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Abstract

The numerical-analytic method is applied to a class of nonlinear differential-algebraic
systems with maxima to find a solution assuming that functions(f, g) satisfy the Lipschitz
conditions in matrix notation. This solution is given as a limit of corresponding sequences
including Seidel’s iterations too. Some existence results are also obtained for problems
with retardations.
 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

A useful approach in studying of existence of solutions is Samoilenko’s
numerical-analytic method (for details, see [9,10]). The application of this
technique to differential problems with boundary conditions can be found, for
example, in papers [1,3,7,8,11]. In this paper we shall extend this method to
differential-algebraic boundary-value problems with maxima of the form


x ′(t)= f

(
t, x(t),max[0,t ] x(s), y(t),max[0,t ] y(s)

)
≡ f0(t, x, y), t ∈ J = [0, T ],

y(t)= g
(
t,max[0,t ] x(s), y(t)

) ≡ g0(t, x, y), t ∈ J,

(1)

Ax(0)+Bx(T )= d. (2)
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Heref ∈C(J ×R
p ×R

p ×R
q ×R

q,Rp), g ∈ C(J ×R
p ×R

q,Rq),A ∈ R
p×p,

B ∈ R
p×p , d ∈ R

p and

max[0,t ] x(s)=
(
max[0,t ] x1(s),max[0,t ] x2(s), . . . ,max[0,t ] xp(s)

)
.

Existence of solutions for initial-value differential problems with maxima
is discussed, for example, in papers [2,4]; see also papers [5,6], where some
applications in nonlinear mechanics are given.

The numerical-analytic method combined with the comparison one is used
to formulate corresponding results under the assumption thatf and g satisfy
the Lipschitz conditions in matrix notation. The aim of the present paper is
to discuss the conditions under which the solution exists and it is the limit of
successive approximations and Seidel’s iterations too. Some error estimates are
given. This paper contains also some discussion for more general differential-
algebraic problems with retardations and corresponding results are given in the
last section of this paper.

2. Assumptions

Put

Lf (x, y)(t)=
(

1− t

T

) t∫
0

f0(s, x, y) ds − t

T

T∫
t

f0(s, x, y) ds.

Indeed, Lf (x, y)(0) = Lf (x, y)(T ) = Op×1. According to the numerical-
analytic method, find the vectorδ such thatx(t)= η+Lf (x, y)(t)+ δt satisfies
condition (2). Hence (1)–(2) give the following auxiliary problem{

x(t)= η+Lf (x, y)(t)+ tS(η)≡ F(t, x, y;η), t ∈ J ,

y(t)= g0(t, x, y), t ∈ J
(3)

and

1

T

T∫
0

f0(s, x, y) ds = S(η)

with S(η) = 1
T
B−1[d − (A + B)η] assuming that det(B) �= 0. Note that,

F(0, x, y;η)= η, sox(0)= η.

Let us introduce the following

Assumption H1. (1) There are matricesKp×p , Lp×p , Mp×q , Np×q with non-
negative entries such that∣∣f (t, x,X,y,Y )− f (t, x̄, X̄, ȳ, Ȳ )

∣∣
�K|x − x̄| +L|X − X̄| +M|y − ȳ| +N |Y − Ȳ |

for all t ∈ J , x,X, x̄, X̄ ∈ R
p, y,Y, ȳ, Ȳ ∈ R

q .
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(2) There are matricesPq×p , Qq×q with nonnegative entries,ρ(Q) < 1 and
such that∣∣g(t, x, y)− g(t, x̄, ȳ)

∣∣ � P |x − x̄| +Q|y − ȳ|
for all t ∈ J , x, x̄ ∈ R

p, y, ȳ ∈ R
q . Here | · | denotes the absolute value of

the vector, so|x| = (|x1|, . . . , |xp|)T or |y| = (|y1|, . . . , |yq |)T. Moreover,ρ(Q)

denotes the spectral radius of the matrixQ.

Assumption H2. For any nonnegative functionh ∈C(J × R
p,R

p
+) there exists a

unique solutionu ∈C(J,R
p
+) of the comparison equation

u(t)= (Ωu)(t)+ h(t, η), t ∈ J, (4)

where

(Ωu)(t)=
(

1− t

T

) t∫
0

[
Ku(s)+Dmax

[0,s]
u(τ)

]
ds

+ t

T

T∫
t

[
Ku(s)+Dmax

[0,s]
u(τ)

]
ds, t ∈ J

with D = L+ (N +M)(I −Q)−1P.

Note that under AssumptionH1 we have∣∣Lf (x, y)(t)−Lf (x̄, ȳ)(t)
∣∣

�
(

1− t

T

) t∫
0

∣∣f0(s, x, y)− f0(s, x̄, ȳ)
∣∣ds

+ t

T

T∫
t

∣∣f0(s, x, y)− f0(t, x̄, ȳ)
∣∣ds

�
(

1− t

T

) t∫
0

[
K

∣∣x(s)− x̄(s)
∣∣ +Lmax

[0,s]
∣∣x(τ)− x̄(τ )

∣∣
+M

∣∣y(s)− ȳ(s)
∣∣ +N max[0,s]

∣∣y(τ)− ȳ(τ )
∣∣]ds

+ t

T

T∫
t

[
K

∣∣x(s)− x̄(s)
∣∣ +Lmax

[0,s]
∣∣x(τ)− x̄(τ )

∣∣
+M

∣∣y(s)− ȳ(s)
∣∣ +N max

[0,s]
∣∣y(τ)− ȳ(τ )

∣∣]ds
≡Ω0

(
t, |x − x̄|, |y − ȳ|). (5)
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3. Lemmas

Forn= 0,1, . . . let us define the sequences{un,wn} by formulas{
u0(t)= u(t), t ∈ J ,

un+1(t)=Ω0(t, un,wn), t ∈ J ,
(6)

{
w0(t)= (I −Q)−1

[
P max[0,t ] u0(s)+ r1(η)

]
, t ∈ J ,

wn+1(t)= P max[0,t ] un(s)+Qwn(t), t ∈ J ,
(7)

whereu is a solution of (4) with

h(t, η)=R1(η)+ 2t

(
1− t

T

)
(M +N)(I −Q)−1r1(η),

R1(η)= max
t∈J

∣∣F(t, x0, y0;η)− x0(t)
∣∣,

r1(η)= max
t∈J

∣∣g0(t, x0, y0)− y0(t)
∣∣.

To obtain a solution of problem (3) we shall first establish some properties for
sequences{un,wn}. They are given in the next two lemmas.

Lemma 1. Let AssumptionsH1 andH2 be satisfied. Then,

un+1(t)� un(t)� u0(t), wn+1(t)�wn(t)�w0(t) (8)

for t ∈ J and n = 0,1, . . . . Moreover, the sequences{un}, {wn} converge
uniformly to zero functions, soun(t)→ 0,wn(t)→ 0 onJ if n→ ∞.

Proof. Note that the matrix(I − Q)−1 exists and its entries are nonnegative
because of the conditionρ(Q) < 1.PutL0 = (M+N)(I −Q)−1,L1 = L+L0P.

Then

u1(t)=Ω0(t, u0,w0)

=
(

1− t

T

) t∫
0

{
Ku0(s)+L1 max

[0,s]
u0(τ )+L0r1(η)

}
ds

+ t

T

T∫
t

{
Ku0(s)+L1 max

[0,s]
u0(τ )+L0r1(η)

}
ds

= (Ωu)(t)+ 2t

(
1− t

T

)
L0r1(η)� u(t),

w1(t)= P max
[0,t ]

u0(s)+Qw0(t)

= P max[0,t ] u0(s)+Q(I −Q)−1
[
P max[0,t ] u0(s)+ r1(η)

]
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� P max
[0,t ]

u0(s)+Q(I −Q)−1
[
P max

[0,t ]
u0(s)+ r1(η)

]
+ r1(η)

= (I −Q)−1
[
P max

[0,t ]
u0(s)+ r1(η)

]
=w0(t).

Using the monotonicity ofΩ0, we obtain (8), by mathematical induction.
Henceun → ū, wn → w̄ on J if n → ∞, where(ū, w̄) is a solution of the

system

ū(t)=Ω0(t, ū, w̄), w̄(t)= P max
[0,t ]

ū(s)+Qw̄(t), t ∈ J.

Hencew̄(t)= (I −Q)−1P max[0,t ] ū(s), t ∈ J. It is simple to see that

Ω0(t, ū, w̄)= (Ωū)(t), t ∈ J,

soū is a solution of equation̄u(t)= (Ωū)(t), t ∈ J. By AssumptionH2, ū(t)= 0
onJ, and thenw̄(t)= 0 onJ too. It ends the proof. ✷
Lemma 2. Assume thatf ∈ C(J × R

p × R
p × R

q × R
q,Rp), g ∈ C(J × R

p ×
R
q,Rq), andAp×p, Bp×p and dp×1 are given constant matrices. Assume that

det(B) �= 0. Let AssumptionsH1 and H2 be satisfied. Then, fort ∈ J , n, k =
0,1, . . . , we have the estimates{∣∣xn(t)− x0(t)

∣∣ � u0(t),∣∣xn+k(t)− xk(t)
∣∣ � uk(t),

{∣∣yn(t)− y0(t)
∣∣ �w0(t),∣∣yn+k(t)− yk(t)

∣∣ �wk(t),
(9)

wherex0 ∈C1(J,Rp), y0 ∈ C(J,Rq) and

xn+1(t)= F(t, xn, yn;η), yn+1(t)= g0(t, xn, yn). (10)

Moreover,

Axn+1(0)+Bxn+1(T )= d, n= 0,1, . . . .

Proof. Indeed,∣∣x1(t)− x0(t)
∣∣ �R1(η)� h(t, η)� u0(t), t ∈ J,∣∣y1(t)− y0(t)
∣∣ � r1(η)�

[
Q(I −Q)−1 + I

]
r1(η)= (I −Q)−1r1(η)

�w0(t), t ∈ J.

Assume that∣∣xk(t)− x0(t)
∣∣ � u0(t),

∣∣yk(t)− y0(t)
∣∣ �w0(t), t ∈ J

for somek � 0. Then, by (5), we have∣∣xk+1(t)− x0(t)
∣∣ �

∣∣F(t, xk, yk;η)− F(t, x0, y0;η)
∣∣ +R1(η)

�Ω0(t, u0,w0)+R1(η)= u0(t), t ∈ J,
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∣∣yk+1(t)− y0(t)
∣∣ �

∣∣g0(t, xk, yk)− g0(t, x0, y0)
∣∣ + r1(η)

� P max
[0,t ]

u0(s)+Qw0(t)+ r1(η)

= P max[0,t ] u0(s)+Q(I −Q)−1
[
P max[0,t ] u0(s)+ r1(η)

]
+ r1(η)

= (I −Q)−1
[
P max

[0,t ]
u0(s)+ r1(η)

]
=w0(t).

Hence, by mathematical induction, we have∣∣xn(t)− x0(t)
∣∣ � u0(t) and

∣∣yn(t)− y0(t)
∣∣ �w0(t)

for t ∈ J , n= 0,1, . . . . Basing on the above, let us assume that∣∣xn+k(t)− xk(t)
∣∣ � uk(t),

∣∣yn+k(t)− yk(t)
∣∣ �wk(t), t ∈ J

for all n and somek � 0. Then, again by (5), we see that∣∣xn+k+1(t)− xk+1(t)
∣∣ = ∣∣F(t, xn+k, yn+k;η)− F(t, xk, yk;η)

∣∣
�Ω0(t, uk,wk)= uk+1(t), t ∈ J,∣∣yn+k+1(t)− yk+1(t)

∣∣ = ∣∣g0(t, xn+k, yn+k)− g0(t, xk, yk)
∣∣

� P max
[0,t ]

uk(s)+Qwk(t)=wk+1(t), t ∈ J.

Hence, by mathematical induction, the estimates (9) hold. It is quite simple to
verify that xn+1 satisfies integral condition (2) for anyn = 0,1, . . . . It ends the
proof. ✷

4. Existence results

Combining Lemmas 1 and 2 we have

Theorem 1. Assume thatf ∈C(J × R
p × R

p × R
q × R

q,Rp), g ∈ C(J × R
p ×

R
q,Rq), andAp×p , Bp×p and dp×1 are given constant matrices. Assume that

det(B) �= 0. Let AssumptionsH1 andH2 be satisfied. Then, for everyη ∈ R
p,

there exists a unique solution(x̄, ȳ) of problem(3) wherexn(t)→ x̄(t), yn(t)→
ȳ(t) onJ asn→ ∞ and we have the estimates∣∣xn(t)− x̄(t)

∣∣ � un(t),
∣∣yn(t)− ȳ(t)

∣∣ �wn(t)

for t ∈ J, andn= 0,1, . . . .
Moreover,(x̄, ȳ) is the solution of problem(1)–(2) iff

1

T

T∫
0

f0(s, x̄, ȳ) ds = S(η).
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Remark 1. Note that AssumptionH2 holds if we assume that

ρ(W) < 1 forW = T

2
(K +D).

To get this condition we apply the Banach fixed point theorem. Denote the
right-hand side of Eq. (4) byD. Then, foru, ū ∈ C(J,R

p
+) we have∣∣Du(t)−Dū(t)

∣∣
�

(
1− t

T

) t∫
0

[
K

∣∣u(s)− ū(s)
∣∣ +Dmax

[0,s]
∣∣u(τ)− ū(τ )

∣∣]ds

+ t

T

T∫
t

[
K

∣∣u(s)− ū(s)
∣∣ +Dmax

[0,s]
∣∣u(τ)− ū(τ )

∣∣]ds
� 2t

(
1− t

T

)
(K +D)max

t∈J
∣∣u(t)− ū(t)

∣∣ �W max
t∈J

∣∣u(t)− ū(t)
∣∣.

Hence, operatorD is a contraction mapping, so Eq. (4) has a unique solution.
In place of iterations (10), it is sometimes convenient to use Seidel’s method

described by{
x̃n+1(t)= F(t, x̃n, ỹn;η),
ỹn+1(t)= g0(t, x̃n+1, ỹn),

or

{
ȳn+1(t)= g0(t, x̄n, ȳn),

x̄n+1(t)= F(t, x̄n, ȳn+1;η) (11)

for t ∈ J, andn= 0,1, . . . .
For t ∈ J andn= 0,1, . . . , let us define the sequences:


ũ0(t)= u0(t), w̃0(t)=w0(t),

ũn+1(t)=Ω0(t, ũn, w̃n),

w̃n+1(t)= P max[0,t ] ũn+1(s)+Qw̃n(t),

ū0(t)= u0(t), w̄0(t)=w0(t),

w̄n+1(t)= P max[0,t ] ūn(s)+Qw̄n(t),

ūn+1(t)=Ω0(t, ūn, w̄n+1).

Now, by mathematical induction, we are able to show the following result

Lemma 3. Let AssumptionsH1 andH2 hold. Then

ūn(t)� un(t), w̄n(t)�wn(t), t ∈ J, n= 0,1, . . . ,

ũn(t)� un(t), w̃n(t)�wn(t), t ∈ J, n= 0,1, . . . ,

andūn(t)→ 0, w̄n(t)→ 0, ũn(t)→ 0, w̃n(t)→ 0 onJ if n→ ∞.

The simple consequence of Lemma 3 is the following
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Theorem 2. Assume that all assumptions of Theorem1 are satisfied. Let̄x0(t)=
x̃0(t) = x0(t), ȳ0(t) = ỹ0(t) = y0(t), t ∈ J. Then,x̄n(t) → x̄(t), ȳn(t) → ȳ(t),
x̃n(t)→ x̄(t), ỹn(t)→ ȳ(t) onJ asn→ ∞.

Moreover, we have the estimates∣∣x̄n(t)− x̄(t)
∣∣ � ūn(t),

∣∣ȳn(t)− ȳ(t)
∣∣ � w̄n(t),∣∣x̃n(t)− x̄(t)

∣∣ � ũn(t),
∣∣ỹn(t)− ȳ(t)

∣∣ � w̃n(t)

for t ∈ J, andn= 0,1, . . . .

Note that iterations (10) and (11) converge to(x̄, ȳ) under the same conditions
but basing on Lemma 3 we see that the error estimates for (11) are better in
comparing with the corresponding estimates for (10). This notice is important
since{xn, yn}, {x̄n, ȳn} and{x̃n, ỹn) are approximated solutions of problem (3).

Theorem 3. Assume that all assumptions of Theorem1 are satisfied. Then∣∣∆(x̄, ȳ;η)−∆(xn, yn;η)
∣∣ � Ω̄(un,wn),∣∣∆(x̄, ȳ;η)−∆(x̃n, ỹn;η)
∣∣ � Ω̄(ũn, w̃n),∣∣∆(x̄, ȳ;η)−∆(x̄n, ȳn;η)
∣∣ � Ω̄(ūn, w̄n),∣∣∆(xn, yn;η)−∆(x̃n, ỹn;η)

∣∣ � Ω̄(un,wn)+ Ω̄(ũn, w̃n),∣∣∆(xn, yn;η)−∆(x̄n, ȳn;η)
∣∣ � Ω̄(un,wn)+ Ω̄(ūn, w̄n),∣∣∆(x̃n, ỹn;η)−∆(x̄n, ȳn;η)
∣∣ � Ω̄(ũn, w̃n)+ Ω̄(ūn, w̄n)

for t ∈ J , n= 0,1, . . . , where

∆(x,y;η)=
T∫

0

f0(s, x, y) ds − T B−1[d − (A+B)η
)
,

Ω̄(u,w)=
T∫

0

[
Ku(s)+Lmax

[0,s]
u(τ)+Mw(s)+N max

[0,t ]
w(τ)

]
ds.

5. Differential-algebraic systems with retardations

Let α,β, γ, δ,µ ∈C(J,J ). For t ∈ J, let us consider the following problem

x ′(t)= f

(
t, x

(
α(t)

)
,max[0,β(t)] x(s), y

(
γ (t)

)
,max[0,δ(t)] y(s)

)
≡ f1(t, x, y),

y(t)= g
(
t,max[0,µ(t)] x(s), y(t)

) ≡ g1(t, x, y)

(12)
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with condition (2), wheref ∈ C(J ×R
p ×R

p ×R
q ×R

q,Rp), g ∈C(J ×R
p ×

R
q,Rq). Let det(B) �= 0. According to the numerical-analytic method find the

vectorδ such that

x(t)= η+Pz(t)+ δt

with Pz(t)=
(

1− t

T

) t∫
0

z(s) ds − t

T

T∫
t

z(s) ds

satisfies condition (2). Then, this and (12) give the following auxiliary problem

z(t)= f

(
t, η+Pz

(
α(t)

) + α(t)S(η),max[0,β(t)]
[
η+Pz(s)+ sS(η)

]
,

y
(
γ (t)

)
,max[0,δ(t)] y(s)

)
≡F(t, z, y;η),

y(t)= g
(
t,max[0,µ(t)]

[
η+Pz(s)+ sS(η)

]
, y(t)

) ≡ G(t, z, y;η)
(13)

and
T∫

0

z(s) ds = T S(η).

Assumption H3. For any nonnegative functionH ∈ C(J × R
p,R

p
+) there exists

a unique solutionV ∈ C(J,R
p
+) of the comparison equation

V (t)= (Ω1V )(t)+H(t, η)

with

(Ω1V )(t)=KΛ
(
α(t),V

) +L max
[0,β(t)]

Λ(s,V )

+M(I −Q)−1P max
[0,µ(γ (t))]

Λ(s,V )

+N(I −Q)−1P max
[0,δ(t)]

max
[0,µ(s)]

Λ(τ,V )

Λ(t,V )=
(

1− t

T

) t∫
0

V (s) ds + t

T

T∫
t

V (s) ds.

Put

Λ̄(t, u,w)=KΛ
(
α(t), u

) +L max
[0,β(t)]

Λ(s,u)+Mw
(
γ (t)

)
+N max

[0,δ(t)]
w(s).

For t ∈ J, andn= 0,1, . . . , let us define the sequences{Un}, {Wn} by relations
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{
U0(t)= V (t),

Un+1(t)= Λ̄(t,Un,Wn),
(14){

W0(t)= (I −Q)−1
[
P max[0,µ(t)]Λ(s,U0)+ r2(η)

]
,

Wn+1(t)= P max[0,µ(t)]Λ(s,Un)+QWn(t),
(15)

whereV is defined as in AssumptionH3 with

H(t, η)= (M +N)(I −Q)−1r2(η)+R2(η),

r2(η)= max
t∈J

∣∣G(t,Z0, Y0;η)− Y0(t)
∣∣,

R2(η)= max
t∈J

∣∣F(t,Z0, Y0;η)−Z0(t)
∣∣.

Lemma 4. Let AssumptionsH1 andH3 be satisfied. Then the sequences{Un},
{Wn} satisfy the relations

Un+1(t)�Un(t)�U0(t), Wn+1(t)�Wn(t)�W0(t) (16)

for t ∈ J , n= 0,1, . . . . MoreoverUn, Wn converge uniformly to zero functions if
n→ ∞.

Proof. Note that

U1(t)= Λ̄(t,U0,W0)= (Ω1U0)(t)+ (M +N)(I −Q)−1r2(η)�U0(t),

W1(t)= P max
[0,µ(t)]

Λ(s,U0)+Q(I −Q)−1
[
P max

[0,µ(t)]
Λ(s,U0)+ r2(η)

]
�

[
(I −Q)(I −Q)−1 +Q(I −Q)−1][P max

[0,µ(t)]
Λ(s,U0)+ r2(η)

]
= (I −Q)−1

[
P max

[0,µ(t)]
Λ(s,U0)+ r2(η)

]
=W0(t).

By mathematical induction, it is simple to show that (16) holds. HenceUn → U ,
Wn →W onJ if n→ ∞. Indeed, the pair(U,W) is a solution of the system

U(t)= Λ̄(t,U,W), W(t)= P max
[0,µ(t)]

Λ(s,U)+QW(t), t ∈ J.

It givesU(t)= (Ω1U)(t), t ∈ J becauseW(t) = (I−Q)−1P max[0,µ(t)]Λ(s,U).
Hence, by AssumptionH3, we see thatU = 0 onJ, and thenW = 0 onJ too. It
ends the proof. ✷
Lemma 5. Assume thatf ∈ C(J × R

p × R
p × R

q × R
q,Rp), g ∈ C(J × R

p ×
R
q,Rq), α,β, γ, δ,µ ∈ C(J,J ). Moreover,Ap×p , Bp×p and dp×1 are given

constant matrices. Assume thatdet(B) �= 0. Let AssumptionsH1 and H3 be
satisfied. Then{∣∣Zn(t)−Z0(t)

∣∣ �U0(t),∣∣Zn+k(t)−Zk(t)
∣∣ �Uk(t),

{∣∣Yn(t)− Y0(t)
∣∣ �W0(t),∣∣Yn+k(t)− Yk(t)

∣∣ �Wk(t)
(17)
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for t ∈ J andn= 0,1, . . . , where

Zn+1(t)=F(t,Zn,Yn;η), Yn+1(t)= G(t,Zn,Yn;η)
withZ0 ∈ C(J,Rp), Y0 ∈ C(J,Rq ).

Proof. Note that∣∣Z1(t)−Z0(t)
∣∣ �R2(η)�H(t, η)�U0(t),∣∣Y1(t)− Y0(t)
∣∣ � r2(η)�

[
(I −Q)(I −Q)−1 +Q(I −Q)−1]r2(η)

= (I −Q)−1r2(η)�W0(t).

If we assume that|Zk(t) − Z0(t)| � U0(t), |Yk(t) − Y0(t)| � W0(t), t ∈ J for
somek � 1, then we see that∣∣Zk+1(t)−Z0(t)

∣∣
�

∣∣F(t,Zk,Yk;η)−F(t,Z0, Y0;η)
∣∣ +R2(η)

�KΩ
(
α(t),U0

) +L max
[0,β(t)]

Λ(s,U0)

+M(I −Q)−1P max
[0,µ(γ (t))]

Λ(s,U0)

+N(I −Q)−1P max
[0,δ(t)]

max
[0,µ(s)]

Λ(τ,U0)

+ (M +N)(I −Q)−1r2(η)+R2(η)

= (Ω1U0)(t)+H(t, η)=U0(t),∣∣Yk+1(t)− Y0(t)
∣∣

�
∣∣G(t,Zk,Yk;η)− G(t,Z0, Y0;η)

∣∣ + r2(η)

� P max
[0,µ(t)]

Λ(s,U0)+Q(I −Q)−1
[
P max

[0,µ(t)]
Λ(s,U0)+ r2(η)

]
+ r2(η)

= [
(I −Q)(I −Q)−1 +Q(I −Q)−1][P max

[0,µ(t)]
Λ(s,U0)+ r2(η)

]
=W0(t).

Hence, by mathematical induction, we have the assertion of this lemma. It ends
the proof. ✷

Lemma 5 follows

Theorem 4. Assume that all assumptions of Lemma4 are satisfied. Then, for every
η ∈ R

p , the pair{Zn,Yn} converges to the unique solution(Z̄, Ȳ ) of problem(13),
soZn(t)→ Z̄(t), Yn(t) → Ȳ (t) on J if n→ ∞, and for t ∈ J we have the error
estimates∣∣Zn(t)− Z̄(t)

∣∣ �Un(t),
∣∣Yn(t)− Ȳ (t)

∣∣ �Wn(t), n= 0,1, . . . .
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Moreover, (X̄, Ȳ ) with X̄(t) = η + ∫ t

0 Z̄(s) ds, t ∈ J is the solution of prob-
lem(12) with condition(2) iff

T∫
0

Z̄(s) ds = T S(η).

Remark 2. Note that AssumptionH3 holds if we assume thatρ(W) < 1, where

W = 2 max
t∈J

{
Kα(t)

[
1− α(t)

T

]
+L max

[0,β(t)]
s

(
1− s

T

)

+M(I −Q)−1P max
[0,µ(γ (t))]

s

(
1− s

T

)

+N(I −Q)−1P max
[0,δ(t)]

max
0,µ(s)]

τ

(
1− τ

T

)}
.

The matrixW can be obtained in the same way as in Remark 1. Note that
conditionρ(W) < 1 can be replaced byρ(W̄ ) < 1, where

W̄ = 2K max
t∈J α(t)

[
1− α(t)

T

]
+ T

2

[
L+ (M +N)(I −Q)−1P

]
.

Indeed,ρ(W) < 1 andρ(W̄ ) < 1 hold if we assume that‖W̄‖ < 1, where‖ · ‖
denotes any norm of a matrix.

Similarly as before to find a solution(Z̄, Ȳ ) of problem (13) we can apply
Seidel’s method to use iterations:{

Z̃n+1(t)=F(t, Z̃n, Ỹn;η),
Ỹn+1(t)= G(t, Z̃n+1, Ỹn;η),

{
Ȳn+1(t)= G(t, Z̄n, Ȳn;η),
Z̄n+1(t)=F(t, Z̄n, Ȳn+1;η)

for t ∈ J , n= 0,1, . . . .
For t ∈ J , n= 0,1, . . . , we put{

Ũ0(t)=U0(t),

Ũn+1(t)= Λ̄(t, Ũn, W̃n),{
W̃0(t)=W0(t),

W̃n+1(t)= P max[0,µ(t)]Λ(s, Ũn+1)+QW̃n(t),{
W̄0(t)=W0(t),

W̄n+1(t)= P max[0,µ(t)]Λ(s, Ūn)+QW̄n(t),{
Ū0(t)=U0(t),

Ūn+1(t)= Λ̄(t, Ūn, W̄n+1).
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Note that under AssumptionsH1 andH3 we haveŨn(t)�Un(t), Ūn(t)�Un(t),
W̃n(t) � Wn(t), W̄n(t) � Wn(t) on J andŨn → 0, Ūn → 0, W̃n → 0, W̄n → 0
onJ too.

Using the method of mathematical induction we are able to prove the following

Theorem 5. Let all assumptions of Lemma4 be satisfied. Let̄Z0(t) = Z̃0(t) =
Z0(t), Ȳ0(t) = Ỹ0(t) = Y0(t), t ∈ J. Then the results of Theorem4 hold and
Z̃n(t)→ Z̄(t), Z̄n(t)→ Z̄(t), Ỹn(t)→ Ȳ (t), Ȳn(t)→ Ȳ (t) onJ if n→ ∞.

Moreover we have the error estimates{∣∣Z̄n(t)− Z̄(t)
∣∣ � Ūn(t),∣∣Z̃n(t)− Z̄(t)
∣∣ � Ũn(t),

{∣∣Ȳn(t)− Ȳ (t)
∣∣ � W̄n(t),∣∣Ỹn(t)− Ȳ (t)
∣∣ � W̃n(t)

for t ∈ J , n= 0,1, . . . .
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