170.4 2158.4 2171.7	4 2179.9 2152.7 2172.3	sztywność elemtnów p 5 2006.0 1953.9 1991.9	o akutalizacji parametrów 6 2009.1 1979.3 1995.1	7 2183.0 2162.8 2175.0	8 2174.0 2172.7 2168.1	9 2161.8 2224.9 2169.2	10 2173.1 2197.2 2176.9	1 0.00 -0.36 -0.32	2 0.70 0.00 -0.18	3 0.06 0.61 0.00	4 -0.38 0.87 -0.03	indeks I, dla poszególnycł 5 7.63 10.03 8.28	6 7.48 8.86 8.13	7 -0.52 0.41 -0.15	8 -0.11 -0.05 0.16	9 0.45 -2.45 0.11	10 -0.07 -1.18 -0.24

Tabele wynikowe aktualizacji parametrów dla zestawów macierzy wag w wariantach 1-3 5-8 przy uszkodzeniu elementu numer 5 o intensywności 15%

Tabela wynikowa aktualizacji parametrów dla zestawów macierzy wag w wariancie 4 przy uszkodzeniu elementu numer 5 o intensywności 15%

															macierz wag wari	ant 4 - rozmieszczenie czujn	ików wg schematu nr 5												
liczba po NP. brana	staci do post	n _a	nas n _d indeksy bazowe		kryterium NMD [%]		f [Hz]	funkcja	liczba	współczyn maci	enie erzy				sztywność elemtnów po aki	ıtalizacji parametrów								in	deks \mathbf{I}_{o} dia poszególnych ele	emtnów po aktualizacji			
proced	ury		no not state	1	2 3	1	2	3 kary J,	iteracji	nik wp bloke	wej 1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8 9	10
1 2	1	2	5 5 16.18 7.92 1.0 5 5 15.90 3.72 1.0	1 0.362	2 0.310 0.8	39 19.33 40 19.29	78.28	174.34 56190 174.34 6184.2	101	1 1	2151.5	2155.1	2169.6	2184.3	2012.4	2014.5	2186.7	2173.0	2158.8	2172.6	0.93	0.76	0.09	-0.58	7.33	7.24	-0.70	-0.06 0.59	-0.04
3 2	1	2	5 5 14.92 3.22 1.0	2 0.29	8 0.347 1.2	97 19.28	78.28	174.34 625.3	101	0.01 1	2226.9	2160.0	2173.0	2170.1	1993.8	1996.7	2173.4	2176.8	2164.7	2173.0	-2.54	0.53	-0.06	0.07	8.19	8.06	-0.08	-0.24 0.32	-0.06
4 2 5 2	1	2	5 5 16.17 3.49 1.0 5 5 26.81 6.54 1.0	2 0.29	5 0.354 1.2 4 0.378 1.2	94 19.28 50 19.28	78.28	174.34 62.638 174.34 6.2852	101	0.001 1	2222.7 2199.0	2161.0 2165.0	2172.5 2170.3	2170.2 2171.3	1993.5 1992.9	1996.4 1996.4	2173.5 2174.7	2176.4 2174.1	2165.6 2170.0	2173.5 2175.9	-2.35 -1.26	0.49	-0.04 0.06	0.07	8.20	8.07	-0.09 -0.14	-0.22 0.28 -0.11 0.07	-0.08 -0.19
6 2	1	2	5 5 44.14 25.36 1.0 5 5 22.95 10.98 1.1	4 0.26 7 0.21	7 0.395 1.1 8 0.374 0.6	40 19.28 48 19.28	78.28	174.34 0.6348 174.34 0.06840	0 101 6 101	0.00001 1	2176.0	2167.2 2154.2	2168.1 2167.8	2172.1 2169.2	1991.1 1980.4	1997.7 2008.7	2176.1 2178.7	2172.0	2175.9 2188.8	2178.8 2183.5	-0.20	0.21	0.16	-0.02	8.31 8.81	8.01	-0.21 -0.32	-0.02 -0.20 -0.04 -0.79	-0.33 -0.55
8 2	1	2	5 5 12.61 5.07 1.5	8 0.17	4 0.493 0.8	39 19.28	78.28	174.34 0.01218	4 101	1E-07 1	2171.5	2129.2	2175.5	2164.0	1956.3	2035.2	2181.4	2168.0	2210.8	2192.3	0.00	1.95	-0.18	0.35	9.92	6.28	-0.45	0.17 -1.80	-0.95
10 2	1	2	5 5 10.86 3.69 3.0	5 0.470	0 0.502 0.4	10 19.28 90 19.28	78.28	174.34 0.00351 174.34 0.00109	7 101	1E-08 1	2171.6	2145.8 2167.5	2216.0	2168.2 2163.7	1932.7	2086.0	2177.6	2129.4 2104.9	2193.4 2171.7	2190.7 2185.7	0.00	0.19	-2.04	0.16	12.05	3.94	-0.27	3.07 0.00	-0.88
11 2	1	2	5 5 17.72 6.09 4.3 2 5 2411.50 452.31 71.0	5 0.353 13 104.33	3 0.351 0.4 10 46.986 64.9	47 19.28 927 19.28	78.28	174.34 0.00109 174.34 0.00109	7 9 7 11	1E-10 1 1E-11 1	2171.6	2165.3	2217.4	2175.1 49203000000000.0	1892.8	2107.6 57357000000000.0	2172.0	2126.8 7914400000000	2176.6	2179.5	0.00 8151200000.00	0.29 5184500000000000.00	-2.11 72584000000000000000	-0.16	12.84	2.95	-0.02 137490000000.00	2.07 -0.23 -36445000000.00 30373000000	-0.36 00.00 703580000000.00
13 2	1	2	10 5 29.21 4.00 0.8	9 135.52	20 270.710 213.	780 19.28	78.28	174.34 0.00109	7 8	1E-12 1	-85757000000.0	-17593000000000.0	-83452000000.0	21366000000.0	-41718000000.0	-4325000000000.0	-837660000000000	.0 -90072000000000	00.0 4053200000000000.0	-360250000000000000	3948900000.00	810150000000.00	3842800000.00	-983860000.00	1921000000.00	199160000000.00	3857300000000.00	147600000000000000 -1866400000000	1000.00 1658900000000000.00
14 2 15 2	1	2	2 5 65.28 11.48 33.	80 104.30 71 41.62	21 47.725 76.9	995 19.28 19.28	78.28	174.34 0.00109 174.34 0.00109	7 7	1E-13 1 1E-14 1	-484890000000000000000000000000000000000	-12385000000000000000000000000000000000000	36742000000000000000000000000000000000000	-265500000000000000000000000000000000000	-2659200000000000000000000000000000000000	1096200000000000000000000000000000000000	-79783000000000000	0 -55498000000000	0.0 1078400000000000000000000000000000000000	-4818200000000000000000000000000000000000	10589000000.00	5702900000000000000000000000000000000000	-169190000000000000000	12226000000000.00	1224500000000000000000000000000000000000	-50479000000000000000	3673900000000.00	25556000000000000 -496580000000	000.00 2125700000000000000000000000000000000000
16 2 17 2	1	2	2 5 65.28 11.48 33. 2 5 65.28 11.48 33.	71 41.62 71 41.62	21 47.725 76.9 21 47.725 76.9	995 19.28 995 19.28	78.28	174.34 0.00109 174.34 0.00109	7 7 7 7 7 7	1E-15 1 1E-16 1	-229950000000.0 -229950000000.0	-12385000000000000000 -12385000000000000000000000000000000000000	3674200000000000000 36742000000000000000000	-265500000000000.0 -265500000000000.0	-265920000000000.0 -265920000000000.0	1096200000000000.0 1096200000000000.0	-79783000000000. -79783000000000.	0 -5549800000000 0 -55498000000000	0.0 1078400000000000000000000000000000000000	-2331000000000000 -233100000000000000000	10589000000.00 10589000000.00	570290000000000.00 570290000000000.00	-16919000000000.00 -16919000000000.00	1222600000000.00 1222600000000.00	12245000000000.00 12245000000000.00	-5047900000000.00 -50479000000000.00	367390000000.00 367390000000.00	25556000000000.00 -496580000000 25556000000000.00 -496580000000	000.00 1073400000000.00 000.00 1073400000000.00
18 2	1	2	2 5 65.28 11.48 33.	41.62	47.725 76.9	995 19.28	78.28	174.34 0.00109	7 7	1E-17 1	-229950000000.0	-1238500000000000000000	36742000000000000000000000000000000000000	-265500000000000.0	-265920000000000.0	1096200000000000.0	-79783000000000	0 -5549800000000	0.0 107840000000000000000	-23310000000000.0	10589000000.00	5702900000000000.00	-16919000000000.00	1222600000000.00	12245000000000.00	-50479000000000.00	3673900000000.00	2555600000000.00 -496580000000	000.00 1073400000000.00
20 2	1	2	2 5 65.28 11.48 33.	41.62	47.725 76.9	995 19.28	78.28	174.34 0.00109	7 7	1E-18 1	-229950000000.0	-12385000000000000000000000000000000000000	36742000000000000000000000000000000000000	-265500000000000000000	-265920000000000000	1096200000000000000000	-79783000000000	0 -55498000000000	0.0 1078400000000000000000000000000000000000	-233100000000000000000000000000000000000	10589000000.00	5702900000000000000000	-16919000000000000000	12226000000000.00	12245000000000.00	-50479000000000000000	3673900000000.00	25556000000000.00 -496580000000	000.00 10734000000000.00
21 2 2	1	2	5 5 12.97 3.24 1.0 5 5 33.49 16.77 1.0	2 0.35	9 0.580 0.7 1 0.366 0.9	57 19.34 99 19.29	78.28	174.34 55390 174.34 6209.1	101	1 2	2177.2 2177.6	2123.1 2161.1	2173.7 2169.0	2183.1 2173.6	2014.6 1995.2	2017.4 1998.6	2186.4 2176.9	2177.0 2172.7	2174.1 2175.9	2177.7 2178.8	-0.26	2.23	-0.09 0.12	-0.53	7.23 8.12	7.10	-0.68 -0.24	-0.25 -0.11 -0.05 -0.20	-0.28 -0.33
23 2	1	2	5 5 39.54 24.63 1.0 5 5 40.34 24.63 1.0	2 0.27	3 0.392 1.1 2 0.395 1.1	18 19.28 31 19.28	78.28	174.34 628.8 174.34 62.965	101	0.01 2	2177.7	2165.7	2168.5	2172.5	1992.9	1996.4	2175.8	2172.2	2176.1	2178.9	-0.28	0.28	0.15	-0.04	8.23	8.07	-0.19	-0.02 -0.21	-0.33
25 2	1	2	5 5 41.00 24.78 1.0	2 0.27	1 0.396 1.1	36 19.28	78.28	174.34 6.302	101	0.0001 2	2177.5	2166.4	2168.4	2172.3	1992.5	1996.3	2175.7	2172.1	2176.1	2178.9	-0.27	0.24	0.15	-0.03	8.25	8.08	-0.19	-0.02 -0.20	-0.33
26 2 27 2	1	2	5 5 44.14 25.36 1.0 5 5 34.23 24.04 1.2	4 0.26 0 0.219	7 0.395 1.1 9 0.378 0.9	40 19.28 92 19.28	78.28	174.34 0.06798 174.34 0.06798	4 101	0.00001 2	21/6.0 2164.7	2167.2	2168.1 2166.1	21/2.1 2169.5	1991.1 1978.2	2010.6	2176.1 2179.7	2172.0	2175.9 2179.1	21/8.8 2179.6	-0.20	0.21	0.16	-0.02	8.31	7.41	-0.21 -0.37	-0.02 -0.20	-0.33 -0.37
28 2	1	2	5 5 13.00 4.20 2.4 5 5 10.74 3.21 4.0	0 0.021	8 0.297 0.2	89 19.28 44 19.28	78.28	174.34 0.01011 174.34 0.00272	7 101	1E-07 2 1E-08 2	2113.0	2170.0	2159.3	2159.0	1925.1	2068.7	2193.0	2170.1	2195.9	2184.6	2.70	0.07	0.57	0.58	11.35	4.74	-0.98	0.07 -1.12	-0.60
30 2	1	2	5 5 10.48 4.50 3.4	1 0.38	9 0.396 0.4	90 19.28	78.28	174.34 0.00107	4 101	1E-09 2	2144.1	2171.6	2228.8	2165.5	1903.9	2093.1	2184.4	2112.2	2178.7	2186.5	1.27	0.00	-2.63	0.28	12.33	3.62	-0.59	2.74 -0.33	-0.69
31 2 32 2	1	2	5 5 16.59 5.81 6.5 1 5 228.07 30.32 2852	0 0.164 8.00 104.45	4 0.164 0.4 50 47.366 62.9	51 19.28 928 19.28	78.28	174.34 0.00107 174.34 0.00107	4 / 4 14	1E-10 2 1E-11 2	-1297000000000000000000000000000000000000	-454650000000000.0	4278400000000000000000000000000000000000	190700000000000000000000000000000000000	-791980000000000.0	2126.4 28542000000000.0	5859800000000.0	-4636000000000	0.0 -66251000000000000000	-131170000000000.0	2.33	0 2093600000000.00	-0.75	-0.43 -87813000000000.00	36469000000000.00	-1314300000000.00	-269830000000.00	1.23 -0.90 21348000000000.00 3050700000000	-0.38
33 2 34 2	1	2	10 5 1518.60 394.24 141. 3 5 14.77 4.79 4.0	43 38.39 0 104.59	91 405.680 204. 90 54.384 202.	200 19.28 940 19.28	78.28	174.34 0.00107 174.34 0.00107	4 6 4 6	1E-12 2 1E-13 2	51535000000.0 -2327400000000000.0	5085200000000.0 54043000000000000.0	17867000000000.0 -21618000000000000.0	83288000000000.0 18014000000000000.0	16188000000000000000 4543200000000000000000000000000000000000	-19894000000000.0 -114350000000000.0	-14952000000000 -2335200000000000	.0 17592000000000 0.0 -32647000.0	-490380000000000000 -2703500000000000000000000000000000000000	-69355000000000000 451770000000000000000	0 -2373100000.00	-234170000000.00 -2488600000000000.00	-822750000000.00 9954700000000000.00	-3835300000000.00 -829530000000000.00	-74541000000000.00 -209210000000000.00	91610000000.00 5265600000000.00	688540000000.00 10753000000000.00	8100900000000000 225810000000 1503400.00 1244900000000	000.00 31937000000000000.00 000.00 -20803000000000000.00
35 2	1	2	6 5 0.98 0.17 0.0	7 135.8	90 277.290 64.4	453 19.28	78.28	174.34 0.00107	4 6	1E-14 2	-18904000000000000.0	-29414000000000000.0	-24207000000000000.0	126100000000000000000	323250000000000000000000000000000000000	-216880000000000000000	-29191000000000	.0 3685900000000	0.0 1196300000000000.0	2125500000000000000	870480000000000.00	135450000000000000000	1114700000000000.00	-580680000000000000000	-1488500000000000000000000000000000000000	00 9986800000000000.00	13442000000000.00	-1697300000000.00 -55086000000	00.00 -9787500000000000.00
37 2	1	2	10 5 19805.00 3639.50 779.	37 612.9	80 4251.900 202.	430 19.28 020 19.28	78.28	174.34 0.00107	4 7	1E-15 2	-636090000000.0	137430000000.0	-351840000000000000000	17589000000000000000000000000000000000000	506700000000000000000000000000000000000	5629200000000000	3628400000000000	0 92799000000000	0.0 2366200000000000000000	-184410000000000000000000000000000000000	29291000000.00	-6328600000.00	16202000000000.00	-809950000000.00	-23333000000000000000	-25921000000000.00	-167080000000000000000	4273200000000000000000000000000000000000	133710000000000000000000000000000000000
38 2 39 2	1	2	9 5 62.55 19.69 0.5 8 5 20.93 5.40 7.7	9 543.29 3 135.84	90 68.459 64.7 40 275.410 64.7	766 19.28	78.28	174.34 0.00107 174.34 0.00107	4 7 4 7	1E-17 2 1E-18 2	165030000000000.0 -8815500000000.0	2392900000000000.0 -622930000000.0	331630000000000000 489410000000000	8233100000000000.0 -25718000000000.0	-1425000000000000000 74544000000000000000000	-151290000000000000 955040000000000	109950000000000 5208900000000000	0.0 -32809000000000 0 -40242000000000	0.0 -1621300000000000000000000000000000000000	0 27473000000000000000 1044500000000000000	-759940000000.00 405940000000.00	-110190000000000.00 28685000000.00	-15271000000000.00 -22536000000.00	-379120000000000.00 1184300000000.00	65617000000000.00 -3432600000000.00	-4397800000000.00	-5063100000000.00 -2398600000000.00	5108000000000000 746600000000 1853100000000000 -11739000000	000.00 -1265100000000000.00 00.00 -480990000000.00
40 2	1	2	1 5 0.05 0.01 3.4	1 135.84	40 275.370 64.5	565 19.28 73 19.23	78.28	174.34 0.00107	4 6	1E-19 2	-295650000000000.0	86761000000000.0	7235100000000000.0	2609700000000000000000000000000000000000	8695500000000000.0	2639900000000000.0	-3659300000000.0	-18422000000000	0.0 25305000000000000000000000000000000000	-448820000000.0 2170.8	1361400000000.00	-399520000000.00	-33316000000000.00	-120170000000000000000000000000000000000	-400410000000000.00	-12156000000000.00	16851000000.00	848300000000000 -116530000000 -0.16 0.73	20668000000.00
42 2	1	2	5 5 43.22 28.01 1.0	2 0.26	8 0.399 1.2	05 19.29	78.28	174.34 6209.9	101	0.1 3	2175.3	2167.2	2165.3	2173.9	1995.2	1998.3	2177.0	2175.3	2171.8	2176.6	-0.17	0.20	0.29	-0.10	8.13	7.98	-0.25	-0.17 -0.01	-0.23
43 2 44 2	1	2	5 5 41.99 25.46 1.0 5 5 41.95 25.46 1.0	2 0.25	6 0.429 1.2 5 0.432 1.2	57 19.28 60 19.28	78.28	174.34 628.72 174.34 62.956	101	0.01 3	2176.0 2176.1	2169.2 2169.4	2164.6	2172.7 2172.6	1993.0 1992.7	1996.2 1996.1	2175.9 2175.8	2175.3 2175.3	2173.9 2174.2	2177.3 2177.4	-0.20	0.11 0.10	0.32	-0.05	8.23 8.24	8.08	-0.20 -0.19	-0.17 -0.11 -0.17 -0.12	-0.26
45 2	1	2	5 5 42.74 27.79 1.0 5 5 44.14 25.26 1.0	2 0.25	7 0.427 1.2	47 19.28	78.28	174.34 6.3013	101	0.0001 3	2176.1	2169.2	2165.2	2172.5	1992.5	1996.2	2175.8	2174.7	2174.3	2177.6	-0.21	0.11	0.30	-0.04	8.25	8.08	-0.19	-0.14 -0.12	-0.27
47 2	1	2	5 5 23.78 11.07 1.1	7 0.23	6 0.358 0.6	31 19.28	78.28	174.34 0.06828	1 101	0.000001 3	2172.0	2154.4	2171.0	2169.2	1980.6	2008.5	2178.6	2169.6	2188.3	2183.9	-0.02	0.79	0.03	0.11	8.80	7.51	-0.32	0.09 -0.77	-0.57
48 2 49 2	1	2	5 5 11.92 5.18 1.5 5 5 14.60 6.51 2.7	9 0.15	4 0.494 0.8 7 0.402 0.8	44 19.28 62 19.28	78.28	174.34 0.01238 174.34 0.00415	4 101 9 101	1E-07 3 1E-08 3	2161.1 2145.1	2130.6 2140.5	2171.7 2171.7	2164.4 2172.0	1955.6	2035.7 2078.7	2181.9 2174.5	2169.7 2166.7	2213.3 2210.6	2193.0 2188.8	0.48	1.89	-0.01	-0.02	9.95	6.26	-0.47 -0.13	0.09 -1.92 0.23 -1.79	-0.98 -0.79
50 2	1	2	5 5 23.56 7.03 8.1 5 5 23.26 9.88 144	0 0.07	6 0.160 0.4	07 19.28	78.28	174.34 0.00415	9 5	1E-09 3	2129.0	2166.7	2171.7	2181.0	1872.2	2134.7	2167.3	2162.5	2193.6	2177.7	1.96	0.23	0.00	-0.43	13.79	1.70	0.20	0.42 -1.01	-0.28
52 2	1	2	4 5 0.61 0.11 1.0	9 129.00	60 202.800 64.7	782 19.28	78.28	174.34 0.00415	9 9	1E-11 3	-60466000000000.0	1442600000000000000000	-26641000000000.0	-153510000000000.0	-14074000000000000000	-28385000000000.0	-70372000000000	0 -13527000000000	0.0 -15438000000000.0	-18829000000000.0	2784400000000.00	-66427000000000.00	122680000000.00	706900000000.00	6480600000000.00	1307100000000.00	3240500000000.00	622890000000000 71088000000	0.00 86703000000.00
53 2	1	2	2 5 139.72 22.71 11.1 2 5 219.38 77.28 0.3	7 374.50	00 85.612 41.5 00 322.730 96.9	968 19.28	78.28	174.34 0.00415 174.34 0.00415	9 8 9 11	1E-12 3 1E-13 3	6448500000000000000000000000000000000000	-23749000000000000000000000000000000000000	415520000000000000 219880000000000	-77898000000000.0	-1430600000000000000000000000000000000000	-230210000000000000000000000000000000000	4560300000000000000000000000000000000000	0 11992000000000	0.0 -17/83000000000000000000000000000000000000	-349030000000000000000000000000000000000	-2969400000000000000000000000000000000000	3649900000000000000000000000000000000000	-1913400000000000000000000000000000000000	358710000000.00	1427200000000.00	14151000000000.00	-209990000000.00	-552210000000.00 81066000000 -5522100000000.00 81066000000	0.00 1607200000000000000000000000000000000000
55 2	1	2	1 5 2.76 0.67 0.1 1 5 189.81 41.63 0.4	7 104.30 7 394.90	00 47.053 202. 60 114.540 49.8	850 19.28 318 19.28	78.28	174.34 0.00415 174.34 0.00415	9 11 9 10	1E-14 3 1E-15 3	-720640000000000000.0 -24104000000000000.0	4323500000000000000000000000000000000000	-31523000000000000000 579050000000000000000000	108090000000000000000000000000000000000	-18015000000000000000 -588980000000000000	-1351300000000000000 -528800000000000	-134110000000000	0.0 4265300000000 -110620000000	0.0 79852000000000.0 0 -1628100000000.0	-3563500000000000000 193410000000000000	3318400000000000000000000000000000000000	-19909000000000000000 -23857000000000000000	145160000000000000000 -266640000000000000000000000000000000000	-4977100000000000.00 -269160000000.00	82956000000000.00 271210000000.00	622270000000000.00 243500000000.00	6175700000000.00 257190000000.00	1964100000000000 -36770000000 5093900000.00 7497000000	0.00 1640900000000000000000000000000000000000
57 2	1	2	1 5 189.81 41.63 0.4	7 394.9	60 114.540 49.8	318 19.28	78.28	174.34 0.00415	9 10	1E-16 3	-24104000000000000.0	5180900000000000000000000000000000000000	57905000000000.0	5845200000000.0	-5889800000000.0	-528800000000.0	-558530000000.0	0 -110620000000.	0 -1628100000000.0	19341000000000.0	11099000000000.00	-238570000000000.00	-266640000000.00	-269160000000.00	27121000000.00	24350000000.00	25719000000.00	5093900000.00 7497000000	0.00 -890640000000.00
58 2	1	2	1 5 189.81 41.63 0.4 1 5 189.81 41.63 0.4	7 394.90 7 394.90	60 114.540 49.8 60 114.540 49.8	318 19.28 318 19.28	78.28	174.34 0.00415 174.34 0.00415	9 10 9 10	1E-17 3	-241040000000000000000000000000000000000	518090000000000000000	57905000000000.0	5845200000000.0	-5889800000000.0	-5288000000000.0	-5585300000000.0	-110620000000.	0 -1628100000000.0	1934100000000000	110990000000000000000000000000000000000	-23857000000000000000	-266640000000.00	-26916000000.00	27121000000.00	243500000000.00	25719000000.00	5093900000.00 7497000000	0.00 -89064000000.00 0.00 -890640000000.00
60 2 61 2	1	2	1 5 189.81 41.63 0.4 5 5 23.79 8.12 1.0	7 394.90	60 114.540 49.8 2 0.322 0.8	818 19.28 85 19.33	78.28	174.34 0.00415 174.34 55866	9 10 101	1E-19 3	-241040000000000000 2168.6	5180900000000000.0 2152.1	5790500000000.0 2171.4	584520000000.0 2195.7	-5889800000000.0 2013.1	-5288000000000.0 2014.8	-5585300000000.0 2174.1	0 -110620000000. 2174.5	0 -1628100000000.0 2155.4	19341000000000.0 2169.4	0.14	-238570000000000.00 0.90	-266640000000.00 0.01	-26916000000.00	27121000000.00 7.30	24350000000.00 7.22	257190000000.00 -0.11	-0.13 0.75	0.00 -890640000000.00 0.10
62 2	1	2	5 5 59.86 33.63 1.0	2 0.29	6 0.378 1.1	75 19.29	78.28	174.34 6207.1	101	0.1 4	2175.7	2167.1	2168.6	2176.1	1995.3	1998.3	2174.8	2172.2	2171.6	2176.9	-0.19	0.21	0.14	-0.21	8.12	7.98	-0.14	-0.03 0.00	-0.24
64 2	1	2	5 5 54.51 28.37 1.0	2 0.23	8 0.405 1.2	23 19.28	78.28	174.34 62.947	101	0.001 4	2176.7	2169.0	2168.2	2173.3	1993.0	1996.1	2174.9	2171.9	2173.9	2177.9	-0.23	0.12	0.16	-0.08	8.23	8.09	-0.15	-0.01 -0.10	-0.29
65 2 66 2	1	2	5 5 53.02 27.98 1.0 5 5 44.14 25.36 1.0	2 0.270	6 0.404 1.2 7 0.395 1.1	16 19.28 40 19.28	78.28	174.34 6.3005 174.34 0.6348	101	0.0001 4	2176.6 2176.0	2169.0 2167.2	2168.2 2168.1	2173.1 2172.1	1992.6	1996.2 1997.7	2175.1 2176.1	2171.9 2172.0	2174.1 2175.9	2178.0 2178.8	-0.23 -0.20	0.12	0.16	-0.07 -0.02	8.25	8.08	-0.16 -0.21	-0.01 -0.11 -0.02 -0.20	-0.29 -0.33
67 2	1	2	5 5 23.66 11.08 1.1 5 5 12.23 5.29 1.5	7 0.220	6 0.377 0.6 5 0.493 0.8	52 19.28	78.28	174.34 0.06834 174.34 0.01204	7 101	0.000001 4	2171.2	2154.4	2167.8	2171.2	1980.4	2008.7	2176.7	2172.5	2188.9	2183.4	0.02	0.79	0.18	0.02	8.81	7.50	-0.24	-0.04 -0.79	-0.54
69 2	1	2	5 5 10.22 5.76 2.1	9 0.36	8 0.458 0.8	09 19.28	78.28	174.34 0.00347	5 101	1E-08 4	2160.8	2148.1	2213.2	2171.6	1931.4	2062.1	2175.1	2129.9	2195.5	2191.1	0.50	1.08	-1.91	0.00	11.06	5.04	-0.16	1.92 -1.10	-0.90
70 2 71 2	1	2	5 5 26.17 10.89 13.0 1 5 NaN NaN Na	53 0.203 N 136.43	3 0.171 0.0 70 423.250 64.7	49 19.28 768 19.28	78.28	174.34 0.00347 174.34 0.00347	5 19 5 39	1E-09 4 1E-10 4	2160.7 NaN	2179.7 NaN	2198.0 NaN	2171.6 NaN	1860.9 NaN	2148.8 NaN	2175.7 NaN	2143.1 NaN	2167.8 NaN	2173.0 NaN	0.51 NaN	-0.37 NaN	-1.21 NaN	0.00 NaN	14.31 NaN	1.05 NaN	-0.18 NaN	1.31 0.17 NaN NaN	-0.06 NaN
72 2 73 2	1	2	1 5 NaN NaN Na 4 5 0.00 0.00 0.00	N 106.10 2 88.02	00 47.042 64.7 27 274.450 42 5	734 19.28 547 19.28	78.28	174.34 0.00347 174.34 0.00347	5 10 5 7	1E-11 4 1E-12 4	NaN -833570000000 0	NaN 6289300000000 0	NaN 55859000000000 n	NaN -1057000000000 0	NaN 13779000000000 0	NaN 15787000000000 0	NaN 1845700000000 0	NaN 32988000000000	NaN 4028900000000000000000000000000000000000	NaN 281470000000000 0	NaN 38384000000 00	NaN -28961000000 00	NaN -257220000000 00	NaN 49132000000.00	NaN -63450000000 00	NaN -726970000000 00	NaN -84991000000.00	NaN NaN -151900000000.00 -1855200000000	NaN -1296100000000 nn
74 2	1	2	10 5 2492.10 468.12 14.1	57 135.84	40 275.260 206.	800 19.28	78.28	174.34 0.00347	5 9	1E-13 4	-3386500000000000.0	5773600000000.0	-138940000000.0	94761000000.0	3199700000000.0	-1487400000000.0	1649300000000.0	16889000000000	0.0 10809000000000000000	0 -15853000000000000000	0 15594000000000.00	-265870000000.00	63980000000.00	-4363600000.00	-147340000000.00	68491000000.00	-75946000000.00	77769000000000.00 -4977200000000	000.00 7299900000000000.00
76 2	1	2	1 5 1.98 0.25 0.3 1 5 76.33 10.31 2.0	b 104.30 0 104.24	40 47.101 350.	260 19.28	78.28	174.34 0.00347 174.34 0.00347	5 8	1E-14 4 1E-15 4	-3602900000000000000000000000000000000000	1352000000000000000000000000000000000000	7035800000000000000000000000000000000000	-281460000000000.0	-219900000000000000000000000000000000000	-68/04000000.0	25260000000.0	-3300700000000	0 26212000000000000000000000000000000000	-844420000000000000000000000000000000000	124420000000000000000000000000000000000	-4562400000000000000000000000000000000000	-3239900000000.00	1296100000000.00	-501260000000.00	3163700000.00 5587600000000.00	-1163200000.00	15199000000.00 -97211000000 2570500000.00 -120700000000	00.00 3888400000000.00 000.00 348080000000.00
77 2	1	2	1 5 715.61 128.00 8.0 1 5 715.61 128.00 8.0	0 104.29	90 47.068 66.1 90 47.068 66.1	134 19.28 134 19.28	78.28	174.34 0.00347 174.34 0.00347	5 8	1E-16 4 1E-17 4	-1844700000000000000000000000000000000000	.0 -2305800000000000000000000000000000000000	-14411000000000000000000000000000000000	309890000000000000000000000000000000000	136580000000000.0 136580000000000.0	1546800000000.0 1546800000000.0	-6867500000000.0 -6867500000000.0	-4574000000000 -45740000000000	0.0 16044000000000000000000000000000000000	-4236200000000000000000000000000000000000	849440000000000000000000000000000000000	0 10618000000000000000000000000000000000	663610000000000.00 663610000000000.00	-142700000000000.00 -1427000000000000.00	-6289100000000.00 -6289100000000.00	-71226000000.00 -71226000000.00	31623000000.00 316230000000.00	21062000000000.00 -738800000000 21062000000000.00 -738800000000	000.00 1950700000000000.00 000.00 19507000000000000000
79 2	1	2	1 5 715.61 128.00 8.0	0 104.29	90 47.068 66.1	134 19.28	78.28	174.34 0.00347	5 8	1E-18 4	-18447000000000000000	.0 -230580000000000000000	-1441100000000000000000	309890000000000.0	136580000000000.0	1546800000000.0	-686750000000.0	-4574000000000	0.0 1604400000000000.0	-4236200000000000000	8494400000000000000000	0 10618000000000000000000000000000000000	663610000000000.00	-142700000000000.00	-628910000000.00	-71226000000.00	31623000000.00	2106200000000.00 -738800000000	000.00 195070000000000.00
80 2 81 2	1	2	5 5 2148300.00 862400.00 14325	0 104.25	90 47.068 66.1 0 0.000 0.0	134 19.28 00 19.28	78.28	174.34 0.00347 174.34 1.0611	101	1 5	-1844700000000000000000000000000000000000	2171.6	2171.6	2171.6	1365800000000000	2171.6	-6867500000000.0	2171.6	2171.6	2171.6	0.00	0.00	0.00	-1427000000000000000000000000000000000000	-628910000000000	0.00	0.00	0.00 0.00	0.00
82 2 83 2	1	2	5 5 391380.00 240060.00 1434 5 5 39078.00 26553.00 1434	.00 0.000	0 0.000 0.0	00 19.28	78.28	174.34 1.061 174.34 1.0606	101	0.1 5	2171.6 2171.6	2171.6 2171.6	2171.6 2171.6	2171.6 2171.6	1845.9 1846.1	2171.6 2171.4	2171.6	2171.6 2171.6	2171.6 2171.6	2171.6 2171.6	0.00	0.00	0.00	0.00	15.00 14.99	0.00	0.00	0.00 0.00	0.00
84 2	1	2	5 5 3911.20 2628.80 142. 5 5 205.42 261.57 142.	96 0.003	3 0.005 0.0	14 19.28	78.28	174.34 1.0559	101	0.001 5	2171.7	2171.6	2171.5	2171.6	1847.5	2169.4	2171.8	2171.7	2171.7	2171.8	0.00	0.00	0.00	0.00	14.93	0.10	-0.01	0.00 0.00	-0.01
86 2	1	2	5 5 44.14 25.36 1.0	4 0.26	7 0.395 1.1	40 19.28	78.28	174.34 0.6348	101	0.00001 5	21/2.4 2176.0	21/1.0 2167.2	21/0./ 2168.1	21/1.0 2172.1	1991.1	1997.7	2172.7 2176.1	21/1.8 2172.0	21/2.5 2175.9	2172.8	-0.03	0.03	0.04	-0.02	8.31	8.01	-0.05	-0.02 -0.20	-0.05
87 2 88 2	1	2	6 5 23.95 9.41 11. 6 5 7.10 3.24 13.	4 0.492 64 0.503	2 0.731 1.3 1 1.303 2.0	41 19.28 94 19.28	78.28 78.28	174.34 0.1231 174.34 0.05012	5 101 5 101	0.000001 5 1E-07 5	2168.7 2146.1	2138.9 2070.6	2170.7 2187.1	2167.3 2155.6	2144.7 2167.8	1864.0 1844.4	2179.3 2195.8	2173.2 2158.2	2200.1 2271.5	2190.5 2223.1	0.14	1.51 4.65	0.04	0.20	1.24 0.18	14.17 15.07	-0.35 -1.11	-0.07 -1.31 0.62 -4.60	-0.87 -2.37
89 2	1	2	6 5 4.16 2.27 21.1 6 5 3.19 1.10 1.27	4 1.17	8 1.578 2.6	86 19.28	78.28	174.34 0.03525	6 101	1E-08 5	2129.5	2093.9	2314.3	2157.4	2171.1	1847.7	2186.4	2042.2	2252.6	2230.2	1.94	3.58	-6.57	0.66	0.02	14.92	-0.68	5.96 -3.73	-2.69
91 2	1	2	6 5 2.42 1.03 5.4	9 1.97	5 1.934 1.9	79 19.28	78.28	174.34 0.01803	1 101	1E-10 5	1998.2	2153.5 2198.0	2402.4 2487.5	21/2.2 2134.3	21/1.0 2171.6	1853.0	21/4.1 2230.7	1924.1 1892.7	2197.4 2187.8	2259.6	3.18	-1.21	-13.39 -14.54	1.72	0.00	14.07	-0.12 -2.72	12.84 -0.75	-2.32 -4.05
92 2 93 2	1	2	10 5 9.72 1.28 13.4 5 5 0.00 0.00 0.3	15 359.09 1 104.42	90 47.325 298. 20 49.954 67.3	230 19.28 311 19.28	78.28 78.28	174.34 0.01803 174.34 0.01803	1 8 1 5	1E-11 5 1E-12 5	-73888000000.0 3197600000000000000.0	9463300000000.0 17789000000000000.0	-35184000000000000000000000000000000000000	13084000000000.0 124240000000000.0	-2154100000000.0 -37932000000000.0	-1168200000000.0 1734900000000.0	7635600000000.0	-2800700000000	0.0 334800000000000.0 0.0 277000000000.0	-4503600000000000000000000000000000000000	3402400000.00	-435770000000.00 0 -819160000000000.00	162020000000000.00 -85871000000000.00	-602510000000.00 -5721300000000.00	99192000000.00 1746700000000.00	537950000000.00	-35160000000.00 1168400000.00	128970000000.00 -15417000000 58302000000.00 -1275500000	00.00 20738000000000000 0.00 52068000000.00
94 2	1	2	1 5 10.57 1.79 13.	5 136.8	60 335.080 64.8	313 19.28	78.28	174.34 0.01803	1 8	1E-13 5	-5851200000000000.0	-428810000000000.0	-411160000000000.0	30100000000000.0	-63952000000000.0	-40289000000000.0	154150000000000.	.0 34427000000000	0.0 -3271700000000000.0	-112140000000000.0	269440000000000.00	1974600000000.00	1893300000000.00	-138610000000.00	2944900000000.00	185530000000.00	-709850000000.00	1585300000000.00 150660000000	000.00 516410000000.00
96 2	1	2		139.8 16 320.9	oo 121.480 64.7 30 46.991 66.6	19.28 19.28 19.28	78.28	174.34 0.01803 174.34 0.01803	4 1 5	1E-14 5	NaN 2364400000000000000000000000000000000000	NaN 2308100000000000000000000000000000000000	NaN 582280000000000.0	NaN 7485600000000.0	NaN -103550000000.0	NaN -34461000000000.0	NaN 458520000000.0	NaN -4313300000000	NaN .0 60180000000.0	NaN -2882700000000.0	NaN -10888000000000000000000000000000000000	NaN 0 -1062800000000000000000000000000000000000	NaN -26813000000000.00	NaN -344700000000.00	NaN 4768400000.00	NaN 1586900000000.00	NBN -21114000000.00	NaN NaN 198620000000.00 -2771200000	NaN 1.00 13274000000.00
97 2 98 2	1	2	4 5 0.02 0.00 0.0 3 5 0.57 0.08 0.0	3 104.3 3 2727 3	20 46.936 64.8 300 154.240 64.7	865 19.28 730 19.28	78.28 78.28	174.34 0.01803 174.34 0.01803	1 6 1 5	1E-16 5	1383600000000000000000000000000000000000	.0 6341100000000000000000000000000000000000	136910000000000000000 -4705900000000000000000000000000000000000	-4503600000000000000 207520000000000	-394070000000000000 -12557000000000 n	-20404000000000000000000000000000000000	251250000000.0 442690000000 0	1320600000000 -455860000000	0.0 -200160000000000.0 .0 -970670000000 0	-246290000000000000 -773380000000 0	-63712000000000000000000000000000000000000	00 -291990000000000000000000000000000000000	-630440000000000000000000000000000000000	2073800000000000000000000000000000000000	1814600000000000000000000000000000000000	9395800000000.00 9709900000000 nn	-11570000000.00 -20385000000.00	-60811000000.00 92169000000 20992000000.00 4469800000	0.00 1134100000000.00 35613000000.00
99 2	1	2	6 5 16370.00 3075.50 24021	0.00 135.3	10 267.310 64.7	786 19.28	78.28	174.34 0.01803	1 6	1E-18 5	-957400000000000.0	-46798000000000.0	302330000000.0	-25069000000000.0	-122590000000000.0	-294450000000000000000	0 2031500000000.0	-688270000000.	0 -83752000000.0	-447750000000.0	44087000000000.00	215500000000.00	-139220000000.00	11544000000000.00	5644900000000.00	1355900000000000000000	0 -93548000000.00	31694000000.00 3856600000	.00 20618000000.00
100 2	1	2	o 5 16370.00 3075.50 2402	135.3	10 267.310 64.7	19.28	/8.28	1/4.34 0.01803	1 6	18-19 5	-957400000000000.0	-46/98000000000.0	3023300000000.0	-25069000000000000.0	-12259000000000000000	-294450000000000000000000	20315000000000.0	-688270000000	.0 -83752000000.0	-44//50000000.0	440870000000000000000000000000000000000	2155000000000000000	-139220000000.00	11544000000000000000	5644900000000.00	1355900000000000000000000000000000000000	u -93548000000.00	310940000000 3856600000	.00 20618000000.00

Tabele wynikowe aktualizacji parametrów dla zestawu macierzy wag w wariancie 3 przy uszkodzeniu elementu numer 5 o intensywności 15% uporządkowane względem kryteriów Jp, 九 NMD3, NMD2, NMD1

												macierz wag	wariant 3 - rozmieszcze	nie czujników wg schem	iatu nr 5 - uporządkowan	a według kryterium J p											
liczba postac	a ci .	n .	ax n _d indeksy ba	owe kryteri	um NMD [%]	f [Hz]	funkcja	liczba współczy	położenie				sztyność elemtnów po	akutalizacji paramnetóv	v								indeks I , dla poszególnyc	h elemtnów po aktualizacji			
NP. brana o procedu	do posta ury	acie	der der	l ^{abe} 1	2 3 1	2 3	kary Ĵ,	iteracji nik wp	blokowej 1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6 7	8	9	10
10 2 11 2	1	2	5 5 10.34 3.76 5 5 17.55 6.04	3.03 0.463 4.40 0.353	0.489 0.502 19.20 0.348 0.434 19.20	8 78.28 174.3 8 78.28 174.3	4 0.001137 4 0.001137	9 101 1E-09	1 2163.8 1 2171.4	2168.7 2165.7	2241.1 2217.9	2163.9 2174.3	1910.3 1892.4	2085.5 2108.1	2184.8 2172.8	2104.8 2126.4	2173.4 2176.1	2186.5 2179.7	0.36	0.14 0.27	-3.20 -2.13	0.36 -0.12	12.03 12.86	3.97 -0.61 2.92 -0.05	3.08	-0.08 -0.21	-0.68 -0.37
12 2 13 2	1	2	9 5 48.38 21.14 2 5 1235.40 189.90	0.61 136.010 2 4.33 120.630	78.660 240.050 19.20 50.781 64.513 19.20	8 78.28 174.3 8 78.28 174.3	4 0.001137 4 0.001137	5 1E-11 6 1E-12	1 -19986000000000 1 -770120000000000	0.0 13670000000000000.0 00.0 -333270000000000000.	2864200000000000000000000000000000000000	1872000000000000 3 -3619000000000000	36346000000000000.0 -18346000000000.0	687860000000000.0 21664000000000.0	34067000000000000.0	12659000000000000000000000000000000000000	-76843000000000000000000000000000000000000	25220000000000000000000000000000000000	9203400000000.00 35463000000000000.0	-6295000000000000000000000000000000000000	-131890000000000.00 1151000000000000.00	-86200000000000.00 16665000000000.00	-167370000000000.00 844800000000.00	-3167500000000000 -1568700000000000 -9975800000000 808120000000000	-58294000000000000000000000000000000000000	353850000000000000000000000000000000000	0 -116130000000000000000000000000000000000
14 2 15 2 16 2	1 1	2	1 5 4546.00 1363.6 1 5 3817.40 610.2 9 5 0.14 0.02	8.30 147.910 3 3.77 170.350 3	47.079 246.470 19.20 30.969 33.642 19.20 180.780 30.692 19.20	8 78.28 174.3 8 78.28 174.3 8 78.28 174.3	4 0.001137 4 0.001137	7 1E-13 7 1E-14 7 8 1E-15	1 -14412000000000 1 -154250000000000 1 1300400000000000	0.0 72058000000000000000 0.0 -18577000000000000 0.0 4724300000000000000	-2527800000000000000000000000000000000000	-14694000000000.0 -56595000000000.0	-10569000000000.0 1032700000000.0	-8753000000000.0 1487300000000.0	-39090000000000.0 -494090000000000.0	1253300000000.0 14546000000000.0 419570000000000.0	-1163200000000.0 -998180000000000000000000000000000000000	-48371000000000.0 -124860000000.0 -2645900000000000.0	5636200000000000000000000000000000000000	-331810000000000000000 85545000000000000000000	-9088000000.00 11640000000000.00 -54985000000000.00	-3233400000000.00 676650000000.00 2606100000000.00	4866800000000.00 -47552000000.00 2335100000000.00	-83139000000.00 -151660000000.00 40306000000.00 18000000000.00 -684880000000 00 2275200000000.00	-581/2000000.00 -669840000000.00 -19321000000000.00	-300520000000.00 5356400000.00 459640000000000.00	57498000000000000000000000000000000000000
17 2 18 2	1	2	10 5 982.48 145.09 10 5 15361.00 2048.0	1222.40 146.210 2 0 25.60 135.530 2	194.260 97.177 19.20 170.540 1199.600 19.20	8 78.28 174.3 8 78.28 174.3	4 0.001137	14 1E-16 6 1E-17	1 -94361000000000 1 25670000000.0	0.0 -12314000000000000 -213100000000000000000000000000000000000	-43028000000000.0 -3518400000000.0	-2318600000000000.0 -70369000000000.0	-27450000000000.0 99255000.0	-154790000000000.0 117460000.0	4422900000000.0 -281480000000000.0	-158150000000000.0 -900720000000000.0	-11200000000000000000000000000000000000	-1369100000000000000000000000000000000000	4345200000000000000000000000000000000000	5670200000000.00 981280000000.00	1981300000000.00 1620200000000.00	10677000000000.00 3240400000000.00	1264000000000.00 -4570400.00	71277000000.00 -20367000000.00 -5408600.00 1296100000000.00	7282400000000.00 414770000000000.00	51575000000000.00 3318100000000000.00	630440000000000000000000000000000000000
19 2 20 2	1	2	2 5 13633.00 3276.3 5 5 0.00 0.00	0 51.19 104.510 4	48.051 63.289 19.20 47.028 64.760 19.20	8 78.28 174.3 8 78.28 174.3	4 0.001137 4 0.001137	6 1E-18 6 1E-19	1 112590000000000 1 10088000000000000	0.0 -57638000000000000000000000000000000000000	-422210000000000.0 2251900000000000.0	-26390000000000.0 2955400000000000.0	2180800000000.0 -281390000000000.0	721550000000.0 7503300000000.0	-3838600000000.0 1786700000000.0	-3313600000000.0 1252600000000.0	-83571000000000.0 -47558000000000.0	175920000000000.0 -6047300000000.0	-51846000000000000000000000000000000000000	26541000000000000000000000000000000000000	19442000000000.00 -103690000000000.00	1215200000000.00 -13609000000000.00	-100420000000.00 12957000000000.00	-33226000000.00 176760000000.00 -345510000000.00 -82275000000.00	152580000000.00 -576810000000.00	3848300000000.00 219000000000.00	-810090000000.00 2784700000000.00
9 2 8 2	1	2	5 5 9.81 5.59 5 5 11.59 5.29	2.15 0.364 1.58 0.170	0.467 0.827 19.20 0.490 0.844 19.20 0.374 0.648 10.20	8 78.28 174.3 8 78.28 174.3 9 78.28 174.3	4 0.003606 4 0.012283	i 101 1E-08 i 101 1E-07	1 2161.1 1 2161.9	2147.7 2131.1	2214.4 2174.5	2168.5 2164.4	1932.8 1956.2	2060.5 2035.0	2178.2 2181.8	2129.0 2167.2	2195.5 2212.4	2191.7 2193.2	0.48	1.10	-1.97 -0.13	0.15	11.00 9.92	5.12 -0.30 6.29 -0.47 7.50 0.33	0.21	-1.10 -1.88	-0.93 -0.99
6 2 5 2	1 1	2 2 2	5 5 44.14 25.36 5 5 51.24 27.71	1.04 0.267 1.02 0.274	0.395 1.140 19.20 0.403 1.214 19.20	8 78.28 174.3 8 78.28 174.3 8 78.28 174.3	4 0.63489 4 6.301	101 0.00000 101 0.00001 101 0.0001	1 2171.3 1 2176.0 1 2176.7	2154.3 2167.2 2169.0	2168.1 2168.2	2103.2 2172.1 2172.4	1990.4 1991.1 1992.5	1997.7	2176.1 2175.8	2172.0 2171.9	2175.9 2174.1	2178.8 2178.1	-0.20	0.21	0.16	-0.02	8.31 8.25	8.01 -0.21 8.08 -0.19	-0.02	-0.20	-0.33
4 2 3 2	1	2	5 5 52.13 28.01 5 5 52.29 28.38	1.02 0.275 1.02 0.276	0.403 1.221 19.20 0.400 1.217 19.20	8 78.28 174.3 8 78.28 174.3	4 62.954 4 628.7	101 0.001 101 0.01	1 2176.7 1 2176.7	2169.1 2169.0	2168.2 2168.2	2172.5 2172.6	1992.7 1993.0	1996.1 1996.3	2175.7 2175.8	2171.9 2172.0	2173.9 2173.6	2178.0 2177.9	-0.23 -0.23	0.11 0.12	0.16 0.16	-0.04 -0.05	8.24 8.23	8.08 -0.19 8.08 -0.19	-0.01 -0.02	-0.10 -0.09	-0.29 -0.29
2 2 1 2	1	2	5 5 52.70 32.28 5 5 20.17 8.14	1.02 0.286 1.01 0.369	0.375 1.170 19.2 0.304 0.870 19.3	9 78.28 174.3 3 78.28 174.3	4 6209.5 4 56207	101 0.1 101 1	1 2175.9 1 2169.9	2167.0 2152.1	2168.6 2171.3	2173.8 2183.1	1995.2 2012.3	1998.4 2014.2	2177.0 2185.6	2172.3 2174.8	2171.6 2155.8	2177.1 2170.8	-0.19 0.08	0.21 0.90	0.14 0.01	-0.10 -0.53	8.12 7.34	7.98 -0.25 7.25 -0.64	-0.03 -0.14	0.00	-0.25 0.04
												maclerz wag v	wariant 3 - rozmieszcze	nie czujników wg schem	atu nr 5 - uporządkowan	a według kryterium f 🛕											
liczba		n _a ,	_{ax} n _d indekru ba	owo kostori	um NMD (%)	filles			nototenie				caturo (é elemente é u no	akutalizacii parampotóu									indaks I dla noszadólnur	h elemtnów no aktualizacii			
NP. postad brana d	ci posta do	acie	ebs ebs	ete .		i [nz]	funkcja kary J,	liczba współczy iteracji nik wp	macierzy blokowej	-			sztynose elemenow po	-	-	_	-						-				
10 2	1	2	5 5 10.34 3.76	3.03 0.463	2 3 1 0.489 0.502 19.21	2 3 8 78.28 174.3	4 1.00 0.001137	101 1E-09	1 2163.8	2168.7	2241.1	2163.9	5 1910.3	2085.5	2184.8	2104.8	2173.4	2186.5	0.36	0.14	-3.20	4 0.36	12.03	3.97 -0.61	3.08	-0.08	-0.68
11 2 12 2 13 2	1	2	5 5 17.55 6.04 9 5 48.38 21.14 2 5 1235.40 189.90	4.40 0.353 0.61 136.010 2 4.33 120.630	0.348 0.434 19.20 78.660 240.050 19.20 50.781 64.513 19.20	8 78.28 174.3 8 78.28 174.3 8 78.28 174.3	4 1.00 0.001137 4 1.00 0.001137 4 1.00 0.001137	9 1E-10 5 1E-11 6 1E-12	1 21/1.4 1 -19986000000000 1 -7701200000000000	2165.7 0.0 13670000000000000 0.0 -3332700000000000000000	2217.9 2864200000000000000000000000000000000000	21/4.3 187200000000000.0 3 -36190000000000.0	1892.4 363460000000000000.0	2108.1 6878600000000000.0 21664000000000.0	2172.8 34067000000000000.0 -17549000000000000000000000000000000000000	2126.4 12659000000000000000000000000000000000000	2176.1 -768430000000000000000.0 -448780000000000.0	21/9./ 25220000000000000000000000000000000000	0.01 92034000000000.00 3546300000000000000000000000000000000000	-6295000000000000000000000000000000000000	-2.13 -131890000000000.00 11510000000000000000000000	-0.12 -86200000000000.00 16665000000000.00	12.86 -1673700000000000.00 844800000000 00	2.92 -0.05 -316750000000000.00 -156870000000000.0 -997580000000 00 80812000000000.0	2.08 J -58294000000000000000000000000000000000000	-0.21 3538500000000000.00 2066600000000 00	-0.37 0 -116130000000000000000000000000000000000
13 1 14 2 15 2	1	2	1 5 4546.00 1363.6 1 5 3817.40 610.22	2.00 104.300 4 8.30 147.910	47.079 246.470 19.20 30.969 33.642 19.20	8 78.28 174.3 8 78.28 174.3 8 78.28 174.3	4 1.00 0.001137 4 1.00 0.001137 4 1.00 0.001137	9 1E-13 7 1E-14	1 -144120000000000 1 -1542500000000000	00.0 720580000000000000 00.0 -185770000000000000000	1973600000000000 -2527800000000000000000000000000000000000	702170000000000000000000000000000000000	-105690000000000.0 1032700000000.0	18055000000000.0 -875300000000.0	32935000000000.0 -3909000000000.0	1263300000000.0 1454600000000.0	6526200000000.0 -116320000000.0	-48371000000000.0 -124860000000.0	663620000000000000000000000000000000000	-331810000000000000000000000000000000000	-90880000000000000000000000000000000000	-3233400000000.00 676650000000.00	486680000000.00 -47552000000.00	-83139000000.00 -15166000000.00 4030600000.00 1800000000.00	-58172000000.00	-300520000000.00 5356400000.00	2227400000000.00 5749800000.00
16 2 17 2	1 1	2	9 5 0.14 0.02 10 5 982.48 145.09	3.77 170.350 3 1222.40 146.210 2	180.780 30.692 19.20 194.260 97.177 19.20	8 78.28 174.3 8 78.28 174.3	4 1.00 0.001137 4 1.00 0.001137	8 1E-15 14 1E-16	1 130040000000000 1 -943610000000000	0.0 4724300000000000000000000000000000000000	0 1194100000000000.0 -4302800000000.0	-56595000000000.0 -231860000000000.0	-50710000000000.0 -27450000000000.0	14873000000000.0 -15479000000000.0	-49409000000000.0 4422900000000.0	4195700000000000.0 -158150000000000.0	-998180000000000000000000000000000000000	-26459000000000000000000000000000000000000	-5988200000000000.00 434520000000000.00	0 -21754000000000000000000000000000000000000	-54985000000000.00 1981300000000.00	2606100000000.00 10677000000000.00	2335100000000.00 1264000000000.00	-684880000000.00 2275200000000.00 712770000000.00 -203670000000.00	-193210000000000.00 7282400000000.00	4596400000000000.00 51575000000000.00	0 12184000000000000000 63044000000000000000000
18 2 19 2	1	2	10 5 15361.00 2048.0 2 5 13633.00 3276.3	0 25.60 135.530 2 0 51.19 104.510 4	270.540 1199.600 19.20 48.051 63.289 19.20 47.038 64.760 10.20	8 78.28 174.3 8 78.28 174.3 9 78.28 174.3	4 1.00 0.001137 4 1.00 0.001137	6 1E-17 6 1E-18	1 256700000000 1 1125900000000000	-213100000000000.0 0.0 -576380000000000000.0 0.0 57648000000000000000000000000000000000000	-35184000000000.0 -422210000000000.0	-70369000000000.0 -26390000000000.0	99255000.0 2180800000000.0	117460000.0 721550000000.0	-281480000000000.0 -3838600000000.0	-9007200000000000.0 -3313600000000.0	-720580000000000000000 -8357100000000000	-1844700000000000000000000000000000000000	-1182100000.00 -51846000000000.00	9812800000000.00 2654100000000000.00	1620200000000.00 19442000000000.00	3240400000000.00 1215200000000.00	-4570400.00 -10042000000.00	-5408600.00 1296100000000.00 -3322600000.00 17676000000.00 34551000000.00 83375000000.00	414770000000000.00 152580000000.00	331810000000000000000000000000000000000	0 84944000000000000000000000000000000000
9 2 8 2	1 1	2 2 2	5 5 9.81 5.59 5 5 11.59 5.29	2.15 0.364 1.58 0.170	0.467 0.827 19.20 0.490 0.844 19.20	8 78.28 174.3 8 78.28 174.3 8 78.28 174.3	4 1.00 0.001137 4 1.00 0.003606 4 1.00 0.012283	6 101 1E-08 101 1E-07	1 2161.1 1 2161.9	2147.7	2251900000000000000000000000000000000000	2955400000000000000000000000000000000000	-2813900000000000 1932.8 1956.2	2060.5	2178.2	2129.0	2195.5	2191.7	0.48	1.10 1.87	-1036900000000000000000000000000000000000	0.15	12957000000000000000000000000000000000000	-3455100000000 5.12 -0.30 6.29 -0.47	-576810000000.00 1.96 0.21	-1.10	-0.93
7 2 6 2	1	2	5 5 22.83 11.01 5 5 44.14 25.36	1.17 0.218 1.04 0.267	0.374 0.648 19.20 0.395 1.140 19.20	8 78.28 174.3 8 78.28 174.3	4 1.00 0.068411 4 1.00 0.63489	101 0.00000 101 0.00001	1 2171.3 1 2176.0	2154.3 2167.2	2167.8 2168.1	2169.2 2172.1	1980.4 1991.1	2008.7 1997.7	2178.7 2176.1	2172.6 2172.0	2188.9 2175.9	2183.5 2178.8	0.01	0.80	0.18 0.16	0.11 -0.02	8.81 8.31	7.50 -0.32 8.01 -0.21	-0.04	-0.79 -0.20	-0.55 -0.33
5 2 4 2	1	2	5 5 51.24 27.71 5 5 52.13 28.01	1.02 0.274 1.02 0.275	0.403 1.214 19.20 0.403 1.221 19.20	8 78.28 174.3 8 78.28 174.3	4 1.00 6.301 4 1.00 62.954	101 0.0001 101 0.001	1 2176.7 1 2176.7	2169.0 2169.1	2168.2 2168.2	2172.4 2172.5	1992.5 1992.7	1996.2 1996.1	2175.8 2175.7	2171.9 2171.9	2174.1 2173.9	2178.1 2178.0	-0.23 -0.23	0.12	0.16	-0.04	8.25 8.24	8.08 -0.19 8.08 -0.19	-0.01	-0.11 -0.10	-0.30
2 2	1	2	5 5 52.29 28.38 5 5 52.70 32.28 5 5 52.70 32.48	1.02 0.276 1.02 0.286	0.400 1.217 19.20 0.375 1.170 19.20 0.304 0.870 19.30	8 78.28 174.3 9 78.28 174.3 3 78.28 174.3	4 1.00 628.7 4 1.01 6209.5 4 1.05 56207	101 0.01 101 0.1	1 21/6.7 1 2175.9	2169.0 2167.0 2152.1	2168.2 2168.6 2171.3	2172.6 2173.8 2183.1	1993.0 1995.2 2012.3	1996.3 1998.4 2014.2	2175.8 2177.0 2185.6	2172.0 2172.3 2174.8	2173.6 2171.6 2155.8	2177.9 2177.1 2170.8	-0.23 -0.19	0.12	0.16	-0.05	8.23 8.12 7.34	8.08 -0.19 7.98 -0.25 7.25 -0.64	-0.02	-0.09 0.00	-0.29 -0.25
		- 1						1 1 .	1 - 1		1								1				1			1 000	
licaba		n	ax n _d				1	1	r r			maclerz wag wa	ariant 3 - rozmieszczenia	a czujników wg schemat	u nr 5 - uporządkowana v	redług kryterium NMD3			1								
NP. postad brana d	ci posta	acie	indeksy ba	owe kryteri	um NMD [%]	f [Hz]	funkcja kary J,	liczba współczy iteracji nik wp	położenie macierzy				sztyność elemtnów po	akutalizacji paramnetóv	v								indeks I o dla poszególnyc	h elemtnów po aktualizacji			
procedu	ury	2	6 ^{be} 6 ^{be} 6 9 5 5 17.55 6.04	l ^{ebs} 1	2 3 1	2 3	4 113 0.00113	9 15-10	blokowej 1 1 21714	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6 7	8	9	10
7 2 10 2	1 1	2	5 5 22.83 11.01 5 5 10.34 3.76	1.17 0.218 3.03 0.463	0.374 0.648 19.20 0.489 0.502 19.20	8 78.28 174.3 8 78.28 174.3 8 78.28 174.3	4 1.24 0.068411 4 1.45 0.001137	101 0.00000 101 1E-09	1 2171.3 1 2163.8	2154.3 2168.7	2167.8 2241.1	2169.2 2163.9	1980.4 1910.3	2008.7	2178.7 2184.8	2172.6 2104.8	2188.9 2173.4	2183.5 2186.5	0.01	0.80	0.18	0.11 0.36	8.81	7.50 -0.32 3.97 -0.61	-0.04 3.08	-0.79	-0.55
8 2 1 2	1	2	5 5 11.59 5.29 5 5 20.17 8.14	1.58 0.170 1.01 0.369	0.490 0.844 19.20 0.304 0.870 19.3	8 78.28 174.3 3 78.28 174.3	4 1.50 0.012283 4 1.54 56207	101 1E-07 101 1	1 2161.9 1 2169.9	2131.1 2152.1	2174.5 2171.3	2164.4 2183.1	1956.2 2012.3	2035.0 2014.2	2181.8 2185.6	2167.2 2174.8	2212.4 2155.8	2193.2 2170.8	0.45	1.87	-0.13 0.01	0.33 -0.53	9.92 7.34	6.29 -0.47 7.25 -0.64	0.21 -0.14	-1.88 0.73	-0.99 0.04
9 2 6 2	1	2	5 5 9.81 5.59 5 5 44.14 25.36 5 5 5 70 32.28	2.15 0.364 1.04 0.267 1.02 0.386	0.467 0.827 19.20 0.395 1.140 19.20 0.375 1.170 19.20	8 78.28 174.3 8 78.28 174.3 9 78.28 174.3	4 1.66 0.003606 4 1.80 0.63489	101 1E-08 101 0.00001	1 2161.1 1 2176.0	2147.7 2167.2 2167.0	2214.4 2168.1 2168.6	2168.5 2172.1 2173.8	1932.8 1991.1 1995 2	2060.5 1997.7 1998.4	2178.2 2176.1 2177.0	2129.0 2172.0 2172.3	2195.5 2175.9 2171.6	2191.7 2178.8 2177.1	-0.20	0.21	-1.97 0.16	-0.02	11.00 8.31 8.12	5.12 -0.30 8.01 -0.21 7.98 -0.25	-0.02	-1.10 -0.20	-0.93 -0.33
5 2 3 2	1 1	2 2 2	5 5 51.24 27.71 5 5 52.29 28.38	1.02 0.286 1.02 0.274 1.02 0.276	0.403 1.214 19.20 0.400 1.217 19.20	8 78.28 174.3 8 78.28 174.3 8 78.28 174.3	4 1.83 0205.3 4 1.89 6.301 4 1.89 628.7	101 0.0001 101 0.0001	1 2175.5 1 2176.7 1 2176.7	2169.0 2169.0	2168.2 2168.2	2173.6 2172.4 2172.6	1993.0 1993.0	1996.2 1996.3	2175.8 2175.8	2172.3 2171.9 2172.0	2174.1 2173.6	2177.1 2178.1 2177.9	-0.23	0.12 0.12	0.16 0.16	-0.04 -0.05	8.25 8.23	8.08 -0.19 8.08 -0.19	-0.03 -0.01 -0.02	-0.11 -0.09	-0.30 -0.29
4 2 15 2	1	2	5 5 52.13 28.01 1 5 3817.40 610.22	1.02 0.275 8.30 147.910	0.403 1.221 19.20 30.969 33.642 19.20	8 78.28 174.3 8 78.28 174.3	4 1.90 62.954 4 212.52 0.001137	101 0.001 7 1E-14	1 2176.7 1 -154250000000000	2169.1 00.0 -1857700000000000.0	2168.2 -252780000000000.0	2172.5 -14694000000000.0	1992.7 1032700000000.0	1996.1 -875300000000.0	2175.7 -39090000000000.0	2171.9 1454600000000.0	2173.9 -116320000000.0	2178.0 -124860000000.0	-0.23 7102900000000000000	0.11 85545000000000.00	0.16 1164000000000000000	-0.04 676650000000.00	8.24 -47552000000.00	8.08 -0.19 4030600000.00 18000000000.00	-0.01 -669840000000.00	-0.10 5356400000.00	-0.29 5749800000.00
19 2 20 2	1	2	2 5 13633.00 3276.3 5 5 0.00 0.00	0 51.19 104.510 0.10 104.310 0.10 104.310 0.10 104.310 0.10 104.310 0.10 0.10 0.10 0.10 0.10 0.10 0.10	48.051 63.289 19.21 47.028 64.760 19.21	8 78.28 174.3 8 78.28 174.3	4 215.85 0.001137 4 216.10 0.001137	6 1E-18 6 1E-19	1 112590000000000 1 1008800000000000	0.0 -57638000000000000000000000000000000000000	-422210000000000.0 2251900000000000.0	-26390000000000.0 295540000000000.0	218080000000.0 -28139000000000.0	721550000000.0 7503300000000.0	-3838600000000.0 1786700000000.0	-3313600000000.0 1252600000000.0	-83571000000000.0 -47558000000000.0	1759200000000000 -604730000000000	-51846000000000000000000000000000000000000	265410000000000000000 0 -2654600000000000000000000000000000000000	19442000000000.00 -103690000000000.00	1215200000000.00 -13609000000000.00	-100420000000.00 1295700000000.00	-3322600000.00 17676000000.00 -34551000000.00 -8227500000.00	152580000000.00 -576810000000.00	384830000000.00 219000000000.00	-810090000000.00 2784700000000.00
13 2 14 2 17 2	1 1	2 2	1 5 4546.00 1363.6 10 5 982.48 145.09	2.00 104.300 4 1222.40 146.210 2	47.079 246.470 19.20 194.260 97.177 19.20	8 78.28 174.3 8 78.28 174.3 8 78.28 174.3	4 397.85 0.001137 4 537.65 0.001137	9 1E-12 14 1E-16	1 -144120000000000 1 -9436100000000000	0.0 7205800000000000000 0.0 -1231400000000000000000000000000000000000	1973600000000.0 -4302800000000.0	702170000000000000000000000000000000000	-1056900000000000000000000000000000000000	18055000000000.0 -15479000000000.0	32935000000000.0 4422900000000.0	12633000000000.0 -15815000000000.0	-11200000000000000000000000000000000000	-48371000000000000000000000000000000000000	663620000000000000000000000000000000000	-331810000000000000000000000000000000000	-90880000000.00 198130000000.00	-3233400000000.00 1067700000000.00	486680000000.00 126400000000.00	-33139000000.00 -15166000000.00 71277000000.00 -20367000000.00	-58172000000.00 7282400000000.00	-300520000000.00 51575000000000.00	222740000000000000000000000000000000000
16 2 12 2	1	2	9 5 0.14 0.02 9 5 48.38 21.14	3.77 170.350 3 0.61 136.010 2	80.780 30.692 19.20 78.660 240.050 19.20	8 78.28 174.3 8 78.28 174.3	4 581.82 0.001137 4 654.72 0.001137	8 1E-15 5 1E-11	1 130040000000000 1 -199860000000000	0.0 4724300000000000000000000000000000000000	0 11941000000000000000000000000000000000	-56595000000000.0 187200000000000.0	-50710000000000.0 36346000000000000.0	14873000000000.0 6878600000000000.0	-49409000000000.0 34067000000000000.0	4195700000000000.0 12659000000000000000.0	-998180000000000000000000000000000000000	-26459000000000000000000000000000000000000	-5988200000000000.00 9203400000000.00	-21754000000000000000000000000000000000000	-54985000000000.00 -131890000000000.00	260610000000.00 -8620000000000.00	233510000000.00 -167370000000000.00	-684880000000.00 2275200000000.00 -31675000000000.00 -15687000000000.0	-1932100000000000000000000000000000000000	4596400000000000000000000000000000000000	0 121840000000000000000 0 -116130000000000000000000
18 2	1	2	10 5 15361.00 2048.0	0 25.60 135.530 2	270.540 1199.600 19.2	8 78.28 174.3	4 1605.67 0.001137	6 1E-17	1 25670000000.0	-2131000000000000.0	-35184000000000.0	-70369000000000.0	99255000.0	117460000.0	-281480000000000.0	-90072000000000000.0	-7205800000000000000000000000000000000000	-1844700000000000000000000000000000000000	-1182100000.00	981280000000.00	1620200000000.00	3240400000000.00	-4570400.00	-5408600.00 1296100000000.00	4147700000000000000000	331810000000000000000000	0 84944000000000000000000000000000000000
	-	n	01										macierz wag warl	ant 3 - rozmieszczenie (czujników wg schematu n	r5											
NP. brana o	ci posta	acie	indeksy ba	owe kryteri	um NMD [%]	f [Hz]	funkcja karv I.	liczba współczy iteracii nik wn	położenie macierzy				sztyność elemtnów po	akutalizacji paramnetóv	v								indeks I. dla poszególnyc	h elemtnów po aktualizacji			
procedu	ury	2	5 5 22.83 11.01	l ^{abe} 1	2 3 1	2 3 8 78 78 174 3	4 0.59 0.068411	101 0.00000	blokowej 1 1 2171 3	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6 7 750 .032	8	9	10
8 2 2	1	2	5 5 11.59 5.29 5 5 52.70 32.28	1.58 0.170 1.02 0.286	0.490 0.844 19.20 0.375 1.170 19.20	8 78.28 174.3 9 78.28 174.3	4 0.66 0.012283 4 0.66 6209.5	101 1E-07 101 0.1	1 2161.9 1 2175.9	2131.1 2167.0	2174.5 2168.6	2164.4 2173.8	1956.2 1995.2	2035.0 1998.4	2181.8 2177.0	2167.2 2172.3	2212.4 2171.6	2193.2 2177.1	0.45	1.87	-0.13 0.14	0.33	9.92	6.29 -0.47 7.98 -0.25	0.21	-1.88	-0.99 -0.25
6 2 1 2	1	2	5 5 44.14 25.36 5 5 20.17 8.14	1.04 0.267 1.01 0.369	0.395 1.140 19.20 0.304 0.870 19.33	8 78.28 174.3 3 78.28 174.3	4 0.66 0.63489 4 0.67 56207	101 0.00001 101 1	1 2176.0 1 2169.9	2167.2 2152.1	2168.1 2171.3	2172.1 2183.1	1991.1 2012.3	1997.7 2014.2	2176.1 2185.6	2172.0 2174.8	2175.9 2155.8	2178.8 2170.8	-0.20	0.21 0.90	0.16	-0.02 -0.53	8.31 7.34	8.01 -0.21 7.25 -0.64	-0.02 -0.14	-0.20 0.73	-0.33 0.04
3 2 5 2 4 7	1 1 1	2 2	5 5 52.29 28.38 5 5 51.24 27.71 5 5 52.13 28.01	1.02 0.276 1.02 0.274 1.02 0.275	0.400 1.21/ 19.20 0.403 1.214 19.20 0.403 1.221 19.20	o /6.28 174.3 8 78.28 174.3 8 78.28 174.3	U.08 628.7 14 0.68 6.301 14 0.68 62.954	101 0.01 101 0.0001 101 0.001	1 2176.7 1 2176.7 1 2176.7	2169.0 2169.0 2169.1	2168.2 2168.2 2168.2	21/2.6 2172.4 2172.5	1993.0 1992.5 1992.7	1996.3 1996.2 1996.1	21/5.8 2175.8 2175.7	21/2.0 2171.9 2171.9	21/3.6 2174.1 2173.9	21//.9 2178.1 2178.0	-0.23 -0.23 -0.23	0.12 0.12 0.11	0.16 0.16	-0.05 -0.04 -0.04	8.23 8.25 8.24	8.08 -0.19 8.08 -0.19 8.08 -0.19	-0.02 -0.01 -0.01	-0.09 -0.11 -0.10	-0.29 -0.30 -0.29
11 2 9 2	1	2	5 5 17.55 6.04 5 5 9.81 5.59	4.40 0.353 2.15 0.364	0.348 0.434 19.20 0.467 0.827 19.20	8 78.28 174.3 8 78.28 174.3	4 0.70 0.001137 4 0.83 0.003606	9 1E-10 101 1E-08	1 2171.4 1 2161.1	2165.7 2147.7	2217.9 2214.4	2174.3 2168.5	1892.4 1932.8	2108.1 2060.5	2172.8 2178.2	2126.4 2129.0	2176.1 2195.5	2179.7 2191.7	0.01 0.48	0.27	-2.13 -1.97	-0.12 0.15	12.86 11.00	2.92 -0.05 5.12 -0.30	2.08	-0.21 -1.10	-0.37 -0.93
10 2 20 2	1	2	5 5 10.34 3.76 5 5 0.00 0.00	3.03 0.463 0.10 104.310	0.489 0.502 19.20 47.028 64.760 19.20	8 78.28 174.3 8 78.28 174.3 9 78.20 4711	4 0.95 0.001137 4 151.34 0.001137	101 1E-09 6 1E-19	1 2163.8 1 1008800000000000	2168.7 00.0 57648000000000000000000000000000000000000	2241.1 22519000000000000.0	2163.9 295540000000000.0	1910.3 -281390000000000.0	2085.5 7503300000000.0	2184.8 1786700000000.0	2104.8 1252600000000.0	2173.4 -47558000000000.0	2186.5 -6047300000000.0	0.36	0.14	-3.20 -103690000000000.00	0.36	12.03 1295700000000.00	3.97 -0.61 -34551000000.00 -8227500000.00	3.08	-0.08 219000000000000000000000000000000000000	-0.68 2784700000000.00
14 2 19 2 13 7	1 1 1	2 2	2 5 4546.00 1363.6 2 5 13633.00 3276.3 2 5 1235.40 189.97	2.00 104.300 4 51.19 104.510 4 4.33 120.630	48.051 63.289 19.20 50.781 64.513 19.70	o /8.26 174.3 8 78.28 174.3 8 78.28 174.3	ISI.36 0.001137 I4 152.56 0.001137 I4 171.41 0.001137	9 1E-13 6 1E-18 6 1E-17	1 -144120000000000 1 112590000000000 1 -7701200000000000	0.0 -57638000000000000000000000000000000000000	-4222100000000000 -422210000000000000000000000000000000000	-2639000000000000000000000000000000000000	-103090000000000 218080000000000 -1834600000000000	7215500000000.0 2166400000000.0	-383860000000000 -17549000000000000000000000000000000000000	-3313600000000.0 -74713000000000.0	-8357100000000.0 -44878000000000.0	-48371000000000.0 17592000000000.0 -140740000000000.0	-51846000000000000000000000000000000000000	-331810000000000000000000000000000000000	-9088000000.00 19442000000000.00 11510000000000000.00	-3233400000000.00 1215200000000.00 16665000000000.00	4800800000000000 -100420000000.00 844800000000.00	-3322600000.00 -15166000000.00 -3322600000.00 17676000000.00 -99758000000.00 80812000000000 nr	-58172000000.00 152580000000.00 34404000000000.00	-300520000000.00 3848300000000.00 2066600000000.00	-810090000000.00 648090000000.00
15 2 18 2	1	2	1 5 3817.40 610.22 10 5 15361.00 2048.0	8.30 147.910 3 0 25.60 135.530 2	30.969 33.642 19.20 270.540 1199.600 19.20	8 78.28 174.3 8 78.28 174.3	4 178.88 0.001137 4 406.07 0.001137	7 1E-14 6 1E-17	1 -154250000000000 1 2567000000000	00.0 -18577000000000000.0 -21310000000000.0	-252780000000000.0 -35184000000000.0	-14694000000000.0 -7036900000000.0	1032700000000.0 99255000.0	-875300000000.0 117460000.0	-39090000000000000000000000000000000000	14546000000000.0 -900720000000000.0	-11632000000000 -72058000000000000000000	-1248600000000 -1844700000000000000000000000000000000000	7102900000000000000000000000000000000000	85545000000000.00 981280000000.00	1164000000000.00 1620200000000.00	676650000000.00 3240400000000.00	-47552000000.00 -4570400.00	40306000000.00 18000000000.00 -5408600.00 1296100000000.00	-669840000000.00 41477000000000.00	5356400000.00 3318100000000000.00	5749800000.00 0 849440000000000000000000
12 2 17 2 16 -	1	2	9 5 48.38 21.14 10 5 982.48 145.09	0.61 136.010 2 1222.40 146.210 2 3.77 170.270	78.660 240.050 19.20 194.260 97.177 19.20 180.780 20.602 47	8 78.28 174.3 8 78.28 174.3 8 78.28 174.3	4 414.67 0.001137 4 440.47 0.001137 4 551.13 0.001137	5 1E-11 14 1E-16	1 -19986000000000 1 -943610000000000 1 130040000000000	0.0 1367000000000000000000000000000000000000	2864200000000000000000000000000000000000	1872000000000000000000000000000000000000	-2745000000000000000000000000000000000000	687860000000000000000000000000000000000	3406700000000000000000000000000000000000	12659000000000000000000000000000000000000	-76843000000000000000000000000000000000000	25220000000000000000000000000000000000	9203400000000.00 434520000000000.00	-6295000000000.00 5670200000000.00	-1318900000000000000000000000000000000000	-862000000000000000000000000000000000000	-1673700000000000000000000000000000000000	-31675000000000.00 -15687000000000.0 712770000000.00 -20367000000.00	-58294000000000000000000000000000000000000	353850000000000000000000000000000000000	0 -11613000000000000000000 63044000000000000000
10 2	1	-		3.77 170.350 3		v /0.28 1/4.3		15 	1 130040000000000		, 113410000000000000000000000000000000000	2039300000000.0		±+07300000000000	+3403000000000.0	-19370000000000000000	-361000000000000000000000000000000000000	2043500000000000000000	330020000000000000000000000000000000000		5456500000000000000	200010000000000000000000000000000000000	233310000000.00	22752000000.00	193210000000000000000	-390400000000000000000000000000000000000	1210+0000000000000000000000000000000000
		c.	- a.					1					macierz wag wari	ant 3 - rozmieszczenie (zujników wg schematu n	r5			1								
NP. brane	ci posta	acie	a indeksy ba	owe kryteri	um NMD [%]	f [Hz]	funkcja karv I	liczba współczy iteracii nik wo	położenie macierzy				sztyność elemtnów po	akutalizacji paramnetóv	v								indeks l o dla poszególnyc	h elemtnów po aktualizacji			
procedu	ury	2	Co C	I 158 0 170	2 3 1	2 3	4 0.01239	101 1E 07	blokowej 1	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6 7	8	9	10
7 2 6 2	1 1	2	5 5 22.83 11.01 5 5 44.14 25.36	1.17 0.218 1.04 0.267	0.374 0.648 19.20 0.395 1.140 19.20	8 78.28 174.3 8 78.28 174.3	4 0.068411 4 0.63489	101 0.00000 101 0.00001	1 2171.3 1 2176.0	2154.3 2167.2	2167.8 2168.1	2169.2 2172.1	1980.4 1991.1	2008.7 1997.7	2178.7 2176.1	2172.6 2172.0	2188.9 2175.9	2183.5 2178.8	0.01	0.80	0.18 0.16	0.11 -0.02	8.81 8.31	7.50 -0.32 8.01 -0.21	-0.04 -0.02	-0.79 -0.20	-0.55 -0.33
5 2 4 2	1	2	5 5 51.24 27.71 5 5 52.13 28.01	1.02 0.274 1.02 0.275	0.403 1.214 19.20 0.403 1.221 19.20	8 78.28 174.3 8 78.28 174.3	4 6.301 4 62.954	101 0.0001 101 0.001	1 2176.7 1 2176.7	2169.0 2169.1	2168.2 2168.2	2172.4 2172.5	1992.5 1992.7	1996.2 1996.1	2175.8 2175.7	2171.9 2171.9	2174.1 2173.9	2178.1 2178.0	-0.23	0.12	0.16	-0.04	8.25 8.24	8.08 -0.19 8.08 -0.19	-0.01	-0.11 -0.10	-0.30 -0.29
3 2 2 2 11 7	1 1 1	2 2	x x	1.02 0.276 1.02 0.286 4.40 0.353	0.400 1.217 19.20 0.375 1.170 19.21 0.348 0.434 10.21	8 /8.28 174.3 9 78.28 174.3 8 78.28 174.3	4 628.7 4 6209.5	101 0.01 101 0.1 9 1E.10	1 2176.7 1 2175.9 1 2171.4	2169.0 2167.0 2165.7	2168.2 2168.6 2217 9	2172.6 2173.8 2174.3	1993.0 1995.2 1892.4	1996.3 1998.4 2108.1	2175.8 2177.0 2172.8	2172.0 2172.3 2126.4	2173.6 2171.6 2176.1	2177.9 2177.1 2170 7	-0.23 -0.19	0.12 0.21 0.27	0.16 0.14	-0.05 -0.10	8.23 8.12 12.86	8.08 -0.19 7.98 -0.25 2.92 -0.05	-0.02 -0.03 2.08	-0.09 0.00	-0.29 -0.25 -0.37
9 2 1 2	1 1	2	5 5 9.81 5.59 5 5 20.17 8.14	2.15 0.364 1.01 0.369	0.467 0.827 19.20 0.304 0.870 19.31	8 78.28 174.3 3 78.28 174.3	4 0.003606	i 101 1E-08 101 1	1 21/1.4 1 2161.1 1 2169.9	2103.7 2147.7 2152.1	2214.4 2171.3	2168.5 2183.1	1932.8 2012.3	2060.5 2014.2	2178.2 2185.6	2129.0 2174.8	2195.5 2155.8	2191.7 2170.8	0.48	1.10	-1.97 0.01	0.15	11.00	5.12 -0.00 7.25 -0.64	1.96	-1.10 0.73	-0.93
10 2 14 2	1	2	5 5 10.34 3.76 1 5 4546.00 1363.6	3.03 0.463 0 2.00 104.300	0.489 0.502 19.20 47.079 246.470 19.20	8 78.28 174.3 8 78.28 174.3	4 0.001137 4 0.001137	101 1E-09 9 1E-13	1 2163.8 1 -144120000000000	2168.7 00.0 72058000000000000.0	2241.1 197360000000.0	2163.9 70217000000000.0	1910.3 -105690000000000.0	2085.5 1805500000000.0	2184.8 3293500000000.0	2104.8 1263300000000.0	2173.4 6526200000000.0	2186.5 -4837100000000.0	0.36	0.14	-3.20	0.36	12.03 486680000000.00	3.97 -0.61 -83139000000.00 -15166000000.00	3.08 -58172000000.00	-0.08 -300520000000.00	-0.68 2227400000000.00
20 2 19 2 1 ³ 2	1 1	2	5 0.00 0.00 2 5 13633.00 3276.3 2 5 1325.40 100.00	0 51.19 104.510 4 4 33 120.520	47.028 64.760 19.20 48.051 63.289 19.20 50.781 64.512 10.20	8 78.28 174.3 8 78.28 174.3 8 78.28 174.3	4 0.001137 4 0.001137	6 1E-19	1 1008800000000000 1 112590000000000 1 -77012000000000000	0.0 -57638000000000000000000000000000000000000	2251900000000000000000000000000000000000	29554000000000000 -2639000000000000 -3619000000000000000000000000000000000000	-2813900000000000 2180800000000000000000000000	/503300000000.0 721550000000.0 21664000000000.0	1/86700000000.0 -3838600000000.0	1252600000000.0 -3313600000000.0 -747130000000000.0	-4/558000000000.0 -83571000000000.0 -44878000000000.0	-604/300000000.0 17592000000000.0	-464540000000000000000000000000000000000	-2654600000000000000 26541000000000000 15346000000000000000000000000000000000000	-103690000000000000000 19442000000000000000 11510000000000000000000	-1360900000000000000000000000000000000000	1295/000000000.00 -100420000000.00 844800000000.00	-34551000000.00 -82275000000.00 -3322600000.00 17676000000.00 -99758000000.00 80813000000000	-57681000000.00 152580000000.00 34404000000000000000000000000	219000000000.00 3848300000000.00 2066600000000.00	2/84700000000.00 -8100900000000.00 64809000000000.00
18 2 12 2	1 1	2	10 5 15361.00 2048.0 9 5 48.38 21.14	0 25.60 135.530 2 0.61 136.010 2	270.540 1199.600 19.20 278.660 240.050 19.20	8 78.28 174.3 8 78.28 174.3	4 0.001137	6 1E-12 5 1E-11	1 256700000000 1 -19986000000000	-213100000000000000000000000000000000000	-3518400000000000 2864200000000000000000000000000000000000	-7036900000000000000000000000000000000000	99255000.0 36346000000000000.0	117460000.0 687860000000000.0	-2814800000000000000000000000000000000000	-900720000000000000000000000000000000000	-7205800000000000000000000000000000000000	-1844700000000000000000000000000000000000	1 -1182100000.00 9203400000000.00	9812800000000000 -629500000000000000	162020000000000000000000000000000000000	324040000000000000000000000000000000000	-4570400.00	-5408600.00 1296100000000.00 -31675000000000.00 -156870000000000.0	414770000000000000000000000000000000000	331810000000000000000000000000000000000	0 84944000000000000000000000000000000000
17 2 15 2	1	2	10 5 982.48 145.09 1 5 3817.40 610.22	1222.40 146.210 2 8.30 147.910	194.260 97.177 19.20 30.969 33.642 19.20	8 78.28 174.3 8 78.28 174.3	4 0.001137 4 0.001137	14 1E-16 7 1E-14	1 -94361000000000 1 -154250000000000	0.0 -1231400000000000.0 00.0 -1857700000000000.0	-43028000000000.0 -25278000000000.0	-231860000000000.0 -14694000000000.0	-2745000000000000000000000000000000000000	-15479000000000.0 -875300000000.0	4422900000000.0 -39090000000000.0	-158150000000000.0 14546000000000.0	-11200000000000000000000000000000000000	-1369100000000000000000000000000000000000	434520000000000.00 7102900000000000.00	5670200000000.00 85545000000000.00	198130000000.00 1164000000000.00	10677000000000.00 676650000000.00	126400000000.00 -47552000000.00	712770000000.00 -203670000000.00 40306000000.00 18000000000.00 50400000000000	7282400000000.00 -669840000000.00	51575000000000.00 5356400000.00	630440000000000000000000000000000000000
10 2	1	2	a b 0.14 0.02	3.// 1/0.350 3	iou./ou 30.692 19.2	o /6.28 174.3	H 0.001137	A 1 1E-15			· · · · · · · · · · · · · · · · · · ·	 	THE REPORT OF TH	.cm/m/100000		ALL NO. (1910) 1010000000000000000000000000000000	 	 contract (0.00000000000000000000000000000000000				(DUD (UUUUU)000 00	. < ***********************************	· · · · · · · · · · · · · · · · · · ·		 	1 12 15400000000000000

indeks I	dla	noszasólowh	elemtnów	no	aktualizacii
indexs io	uia	poszegoinych	eleminow	μο	aktualizacji