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SUMMARY

A quasi-static homogeneous drained triaxial compression test on cohesionless sand under constant lateral 
pressure was simulated using a three-dimensional discrete element method. Grains were modelled by means 
of particle clusters composed of rigid spheres or spheres with contact moments imitating irregular particle 
shapes. Attention was paid to the effect of initial void ratio and grain shape mixture on the shear strength, 
volume changes, force chains, kinetic, elastic and dissipated energies. In addition, the effect of the mean 
grain size, grain size distribution, grain size range, specimen size and roughness and stiffness of boundaries 
was numerically analysed in initially dense sand. Some numerical results were compared with available 
experimental results. Copyright © 2014 John Wiley & Sons, Ltd.

Received 16 February 2013; Revised 27 February 2014; Accepted 28 February 2014
KEY WORDS: triaxial compression test; granular material; discrete element method; grain shape; energy;

dissipation; force chain; wall flexibility

1. INTRODUCTION

Because the micromechanical behaviour and fabric properties of granular materials are inherently
discontinuous, heterogeneous and nonlinear [1], the application of the discrete element method
(DEM), where each grain is modelled individually, has immediate physical appeal. These models
directly simulate material micro-structure and thus may be used to comprehensively study different
micro-structural events during initiation, growth and formation of shear zones, which strongly affect
the macro-properties of granular matter. Their disadvantages are high computational cost, inability to
model grain shape accurately and difficulty to validate it experimentally as the inertial and damping
effects lose their meaning in quasi-static problems. However, DEM has become more and more
popular nowadays for modelling granular materials because of an increasing speed of computers, a
connection to the finite element method [2], its usefulness in many multi-scale approaches [3] and a
realistic reproduction of micro-scale phenomena such as vortices, periodic volume changes, micro-
bands, and force chains [4–7] observed in experiments [8, 9]. To resemble the real grain shape, two
main approaches are usually used in DEM: (i) contact moments between rigid spheres or discs are
assumed [10–15] or (ii) clusters of combined discrete elements that form irregularly shaped grains
are introduced [16–22].

The objective of this paper is to report the results of DEM analyses for a quasi-static drained
homogeneous triaxial compression test for cohesionless sand, which is the most important geotechnical
laboratory test. The effect of initial void ratio (high and low) and grain shape mixture was studied using
discrete clusters of spheres and a linear contact model. The effect of the mean grain size, linear grain size
distribution, grain size range width, specimen size and roughness and stiffness of boundaries was
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numerically analysed in initially dense sand using spheres with contact moments and linear contact model in
order to significantly decrease the computation time. A three-dimensional (3D) discrete model YADE
developed at the University of Grenoble was used [12, 23]. The particle breakage was not considered.
The discrete parameters were compared with corresponding experimental data from drained axisymmetric
triaxial compression tests performed by Wu [24] at Karlsruhe University with real sand (so-called
Karlsruhe sand). All numerical results were shown for one confining pressure. The effect of various
confining pressures and initial void ratios on the triaxial compression behaviour of sand with rigid walls
(being in a satisfactory agreement with experiments) was studied by DEM in our earlier publications
[25, 26]. The behaviour of sand without shear localization was studied because of specimen’s
dimensions and boundary conditions assumed in experiments. A comprehensive DEM analysis of a
homogeneous compression test is also of major importance because this test is (or should be) a main
calibration basis of all discrete models for soils. Series of homogenous triaxial compression tests have
been simulated by 3D DEM with rigid walls [12, 13, 16], a flexible membrane [27] or a periodic cell
[28, 29]. However to our knowledge, comprehensive numerical analyses have not been performed yet,
for example, by analysing the effect of the grain shape, stiffness of vertical boundaries and showing the
energy evolution and distribution of force chains, porosity and displacement fluctuations. For discrete
simulations of sand including shear localization, the reader is referred to our other papers [6, 7, 15].
2. DISCRETE 3D MODEL

To simulate the behaviour of real sand, a 3D spherical discrete model YADE was developed at
the University of Grenoble [12, 23] by taking advantage of the so-called soft-particle approach
Figure 1. Mechanical response of linear contact model without (A) and with contact moments (B): (a) tan-
gential contact model, (b) normal contact model and (c) rolling contact model [24, 25]; (C) loading and

unloading path (tangential and rolling contact).
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(i.e. the model allows for particle deformation, which is modelled as an overlap of particles). A linear
contact model was used only. A choice of a very simple linear elastic normal contact was intended to
capture in average various contact possibilities possible in real sand. The normal and tangential forces
were linked to the displacements through the normal stiffness Kn and tangential stiffness Ks (Figure 1A)

→
Fn ¼ KnU

→
N (1)

→
Fs ¼ →

Fs þ Δ
→
Fs with Δ

→
Fs ¼ KsΔ

→
Xs (2)

where U is the penetration depth between discrete elements,
→
N denotes the unit normal vector at the

contact point and Δ
→
Xs is the incremental tangential displacement vector. The unloading was assumed

to be purely elastic (Figure 1C). The stiffness parameters were calculated with the aid of the modulus
B)

A)

Figure 2. Effect of initial void ratio on vertical normal stress σ1 versus vertical normal strain ε1 (A) and
volumetric strain εv versus vertical normal strain ε1 (B) from discrete simulations with symmetric clusters
composed of six spheres and rigid walls (Ec= 0.3GPa, υc= 0.3, μ= 30°) compared with experiments (curves
‘c’ and ‘d’ [21]) during homogeneous triaxial compression test (σc= 200 kPa, d50 = 5.0mm): eo= 0.79

(curve ‘a’) and eo= 0.53 (curve ‘b’).
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of elasticity of the grain contact Ec and two neighbouring grain radii RA and RB (to determine the
normal stiffness Kn) and with the aid of the modulus of elasticity Ec and Poisson’s ratio υc of the
grain contact, and grain radii RA and RB (to determine the tangential stiffness Ks) of two
neighbouring spheres, respectively [25],

Kn ¼ Ec
2 RARB

RA þ RB
and Ks ¼ νc Ec

2 RARB

RA þ RB
(3)

If the grain radius RA=RB =R, the stiffness parameters are equal to Kn =Ec R and Ks= υc Ec R (thus,

Ks/Kn = υc), respectively. The frictional sliding started at the contact point when the contact forces
→
Fs

and
→
Fn satisfied a frictional Mohr–Coulomb equation (Figure 1a)
B)

A)

Figure 3. Digital elevation model results for homogeneous triaxial compression test with rigid walls (σc=200kPa,
d50=5.0mm, eo=0.53) and symmetric clusters composed of six spheres (Ec=0.3GPa, υc=0.3, μ=30°): (A) evo-
lution of vertical normal stress σ1 against vertical normal strain ε1 in range of ε1=0–0.7% and (B) effect of modulus
of elasticity of the grain contact Ec on curve σ1= f(ε1): (a) Ec=3GPa, (b) Ec=0.3GPa and (c) Ec=0.03GPa.
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→
Fs

��� ���� →
Fn

��� ���� tan μ≤ 0 (4)

with μ as the inter-particle friction angle (tension was not allowed). No forces were transmitted when
grains are separated. The elastic contact constants were specified from the experimental data of a
triaxial compression sand test and could be related to the modulus of elasticity of grain material E
and its Poisson ratio ν [25, 26].

In order to increase the rolling resistance of pure spheres, clusters of spheres or contact moments
were introduced [14]. The normal force was assumed to contribute to the rolling resistance. The
contact moment increments were calculated by means of the rolling stiffness Kr multiplied with the

angular rotational increment vectors Δ
→
ω (Figure 1B)

ΔM ¼ KR � Δ
→
ω: (5)

The rolling stiffness Kr (kNm) in Eq. 5 was related to the tangential stiffness Ks (kN/m) in Eq. 2 by the
following formula proposed by Iwashita and Oda [10]

KR ¼ β � Ks � R2 ¼ β � Ks � RARB; (6)

where β is the dimensionless rolling stiffness coefficient and R is the grain radius (at small
displacements dXr≈ dXs). The dimensionless rolling coefficient η controlled the limit friction
moment of the rolling behaviour

→
M

��� ���� η
RA þ RB

2

→
Fn

��� ���≤ 0: (7)

To dissipate excessive kinetic energy in the discrete system, a simple local non-viscous damping scheme
was adopted [30], which assumed a change of forces and moment by using the damping parameter α

→
F
k

damped ¼
→
F
k � α�sgn →vk

� �
→
F
k

��� ���; (8)

→
M

k

damped ¼
→
M

k � α�sgn →
ω

k
� �

→
M

k
��� ��� (9)

where Fk
→

and Mk
→

are the kth components of the residual force and moment vector and vk
→

andωk
→

are the
kth components of the translational and rotational velocity. A positive damping coefficient α is smaller than 1
Figure 4. Effect of loading velocity v on vertical normal stress σ1 versus vertical normal strain ε1 from
discrete simulations of homogeneous triaxial compression test with rigid walls (σc= 200 kPa,
d50 = 5.0mm, eo= 0.53) and symmetric clusters composed of six spheres (Ec= 0.3GPa, υc= 0.3, μ= 30°):

(a) v = 100mm/s, (b) v = 10mm/s and (c) v= 1mm/s.
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(sgn(•) returns the sign of the kth component of velocity). The equations are separately applied to each kth

component of a 3D vector x, y and z. Note that the effect of damping is insignificant in quasi-static
calculations.

The following local material parameters were needed for discrete simulations model: Ec, νc
and μ (when using clusters) and Ec, νc, μ, β and η (when using spheres with contact moments).
a) b) c)

d) e) f)

a) b) c)

d) e) f)

A)

B)

Figure 5. Distribution of void ratio in vertical mid-section of thickness d50 in (A) initially loose (eo= 0.79)
and (B) initially dense (eo= 0.53) sand specimen at (a) ε1 = 0%, (b) ε1 = 5%, (c) ε1 = 10%, (d) ε1 = 15%, (e)
ε1 = 20%, and (f) ε1 = 25%; (C) evolution of mean void ratio and standard deviation of e (a) eo= 0.79 and
(b) eo= 0.53 from discrete simulations with symmetric clusters composed of six spheres (Ec= 0.3GPa, υc=
0.3, μ = 30°) during homogeneous triaxial compression test with rigid walls (σc= 200 kPa, d50 = 5.0mm).
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In addition, the particle radius R, particle mass density ρ and damping parameter α were
required.

The discrete material parameters were calibrated with the aid of corresponding axisymmetric triaxial
laboratory test results on Karlsruhe sand by Wu [24] and Kolymbas and Wu [31] by comparing the
macroscopic stress–strain and volume–strain evolution curves for different pressures and initial void
ratios [26]. The specimen height and diameter were assumed purposively to be equal both to
100mm in order to inhibit a shear localization process. After laboratory tests, the deformed
specimens had always a form of the so-called elephant’s foot because of gravity. The index
properties of Karlsruhe sand are [32] mean grain diameter d50 = 0.50mm, grain size among 0.08 and
1.8mm, uniformity coefficient U = d60 /d10 = 2, maximum specific weight γdmax = 17.4 kN/m3,
minimum void ratio emin = 0.53, minimum specific weight γdmin= 14.6 kN/m3 and maximum void
ratio emax = 0.84. The sand grains may be classified as sub-rounded/sub-angular.

In numerical simulations, a cubical sand specimen of 10� 10� 10 cm3 was mainly used. The tests
were modelled mainly using confining smooth rigid wall elements to induce homogeneous
deformation [12, 13, 16]. This assumption was justified because of the lack of shear localization in
real tests (Section 3.3). The frictionless top and bottom boundaries moved vertically as loading
platens under strain-controlled conditions to simulate the confining pressure p. The loading speed
C)

Figure 5. (Continued).

http://mostwiedzy.pl


J. KOZICKI, J. TEJCHMAN AND H.-B. MŰHLHAUS

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

was slow enough (10mm/s) to ensure the test was conducted under quasi-static conditions (Figure 4).
A simplified linear grain distribution curve was assumed for Karlsruhe sand (the grain size range was
mainly 2.5–7.5mm with d50 = 5mm). Each granular assembly was prepared by putting clusters of
spheres (or spheres) of a random radius according to the grain distribution curve (without gravity)
into a cubical container with six external walls, which had a regular cubical grid with a particle
distance of 10mm. In order to obtain a desired initial density owing to grain overlapping, the inter-
particle friction coefficient was varied between 0° and μ (initially dense sand) and between 0° and
89° (initially loose specimen) to exactly reproduce the target initial sand volumetric weight. During
dynamic compression to the desired confining pressure σc, grains bounced against each other and
moved in random directions; thus, their initial ordered arrangement became random. The assembly
was then allowed to settle to a state where the kinetic energy was negligible and then friction
coefficient was set to the target inter-particle friction angle μ. The isotropic assembly was then
subjected to the boundary driven triaxial compression. The histogram of the contact orientation
showed that all contacts were homogeneously distributed in all directions prior to deformation. It
has to be noted that after the sample was generated with the inter-particle friction angle higher than
a) b)

a) b)

B)

A)

Figure 6. Distribution of internal forces at vertical mid-section with thickness of 2 cm, right at vertical nor-
mal strain ε1 = 5% (a) and ε1 = 25% (b) from discrete simulations with symmetric clusters composed of six
spheres (Ec= 0.3GPa, υc= 0.3, μ= 30°) during homogeneous triaxial compression test with rigid walls (σc=
200 kPa, d50 = 5.0mm): (A) initially loose sand (eo= 0.53) and (B) initially dense sand (eo= 0.53) (red col-

our – force ≥20N, orange and yellow colour – force >0N and <20N).
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the target one, some contact forces were outside the Coulomb cone defined by the target friction angle.
Hence, an initial collapse of the specimen occurred connected with the difficulty of producing initial
loose states. On the other hand, after the sample was generated with the inter-particle friction angle
smaller than the target one, initial states with artificially large initial coordination numbers might
occur [33–35].

In addition, flexible vertical walls were assumed to model the membrane surrounding the specimen
in experiments. They were composed of linked overlapping rigid spheres of the diameter of 1.1� d50
arranged into a flat triangular grid (their stiffness was equal to 0.01 of the stiffness of sand spheres
with μ = 0). The membranes were allowed to freely move to mimic the specimen deformation,
independent of neighbouring membrane elements. In order to induce constant lateral pressure, each
membrane was divided into eight separate parts along the height. The forces acting on membrane
spheres were independently calculated in each part. Note that DEM calculations with vertical non-
rigid walls lasted longer by the factor 3 than those with rigid walls.
3. DISCRETE RESULTS OF HOMOGENEOUS TRIAXIAL COMPRESSION TEST

3.1. Effect of initial void ratio

The exemplary calculations were carried out with a symmetric cluster composed of six rigid spheres
[26]. The following discrete material parameters were used in simulations: Ec= 300MPa, υc= 0.3,
μ= 30°, ρ= 2.6 g/cm3, α= 0.08 and d50 = 5.0mm to match approximately experimental macroscopic
results for real sand with d50 = 0.5mm in the range of different confining pressures (e.g. σc= 200 kPa
and σc = 500 kPa) at eo = 0.53 [12, 26]. The linear grain range was among 2.5 and 7.5mm. The
aspect index a and the convexity indexes c1 and c2 of the cluster were a = 1.0, c1 = 1.67 and
c2 = 1.14, respectively. The aspect index a was defined as the ratio between the maximum and
minimum cluster diameter, the convexity index c1 as the ratio between the smallest sphere volume
encompassing the cluster and the cluster volume, and the convexity index c2 as the ratio between the
smallest convex volume encompassing the cluster and the cluster volume [26]. About 11,000 symmetric
clusters were used with 66,000 spheres. The computation CPU time was 3days using PC 3GHz.

Figure 2 shows the calculated evolution of the vertical normal stress σ1 and volumetric strain εv
versus the vertical normal strain ε1 for a symmetric cluster of six spheres during triaxial compression
with initially loose (eo= 0.79, d50 = 5mm) and initially dense sand (eo= 0.53, d50 = 5mm) under one
confining pressure (σc= 200 kPa) as compared with the laboratory experiments by Wu [24]. The
Figure 7. Evolution of coordination number from discrete simulations with symmetric clusters composed of
six spheres (Ec= 0.3GPa, νc= 0.3, μ= 30°) during homogeneous triaxial compression test with rigid walls
(σc= 200 kPa, d50 = 5.0mm): (a) initially dense sand (eo= 0.53) and (b) initially loose sand (eo= 0.79).
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results follow from one arbitrary numerical simulation for each eo. A loose configuration with eo≤ 0.75
could be consistently achieved only. A looser configuration could not be obtained because of a collapse
of the pore space under σc.

Similar to real experiments, the initially dense specimen exhibits initial elasticity, and then
hardening (connected first to contractancy and then dilatancy), reaches a peak strength at about of
ε1 = 3–6%, and gradually softens and dilates reaching at large vertical strain of 25–30% a critical
state [13, 16]. The calculated global macroscopic elastic parameters are E= 65MPa and ν= 0.25.
The global modulus of elasticity was determined based on the inclination of the initial stress–strain
curve during loading (E = 67MPa) and the mean inclination of the initial stress–strain curve during
A)

B)

Figure 8. Maps of displacements fluctuations in specimens from discrete simulations with symmetric clus-
ters composed of six spheres (Ec= 0.3GPa, νc= 0.3, μ= 30°) during homogeneous triaxial compression test
with rigid walls (σc= 200 kPa, d50 = 5.0mm) at ε1 = 25%: (a) initially loose sand (eo= 0.79) and (b) initially

dense sand (eo= 0.53).
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unloading and reloading (E = 63MPa) (Figure 3A). The global elastic modulus of E= 65MPa
estimated from the stress–strain curve is smaller than that deduced from the elastic wave velocity in

the granular specimen E ¼ v2f ρ 1þνð Þ 1�2νð Þ
1�ν ¼ 100 MPa (with ρ= 2.6 g/cm3, ν = 0.25 and mean wave

velocity vf≈ 200m/s from DEM). The higher the Ec, the larger the E, in particular if Ec<<0.3GPa
(Figure 3B). The calculated E is smaller than the experimental one of E= 100MPa. Thus, the
assumed parameter Ec should be higher. However, a change of Ec affects also other material
parameters that require a re-calibration process. It has to be noted that the strain–strain curve is very
sensitive to the increasing contact stiffness because of artificially high coordination numbers in an
initially dense packing [33–35]. The global maximum mobilised internal friction angle (calculated
with principal stresses from the Mohr’s equation ϕ = arcsin[(σ1�σ2)/(σ1 +σ2)], where σi are the
principal stresses (σ2 =σc)) is ϕmax = 43.1° and indicates a good similarity to the experimental value
of ϕmax= 42°. The calculated strain ε1 = 3% corresponding to the peak stress is about twice smaller
as compared with laboratory tests (slightly influenced by a stochastic distribution). The calculated
dilatancy angle of ψ = 40° is too high as compared with the experimental value (ψ = 28.5°) (the
mobilised dilatancy angle ψ was computed as ψ = arctan(dεv/dε1)). The calculated global residual
internal friction angle is ϕcr= 30°. The calculated stress–strain curve does not depend on the
prescribed loading speed v (Figure 4).

The initially loose specimen exhibits initial elasticity and then hardening connected to strong
contractancy and small dilatancy at ε1> 10% approaching a critical state (similar to real experiments
[24]). The unexpected dilatancy at large deformation is caused by the fact that the assembling
A)

B)

Figure 9. Calculated evolution of (a) total energy E, (b) plastic dissipation Dp, (c) elastic energy in normal
direction Ec

n, (d) elastic energy in tangential direction Ec
s and (e) numerical non-viscous damping Dn during

homogeneous triaxial compression test (σc= 200 kPa, d50 = 5.0mm) with symmetric clusters of six spheres:
(A) eo= 0.53 and (B) eo= 0.76 (I) wide view, (II) zoom.
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procedure was unable to produce very loose specimens. The global macroscopic elastic parameters are
E= 60MPa (similar to the experiment) and ν = 0.25. The calculated global residual internal friction
angle is ϕcr= 30° (similar as in the case with eo= 0.53). The calculated contractancy angle of
ψ =�10° is the same as the experimental outcome.

Summing up, we may conclude that both experimental curves are satisfactorily reproduced in
discrete simulations of initially loose and dense sand in spite of the fact that the real grain shape,
mean grain size and grain size distribution of Karlsruhe sand were not taken into account and the
assembling procedure was unable to produce really loose specimens and provided too high
coordination numbers in dense specimens. The results have shown that the grain shape turned out to
be a very influencing parameter in discrete simulations [26] (Figs. 15 and 16).

The effect of initial void ratio on the distribution of void ratio during deformation in a vertical
specimen mid-section of the thickness d50 is shown in Figs. 5A and 5B. The sectional void ratio
was calculated from the cell of 5d50� 5d50 moved by the distance equal to d50. The distribution of
void ratio is always non-uniform during the entire deformation process. It depends strongly on a
stochastic distribution of discrete element (thus, a non-affine displacement field correlation length
A)

B)

Figure 10. Calculated evolution of (a) external energy derivative δE with respect to vertical normal strain ε1
(δE/δε1), (b) elastic internal energy derivative δEe /δε1 and (c) plastic dissipation derivative δDp/δε1 during
homogeneous triaxial compression test (σc= 200 kPa, d50 = 5.0mm) with symmetric clusters of six spheres:

(A) eo= 0.53 and (B) eo= 0.76.
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could not be found). The void ratio changes in a vertical mid-section at ε1 = 25% are between 0.70 and
0.79 (initially loose sand) and between 0.65 and 0.75 (initially dense sand). The standard deviation of
void ratio variance in a vertical mid-section (which can be interpreted as a variance of a local density
field) (Figure 5C) is initially weaker and then stronger (at ε1> 7%) in initially dense sand.

Figure 6 demonstrates the distribution and size of the contact network in the specimen. The red
colour lines with a different thickness represent the magnitude of compressive normal contact forces
between two particles larger than 20N. The distribution of internal contact forces is non-uniform
and continuously changes [5, 6, 19, 36–38]. Force chains of heavily loaded grain contacts bear and
transmit the compressive load on the entire granular system and are the predominant structure of
internal forces at micro-scale. The contact number is significantly higher in an initially dense
specimen (36,751 at ε1 = 5% and 30,323 at ε1 = 25%) than in an initially loose specimen (24,219 at
ε1 = 5% and 25,713 at at ε1 = 25%) (Figure 6) because of a lower void ratio. It decreases in initially
dense sand during deformation because of dilatancy and increases in initially loose one because of
contractancy. The magnitude of contact forces may be even higher in initially loose sand. The
coordination number (expressed by the average number of contacts per particle) decreases during
deformation in initially dense sand (from 8.5 down to 5) because of dilatancy (Figure 7). For initially
loose sand, the coordination number increases from 4.5 up to 5 because of contractancy (Figure 7).

In both specimens, the so-called vortex structures (rigid body rotating systems corresponding to
displacement fluctuations [5, 6]) do not occur (Figure 8) because of the lack of shear localization.
The maps of Figure 8 were obtained by drawing the displacement difference vector for each sphere
between n = 50 iterations with respect to the background translation corresponding to the
homogeneous (affine) strain (the effect of iterations’ number n was negligible).

The effect of eo on the total accumulated energy, elastic internally stored energy at contacts,
frictional dissipation and numerical damping in sand (eo = 0.53 or eo= 0.79, p= 200 kPa,
d50 = 5.0mm) from DEM is demonstrated in Figure 9. The knowledge on the energy evolution is
very important in particular in stability problems.

The elastic internal energy stored at contacts N between grains Ee, expressed in terms of work of
elastic contact tangential forces Fs on elastic tangential displacements Us, contact normal forces Fn

on elastic penetration depths U and contact moments M on elastic rotations ω (moments were absent
where clumps were used) was

Ee ¼ ∑
N

1

jFe
s j2

2Ks
þ jFnj2

2Kn
þ jMej2

2Kr

� �
(10)
Figure 11. Calculated initial evolution of elastic internal energy derivative δEe during homogeneous triaxial
compression test with respect to vertical normal strain as δEe/δε1 = f (εv) with symmetric clusters of six

spheres: (a) eo= 0.79 and (b) eo= 0.53 (σc= 200 kPa, d50 = 5.0mm).
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The kinetic energy Ek of grains was caused by their translation and rotation

Ek ¼ ∑
N

1

1
2
mv2 þ 1

2
I ω2

•� �
(11)

where m is the mass and I denotes the moment of inertia of a particle (v – translational velocity,

ω
•
– rotational velocity).
The dissipated energy Dp, expressed in terms of work of the tangential (shear) forces on conjugate

sliding displacements and moments on conjugate rotations was determined as

Dp ¼ Dp þ ΔDp with ΔDp ¼ ∑
N

1
Fpl
s U

slip
s þMplω : (12)
A)

B)

Figure 12. Calculated evolution of kinetic energy Ec during homogeneous triaxial compression test with
rigid walls and symmetric clusters of six spheres: (a) rotational kinetic energy, (b) translational kinetic en-

ergy, (A) eo= 0.53 and (B) eo= 0.76 (σc= 200 kPa, d50 = 5.0mm).
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In addition, the numerical dissipation Dn was specified during translation and rotation (Eqs 8 and 9).
The total accumulated energy

E ¼ Ee þ Ek þ Dp þ Dn (13)

was equal to the external boundary work W expended on the assembly always by six external normal
forces on displacements of six rigid external walls.

The total energy, plastic damping and elastic energy are higher by the factor 2 in initially dense sand.
There exists a roughly linear relationship between the total energy and the vertical normal strain ε1 and
between the damping plastic force and ε1 as a consequence of a residual state (Figure 9). The plastic
dissipation during frictional sliding is equal to 80% of the total energy at ε1 = 5%. At the residual state
of ε1 = 30%, it is already equal to 90% of the total energy. The numerical sliding damping is always
equal to about 5% of the total energy only (Figure 9II). The evolution of the total elastic internal
energy is similar to the evolution of the shear strength. The elastic energy portion due to tangential
force action is smaller (about twice) than that due to the normal force action in view of the lack of
plastic damping. At the beginning of deformation at ε1< 1%, the total energy is almost fully converted
into the elastic energy. The elastic internal work of contact forces is 75% (eo=0.53) and 80%
(eo=0.79) at ε1 = 1%, and 4% (eo=0.53) and 3% (eo= 0.79) at ε1 = 30% of the total energy,
respectively. The elastic energy ratio is the same at the residual state.

The derivative δEe of the elastic force-internal work with respect to ε1 (δEe/δε1) is initially positive
(Figure 10). It rapidly approaches zero at about ε1 = 5–6%. For initially dense sand, it becomes negative
(as Ee= f(ε1) strongly diminishes) and afterwards approaches an asymptote at zero for both cases (as
Ee = f(ε1) reaches a residual state). Beyond strains of ε1 = 6% (eo = 0.53) or ε1 = 1% (eo = 0.79), the
almost entire input work is dissipated because of plastic deformation and numerical damping (the
external energy rate and dissipation rate are equal δW≅ δD). The fluctuations of the energy rates are
pronounced in both sands at the residual state.

In an initially dense specimen, the elastic energy rate decreases during a dilative deformation
process only (which follows the initial contractive phase at ε1> 1%) (Figure 11). In an initially
loose specimen, it continuously decreases during an initial strong contractant phase (0< ε1≤ 10%)
and a following weaker dilatant phase (ε1> 10%) (Figure 11).

In general, the kinetic energy Ek (Eq. 12) is small because of the quasi-static loading of the granular
system. The kinetic energy (translational and rotational) is higher for initially dense sand. The
translational kinetic energy is always five times higher than the rotational one. The evolution of the
transitional ones is similar to the mobilised internal friction evolution. A release of the elastic energy
Figure 13. Calculated evolution of numerical damping energy Dn during homogeneous triaxial compression
test with rigid walls and symmetric clusters of six spheres for different damping parameter α (eo= 0.53, σc=

200 kPa, d50 = 5.0mm): (a) α= 0.01, (b) α= 0.04, (c) α= 0.08, (d) α= 0.20 and (e) α = 0.50.
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induces grain motion. In the elastic stage, the kinetic energy is close to zero. The translational kinetic
energy increases up to ε1 = 5–10% and then decreases with eo = 0.53 or continuously increases with
eo= 0.79. The kinetic energy shows fluctuations, which correspond to the evolution of the elastic
energy and damping rate (Figure 12).

The effect of the damping coefficient α (Eq. 8) on the damping energy Dn in initially dense sand is
shown in Figure 13. The damping energy obviously grows with increasing parameter α. The effect is
rather negligible if α≤ 0.08 (i.e. the value assumed in calculations).
a)

A)

B)

C)

b) c)

d) e) f)

g) h) i)

Figure 14. Three different grain shape mixtures (‘A’–‘C’) created by symmetric and non-symmetric clusters
of spheres used in discrete simulations of triaxial compression (d – grain diameter).
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A)

B)

C)

Figure 15. Effect of grain shape distribution on vertical normal stress σ1 versus vertical normal strain ε1 (A)
and volumetric strain εv versus vertical normal strain ε1 (B) from discrete simulations (Ec= 0.3GPa, υc= 0.3,
μ= 30°) compared with experiments [23] (curve ‘d’) during homogeneous triaxial compression test with
rigid walls (eo= 0.53, σc= 200 kPa, d50 = 5.0mm): curve ‘a’ – grain shape mixture of Figure 15A, curve

‘b’ – grain shape mixture of Figure 15B and curve ‘c’ – grain shape mixture of Figure 15C.
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3.2. Effect of grain shape mixture

In order to improve our discrete simulations results, the calculations were carried out with an initially
dense specimen only using three different mixtures of grains including three different shapes in the
equal proportion 1/3 each (Figure 14). The mixture choice was assumed at random. The same
A)

C)

B)

Figure 16. Calculated evolution of (a) total energy E, (b) plastic dissipation Dp, (c) elastic energy in normal
direction Ec

n, (d) elastic energy in tangential direction Ec
s and (e) numerical non-viscous damping Dn (Ec= 0.3

GPa, υc= 0.3, μ= 30°) during homogeneous triaxial compression test (eo= 0.53, σc= 200 kPa, d50 = 5.0mm):
(A) grain shape mixture ‘A’ of Figure 14, (B) grain shape mixture ‘B’ of Figure 14 and (C) grain shape

mixture ‘C’ of Figure 14.

Table I. The aspect indexes a and convexity indexes c1 and c2 for different grain shapes and grain shape
mixtures assumed in calculations (Figure 14).

Type Aspect index a Convexity index c1 Convexity index c2

Grain shape ‘a’ 1 1 1
Grain shape ‘b’ 2 4.15 1.04
Grain shape ‘c’ 1 1.67 1.14
Grain shape ‘d’ 2 2.26 1.15
Grain shape ‘e’ 2 2.95 1.05
Grain shape ‘f’ 2 2.08 1.03
Grain shape ‘g’ 1.75 2.81 1.11
Grain shape ‘h’ 1 2.35 1.2
Grain shape ‘i’ 2.7 11.93 1.3
Grain shape of mixture ‘A’ (mean value) 1.33 2.27 1.06
Grain shape of mixture ‘B’ (mean value) 2 2.43 1.08
Grain shape of mixture ‘C’ (mean value) 1.81 5.69 1.2
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A)

B)

C)

Figure 17. Calculated evolution of kinetic energy Ec (Ec= 0.3GPa, υc= 0.3, μ= 30°) during homogeneous
triaxial compression test with rigid walls (eo= 0.53, σc= 200 kPa, d50 = 5.0mm): (a) rotational kinetic en-
ergy, (b) translational kinetic energy, (A) grain shape mixture ‘A’ of Figure 14, (B) grain shape mixture

‘B’ of Figure 14 and (C) grain shape mixture ‘C’ of Figure 14.
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discrete material parameters were used as in Section 3.1. The aspect index a and the convexity indexes
c1 and c2 are given for grain shapes ‘a’, ‘b’ and ‘c’ of Figure 15 and grain shape mixtures ‘A’, ‘B’ and
‘C’ in Table I.

The highest elastic modulus, maximum internal friction angle and dilatancy angle occur with the
grain shape mixture of Figure 14C (E= 90MPa, ϕmax = 49°, ψ = 50°), then with the grain shape
mixture, of Figure 14B (E= 70MPa, ϕmax = 42°, ψ = 38°) and the smallest ones with the grain shape
mixture of Figure 14A (E= 55MPa, ϕmax = 28°, ψ = 35°) (Figure 15). They increase with increasing
index c2 [26] (because of three different mixtures only, it was impossible to define the dependence
type). The critical internal friction angle for the grain shape mixtures ‘B’ and ‘C’ is the same
(ϕcr= 31.6°) and smaller for the grain shape mixture ‘A’ (ϕcr= 26°) (Figure 15). The results with
the grain shape mixture of Figure 14B are in good accordance with the experiments with respect to
the stresses and volume changes (although the peak stress is still too early obtained), Figure 15. The
calculated volume changes in Figure 15B are more realistic than in Figure 2B.

The energies are obviously directly connected to the specimen strength (Figure 16). The highest
total energy, damping and elastic energy is with the grain shape mixture of Figure 14C, and the
smallest one with the grain shape mixture of Figure 14A (Figure 16). The elastic energy and its fall
rate after the peak with the grain shape mixture of Figure 14B (Figure 16B) is smaller than with the
symmetric clusters composed of six spheres (Figure 9A). The highest kinetic energy is with the
grain shape mixture of Figure 14C (Figure 17). The kinetic energy with the grain shape mixture of
Figure 14B (Figure 17) is two to three times smaller than with the symmetric clusters composed of
six spheres (Figure 12A).
3.3. Effect of grain size distribution, grain size range, mean grain size and specimen size

In order to shorten the computation time, the DEM calculations were carried out with spheres and contact
moments using the following discrete material parameters: Ec=0.3GPa, υc=0.3, μ =18°, β =0.7 and
η =0.4 to match approximately experimental results for real sand by Wu [24]. The specimen size
10� 10� 10 cm3, mean grain diameter d50 = 5mm and linear grain size range 2.5–7.5mm were mainly
used. About 6,600 (d50 = 5mm, grain size range 2.5–7.5mm) – 53,000 (d50 = 2.5mm, grain size range
1.25–3.75mm) spheres were used. The computation time was 2–16 days using PC 3GHz.

Initially, the effect of a stochastic distribution of spheres on the curve σ1 = f(ε1) was investigated at
eo= 0.53 (Figure 18). The results from five different discrete simulations indicate a noticeable effect on
Figure 18. Effect of stochastic distribution of spheres with contact moments on vertical normal stress σ1 ver-
sus vertical normal strain ε1 from five different discrete simulations of homogeneous triaxial compression
test with rigid walls (Ec= 0.3GPa, υc= 0.3, μ= 18°, β = 0.7 and η= 0.4) with initially dense specimen 10� 10

10 cm3 (eo= 0.53, σc= 200 kPa, d50 = 5.0mm).
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A)

B)

C)

Figure 19. Effect of grain size range (A) on vertical normal stress σ1 versus vertical normal strain ε1 (B) and
volumetric strain εv versus vertical normal strain ε1 (C) from discrete simulations with spheres and contact
moments (Ec= 0.3GPa, υc= 0.3, μ=18°, β = 0.7 and η= 0.4, specimen size 10� 10� 10 cm3) during homo-
geneous triaxial compression test with rigid walls (eo= 0.53, σc= 200 kPa, d50 = 5.0mm): (a) linear grain
size range 3.75–6.25mm, (b) linear grain size range 2.5–7.5mm, (c) linear grain size range 1.5–8.5mm

and (d) experiment.
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ϕmax and ε1 corresponding to ϕmax. The peak internal friction angle ϕmax may differ by 2° and the
vertical normal strain ε1 corresponding to ϕmax by 10%.

The effect of a grain size range (size polydispersity) on the curves σ1 = f(ε1) and εv= f(ε1) is
demonstrated in Figure 19 (eo = 0.53). In contrast to DEM results with different types of the size
distribution [27, 39], the effect of a linear grain size range was investigated only. The discrete
results with the linear grain size range 3.75–6.25, 2.5–7.5 and 1.5–8.5mm at d50 = 5mm were
compared. The size polydispersity effect is rather small in our calculations because of the lack of
shear localization and is more affected by a stochastic distribution. The agreement of the calculated
curves with the experiment is even better with spheres and contact moments (Figure 19) than with
symmetric clusters (using the cluster of six spheres with material parameters from Section 3,
Figure 20. Evolution of coordination number from discrete simulations with spheres and contact moments
(Ec= 0.3GPa, υc= 0.3, μ= 18°, β = 0.7 and η= 0.4, specimen size 10� 10� 10 cm3) during homogeneous tri-
axial compression test with rigid walls (eo= 0.53, σc= 200 kPa, d50 = 5.0mm): (a) linear grain size range

3.75–6.25mm, (b) linear grain size range 2.5–7.5mm and (c) linear grain size range 1.5–8.5mm.

Figure 21. Evolution of standard deviation of void ratio in vertical mid-section of thickness d50 from discrete
simulations with spheres and contact moments (Ec= 0.3GPa, υc= 0.3, μ= 18°, β = 0.7 and η= 0.4, specimen
size 10� 10� 10 cm3) during homogeneous triaxial compression test with rigid walls (eo= 0.53, σc= 200
kPa, d50 = 5.0mm): (a) linear grain size range 3.75–6.25mm, (b) linear grain size range 2.5–7.5mm and

(c) linear grain size range 1.5–8.5mm.
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Figure 2) because symmetric sphere clusters did not correspond to the real grain shape. In addition,
more calibration parameters were used to describe the model with spheres and contact moments.
Because of the lack of experimental data results at the grain level, it is, however, not possible to
state in general at present which discrete model is more realistic.

The highest coordination number is for the narrowest grain size range (Figure 20). The variance of a
local density is similar up to ε1 = 10% (Figure 21). Later, the standard deviation becomes the largest
with the widest grain size range 1.5–8.5mm.

The effect of the mean grain diameter d50 (d50 = 2–10mm) with the specimen size h = 10 cm
(d50 /h = 0.025–0.1) is shown in Figure 22. The larger the ratio d50 /h, the slightly higher the
ϕmax and ψ. This grain size effect is negligible because of the lack of shear localization and
is rather caused by a stochastic grain distribution (Figure 18).

The results with the smaller specimen size 5� 5� 5 cm3 (eo = 0.53, d50 = 5mm, d50 /h = 0.01)
demonstrate that the effect of the specimen size on the stress results is significant because of the
A)

B)

Figure 22. Effect of mean grain size on vertical normal stress σ1 versus vertical normal strain ε1 (A) and vol-
umetric strain εv versus vertical normal strain ε1 (B) from discrete simulations (Ec= 0.3GPa, υc= 0.3,
μ= 18°, β = 0.7 and η= 0.4, specimen size 10� 10� 10 cm3) with spheres and contact moments and rigid
walls compared with experiments [23] during homogeneous triaxial compression test (eo= 0.53, σc= 200
kPa): (a) d50 = 2.5mm with linear grain size range 1.25–3.75mm, (b) d50 = 5mm with grain size range

2.5–7.5mm, (c) d50 = 10mm with grain size range 5–15mm and (d) experiment.
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presence of horizontal boundaries if d50 /h> 0.01 (Figure 23). The smaller the specimen, the higher the
ϕmax and ϕcr, and stress fluctuations. The volume changes are not influenced by the specimen size.

The calculated results of Figure 24 show that the total energy (without contact moments) increases
with increasing specimen size and grain size range. The elastic energy in the tangential direction
becomes higher with increasing specimen size, grain size range and mean grain size. The elastic
energy in the normal direction increases with increasing specimen size. The numerical non-viscous
force damping grows with increasing specimen size, grain size range and decreasing mean grain
diameter.
3.4. Effect of roughness and stiffness of boundaries

The DEM calculations were again carried out with spheres and contact moments (Ec = 0.3GPa,
υc = 0.3, μ= 18°, β = 0.7 and η = 0.4). The low initial void ratio (eo= 0.53), specimen size
10� 10� 10 cm3, mean grain diameter d50 = 5mm and linear grain size range 2.5–7.5mm were used.
A)

B)

Figure 23. Effect of specimen size on vertical normal stress σ1 versus vertical normal strain ε1 (A) and vol-
umetric strain εv versus vertical normal strain ε1 (B) from discrete simulations with spheres and contact mo-
ments (Ec= 0.3GPa, υc= 0.3, μ= 18°, β = 0.7 and η= 0.4) during homogeneous triaxial compression test
with rigid walls (eo= 0.53, σc= 200 kPa, d50 = 5.0mm): (a) specimen size 10� 10� 10 cm3 and (b) specimen

size 5� 5� 5 cm3.
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C) D)

Figure 24. Calculated evolution of (a) total energy E (without contact moments), (b) plastic force dissipation
Dp, (c) elastic energy in normal direction Ec

n, (d) elastic energy in tangential direction Ec
s and (e) numerical

non-viscous force damping Dn from discrete simulations with spheres and contact moments (Ec= 0.3GPa,
υc= 0.3, μ= 18°, β = 0.7 and η= 0.4) during homogeneous triaxial compression test with rigid walls for
(A) 10� 10� 10 cm3, d50 = 5mm, grain size range 2.5–7.5mm, (B) 10� 10� 10 cm3, d50 = 5mm, grain size
range 1.5–8.5mm, (C) 10� 10� 10 cm3, d50 = 2.5mm, grain size range 1.25–3.75mm, (D) 5� 5� 5 cm3,

d50 = 5mm, grain size range 2.5–7.5mm (eo= 0.53, σc= 200 kPa, d50 = 5.0mm).

Figure 25. Effect of roughness of horizontal walls on mobilised internal friction angle versus vertical normal
strain ε1 from discrete simulations of homogeneous triaxial compression test with rigid walls for initially dense
sand (eo= 0.53, σc= 200 kPa, d50 = 0.5mm) using spheres and contact moments (Ec= 0.3GPa, υc= 0.3, μ =18°,

β =0.7 and η =0.4): (a) rough horizontal walls and (b) smooth horizontal walls.
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A)

B)

C)

Figure 26. Evolution of vertical normal stress σ1 versus vertical normal strain ε1 (A), mobilised internal fric-
tion angle versus ε1 (B) and volumetric strain εv versus ε1 (C) from discrete simulations of with spheres and
contact moments and non-rigid walls (Ec= 0.3GPa, υc= 0.3, μ= 18°, β = 0.7 and η = 0.4, specimen size
10� 10� 10 cm3) compared with experiments [23] during homogeneous triaxial compression test (eo= 0.53,

σc= 200 kPa, d50 = 0.5mm): (a) membranes, (b) rigid walls and (c) experiment.
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A growth of the wall friction angle between two horizontal walls and spheres from 0° up to 18°
increases the peak shear resistance of the specimen from ϕmax = 42° up to ϕmax = 54°, the critical
internal friction angle from ϕcr= 36° up to ϕcr = 48° and the dilatancy angle from ψ = 34° up to
ψ = 38° (Figure 25).

The effect of the stiffness of boundaries on the curves σ1 = f (ε1) and εv = f (ε1) is demonstrated in
Figure 26 by using flexible membranes. When flexible membranes are taken into account, the
calculation outcomes are the following: E = 70MPa, ϕmax = 42.6°, ϕcr = 36.2° and ψ = 33.5°. Thus,
the values of E, ϕmax and ϕcr are similar as for rigid walls (E = 78MPa, ϕmax = 42.5°, ϕcr = 36.5°).
The dilatancy angle is smaller than for rigid walls (ψ = 36°) and is closer to the measured value.
The coordination number becomes lower (Figure 27) because of deformable boundaries
(Figure 28). It is almost constant during deformation after the instant reduction because of the
lateral pressure action (Figure 27)
Figure 27. Evolution of coordination number from discrete simulations with spheres and contact moments
(Ec= 0.3GPa, υc= 0.3, μ= 18°, β = 0.7 and η = 0.4, specimen size 10� 10� 10 cm3) during homogeneous

triaxial compression test (eo= 0.53, σc= 200 kPa, d50 = 5.0mm): (a) membranes and (b) rigid walls.

a) b)

Figure 28. Deformed initially dense specimen with flexible membranes at ε1 = 30%: (a) entire specimen and
(b) specimen without front membrane.
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4. CONCLUSIONS

The following main conclusions can also be drawn based on discrete simulations of a homogeneous
drained triaxial compression test with cohesionless sand being by far the most common laboratory
test used to measure the mechanical properties of granular soils:

• Both discrete models (one using clusters of spheres and the second using spheres with contact
moments) are capable of closely reproducing the behaviour of cohesionless sand in the elastic,
contraction and dilatancy phase and at the critical state, in spite of the fact that the real grain shape,
mean grain size and grain size distribution of Karlsruhe were not taken into account. Moreover,
the assembling procedure was unable to produce really initially loose specimens and provided
too high coordination numbers in dense specimens. At large strains, the granular specimen reaches
always a critical state independent of its initial void ratio. The results are very sensitive to the
assumed approach, in particular to the grain shape. The stochastic effect is also non-negligible.
It is necessary to calibrate DEM based on triaxial tests results within wide range of initial densities
and confining pressures.

• The rigid walls can be assumed in discrete calibration simulations of a real triaxial homogeneous
compression test with flexible membranes. The modulus of elasticity, mobilised internal friction
angle and dilatancy angle practically do not depend on the rigidity of vertical boundaries.

• The grain shape irregularity causes a significant increase of the strength and volume changes. The
elastic modulus, maximum internal friction angle and dilatancy angle increase with increasing
convexity index c2.

• The granulate strength increases with decreasing initial void ratio, specimen size and linear grain
size distribution, and increasing mean grain diameter and roughness of horizontal boundaries. The
granulate dilatancy increases with decreasing initial void ratio and specimen size and increasing
mean grain diameter and roughness of horizontal boundaries.

• The peak internal friction angle increases with increasing grain convexity index c2. The variance of a
local density field is larger in initial dense sand and grows with increasing grain size range width.

• The size effect due to the mean grain diameter and specimen height is negligible when d50/h< 0.01.
• The total energy, damping and elastic energy increase with increasing specimen size, mean grain
size and initial void ratio.

• The number of contact forces is higher in initially dense sand. During deformation, it grows in ini-
tially loose sand and reduces in initially dense sand. The contact forces may be higher in initially
loose sand. The void ratio distribution is more non-uniform in initially loose sand. The coordination
number decreases in initially dense specimen and grows in initially loose specimen. It is smaller with
grains simulated by spheres with contact moments and when using flexible vertical walls.

• The kinetic energy shows fluctuations, which correspond to the evolution of the elastic energy and
damping rate. The transitional kinetic energy is higher than the rotational one. The translational and
rotational kinetic energy are higher in initially dense sand and for more non-uniform grain shapes.

• Initially, the boundary external work is converted into the elastic energy. At the residual state, the
almost total external boundary work is dissipated by plastic deformation. The evolution of the
elastic energy in initially dense sand is related to dilatancy that reduces the normal contact forces
and the number of contact points. The elastic energy decreases during the dilative deformation
process and tends to a steady state corresponding to a critical state condition. In initially loose
sand, it continuously decreases during a contractant and following dilatant phase.
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