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Abstract. This paper presents results of discrete-continuous optimisation of an axial flow
blood pump. Evolution Strategies (ES) are used as a global optimisation method in order
to localise the optimal solution in relatively short time. The whole optimisation process is
fully automated. This also applies to geometry modelling. Numerical simulations of the flow
inside the pump is performed by means of the Reynolds-Average Navier-Stokes approach. All
equations are discretised by means of the finite volume method and the corresponding algebraic
equation systems are solved by the open source software for CFD, namely OpenFOAM. Finally,
optimisations results are presented and discussed. The objective function to be maximised is
simply pressure increase. The higher pressure increase the lower angular velocities required.
This makes it possible to minimise the effect of haemolysis because it is mainly caused by high
shear stress which are related, among others, to angular velocities.

1. Introduction
Since advanced medical treatment is usually not enough to prevent further decline of patients
with heart failure, two treatments of patients with such a disease can be distinguished, namely
heart transplantation and artificial heart blood pumps. The former is somewhat difficult because
of relatively high costs and, what is even more important, lack of donor organs [5], not to mention
organ rejection and mortality rates. The latter approach to heart failure problem, i.e. artificial
heart pumps, gain popularity due to constantly improved design and features.

Several design of artificial hearts are know. The most complicated aim to replace the ailing
heart whereas simpler pumps are design in order to support it. The supporting devices fall
into three groups: LVAD (left ventricular assist device), RVAD (right ventricular assist device)
and BIVAD (bi-ventricular assist device) [3]. Despite the fact that the human heart nature is
pulsatile, continuous flow pumps are the most popular solutions. This is because of the simplicity
reason and size of the device. Furthermore, we can distinguish centrifugal and axial blood pumps.
The latter being smaller in comparison with the former. However, axial blood pumps require
significantly higher angular velocities in order to increase outlet pressure. This may lead to blood
damage, i.e. thrombosis and haemolysis [10, 9, 1] in particular. Haemolysis is mainly caused by
high shear stress [2]. In order to minimise the effect of haemolysis an optimisation process of
the axial pump is undertaken. The optimisation results leads to improvement in reduction of
the wall shear stresses.
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2. Geometry description
The whole geometry consists of a rotor and stator and is described by fourteen parameters
(design variables) x = {x1, . . . , x14} listed in table 1. First of all, the rotor blade shape is a
non-linear helix given by

x(t) = R cos t, (1)

y(t) = R sin t, (2)

z(t) = f(t) (3)

where R stands for the radius of rotor blades. Further, the parameter t ∈ [0; 2πx1] is related to
rotor blade pitch 2πx1. The non-linearity f(t) of the helix (1) is described by one parameter x2
shown in figure 1.

Two of fourteen design variables are discrete, i.e. the number of rotor and stator blades.
The former is named x3 and the latter x8. Next, the shape of the shaft is described by four
points (x4, x5), (x6, x7) of the spline shown in figure 1. Stator blades are given by the so called
camber line and the blade thickness. The former is represented by two variables (one points)
(x11, x12) of the spline whereas the latter by two variables (two points) (0, x13), (1, x14), see
figure 2. Finally, the two remaining variable x9 and x10 are the stator blade upper and lower
twist angles, respectively. The considered rotor radius R is 8mm and the length of the shaft is
4.5R.
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Figure 1. Shaft and helix splines.
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Figure 2. Stator splines.

The whole optimisation process is fully automated. This also applies to geometry modelling.

3. CFD
3.1. Governing equations and discretisation
Numerical simulations of the flow inside the pump is performed by means of the Reynolds-
Average Navier-Stokes approach. A closed system of equations [14] for incompressible fluid and
two additional transport equation for the two-equation SST [6] model is solved.

All the equations are discretised by means of the finite volume method and the corresponding
algebraic equation systems are solved by the open source software for CFD, namely OpenFOAM
[8]. Divergence schemes include both convection and other diffusive terms and involve Gauss
integration. The discretised convection terms need to be interpolated by means of cell centred
values because the values are located at the face centroids. Limited linear interpolation is used,
being second order accurate. Further, the discretised diffusive terms involving surface normal
gradients are evaluated at a cell face that connects two cells. In order to maintain second
order accuracy for non-orthogonal meshes, apart from orthogonal schemes, a non-orthogonal
correction is considered.
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The SIMPLE algorithm is used in order to solve pressure-velocity coupling and the pressure
equation is solved by means of GAMG solver with DIC smoother. For the velocity fields and
turbulent quantities standard solvers using a GS smoother are utilised. Under-relaxation factors
are used in order to improve stability of a solution. This is particularly important when solving
steady-state flows. The assumed factors are 0.3 for pressure, 0.7 for velocity and 0.5 for turbulent
quantities k and ω.

Figure 3. Flow domain (top) and
optimal pump geometry (bottom).

3.2. Mesh and boundary conditions
The flow domain is divided into three parts, see figure 3. Apart from the rotating rotor, two
additional steady pipes are considered. All three domains are discretised separately and merged
by the so called arbitrary mesh interface. The total number of nodes is 1 553 806 and total
number of volumes 1 378 033 where 1 269 555 of them are hexahedra. Furthermore, the mesh
used may be classified as Cartesian, see figure 4.

Figure 4. Mesh.

In order to make certain that flow near walls is properly resolved thin layers around the
physical walls are generated. The quality of the mesh near the walls is inspected in terms of the
maximal y+ values. Maximal values of y+ are below 3 for all considered walls including blades.

The main boundary conditions are:

• Inlet. The specified constant volumetric flow rate V̇ = 3 dm/min is directed perpendicularly
to inlet surface accompanied by the zero normal gradient pressure. Low turbulence intensity
is also considered. This means that turbulence intensity is at the level of 1% and viscosity
ration νt/ν = 1;

• Outlet. The constant pressure distribution is assumed here together with zero gradient
velocity for flow out of the domain. This is because the outlet surface is located relatively
far from the rotor;
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• Walls. The so called no-slip conditions is applied meaning that impermeability and adhesion
requirements are forced. Rotating wall velocity n = 6000 rev/min is considered in the
rotating frame of reference. The flow in the near wall region is modelled by means of the
scalable wall function;

• Interfaces. In order to allow for coupling between stationary pipes and rotating part of the
pump the so called cyclic arbitrary mesh interfaces are considered. A steady state approach
is used rather than full transient rotor-stator interaction. This is crucial for time consuming
optimisation processes since CFD calculations need to be repeated hundred of times. This
approach is commonly known as a multiple reference frame simulation;

4. Optimisation
4.1. General remarks
A discrete-continuous optimisation approach is needed to find the optimal shape. This is because
two of fourteen design variables are discrete, namely the number of rotor and stator blades.
Remaining variables such as the shaft, rotor and stator shapes as well as their thickness are
continuous.

Evolution Strategies are used as a global optimisation method to localise the optimal solution
in relatively short time [7, 11]. ES can be further classified as multi-point (population based)
optimisation algorithms. Recombination, mutation and survival are adapted in order to evolve
better solution. Most importantly, no additional information about the objective function is
required. Additionally, randomisation is introduced through the probability of crossover and
mutation. This makes it possible to efficiently explore the design space and escape local minima.

4.2. Objective function
The optimisation problem is to find a maximal pressure increase Δp. Since most optimisation
algorithms are designed for minimisation of objective function, the pressure increase is considered
with a minus sign

Δp0 = min
x∈Ω⊆RD

(−Δp(x)) . (4)

Furthermore, the argument of the global minimum value of the objective function is expressed
as

g = arg min
x∈Ω⊆RD

(−Δp(x)) (5)

where D = 14 stands for the dimension of constraint space Ω or simply the so called optimisation
domain. Thus, the objective function is subjected to box constraints listed in table 1

Ω =
{
x ∈ R

D : Li ≤ xi ≤ Ui

}
(6)

where Li and Ui are lower and upper bounds, respectively. Box constraints are regarded as a
special case of inequality constraints. This type of constraints is commonly met in optimisation
problems and does not need any special treatment.

4.3. Algorithm
The ES algorithm in the pseudocode from [11] is shown in figure 5. Firstly, the initial population
is randomly generated by means of a random variate of a continuous uniform distribution (lines
1-3). Lines 7 and 8 represent parent selection steps. This is achieved by means of tournament
selection (lines 7 and 8) where T = 3 stands for the tournament size out of a parent population
of N members. Once parents are selected, the arithmetical crossover is performed (line 11).
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Input: pc, pm, T , N , nmax, L, U
Output: g

1 for i := 0 to N − 1 do
2 xi := L+ (U− L) ◦ U(0, 1);
3 yi := 0;

4 g := argminxi f(xi);
5 for n := 1 to nmax − 1 do
6 for i := 1 to N − 1 do
7 a := Tournament (x, T );
8 b := Tournament (x, T );
9 p1 := xa;

10 p2 := xb;

11 (c1, c2) := Crossover (p1,p2, pc);
12 yi := Mutation (c1, i, pm);
13 yi+1 := Mutation (c2, i, pm);
14 i := i+ 2;

15 l := argminxi f(xi);
16 g := argmin {f(g), f(l)};
17 x = Selection(x,y);

Figure 5. Evolutionary strategy pseudocode.

Namely, two parents x1 and x2 are crossed with probability pc. Two offspring vectors y1 and
y2 are produced according to

y1 := ax1 + (1− a)x2, (7a)

y2 := ax2 + (1− a)x1 (7b)

where a := U(0, 1). Next, the integer variables (the number of rotor and stator blades) are
uniformly mutated (lines 12-13) if U(0, 1) < pm as opposed to floating point variables. The
latter are non-uniformly mutated if U(0, 1) < pm according to

xik :=

{
xik + (Uk − xik)Δ, if U{0, 1} = 0;

xik − (xik − Lk)Δ, otherwise
(8)

where

Δ := 1− U(0, 1)
(
1− n

nmax

)2

. (9)

In order to damp mutation as the algorithm approaches to an end the value of Δ should decrease.
The selection step (line 17) passes best solutions onto next generations. The so called (μ+λ)

strategy is taken into consideration. Here μ denotes the total number of parent vectors xi

whereas λ is the number of offspring vectors yi. In this case μ = λ = N . Simply, the considered
strategy creates the next parent vector generation with the best μ vectors from the combined
(μ+ λ) parent and offspring population.

4.4. Results
The EA population size was set as N = 20 and the number of generations as nmax = 20. This
results in 400 CFD calculations. Convergence is easily achieved after about 10 generations, see
figure 6. The dashed line denotes the average pressure increase for the entire population, while
solid line is the global maximum for the entire optimisation process.
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Figure 7 shows how the mutation and the crossovers count varies during the optimisation
process for the probabilities pm = 0.7 and pc = 0.15. Moreover, figure 8 makes it possible
to monitor the population variability as the so called discrepancy is such a measure [13, 12].
Discrepancy D∗ takes on values in the neighbourhood of 0 for random populations and close to
1 for uniform populations.

Table 1. Constraints of variables and optimal values.

Name Constraints Optimum Description

x1 [0.2; 1] 0.823 rotor blade pitch
x2 [0.1; 0.5] 0.254 non-linearity of the helix
x3 {2, . . . , 4} 4 number of rotor blades
x4 [0; 0.5] 0.393 two points of shaft’s spline
x5 [0.7; 1] 0.860
x6 [0.7; 1] 0.954
x7 [0.7; 1.2] 0.877
x8 {4, . . . , 8} 8 number of stator blades
x9 [0; 45◦] 31.99◦ stator blade upper twist angle
x10 [0; 30◦] 15.26◦ stator blade lower twist angle
x11 [0.2; 0.6] 0.342 point of stator shape blade spline
x12 [0; 0.3] 0.232
x13 [0.05; 0.3] 0.174 point of stator thickness blade spline
x14 [0.05; 0.2] 0.179
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Δ
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Figure 6. Convergence.
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Figure 7. Mutations and crossovers.

The optimal values of g are listed in table 1. Lower part of figure 3 presents the optimal pump
shape according to table 1. It may be observed that the optimal geometry consists of 4 rotor
blades and 8 stator blades being the upper accessible ranges. As for the remaining variables,
they are located inside the considered box constraints.

The average shape evolution for selected generations (iterations) of ES, reflecting convergence
process, is presented in figure 9. It is interesting that the first shape (iteration 1) is simply an
arithmetical average of purely random shapes. This is because the initial population is randomly
generated. At the same time, the last shape (iteration 20) is similar to the optimal shape since
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Figure 8. Discrepancy D∗.

Figure 9. Average shape evolution
(iteration number 1, 3, 5, 10 and
20).

the population here is nearly uniform according to the discrepancy value, see figure 8. Finally,
since these shapes are arithmetical averages of individual generations, it should be noted that
none of these has been subject to any CFD calculations.

Figure 10. Best shape evolution
and corresponding wall shear
stresses distributions (iteration
number 7, 10, 11 and 20).

Upper part of figure 10 displays the best shape evolution resulting from the shape optimisation
process. The last shape (iteration 20) is the optimal solution shown also in figure 3. Interestingly,
all shapes apart from first (iteration 7) are similar in terms of rotor configurations. What
distinguishes the first geometry from the remaining three is the shape of the shaft and stator

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


8

1234567890 ‘’“”

XXIII Fluid Mechanics Conference (KKMP 2018) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1101 (2018) 012044  doi :10.1088/1742-6596/1101/1/012044

blades. Lower part of figure 10 presents corresponding wall shear stresses distributions. The
higher the iteration number the smoother the distribution on the shaft and blades. One has to
keep in mind, however, that high shear stresses are related primarily to angular velocities.

5. Conclusions
• Results of a discrete-continuous global optimisation process of an axial flow blood pump

are presented. The optimal results are achieved by means of ES in relatively short time.
Since 2 of 14 design variables are discrete (integer) special care of ES is necessary;

• A simple and effective method of geometry modelling is proposed. This makes it possible to
make the whole optimisation process fully automated. There is no need for any intermediate
CAD software since the geometry is created directly be means of GNU Octave [4] scripts;

• Figure 10 presents the wall shear stress distribution which is responsible for haemolysis. It
may be observed that the highest values are localised, among other, on the rotor blade tips.
The higher pressure increase the lower angular velocity required. Thus the optimisation
process leads to improvement in reduction of the wall shear stresses and the effect of
haemolysis. This is because haemolysis is mainly caused by high shear stress which are
related, among others, to angular velocities;
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