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A discrete Green’s function (DGF) approach to couple 3D FDTD sub-
domains is developed. The total-field/scattered-field subdomains
are simulated using the explicit FDTD method whilst interaction
between them is computed as a convolution of the DGF with equival-
ent current sources measured over Huygens surfaces. In the developed
method, the DGF waveforms are truncated using the Hann’s window.
The error varies in the range − 65 to − 40 dB depending on the DGF
length and positions of the subdomains. However, if the DGF length is
equal to the number of iterations in a simulation, this approach returns
the same results as the direct FDTD method.

Introduction: The hybridisation between the finite-difference time-
domain (FDTD) method [1] and integral equation based numerical
methods requires consistency with the discrete electromagnetism
theory and the discrete Green’s function (DGF) that is compatible
with Yee’s grid [2]. The FDTD method and its DGF-based formulation
can be perfectly coupled because the DGF is directly derived from the
FDTD update equations. Although several attempts at coupling the
FDTD method with integral equation based numerical methods have
been reported in the literature, these techniques work well until instabil-
ities kick in [3].

Therefore, the objective of this Letter is to demonstrate for the first
time a new technique for coupling 3D FDTD subdomains. Stable 2D
FDTD simulations on disjoint domains employing the DGF-based
boundary condition have already reported [3]. However, up to now,
the coupling of FDTD subdomains with use of the DGF has not yet
been presented in 3D to the best of the author’s knowledge.

Developed method: The idea behind the developed method is schema-
tically depicted in Fig. 1, whereas the detailed flowchart of the FDTD
method on disjoint domains is presented in Fig. 2.

The presented method was developed for two FDTD subdomains
coupled using an integral equation with the DGF kernel. Simulated
objects (e.g. source and scatterer) are placed within the FDTD subdo-
mains, which are terminated by the perfectly matched layers (PMLs)
[1]. Although the DGF can also provide a global absorbing boundary
condition (ABC), the quality of PMLs is sufficient to demonstrate the
developed algorithm. Moreover, the computational efficiency of PMLs
is much higher than global ABCs.

In the developed method, implementation of Huygens boxes is con-
sistent with the equivalence theorem in the discrete domain [4]. A simu-
lated object within a subdomain is placed inside two Huygens boxes
comprising three surfaces separated by a half-cell distance: (i) outer Se
and Sh in the scattered-field zone to calculate the field radiated from
the subdomain, and (ii) inner Se and Sh for excitation of the total-
field/scattered-field (TFSF) boundary [1]. The Se and Sh surfaces of
the Huygens boxes respectively correspond to the tangential electric-
and magnetic-field components in the Yee’s grid. Equivalent currents
(J, M) in the scattered-field zone allow computing the field impinging
at the coupled subdomain. The incident field (E, H) at the TFSF bound-
ary in the coupled subdomain can be computed as a convolution of the
current sources (J, M) and the dyadic DGF [2]:
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where c denotes the speed of light, η is the intrinsic impedance of free
space, n is the time index and Δt is the time-step size.

The coupling of FDTD subdomains requires generation of the DGF
waveforms corresponding to the equivalent currents measured over
the Huygens surfaces. The DGF generation is a part of the pre-
processing stage or, alternatively, the DGF waveforms can be down-
loaded from the DGF file on a hard drive. In the developed method,
the acceleration of the DGF computations on a graphics processing
unit was employed [5]. However, the size of available memory and
runtime will still limit the feasibility of generation of long DGF wave-
forms, as well as at the pre-processing stage. If the length of the DGF
waveforms is equal to the number of iterations in the FDTD simulation,
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the presented technique returns the same results as the direct FDTD
method (assuming infinite numerical precision of computations).
Since the DGF generation and convolution computations require pro-
cessor time, the DGF was truncated using the Hann’s window [6]:
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Fig. 1 Implementation of disjoint domain simulations in FDTD method;
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Fig. 2 Flowchart of developed algorithm

Numerical results: The method described above was integrated with the
3D FDTD solver. Two half-wavelength dipoles were placed inside sub-
domains, each with Huygens box of size 4 × 4 × 15 cells. The spatial dis-
cretisation was taken as Δx = Δy = Δz = 1mm for the results presented
here. The harmonic current source (the corresponding wavelength λ=
20Δx) excited the transmitting antenna whereas the electric field was
measured by the receiving antenna in the second subdomain. The rela-
tive position of both subdomains was varied in the direction (i, i, 0),
where i = 8, 16, 32, 64, 128. Exemplary waveforms, compared with
the result of the direct FDTD simulation, are presented in Fig. 3. As
seen, waveforms computed using both methods overlap. The differences
measured between waveforms (defined as in [6]) are presented in Fig. 4.
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Fig. 3 Exemplar waveforms recorded by transmitting antenna (Fig. 3a) and
receiving antenna (Fig. 3b); shift between antennas: (i, i, 0) = (8, 8, 0),
Hann’s window length ns = 100
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Fig. 4 Relative error between waveforms computed using developed method
and direct FDTD method for varied position (i, i, 0) of receiving antenna
from transmitting antenna

As reported in [6], application of the windowing technique to truncate
the DGF requires a sufficiently long window to guarantee accuracy of
computations. For the sake of brevity, the evaluation of the errors result-
ing from the DGF windowing will not be repeated here.

Runtime scaling of convolution computations executed over M cells
at a single Huygens surface is of order (M ns), where ns denotes the
DGF length. The runtime scaling is of order (M2ns) for two coupled sub-
domains (computational cost of the FDTD updates is neglected). On the
other hand, FDTD computations require updating of all cells in the
extended domain including both subdomains. Runtime scaling of
these computations is of order (N3), where N3 denotes the number of
cells in a cubic FDTD domain. Therefore, efficiency of the proposed
ELECTRO
method is higher than the direct FDTD computations as long as small
subdomains are simulated and the distance between them is sufficiently
large.

Conclusion: The 3D FDTD algorithm on disjoint domains has been
developed using the DGF formulation of this method. The developed
method is more efficient than the direct FDTD computations as long
as subdomains are small and the distance between them is sufficiently
large. The developed 3D FDTD method on disjoint domains holds
many applications for future work, such as simultaneous simulation of
a transmitter and a receiver in radio communication systems.
Moreover, this technique opens the doors for the development of new
techniques of domain decomposition facilitating parallelisation of
FDTD computations.

Acknowledgments: This work was realised within the HOMING PLUS
Program of the Foundation for Polish Science, co-financed by the
European Union Regional Development Fund.

© The Institution of Engineering and Technology 2013
22 December 2012
doi: 10.1049/el.2012.4462
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