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Abstract. The paper deals with the difference inequalities generated by initial boundary
value problems for hyperbolic nonlinear differential functional systems. We apply this result
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1. INTRODUCTION

The classical theory of partial differential inequalities has applications in several dif-
ferential problems. As basic examples we can give: estimates of solutions of partial dif-
ferential equations, estimates of the domain of the existence of classical or generalized
solutions, criteria of uniqueness and continuous dependence. Difference inequalities,
or in other words a discrete version of differential inequalities, are frequently used to
prove the convergence of the numerical schemes.

The papers [7, 16] initiated the investigation of difference inequalities generated
by the first order partial differential equations. The results presented in [7, 16] were
extended on functional differential problems in papers [2, 17] and in [12–14] were
generalized on differential and differential functional equations of parabolic type. In
the mentioned papers explicit difference schemes were considered. We use in the paper
general ideas for finite difference equations which can be found in [18,19].

We formulate our functional differential problem. For any metric spaces X and
Y we denote by C(X,Y ) the class of all continuous functions from X to Y . We
denote by Rk×n the space of real k × n matrices. We will use vectorial inequalities
with the understanding that the same inequalities hold between their corresponding
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components. For x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yn) ∈ Rn, p = (p1, . . . , pk) ∈ Rk
and for the matrix U ∈ Rk×n, U = [uij ]i=1,...,k,j=1,...,n we write

‖x‖ =

n∑
i=1

|xi| and x � y = (x1y1, . . . , xnyn),

‖p‖∞ = max {|pi| : 1 ≤ i ≤ k}, ‖U‖ = max
{ n∑
j=1

|uij | : 1 ≤ i ≤ k
}
.

For each x = (x1, . . . , xn) ∈ Rn we write x = (x′, x′′) where x′ = (x1, . . . , xκ),
x′′ = (xκ+1, . . . , xn), where 0 ≤ κ ≤ n is fixed. If κ = n we have x′ = x, if κ = 0 then
x′′ = x. Let R+ = [0,∞). Suppose that a > 0, d0 ∈ R+, b = (b1, . . . , bn) ∈ Rn+ and
d = (d1, . . . , dn) ∈ Rn+, are given. We define the sets

E = [0, a]× [−b′, b′)× (−b′′, b′′], D = [−d0, 0]× [0, d′]× [−d′′, 0].

Let c = (c1, . . . , cn) = b+ d and

E0 = [−d0, 0]× [−b′, c′]× [−c′′, b′′], ∂0E = ((0, a]× [−b′, c′]× [−c′′, b′′]) \ E,

E∗ = E0 ∪ E ∪ ∂0E.
Suppose that z : E∗ → Rk, z = (z1, . . . , zk), and (t, x) ∈ E. We define the function
z(t,x) : D → Rk as follows

z(t,x)(τ, y) = z(t+ τ, x+ y), (τ, y) ∈ D.

The function z(t,x) is the restriction of z to [t− d0, t]× [x′, x′+ d′]× [x′′− d′′, x′′] and
this restriction is shifted to the set D. For a function w ∈ C(D,Rk) we define

‖w‖D = max {‖w(t, x)‖∞ : (t, x) ∈ D}.

Put Ω = E × Rk × C(D,Rk)× Rn and suppose that

f : Ω→ Rk, f = (f1, . . . , fk),

ϕ : E0 ∪ ∂0E → Rk, ϕ = (ϕ1, . . . , ϕk)

are given functions. We consider the system of differential functional equations

∂tzi(t, x) = fi(t, x, z(t, x), z(t,x), ∂xzi(t, x)), 1 ≤ i ≤ k, (1.1)

with the initial boundary condition

z(t, x) = ϕ(t, x) on E0 ∪ ∂0E, (1.2)

where ∂xzi = (∂x1
zi, . . . , ∂xnzi).

Systems of differential equations with deviated variables and differential integral
problems can be derived from (1.1) by specializing the operator f = (f1, . . . , fk).
Difference methods described in the paper have the potential for application in the
numerical solution of the above problems.
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A function v : E∗ → Rk is a classical solution of (1.1), (1.2) if:

(i) v ∈ C(E∗,Rk) and v is of class C1 on E,
(ii) v = (v1, . . . , vk) satisfies the system of equations (1.1) on E and condition (1.2)

holds.

We are interested in establishing a method of numerical approximation of classical
solutions to problem (1.1), (1.2) with solutions of associated difference schemes and
in estimating the difference between these solutions.

We formulate a class of difference schemes for (1.1), (1.2). Let N and Z be the
sets of natural numbers and integers, respectively. We define a mesh on E∗ and D
in the following way. Let (h0, h

′), h′ = (h1, . . . , hn), stand for steps of the mesh. For
h = (h0, h

′) and (r,m) ∈ Z1+r, where m = (m1, . . . ,mn), we define nodal points as
follows

t(r) = rh0, x(m) = (x
(m1)
1 , . . . , x(mn)n ) = m � h′.

Let us denote by H the set of all h = (h0, h
′) such that there are K0 ∈ Z and

N = (N1, . . . , Nn) ∈ Nn with the properties K0h0 = d0 and N � h′ = d. Let K ∈ N
be defined by the relations Kh0 ≤ a < (K + 1)h0. Write

R1+n
h = {(t(r), x(m)) : (r,m) ∈ Z1+n}

and
Eh = E ∩R1+n

h , Eh.0 = E0 ∩R1+n
h , Dh = D ∩R1+n

h ,

∂0Eh = ∂0E ∩R1+n
h , E∗h = Eh.0 ∪ Eh ∪ ∂0Eh.

Moreover, we put I = [0, a] and

Ih = {t(r) : 0 ≤ r ≤ K}, I ′h = Ih \ {t(K)}.

Set
E′h = {(t(r), x(m)) ∈ Eh : 0 ≤ r ≤ K − 1}

and
E∗h.r = E∗h ∩ ([−d0, t(r)]× Rn).

For functions z : E∗h → Rk and w : Dh → Rk we write

z(r,m) = z(t(r), x(m)) on E∗h and w(r,m) = w(t(r), x(m)) on Dh.

For the above z and for a point (t(r), x(m)) ∈ Eh we define the function
z[r,m] : Dh → Rk by the formula

z[r,m](τ, y) = z(t(r) + τ, x(m) + y), (τ, y) ∈ Dh.

We write

x(m
′) = (x

(m1)
1 , . . . , x(mκ)κ ), x(m

′′) = (x
(mκ+1)
κ+1 , . . . , x(mn)n ).
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The function z[r,m] is the restriction of z to the set

([t(r) − d0, t(r)]× [x(m
′), x(m

′) + d′]× [x(m
′′) − d′′, x(m

′′)]) ∩R1+n
h

and this restriction is shifted to the set Dh. For a function w : Dh → Rk we write

‖w‖Dh = max {‖w(r,m)‖∞ : (t(r), x(m)) ∈ Dh}.

Let ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn, 1 ≤ j ≤ n, where 1 is the j-th coordinate. We
consider difference operators δ0 and δ = (δ1, . . . , δn) defined in the following way.
Suppose that ω : E∗h → R, we put

δ0ω
(r,m) =

1

h0

(
ω(r+1,m) − ω(r,m)

)
(1.3)

and
δjω

(r,m) =
1

hj

(
ω(r,m+ej) − ω(r,m)

)
, 1 ≤ j ≤ κ, (1.4)

δjω
(r,m) =

1

hj

(
ω(r,m) − ω(r,m−ej)

)
, κ+ 1 ≤ j ≤ n. (1.5)

Note that δω(r,m) is given by (1.5) if κ = 0 and δω(r,m) is defined by (1.4) for κ = n.
Let us denote by F (X,Y ) the class of all functions defined on X and taking values

in Y , where X and Y are arbitrary sets. Put Ωh = E′h × Rk × F (Dh,Rk) × Rn and
suppose that

fh : Ωh → Rk, fh = (fh.1, . . . , fh.k),

ϕh : Eh.0 ∪ ∂0Eh → Rk, ϕh = (ϕh.1, . . . , ϕh.k)

are given functions. Write
δ0z = (δ0z1, . . . , δ0zk),

Fh[z](r,m) = (Fh.1[z](r,m), . . . , Fh.k[z](r,m))

and

Fh.i[z]
(r,m) = fh.i(t

(r), x(m), z(r,m), z[r,m], siδz
(r,m)
i + (1− si)δz(r+1,m)

i ), 1 ≤ i ≤ k,

where
siδz

(r,m)
i = (si1δ1z

(r,m)
i , . . . , sinδnz

(r,m)
i ),

(1− si)δz(r+1,m)
i = ((1− si1)δ1z

(r+1,m)
i , . . . , (1− sin)δnz

(r+1,m)
i )

and where 0 ≤ sij ≤ 1, i = 1, . . . , k, j = 1, . . . , n, are given constants. We consider
the difference functional system

δ0z
(r,m) = Fh[z](r,m) (1.6)

with initial boundary condition

z(r,m) = ϕ
(r,m)
h on Eh.0 ∪ ∂0Eh. (1.7)
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The above difference method has the following property: each equation in system
(1.6) contains the parameter si = (si1, . . . , sin), 1 ≤ i ≤ k. If si = (1, . . . , 1) ∈ Rn
for 1 ≤ i ≤ k then (1.6), (1.7) reduces to the explicit difference scheme. It is clear
that there exists exactly one solution of problem (1.6), (1.7) in this case. Sufficient
conditions for the convergence of the explicit difference methods for first order partial
differential equations can be found in the monograph [5] (Chapter V), see also [1, 2].

Note that if k = 1 and s = (s1, . . . , sn) = (0, . . . , 0) ∈ Rn then (1.6), (1.7) reduces
to the strong implicit difference scheme considered in [6].

Numerical methods for nonlinear parabolic problems were investigated in [8–11].
Difference schemes considered in the above papers depend on two parameters s, s̃ ∈
[0, 1]. Right hand sides of difference equations corresponding to parabolic equations
contain the expressions

sδz(r,m) + (1− s)δz(r+1,m) and s̃δ(2)z(r,m) + (1− s̃)δ(2)z(r+1,m),

where δ = (δ1, . . . , δn) and δ(2) = [δij ]i,j=1,...,n are difference operators corresponding
to the partial derivatives ∂x = (∂x1 , . . . , ∂xn) and ∂xx = [∂xixj ]i,j=1...,n and z is a
scalar unknown function. Our results are motivated by papers [8–11].

In the paper we first investigate difference functional inequalities generated by
mixed problems for nonlinear equations. We use this results to prove the theorem on
the error estimates of approximate solutions for functional difference schemes. The
proof of the convergence is based on the stability of difference equation with initial
condition. It is well known that with the adopted proof technique the convergence is
equivalent to the stability of difference schemes.

In theorems on the convergence of explicit functional difference methods for (1.1),
(1.2) we need assumptions on the mesh which are known as the (CFL) conditions.
In our investigations we need the (CFL) condition which depends on the values of
parameter s. The conclusion of the theoretical analysis carried out in the paper is that
only the strong implicit method is unconditionally stable. The same conclusions can
be found in the papers [8–11] for nonlinear parabolic partial differential equations of
second order. Nevertheless the numerical experiments show that the (CFL) condition,
required in the adopted method of the proof, is only sufficient but not necessary.

The paper is organized as follows. Section 2 deals with a comparison results for
the difference functional inequalities. Estimation of the difference between exact and
approximate solutions can be found in Section 3. A convergence theorem and an error
estimate for the difference methods are presented in Section 4. At the end of the paper
we give numerical examples.

2. DIFFERENCE FUNCTIONAL INEQUALITIES

We begin with the maximum principle for implicit difference functional inequalities
generated by (1.6), (1.7). Write

B = [−b′, b′)× (−b′′, b′′], B∗ = [−b′, c′]× [−c′′, b′′]
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and
Rnh = {x(m) : m ∈ Zn}

where h ∈ H. We consider the sets

Bh = B ∩Rnh , B∗h = B∗ ∩Rnh

and ∂0Bh = B∗h \Bh. Define θ = (θ1, . . . , θn), where

θj = 1 for 1 ≤ j ≤ κ and θj = −1 for κ+ 1 ≤ j ≤ n.

Theorem 2.1. Suppose that 0 ≤ r ≤ K − 1 is fixed and the function λh : Eh ×
F (Dh,Rk)→ Rk×n, λh = [λh.ij ]i=1,...,k,j=1,...,n, is such that for i = 1, . . . , k we have

λh.i(t, x, w) � θ ≥ 0 on Eh × F (Dh,Rk),

where λh.i = (λh.i1, . . . , λh.in).

(I) If w : E∗h → Rk, w = (w1, . . . , wk), satisfies the difference inequalities

w
(r+1,m)
i ≤ h0

n∑
j=1

λh.ij(t
(r), x(m), w[r,m])(1− sij)δjw

(r+1,m)
i , 1 ≤ i ≤ k,

for x(m) ∈ Bh and µ(i) ∈ Zn, µ(i) = (µ
(i)
1 , . . . , µ

(i)
n ), is such that

w
(r+1,µ(i))
i = M (i) for 1 ≤ i ≤ k,

where

M (i) = max {w(r+1,m)
i : x(m) ∈ B∗h} and M (i) > 0, 1 ≤ i ≤ k, (2.1)

then x(µ
(i)) ∈ ∂0Bh.

(II) If w : E∗h → Rk, w = (w1, . . . , wk), satisfies the difference inequalities

w
(r+1,m)
i ≥ h0

n∑
j=1

λh.ij(t
(r), x(m), w)(1− sij)δjw(r+1,m)

i , 1 ≤ i ≤ k,

for x(m) ∈ Bh and µ̃(i) ∈ Zn, µ̃(i) = (µ̃
(i)
1 , . . . , µ̃

(i)
j ), is such that

w
(r+1,µ̃(i))
i = M̃ (i),

where

M̃ (i) = min {w(r+1,m)
i : x(m) ∈ B∗h} and M̃ (i) < 0, 1 ≤ i ≤ k,

then x(µ̃
(i)) ∈ ∂0Bh.
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Proof. Consider the case (I). Suppose that i is fixed, 1 ≤ i ≤ k and x(µ
(i)) ∈ Bh. Then

w
(r+1,µ(i))
i ≤

≤ h0
κ∑
j=1

1

hj
λh.ij(t

(r), x(µ
(i)), w[r,µ(i)])(1− sij)

(
w

(r+1,µ(i)+ej)
i − w(r+1,µ(i))

i

)
+

+h0

n∑
j=κ+1

1

hj
λh.ij(t

(r), x(µ
(i)), w[r,µ(i)])(1− sij)

(
w

(r+1,µ(i))
i − w(r+1,µ(i)−ej)

i

)
.

This gives

M (i)

[
1 + h0

n∑
j=1

1

hj
(1− sij)|λh.ij(t(r), x(µ

(i)), w[r,µ(i)])|
]
≤

≤ h0
κ∑
j=1

1

hj
λh.ij(t

(r), x(µ
(i)), w[r,µ(i)])(1− sij)w

(r+1,µ(i)+ej)
i −

−h0
n∑

j=κ+1

1

hj
λh.ij(t

(r), x(µ
(i)), w[r,µ(i)])(1− sij)w

(r+1,µ(i)−ej)
i ≤

≤ h0M (i)
n∑
j=1

1

hj
(1− sij)|λh.ij(t(r), x(µ

(i)), w[r,µ(i)])|.

We thus get M (i) ≤ 0 which contradicts (2.1). Then x(µ
(i)) ∈ ∂0Bh, which is our

claim. In a similar way we prove that x(µ̃
(i)) ∈ ∂0Bh for 1 ≤ i ≤ k in the case of (II).

This completes the proof.

Assumption H[fh]. Suppose that the function fh : Ωh → Rk, fh = (fh.1, . . . , fh.k),
of the variables (t, x, p, w, q) is such that:

1) fh is nondecreasing with respect to the functional variable and for each P =
(t, x, p, w, q) ∈ Ωh there exist partial derivatives

∂pfh(P ) = (∂p1fh.1(P ), . . . , ∂pkfh.k(P )), ∂qfh(P ) = [∂qjfh.i(P )]i=1,...,k,j=1,...,n

and
∂pifh.i(t, x, ·, w, q) ∈ C(Rk,R), 1 ≤ i ≤ k,

∂qfh(t, x, p, w, ·) ∈ C(Rn,Rk×n),

2) for each P ∈ Ωh and for i = 1, . . . , k we have

∂qfh.i(P ) � θ ≥ 0

and

1 + h0∂pifh.i(P )− h0
n∑
j=1

1

hj
sij |∂qjfh.i(P )| ≥ 0, (2.2)
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3) the function fh satisfies the following monotonicity condition with respect to the
variable p: for each i, 1 ≤ i ≤ k, if p ≤ p̄, p = (p1, . . . , pk), p̄ = (p̄1, . . . , p̄k), and
pi = p̄i, then fh.i(t, x, p, w, q) ≤ fh.i(t, x, p̄, w, q).

Remark 2.2. The assumption (2.2) is called the Courant-Friedrichs-Levy (CFL)
condition for problem (1.6)-(1.7) (see [3, Chapter III] and [5, Chapter V]).

Now we formulate the theorem on functional difference inequalities.

Theorem 2.3. Suppose that Assumption H[fh] is satisfied and the functions u, v :
E∗h → Rk are such that the implicit difference inequalities

δ0u
(r,m) − Fh[u](r,m) ≤ δ0v(r,m) − Fh[v](r,m), (t(r), x(m)) ∈ E′h, (2.3)

and the initial boundary estimates

u(r,m) ≤ v(r,m) on Eh.0 ∪ ∂0Eh, (2.4)

are satisfied.
Then

u(r,m) ≤ v(r,m) on E∗h. (2.5)

Proof. We prove (2.5) by induction on r. It follows from (2.4) that assertion (2.5) is
satisfied for r = 0 and (t(0), x(m)) ∈ E∗h. Suppose that u

(τ,m)
i ≤ v(τ,m)

i for (t(τ), x(m)) ∈
E∗h.r, where 0 ≤ r < K and for i = 1, . . . , k. Assume now that i is fixed, 1 ≤ i ≤ k. It
follows easily that

(ui − vi)(r+1,m) ≤ (ui − vi)(r,m)+

+h0

[
fh.i(t

(r), x(m), u(r,m), u[r,m], siδu
(r,m)
i + (1− si)δu(r+1,m)

i )−

−fh.i(t(r), x(m), v(r,m), v[r,m], siδv
(r,m)
i + (1− si)δv(r+1,m)

i )
]
≤

≤ (ui − vi)(r,m)

(
1 + h0∂pifh.i(P )− h0

n∑
j=1

1

hj
sij |∂qjfh.i(P )|

)
+

+h0

[
fh.i(t

(r), x(m), v(r,m), u[r,m], siδv
(r,m)
i + (1− si)δv(r+1,m)

i )−

−fh.i(t(r), x(m), v(r,m), v[r,m], siδv
(r,m)
i + (1− si)δv(r+1,m)

i )
]
+

+h0

κ∑
j=1

1

hj
sij∂qjfh.i(P )(ui − vi)(r,m+ej) − h0

n∑
j=κ+1

1

hj
sij∂qjfh.i(P )(ui − vi)(r,m−ej)+

+h0

n∑
j=1

∂qjfh.i(P )(1− sij)δj(ui − vi)(r+1,m),

where x(m) ∈ Bh and P ∈ Ωh is an intermediate point. We thus get

(ui − vi)(r+1,m) ≤ h0
n∑
j=1

∂qjfh.i(P )(1− sij)δj(ui − vi)(r+1,m),
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where x(m) ∈ Bh. It follows from (2.4) and from Theorem 2.1 that (ui−vi)(r+1,m) ≤ 0
for x(m) ∈ ∂0Bh. Then we obtain (2.5) by induction and the theorem follows.

3. APPROXIMATE SOLUTIONS OF DIFFERENCE FUNCTIONAL
EQUATIONS

We first prove that there exists exactly one solution uh : E∗h → Rk of the problem
(1.6), (1.7). For each x(m) ∈ Bh we put

∆(m) = {x(m+ej) : 1 ≤ j ≤ κ} ∪ {x(m−ej) : κ+ 1 ≤ j ≤ n}.

Lemma 3.1. If Assumption H[fh] is satisfied and ϕh : Eh.0 ∪ ∂0Eh → Rk then there
exists exactly one solution uh : E∗h → Rk of (1.6), (1.7).

Proof. Is follows from (1.7) that uh is defined on Eh.0. Suppose that 0 ≤ r < K is
fixed and that uh.i is defined on (t(τ), x(m)) ∈ E∗h.r for 1 ≤ i ≤ k. We assume also
that i is fixed, 1 ≤ i ≤ k. Consider the problem

z
(r+1,m)
i = u

(r,m)
h.i + h0fh.i(t

(r), x(m), u
(r,m)
h , (uh)[r,m], siδu

(r,m)
h.i + (1− si)δz(r+1,m)

i )
(3.1)

z
(r+1,m)
i = ϕ

(r+1,m)
h.i for x(m) ∈ ∂0Bh. (3.2)

Suppose now that the numbers uh.i(t(r+1), y) where y ∈ ∆(m) are known. Write

ψi(τ) = u
(r,m)
h.i + h0fh.i(t

(r), x(m), u
(r,m)
h , (uh)[r,m], Q

(r+1,m)
i (τ)),

where

Q
(r+1,m)
i (τ) =

(
1

h1

(
si1(u

(r,m+e1)
h.i − u(r,m)

h.i ) + (1− si1)(u
(r+1,m+e1)
h.i − τ)

)
, . . . ,

1

hκ

(
siκ(u

(r,m+eκ)
h.i − u(r,m)

h.i ) + (1− siκ)(u
(r+1,m+eκ)
h.i − τ)

)
,

1

hκ+1

(
siκ+1(u

(r,m)
h.i − u(r,m−eκ+1)

h.i ) + (1− siκ+1)(τ − u(r+1,m−eκ+1)
h.i )

)
, . . . ,

1

hn

(
sin(u

(r,m)
h.i − u(r,m−en)h.i ) + (1− sin)(τ − u(r+1,m−en)

h.i )
))

,

Then ψ = (ψ1, . . . , ψk) : R→ Rk is of class C1 and

ψ′i(τ) = −h0
n∑
j=1

1

hj
(1− sij)|∂qjfh.i(t(r), x(m), u

(r,m)
h , (uh)[r,m], Q

(r+1,m)
i (τ))| ≤ 0

for τ ∈ R. Then equation τ = ψi(τ) has exactly one solution and consequently the
number u(r+1,m)

h.i can be calculated. Since u(r+1,m)
h.i is given for x(m) ∈ ∂0Bh it follows
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414 Anna Szafrańska

that there exists exactly one solution u(r+1,m)
h.i of (3.1), (3.2) for x(m) ∈ Bh. Then uh.i

is defined on E∗h.r+1. Then by induction the solution uh exists and it is unique on E∗h.
Suppose that the functions vh : E∗h → Rk and α0, γ : H → R+ are such that for

i = 1, . . . , k we have

‖δ0v(r,m)
h − Fh[vh](r,m)‖∞ ≤ γ(h) on E′h, (3.3)

‖ϕ(r,m)
h − v(r,m)

h ‖∞ ≤ α0(h) on Eh.0 ∪ ∂0Eh (3.4)

and
lim
h→0

γ(h) = 0, lim
h→0

α0(h) = 0. (3.5)

The function vh satisfying the above relations can be considered as an approximate
solution to the problem (1.6), (1.7).

Assumption H[fh, σh]. Suppose that Assumption H[fh] is satisfied and there is
σh : I ′h × R+ → R+ such that:

1) for each t ∈ I ′h the function σh(t, ·) : R+ → R+ is continuous and nondecreasing,
2) σh(t, 0) = 0 for t ∈ I ′h and the difference problem,

η(r+1) = η(r) + h0σh(t(r), η(r)), 0 ≤ r ≤ K − 1, (3.6)

η(0) = 0 (3.7)

is stable in the following sense: if γ̃, α̃0 : H → R+ are functions such that

lim
h→0

γ̃(h) = 0, lim
h→0

α̃0(h) = 0

and ηh : Ih → R+ is a solution of the problem

η(r+1) = η(r) + h0σh(t(r), η(r)) + h0γ̃(h), 0 ≤ r ≤ K − 1, (3.8)

η(0) = α̃0(h), (3.9)

then there is α : H → R+ such that

η
(r)
h ≤ α(h) (3.10)

for 0 ≤ r ≤ K and limh→0 α(h) = 0,
3) if w ≥ w, p ≥ p for w,w ∈ F (Dh,Rk), p, p ∈ Rk then for i = 1, . . . , k we have

fh.i(t
(r), x(m), p, w, q)− fh.i(t(r), x(m), p, w, q) ≤

≤ σh(t(r),max {‖p− p‖∞, ‖w − w‖Dh}).

We give the theorem on the estimate of the difference between the exact and
approximate solutions to the problem (1.6), (1.7).
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Difference functional inequalities and applications 415

Theorem 3.2. Suppose that Assumption H[fh, σh] is satisfied and:

1) ϕh : Eh.0 ∪ ∂0Eh → Rk is a given function and uh : E∗h → Rk is a solution of the
problem (1.6), (1.7),

2) the functions vh : E∗h → Rk and γ, α0 : H → R+ are such that relations (3.3)–(3.5)
hold.

Then there exists a function α : H → R+ such that

‖u(r,m)
h − v(r,m)

h ‖∞ ≤ α(h) on Eh and lim
h→0

α(h) = 0. (3.11)

Proof. Let the function Ch = (Ch.1, . . . , Ch.k) : E′h → Rk be defined by

δ0v
(r,m)
h = Fh[vh](r,m) + C

(r,m)
h . (3.12)

It follows from (3.3) that ‖C(r,m)
h ‖∞ ≤ γ(h) on E′h.

Suppose that i, 1 ≤ i ≤ k, is fixed. Let the function ωh : Ih → R be the solution
of (3.8), (3.9) with γ̃(h) = γ(h) and α̃0(h) = α0(h) for h ∈ H. Write

ṽ
(r,m)
h.i = v

(r,m)
h.i + α0(h) on Eh.0,

ṽ
(r,m)
h.i = v

(r,m)
h.i + ω

(r)
h on Eh ∪ ∂0Eh.

We prove that ṽh.i satisfies the difference inequality

δ0ṽ
(r,m)
h.i ≥ Fh.i[ṽh](r,m) on E′h. (3.13)

We conclude from Assumption H[fh, σh], the mean value theorem and (3.12) that

δ0ṽ
(r,m)
h.i = Fh.i[ṽh](r,m) +

1

h0

(
ω
(r+1)
h − ω(r)

h

)
+ C

(r,m)
h.i +

+
[
fh.i(t

(r), x(m), v
(r,m)
h , (vh)[r,m], siδv

(r,m)
h.i + (1− si)δv(r+1,m)

h.i )−

− fh.i(t(r), x(m), ṽ
(r,m)
h , (ṽh)[r,m], siδv

(r,m)
h.i + (1− si)δv(r+1,m)

h.i )
]
≥

≥ Fh.i[ṽh](r,m) +
1

h0

(
ω
(r+1)
h − ω(r)

h

)
− σh(t(r), ω

(r)
h )− γ(h),

where (t(r), x(m)) ∈ E′h. The above inequality and (3.8) imply (3.13). By the initial
boundary estimate

u
(r,m)
h.i ≤ ṽ(r,m)

h.i on Eh.0 ∪ ∂0Eh (3.14)

and (3.13) and Theorem 2.3 we obtain

u
(r,m)
h.i ≤ v(r,m)

h.i + ω
(r)
h on Eh. (3.15)

In a similar manner we can see that

v
(r,m)
h.i − ω(r,m)

h ≤ u(r,m)
h.i on Eh. (3.16)

Now we obtain the assertion of Theorem 3.2 from (3.15), (3.16) and from the stability
of problem (3.6), (3.7).
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416 Anna Szafrańska

4. CONVERGENCE OF THE DIFFERENCE METHOD

We formulate sufficient conditions for the convergence of the method (1.6), (1.7). We
consider a class of difference problems (1.6), (1.7) where fh is a superposition of f
and a suitable interpolating operator.

Assumption H[Th]. Suppose that the operator Th : F (Dh,Rk)→ C(D,Rk) satisfies
the conditions:

1) if w, w̃ ∈ F (Dh,Rk) then

‖Th[w]− Th[w̃]‖D ≤ ‖w − w̃‖Dh ,

2) if w, w̃ ∈ F (Dh,Rk) and w ≤ w̃, then Th[w] ≤ Th[w̃],
3) if w : D → Rk is of class C1 then there is γ : H → R+ such that

‖ Th[wh]− w ‖D≤ γ(h) and lim
h→0

γ(h) = 0,

where wh is the restriction of w to the set Dh.

Later in this section we give a suitable example of the interpolating operator which
satisfies the above Assumptions.

Write
Fh[z](r,m) = (Fh.1[z](r,m), . . . , Fh.k[z](r,m)),

Fh.i[z]
(r,m) = fi(t

(r), x(m), z(r,m), Thz[r,m], siδz
(r,m)
i + (1− si)δz(r+1,m)

i ), 1 ≤ i ≤ k.
We will approximate solutions of (1.1), (1.2) with solutions of the difference functional
equation

δ0z
(r,m) = Fh[z](r,m) (4.1)

with initial condition (1.7).

Assumption H[f, σ]. Suppose that the function f : Ω → Rk, f = (f1, . . . , fk), of
the variables (t, x, p, w, q) is such that:

1) f is nondecreasing with respect to the functional variable and for each P =
(t, x, p, w, q) ∈ Ω there exist partial derivatives

∂pf(P ) = (∂p1f1(P ), . . . , ∂pkfk(P )), ∂qf(P ) = [∂qjfi(P )]i=1,...,k,j=1,...,n

and
∂pifi(t, x, ·, w, q) ∈ C(Rk,R), 1 ≤ i ≤ k,

∂qf(t, x, p, w, ·) ∈ C(Rn,Rk×n),

2) for each P ∈ Ω and for i = 1, . . . , k we have

∂qfi(P ) � θ ≥ 0

and

1 + h0∂pifi(P )− h0
n∑
j=1

1

hj
sij |∂qjfi(P )| ≥ 0, (4.2)
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3) the function f satisfies the following monotonicity condition with respect to vari-
able p: for each i, 1 ≤ i ≤ k, if p ≤ p̄, p = (p1, . . . , pk), p̄ = (p̄1, . . . , p̄k), and
pi = p̄i, then fi(t, x, p, w, q) ≤ fi(t, x, p̄, w, q),

4) there is σ : [0, a]× R+ → R+ such that:
(i) σ is continuous and it is nondecreasing with respect to both variables,
(ii) σ(t, 0) = 0 for t ∈ [0, a] and for any ε, ε0 ≥ 0 the maximal solution of the

Cauchy problem
ω′(t) = σ(t, ω(t)) + ε, ω(0) = ε0 (4.3)

exists on [0, a]; moreover ω̃(t) = 0, t ∈ [0, a], is the maximal solution of this
problem for ε = ε0 = 0,

(iii) for i = 1, . . . , k we have

fi(t, x, p, w, q)− fi(t, x, p, w, q) ≤ σ(t,max {‖p− p‖∞, ‖w − w‖D})

on Ω for w ≥ w and p ≥ p.

Theorem 4.1. Suppose that Assumption H[f, σ] are satisfied and:

1) h ∈ H and the function uh : E∗h → Rk is a solution of (1.7), (4.1) and there is
α0 : H → R+ such that

‖ϕ(r,m) − ϕ(r,m)
h ‖∞ ≤ α0(h) on Eh.0 ∪ ∂0Eh and lim

h→0
α0(h) = 0, (4.4)

2) v : E∗ → Rk is a solution of (1.1), (1.2) and v is of class C1 on E∗.

Then there is α : H → R+ such that

‖u(r,m)
h − v(r,m)

h ‖∞ ≤ α(h) and lim
h→0

α(h) = 0. (4.5)

Proof. Write
fh(t, x, p, z, q) = f(t, x, p, Thz, q) on Ωh.

Then each coordinate of fh = (fh.1, . . . , fh.k) is nondecreasing with respect to the
functional variable. It follows easily that for w ∈ F (Dh,Rk) we have ‖Thw‖D =
‖w‖Dh . Then condition 3) of Assumption H[fh, σh] is satisfied with σh(t, ω) = σ(t, ω),
(t, ω) ∈ I ′h × R+. Let the function Ch : E′h → Rk be defined by (3.12). Then from
Assumption H[Th] and from assumption 2) of the theorem it follows that there is
γ : H → R+ such that

‖C(r,m)
h ‖∞ ≤ γ(h) on E′h and lim

h→0
γ(h) = 0.

It follows that vh is an approximate solution to (1.7), (4.1). Now we prove that the
difference problem

η(r+1) = η(r) + h0σ(t(r), η(r)) for 0 ≤ r ≤ K − 1, η(0) = 0 (4.6)

is stable in the sense of Assumption H[fh, σh]. Suppose that γ̃, α̃0 : H → R+ are such
functions that

lim
h→0

γ̃(h) = 0, lim
h→0

α̃0(h) = 0.
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418 Anna Szafrańska

Consider the solution ηh : Ih → R+ of the problem

η(r+1) = η(r) + h0σ(t(r), η(r)) + h0γ̃(h), 0 ≤ r ≤ K − 1,

η(0) = α̃0(h).

Lets denote by ωh : [0, a] → R+ the maximal solution of the problem (4.3) with
ε := γ̃(h), ε0 := α̃0(h). It is easily seen that η(r)h ≤ ω

(r)
h for 0 ≤ r ≤ K and

lim
h→0

ωh(t) = 0 uniformly on [0, a].

Then we have η(r)h ≤ ωh(a) for 0 ≤ r ≤ K and the problem (4.6) is stable with
α(h) := ωh(a). Then all the conditions of Theorem 3.2 are satisfied and the assertion
(4.5) follows with α(h) := ωh(a) for γ̃ = γ, α̃0 = α0.

Now we give an example of the interpolating operator which satisfies the Assump-
tion H[Th]. Write

S∗ = {s = (s1, . . . , sn) : si ∈ {0, 1} for 1 ≤ i ≤ n}.

Let w ∈ F (Dh,Rk) and (t, x) ∈ D. There exists (t(r), x(m)) ∈ Dh such that t(r) ≤ t ≤
t(r+1), x(m) ≤ x ≤ x(m+1) and (t(r+1), x(m+1)) ∈ Dh. Write

Th[w](t, x) =

(
1− t− t(r)

h0

) ∑
s∈S∗

w(r,m+s)

(
x− x(m)

h′

)s(
1− x− x(m)

h′

)1−s

+

+
t− t(r)

h0

∑
s∈S∗

w(r+1,m+s)

(
x− x(m)

h′

)s(
1− x− x(m)

h′

)1−s

,

where (
x− x(m)

h′

)s
=

n∏
i=1

(
xi − x(mi)i

hi

)si
,

(
1− x− x(m)

h′

)1−s

=

n∏
i=1

(
1− xi − x(mi)i

hi

)1−si
,

in the above formulas we take 00 = 1. It is easy to see that Th[w] ∈ C(D,Rk). The
above interpolating operator has been defined in [5, Chapter 5].

Lemma 4.2. Suppose that w : D → Rk is of class C2. Let C̃ be a constant such that
‖∂ttw‖D, ‖∂txiw‖D, ‖∂xixjw‖D ≤ C̃, i, j = 1, . . . , n. Then

‖Th[wh]− w‖D ≤ C̃(h20 + ‖h′‖2)

where ‖h′‖ = h1 + . . .+ hn and wh is the restriction of w to the set Dh.

The above lemma is a consequence of Theorem 5.27 presented in [5]. We omit the
proof.
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Lemma 4.3. Suppose that

1) the solution v : E∗ → Rk of differential problem (1.1), (1.2) is of class C2 and the
assumptions of Theorem 4.1 are satisfied with σ(t, p) = Lp, L > 0,

2) there exist M̃ , C̃ ∈ R+ such that

‖∂qf(t, x, p, z, q)‖ ≤ M̃

and

‖∂xjv(t, x)‖, ‖∂ttv(t, x)‖∞, ‖∂txjv(t, x)‖∞, ‖∂xjxkv(t, x)‖∞ ≤ C̃

on Ω for j, k = 1, . . . , n.

Then there is a solution uh : E∗h → Rk of (1.7), (4.1) and

‖u(r,m)
h − v(r,m)

h ‖∞ ≤ η̃(r)h on Eh, (4.7)

where

η̃
(r)
h = α0(h)eaL + γ̄(h)

eaL − 1

L

and

γ̄(h) = C̃
[1

2
h0 + L(h20 + ‖h′‖2) + (h0 + ‖h′‖)M̃

]
.

Proof. From the assumptions of lemma we conclude that the operators δ0, δ satisfy
the following conditions

‖δ0v(r,m)
h − ∂tv(r,m)‖∞ ≤

1

2
C̃h0,

‖δjv(r,m)
h − ∂xjv(r,m)‖∞ ≤

1

2
C̃‖h′‖, j = 1, . . . , n.

It follows from the above estimates and from Lemma 4.2 that

|C(r,m)
h.i | = |δ0v

(r,m)
h.i − ∂tv(r,m)

i +

+ fi(t
(r), x(m), v(r,m), v(t(r),x(m)), ∂xv

(r,m)
i )−

− fi(t(r), x(m), v
(r,m)
h , Th[vh][r,m], siδv

(r,m)
h.i + (1− si)δv(r+1,m)

h.i )| ≤ γ̄(h).

The function η̃h is a solution of the problem

η(r+1) = η(r)(1 + h0L) + h0γ̄(h), 0 ≤ r ≤ K − 1, η(0) = α0(h).

Then from Theorem 3.2 we get the assertion (4.7).
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5. NUMERICAL EXAMPLES

Write

E = [0, 0.5]× [−1, 1),

E0 = {0} × [−1, 1],

Ẽ = [0, 0.25]× [−1, 1)× (−1, 1],

Ẽ0 = {0} × [−1, 1]× [−1, 1].

We consider the initial boundary value problems for differential integral equations
with solutions defined on E and for differential equations with deviated variables
with solutions defined on Ẽ.

We give the results of the approximation of solutions to the above problems by
solutions of the difference methods with respect to the value of parameter.

Example 5.1. Consider the differential integral equation

∂tz(t, x) = ∂xz(t, x) + sin (∂xz(t, x)− tz(t, x))+

+ t

1∫
x

z(t, ζ)dζ + (x− 1)

t∫
0

z(τ, x)dτ + (x− 1− t)et(x−1)

with the initial boundary condition

z(0, x) = 1, x ∈ [−1, 1], z(t, 1) = 1, t ∈ [0, 0.5].

The exact solution of this problem is known. It is z(t, x) = et(x−1).
The difference method of the above initial boundary value problem has the form

z(r+1,m) = z(r,m) + h0

[(
sδz(r,m) + (1− s)δz(r+1,m)

)
+

+ sin

((
sδz(r,m) + (1− s)δz(r+1,m)

)
− t(r)z(r,m)

)
+

+ t(r)
1∫

x(m)

Th

[
z[r,m]

](
t(r), ξ

)
dξ+

+
(
x(m) − 1

) t(r)∫
0

Th

[
z[r,m]

](
τ, x(m)

)
dτ+

+
(
x(m) − t(r) − 1

)
et

(r)(x(m)−1)
]
.

(5.1)

If we put in (5.1) s = 1 we get the explicit difference method, with s = 0 we have
the strong implicit difference method.
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The Tables 1 and 2 show the maximal values of errors for several step sizes with
respect to the value of parameter s.

Table 1. Maximal values of errors

(h0, h1) s = 1 s = 0.7 s = 0.5 s = 0

(2−10, 2−7) 6.3686e-4 5.2564e-4 4.5320e-4 6.4022e-4
(2−11, 2−8) 3.1865e-4 2.6316e-4 2.2702e-4 3.2278e-4
(2−12, 2−9) 1.5938e-4 1.3166e-4 1.1362e-4 1.6214e-4
(2−13, 2−10) 7.9706e-5 6.5855e-5 5.6837e-5 7.9706e-5

Table 2. Maximal values of errors, violated (CFL) condition

(h0, h1) s = 1 s = 0.7 s = 0.5 s = 0

(2−5, 2−8) 4.7380e+7 1.2966e-1 1.5559e-2 1.1231e-2
(2−6, 2−9) 2.3352e+25 1.6332e+2 8.1333e-3 6.3779e-3
(2−7, 2−10) 9.9753e+61 2.3574e+9 4.1554e-3 3.2818e-3
(2−8, 2−11) 1.6760e+136 2.6961e+24 2.0996e-3 1.6763e-3

Table 2 contains results in the case when the (CFL) condition (4.2) is violated.
We can observe that the explicit difference scheme (s = 1) is divergent, the implicit
difference method with s ∈ (0.5, 1) is not stable but with values of the weights from
the interval [0, 0.5] we get a difference method which is convergent.

Example 5.2. Consider the differential equation with deviated variables

∂tz(t, x, y) = ∂xz(t, x, y)− ∂yz(t, x, y)+

+ arctan
(
∂xz(t, x, y)− ∂yz(t, x, y)− 2t(x+ y)z(t, x, z)

)
+

+
(
z(t, 0.5(x+ y), 0.5(x− y)

)3
+ (x2 − y2 − 2tx− 2ty)z(t, x, y)− e3txy

with the initial boundary condition

z(0, x, y) = 1, (x, y) ∈ [−1, 1]× [−1, 1],

z(t, 1, y) = et(1−y
2), t ∈ [0, 0.25], y ∈ [−1, 1],

z(t, x,−1) = et(x
2−1), t ∈ [0, 0.25], x ∈ [−1, 1].

The exact solution of this problem is known. It is z(t, x, y) = et(x
2−y2). In the difference

method for the above problem we put s1 = s2 = s.
The Tables 3 and 4 show maximal values of errors for several step sizes with

respect to the value of weight s.
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Table 3. Maximal values of errors

(h0, h1, h2) s = 1 s = 0.7 s = 0.5 s = 0

(2−8, 2−5, 2−5) 9.3550e-4 2.1550e-3 3.6082e-3 7.8235e-3
(2−9, 2−6, 2−6) 4.9769e-4 1.1258e-3 1.8542e-3 4.0655e-3
(2−10, 2−7, 2−7) 2.5674e-4 5.7656e-4 9.4274e-4 2.0794e-3
(2−11, 2−8, 2−8) 1.2840e-4 2.8932e-4 4.7148e-4 1.0420e-3

Table 4. Maximal values of errors, violated (CFL) condition

(h0, h1, h2) s = 1 s = 0.7 s = 0.5 s = 0

(2−5, 2−7, 2−7) 5.7513e+1 1.8724e-2 2.9517e-2 5.3660e-2
(2−6, 2−8, 2−8) 2.5674e+21 4.9418e-2 1.6878e-2 3.1569e-2
(2−7, 2−9, 2−9) ∞ 3.6084e-0 8.7001e-3 1.7227e-2

(2−8, 2−10, 2−10) ∞ 2.1976e+26 4.4728e-3 8.7446e-3

From Tables 3 and 4 we get the same conclusions as in Example 5.1.

Remark 5.3. The both examples show that the difference method we present in the
paper is stable for s ∈ [0, 0.5]. We can conclude that the assumed (CFL) condition
in our analysis is only sufficient but not necessary for the stability of the considered
method for s ∈ (0, 0.5]. In the case when s ∈ (0.5, 1] we have stability only if the
(CFL) condition is satisfied. For s = 0 we have unconditional stability.
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