**MICROBIAL GENETICS • ORIGINAL PAPER** 



# Discrimination of hospital isolates of *Acinetobacter baumannii* using repeated sequences and whole genome alignment differential analysis

Roman Kotłowski<sup>1</sup> · Alicja Nowak-Zaleska<sup>2</sup> · Grzegorz Węgrzyn<sup>2</sup>

Received: 22 December 2020 / Revised: 8 March 2021 / Accepted: 19 May 2021 © The Author(s) 2021

## Abstract

An optimized method for bacterial strain differentiation, based on combination of Repeated Sequences and Whole Genome Alignment Differential Analysis (RS&WGADA), is presented in this report. In this analysis, 51 *Acinetobacter baumannii* multidrug-resistance strains from one hospital environment and patients from 14 hospital wards were classified on the basis of polymorphisms of repeated sequences located in CRISPR region, variation in the gene encoding the EmrA-homologue of *E. coli*, and antibiotic resistance patterns, in combination with three newly identified polymorphic regions in the genomes of *A. baumannii* clinical isolates. Differential analysis of two similarity matrices between different genotypes and resistance patterns allowed to distinguish three significant correlations (p < 0.05) between 172 bp DNA insertion combined with resistance to chloramphenicol and gentamycin. Interestingly, 45 and 55 bp DNA insertions within the CRISPR region were identified, and combined during analyses with resistance/susceptibility to trimethoprim/sulfamethoxazole. Moreover, 184 or 1374 bp DNA length polymorphisms in the genomic region located upstream of the GTP cyclohydrolase I gene, associated mainly with imipenem susceptibility, was identified. In addition, considerable nucleotide polymorphism of the gene encoding the gamma/tau subunit of DNA polymerase III, an enzyme crucial for bacterial DNA replication, was discovered. The differentiation analysis performed using the above described approach allowed us to monitor the distribution of *A. baumannii* isolates in different wards of the hospital in the time frame of several years, indicating that the optimized method may be useful in hospital epidemiological studies, particularly in identification of the source of primary infections.

**Keywords** Acinetobacter baumannii · Hospital infections · DNA polymerase III gene DNA polymerase III subunit gamma/ tau · Genetic polymorphisms · Antibiotics · Assembled matrix data

Communicated by Agnieszka Szalewska-Palasz.

Alicja Nowak-Zaleska alicja.nowak-zaleska@ug.edu.pl; ala.kol.zal@gmail.com

Roman Kotłowski romkotlo@pg.edu.pl

Grzegorz Węgrzyn Grzegorz.wegrzyn@ug.edu.pl

- <sup>1</sup> Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12 street, 80-233 Gdansk, Poland
- <sup>2</sup> Department of Molecular Biology, Faculty of Biology, Gdansk University, Wita Stwosza 59 street, 80-308 Gdańsk, Poland

# Introduction

The genome of each microorganism is a source of knowledge that can be applied for strain differentiation, based on bioinformatic tools and available techniques of molecular biology, suitable for epidemiological investigations. Among the species of the genus *Acinetobacter*, *A. baumannii* strains manifest the highest pathogenicity (Wong et al. 2017; Skariyachan et al. 2019). They are highly opportunistic microorganisms, responsible for hospital infections related to ability to adapt to different environmental conditions (Antunes et al. 2014). At the beginning of the twenty-first century, no complete genome sequence of *Acinetobacter* sp. was known. Barbe et al. (2004) published the first sequence of *Acinetobacter* sp. ADP1 genome, and later Smith et al. (2007) published the complete genome of *A. baumannii* ATCC 17,978. Subsequently, the first genomic sequence of the multidrug-resistant *A. baumannii* strain was published by Adams et al. (2008). Presently, complete sequences of the genomic DNA of *A. baumannii* are known for about 250 strains (http://www.ncbi.nlm.nih.gov, database retrieved on 10 December 2020). As indicated by various research teams, repeated sequences of *A. baumannii* and other microorganisms have great impact in the process of generating pathogenicity for immunocompromised hosts (Zhou et al. 2014; Shariat and Dudley 2014; Nabil et al. 2015) or adaptation skills to different environmental conditions (Zhou et al. 2014; Shariat and Dudley 2014; Karah et al. 2015).

The presence of tandem DNA repeats in genomes of A. baumannii was confirmed by several groups (Martín-Lozano et al. 2002; Turton et al. 2009; Irfan et al. 2011; Pourcel et al. 2011; Minandri et al. 2012; Ergin et al. 2013; Ahmed and Alp 2015; Villalón et al. 2015). Based on these sequences, different methods of differentiation of A. baumannii strains have been developed; however, they take into account only their diversifying power of evolutionary changes of the Acinetobacter genus (Touchon et al. 2014). Thus, their features responsible for drug resistance or pseudo-immunological bacterial responses, encoded in the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system, which evolved to protect the cells from exogenous phage and plasmid DNA invasion, are ignored in such analyses. On the other hand, as suggested by Touchon et al. (2014), the next step in the process of strains' classification should be focused on confrontation of the genetic and phenotypic features related to pathogenicity of bacterial species. To address some of the above features, an optimized method for A. baumannii differential analysis is proposed in this report. It is based on combination of the previously described method based on analysis of repeated sequences (Nowak-Zaleska et al. 2008, 2016) and whole genome alignment.

## Materials and methods

#### **Bacterial strains**

We used 51 *A. baumannii* isolates from diagnostic materials of the hospital environments of Antoni Jurasz University Hospital in Bydgoszcz. These isolates were derived from 11 hospital wards (Dermatology, Endocrinology, Geriatrics, General and Endocrine Surgery, General and Vascular Surgery, Intensive Care Units, Neurology, Nephrology, Neurosurgery, Orthopedic, Plastic Surgery), 2 clinics (Orthopedic Outpatient Clinic, Surgical Outpatient Clinic), and Rehabilitation Department. The isolates were collected during the period of 2003–2006 (Table 1). The following strains were isolated from different diagnostic materials: 10 from bronchoalveolar lavages, 8 from bedsores, 2 from blood, 1 from cerebrospinal fluid, 2 from drains, 2 from drain swabs,

MOST WIEDZY Downloaded from mostwiedzy.pl

1 from needle tip, 1 from pus, 8 from respiratory secretions, 2 from tracheostomy tube swabs, 1 from tube swab, 9 from ulceration wounds, and 4 from urine. Strains were identified based on ID GN phenotypic identification system, including drug sensitivity. This identification was conducted using Kirby–Bauer method, according to CLSI instructions (for details, see Nowak-Zaleska et al. 2008, 2016).

#### Locus identification with repeated sequences

The isolates of *A. baumannii* were differentiated on the basis of previously published polymorphisms of repeated sequences located in the CRISPR region (Touchon et al. 2014), variation in the gene encoding the EmrA homologue of *E. coli* (Nowak-Zaleska et al. 2016), and three newly identified (in this study) polymorphic regions (Tables 2 and 3).

#### **DNA-technology methods**

The genetic material from the isolates was obtained using Genomic Mini Set, purchased from A&A Biotechnology (Gdynia, Poland), following the manufacturer's instruction. For the DR-PCR/RFLP genotyping method, sequences of primers, the PCR reaction conditions, and enzymatic digestion of PCR products were previously described (Nowak-Zaleska et al. 2008). Briefly, the amplification reactions were conducted according to the following time-temperature profile: 94 °C for 2 min, during the initial denaturation step, 35 cycles consisting of the DNA denaturation at 94 °C for 1 min, hybridization at 68 °C for 1 min, and extension at 72 °C for 2 min. The amplification products were subjected to the restriction fragment length polymorphism (RFLP) analysis using HaeIII and SsiI restriction enzymes. Separation of restriction fragments was performed electrophoretically, in 12% polyacrylamide gels, and results were documented using Versa Doc Imaging System, ver. 1000. The homologous region of the emrA resistance-related gene, containing 6-nt repeats, was analyzed as described previously (Nowak-Zaleska et al. 2016). Identification of three newly discovered polymorphic regions was possible after multiple alignment of nine A. baumannii genomes (see Table 2), using the MAFFT 7.271 software (Katoh et al. 2002). Subsequently, three pairs of primers, shown in Table 3, were used in the PCR analysis. The PCR reactions were conducted in 25 µl reaction mixtures, using the Eppendorf AG 22,331 thermal cycler. The PCR mixtures were as follows: 1.5 U of RUN DNA polymerase (purchased from A&A Biotechnology), PCR reaction buffer containing 10 mM KCl, 10 mM (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 0.1% Triton X-100, 20 mM Tris, pH 8.5, 2 mM of Mg<sub>2</sub>Cl, 2 mM of each deoxynucleoside triphosphates, 25 pM of suitable pairs of primers, and 50 ng/µl of template DNA. Amplified PCR products were separated using 2% agarose gel electrophoresis and standard ethidium bromide

| No       | Isolates <sup>*</sup>          | Antibiogram <sup>a</sup> | Genotype pattern <sup>b</sup> | Combined analysis cluster <sup>c</sup> | Source of isolates <sup>#</sup>            |  |  |
|----------|--------------------------------|--------------------------|-------------------------------|----------------------------------------|--------------------------------------------|--|--|
| 1        | 2005VI.70.ICU                  | Ι                        | 1                             | 1                                      | Ulceration wound                           |  |  |
| 2        | 2006III.107.NS                 | II                       | 8                             | 2                                      | Respiratory secretion                      |  |  |
| 3        | 2006I.96.ICU                   | II                       | 8                             | 2                                      | BAL                                        |  |  |
| 4        | 2006I.95.ICU                   | II                       | 8                             | 2                                      | BAL                                        |  |  |
| 5        | 2006I.93.R                     | II                       | 8                             | 2                                      | Urine                                      |  |  |
| 6        | 2006I.92.ICU                   | II                       | 8                             | 2                                      | BAL                                        |  |  |
| 7        | 2006II.105.E                   | II                       | 7                             | 3                                      | Respiratory secretion                      |  |  |
| 8        | 2006IV.108.NS                  | II                       | 7                             | 3                                      | CSF                                        |  |  |
| 9        | 2005XI.85.ICU                  | II                       | 8                             | 2                                      | BAL                                        |  |  |
| 10       | 2005XII.91.ICU                 | II                       | 8                             | 2                                      | BAL                                        |  |  |
| 11       | 2005XI.88.R                    | II                       | 8                             | 2                                      | Urine                                      |  |  |
| 12       | 2005XI.87.PS                   | II                       | 8                             | 2                                      | Bedsores                                   |  |  |
| 13       | 2006II.98.R                    | II                       | 8                             | 2                                      | Respiratory secretion                      |  |  |
| 14       | 2005VI.71.R                    | II                       | 10                            | 4                                      | Respiratory secretion                      |  |  |
| 15       | 2006II.100.G                   | II                       | 10                            | 4                                      | Urine                                      |  |  |
| 16       | 2006II.101.ICU                 | II                       | 10                            | 4                                      | Blood                                      |  |  |
| 17       | 2005X.79.NS                    | II                       | 10                            | 4                                      | Urine                                      |  |  |
| 18       | 2005R.19.105                   | II                       | 9                             | 5                                      | BAL                                        |  |  |
| 19       | 2005IV.68.R                    | II                       | 13                            | 6                                      | Drain swab                                 |  |  |
| 20       | 2003VI.43.G&ES                 | II                       | 6                             | 7                                      | Ulceration wound                           |  |  |
| 20       | 2003 VIII.45.0                 | II                       | 6                             | 7                                      | Drain swab                                 |  |  |
| 21       | 2003 VIII.45.0<br>2003 IX.48.N | II                       |                               | 7                                      |                                            |  |  |
| 22<br>23 |                                | II                       | 6<br>15                       |                                        | Tracheostomy tube swab<br>Ulceration wound |  |  |
|          | 2004XI.61.O                    |                          |                               | 8                                      |                                            |  |  |
| 24       | 2004X.59.OC                    | III                      | 4                             | 9                                      | Bedsores                                   |  |  |
| 25<br>26 | 2006I.94.NS                    | IV                       | 8                             | 10                                     | Respiratory secretion                      |  |  |
| 26       | 2006II.104.NS                  | IV                       | 7                             | 11                                     | Respiratory secretion                      |  |  |
| 27       | 2004VIII.55.OC                 | V                        | 2                             | 12                                     | Bedsores                                   |  |  |
| 28       | 2003XI.50.O                    | V                        | 6                             | 13                                     | Bedsores                                   |  |  |
| 29       | 2005I.65.O                     | V                        | 4                             | 14                                     | Drain                                      |  |  |
| 30       | 2003IX.47.ICU                  | VI                       | 6                             | 15                                     | BAL                                        |  |  |
| 31       | 2005VIII.72.G&ES               | VI                       | 15                            | 16                                     | Ulceration wound                           |  |  |
| 32       | 2003VIII.44.ICU                | VII                      | 6                             | 17                                     | Ulceration wound                           |  |  |
| 33       | 2003IX.46.G&ES                 | VII                      | 6                             | 17                                     | Ulceration wound                           |  |  |
| 34       | 2003III.42.ICU                 | VII                      | 12                            | 18                                     | Tracheostomy tube swat                     |  |  |
| 35       | 2003IX.49.D                    | VIII                     | 14                            | 19                                     | Ulceration wound                           |  |  |
| 36       | 2005IV.67.ICU                  | IX                       | 15                            | 20                                     | Ulceration wound                           |  |  |
| 37       | 2004IV.52.E                    | Х                        | 15                            | 21                                     | Bedsores                                   |  |  |
| 38       | 2006II.103.ICU                 | Х                        | 15                            | 21                                     | BAL                                        |  |  |
| 39       | 2004X.58.R                     | Х                        | 15                            | 21                                     | Tube swab                                  |  |  |
| 40       | 2005III.66.O                   | XI                       | 4                             | 22                                     | Drain                                      |  |  |
| 41       | 2004X.56.NS                    | XII                      | 11                            | 23                                     | Blood                                      |  |  |
| 42       | 2004X.57.NS                    | XII                      | 15                            | 24                                     | Bedsores                                   |  |  |
| 43       | 2004XI.63.R                    | XIII                     | 3                             | 25                                     | Pus                                        |  |  |
| 44       | 2004VIII.54.ICU                | XIII                     | 5                             | 26                                     | BAL                                        |  |  |
| 45       | 2004XI.62.G                    | XIII                     | 4                             | 27                                     | Bedsores                                   |  |  |
| 46       | 2005 V.69.SC                   | XIII                     | 15                            | 28                                     | Ulceration wound                           |  |  |
| 47       | 2004VI.53.N                    | XIV                      | 16                            | 29                                     | Bedsores                                   |  |  |
| 48       | 2006II.106.NS                  | XV                       | 8                             | 30                                     | Respiratory secretion                      |  |  |
| 49       | 2005XII.90.Nef                 | XV                       | 8                             | 30                                     | Respiratory secretion                      |  |  |

| Table 1 (continu | led)                  |                          |                               |                                        |                     |
|------------------|-----------------------|--------------------------|-------------------------------|----------------------------------------|---------------------|
| No               | Isolates <sup>*</sup> | Antibiogram <sup>a</sup> | Genotype pattern <sup>b</sup> | Combined analysis cluster <sup>c</sup> | Source of isolates# |
| 50               | 2005IX.76.ICU         | XV                       | 10                            | 31                                     | BAL                 |
| 51               | 2005IX.78.G&VS        | XV                       | 10                            | 31                                     | Needle tip          |
| HGDI index       |                       | 0.8                      | 0.8816                        | 0.9718                                 |                     |

<sup>a</sup>For details of particular antibiogram patterns, see Table 5

<sup>b</sup>For details of particular genotype patterns, see Table 4

<sup>c</sup>Numbers arisen from combination of antibiogram and genotype patterns

\*Abbreviations for isolates (the last letter(s) in the name): D—Dermatology, E—Endocrinology, G—Geriatrics, G&ES—General and Endocrine Surgery, G&VS—General and Vascular Surgery, ICU—Intensive Care Unit, N—Neurology, Nef—Nephrology, NS—Neurosurgery, O—Orthopedic, OC-Orthopedic Outpatient Clinic, PS-Plastic Surgery, R-Rehabilitation, SC-Surgical Outpatient Clinic

<sup>#</sup>Abbreviations for source of isolates: BAL—bronchoalveolar lavage; CSF—cerebrospinal fluid

staining procedure (Sambrook et al. 1989). Images of the gels were obtained using Versa Doc Imaging System, ver. 1000.

## **Statistical analysis**

Statistical analysis was performed using Epi Info 7.2.3.1 software using two-tailed Fisher exact test analysis. The values "1" and "0" were representing resistant and susceptible strains for different antibiotics used in our study. Similarity matrices of different genotypes and resistance features and phylogenetic trees were constructed using package MVSP ver. 3.22.

# **Results and discussion**

To enhance the currently available methods of differentiation of A. baumannii strains, we were searching for previously unknown PCR-derived fragment length polymorphism variations in randomly identified regions of selected genomic sequences. The theoretical values of PCR fragment lengths of the newly discovered polymorphic regions for nine A. *baumannii* genomes are presented in Table 2. Among three identified polymorphic regions, only one was characterized by the highest length polymorphism. It was recognized as a gene fragment coding for DNA polymerase III subunit gamma/tau, with the Protein id = AFI95102.1 in the

| Table 2The sizes of PCRproducts for designed pairs of | Genome NCBI accession numbers* of                    | PCR product length (bp)        |                                  |                                  |  |  |  |  |  |
|-------------------------------------------------------|------------------------------------------------------|--------------------------------|----------------------------------|----------------------------------|--|--|--|--|--|
| primers calculated for selected                       | Acinetobacter baumannii strains                      | Genomic region 1               | Genomic region 2                 | Genomic region 3                 |  |  |  |  |  |
| Acinetobacter baumannii<br>genomes                    |                                                      | Primer pairs:<br>Aci7 and Aci8 | Primer pairs:<br>Aci13 and Aci14 | Primer pairs:<br>Aci17 and Aci18 |  |  |  |  |  |
|                                                       | CP001172.2<br>Acinetobacter baumannii AB307-0294     | 204                            | 184                              | 404                              |  |  |  |  |  |
|                                                       | NC_011586.2<br>Acinetobacter baumannii AB0057        | 162                            | 184                              | 405                              |  |  |  |  |  |
|                                                       | CP002522.2<br>Acinetobacter baumannii TCDC-AB0715    | 180                            | 236                              | 508                              |  |  |  |  |  |
|                                                       | NC_010611.1<br>Acinetobacter baumannii ACICU         | 144                            | 1274                             | 508                              |  |  |  |  |  |
|                                                       | CP001937.2<br>Acinetobacter baumannii MDR-ZJ06       | 222                            | 1374                             | 500                              |  |  |  |  |  |
|                                                       | CP003500.1<br>Acinetobacter baumannii MDR-TJ         | 222                            | 1374                             | 508                              |  |  |  |  |  |
|                                                       | CP003847.1<br>Acinetobacter baumannii BJAB0715       | 156                            | 186                              | 406                              |  |  |  |  |  |
|                                                       | NZ_CP018664.1<br>Acinetobacter baumannii ATCC 17,978 | 210                            | 185                              | 306                              |  |  |  |  |  |
|                                                       | NC_010410.1<br>Acinetobacter baumannii AYE           | 234                            | 1373                             | 405                              |  |  |  |  |  |

\*NCBI—National Center for Biotechnology Information

| No. of genomic regions |                                               |                                                                                                                                                                                                                                                                                                                      |                                                                                                               |                                                                                       |
|------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                        | Location of PCR product                       | Location of PCR product within Acinetobacter baumannii MDR-TJ genome, GenBank: CP003500.1                                                                                                                                                                                                                            | R-TJ genome, GenBank: CP0035                                                                                  | 600.1                                                                                 |
| _                      | Aci7 and Aci8 1,558,399–<br>1,558,566<br>bp   | ACI7<br>5/GTGCTGTTCAGCCTGTTGAAGTTATTAG<br>ACI8<br>5/CAACTGCTGACTCAAGTCCAATCAACTC                                                                                                                                                                                                                                     |                                                                                                               |                                                                                       |
|                        |                                               | Locus_tag = "ABTJ_01493" Product = "DNA polymerase III, subunit gamma/tau"<br>Protein_id = "AFI95102.1" 1,557,1591559279 bp                                                                                                                                                                                          | ubunit gamma/tau"                                                                                             |                                                                                       |
| 5                      | Aci13 and Aci14 1,197,192–<br>1,198,491<br>hn | ACI13<br>5'GAGGTACTAAAAATAAAAGCGGGGGATAAAGTAGACAAG<br>ACI14                                                                                                                                                                                                                                                          | <b>I</b> CAAG                                                                                                 |                                                                                       |
|                        |                                               | 5'GTTGGGCTTTTTTTTATAGCTGAACGCGATAAACTTC                                                                                                                                                                                                                                                                              |                                                                                                               |                                                                                       |
|                        |                                               | Locus_tag = "ABTJ_01149" Locus_tag = "ABTJ_01151" Product = "hypothetical protein"<br>"Signal predicted by Sig- Protein_id = "AFI94772.1" 1,197,9211198355 bp<br>nalP 3.0 HMM;<br>IMG reference<br>gene:2510836153_SP"<br>Product = "hypotheti-<br>cal protein" Protein_<br>id = "AFI94769.1"<br>1,196,0331197184 bp | oduct = "hypothetical protein"<br>,197,9211198355 bp                                                          | Locus_tag = "ABT1_01152"<br>Product = "GTP cyclohydro-<br>lase I" 1,198,5351199089 bp |
| ۳.                     | Aci17 and Aci18 1,707,347–<br>1,707,791<br>bp | ACII7<br>5'CAGTTTAAACAGGTGTCAAATCGTAAACAAATATTGATG<br>ACI18<br>5'GGCAGAAACTAGCCACGATGCAAGCA                                                                                                                                                                                                                          | ЛG                                                                                                            |                                                                                       |
|                        |                                               | Locus_tag = "ABTJ_01661" Product = "Protein of unknown<br>function (DUF2750)"<br>1,706,8491707274 bp                                                                                                                                                                                                                 | Locus_tag = "ABTJ_01662" Product = "hypothetical protein"<br>Protein_id = "AFI95267.1"<br>1,707,7611707994 bp | oduct = "hypothetical protein"                                                        |

MOST WIEDZY Downloaded from mostwiedzy.pl

MDR-TJ *A. baumannii* genome (GenBank accession no. CP003500.1) (Table 3).

In order to increase variation of analyzed *A. baumannii* isolates, two other previously described variable regions in the genomes of *A. baumannii* were included in our study (Nowak-Zaleska et al. 2008, 2016). The combined application of the three genetic aforementioned genotypic methods, DR-PCR/RFLP, different number of P-A dipeptide repeats encoded in the N-terminal part of EmrA-homologue gene, as well as three new variables, namely, Aci7 and Aci8, Aci13 and Aci14, and Aci17 and Aci18 (Table 4), combined with known information about resistance patterns for each isolate (Table 5), allowed for recognition of 31 different clusters shown in Table 1.

Detailed analysis of bacterial isolates and diagnostic material revealed significant differences between *A. baumannii* isolates from bronchoalveolar lavage (BAL) and other clinical samples (p < 0.0001), as well as significant correlation between resistance pattern II and genotype 8<sup>th</sup> (p < 0.01), presented in Table 1. In addition, significant correlation (p < 0.05) between the frequency of occurrence of 8<sup>th</sup> *A. baumannii* genotype in the first trimester of 2006 year in comparison to other periods of isolation time was also evident. Higher Hunter–Gaston Discriminatory Index (HGDI), presented in Table 1, was determined

using the method developed in this study, in comparison to previously published genotyping methods (Nowak-Zaleska et al. 2008, 2016). Furthermore, in the course of statistical data analysis, we observed that strains representing clusters 2 and 4 from combined genetic-phenotypic analysis, shown in Table 1, were isolated in two consecutive years 2005 and 2006 (p < 0.0001). These strains represent the 15<sup>th</sup> genotype pattern, which was present in 2004 and 2005, but with different resistance patterns II, VI, IX, X, XII, and XIII (p=0.01). In addition, three strains representing  $21^{st}$  cluster with the resistance pattern X appeared in years 2004 and 2006. Moreover, strains with genotypes 6, 12, and 14 were only present in 2003 (p < 0.0001), in comparison to other genotypes, and what is interesting, the resistance pattern II appeared each year, while patterns V, VI, VII, and VIII appeared only between 2003 and 2005 (p = 0.01).

Combined analysis of similarity matrices, obtained using data from Tables 4 and 5, revealed that out of 19 combinations of genetic and resistance markers, only three were significantly different (p < 0.05) (Table 6), as indicated by  $\chi^2$  value higher than 4, obtained from two phylogenetic trees presented in Fig. 1. Among significantly different mixed parameters identified, there were (1) 172 bp DNA insertion, located in the CRISPR locus, identified using the *Ssi*I enzyme for genotypes 7 to 11, in combination

Table 4 Set of different genotypes shown as PCR length polymorphisms in nucleotide base pairs for 51 MDR Acinetobacter baumannii isolates

| Genotypes | Three new in bp)             | PCR region                        | ns (length                                   | PCR            | PCR-DR/RFLP region (length in bp) |    |    |    |      |         |     |     |     |    |    | ,  | EmrA <sup>*</sup> —homo-<br>logue gene frag- |    |            |
|-----------|------------------------------|-----------------------------------|----------------------------------------------|----------------|-----------------------------------|----|----|----|------|---------|-----|-----|-----|----|----|----|----------------------------------------------|----|------------|
|           | Genomic                      | Genomic                           | Genomic<br>region 3<br>Aci17<br>and<br>Aci18 | HaeIII pattern |                                   |    |    |    | SsiI | patteri | ı   |     |     |    |    |    | ment<br>(length in bp)                       |    |            |
|           | region 1<br>Aci7 and<br>Aci8 | region 2<br>Aci13<br>and<br>Aci14 |                                              | #1             | #2                                | #3 | #4 | #5 | #6   | #7      | #1  | #2  | #3  | #4 | 5  | #6 | #7                                           | #8 | ( <u>8</u> |
| 1         | 156                          | 184                               | 600                                          | 106            | 0                                 | 63 | 60 | 57 | 54   | 45      | 0   | 137 | 109 | 88 | 76 | 63 | 43                                           | 38 | 138        |
| 2         | 234                          | 184                               | 405                                          | 107            | 83                                | 78 | 64 | 60 | 59   | 55      | 0   | 0   | 111 | 0  | 74 | 61 | 43                                           | 38 | 126        |
| 3         | 204                          | 184                               | 405                                          | 106            | 82                                | 63 | 60 | 57 | 54   | 45      | 0   | 137 | 109 | 88 | 76 | 63 | 43                                           | 38 | 126        |
| 4         | 210                          | 184                               | 405                                          | 106            | 82                                | 63 | 60 | 57 | 54   | 45      | 0   | 137 | 109 | 88 | 76 | 63 | 43                                           | 38 | 126        |
| 5         | 234                          | 184                               | 405                                          | 106            | 82                                | 63 | 60 | 57 | 54   | 45      | 0   | 137 | 109 | 88 | 76 | 63 | 43                                           | 38 | 126        |
| 6         | 222                          | 184                               | 405                                          | 106            | 82                                | 63 | 60 | 57 | 54   | 45      | 0   | 137 | 109 | 88 | 76 | 63 | 43                                           | 38 | 126        |
| 7         | 234                          | 1374                              | 508                                          | 106            | 82                                | 63 | 60 | 57 | 54   | 45      | 172 | 134 | 110 | 89 | 76 | 63 | 42                                           | 37 | 126        |
| 8         | 222                          | 1374                              | 508                                          | 106            | 82                                | 63 | 60 | 57 | 54   | 45      | 172 | 134 | 110 | 89 | 76 | 63 | 42                                           | 37 | 126        |
| 9         | 210                          | 1374                              | 508                                          | 106            | 82                                | 63 | 60 | 57 | 54   | 45      | 172 | 134 | 110 | 89 | 76 | 63 | 42                                           | 37 | 132        |
| 10        | 210                          | 1374                              | 508                                          | 106            | 82                                | 63 | 60 | 57 | 54   | 45      | 172 | 134 | 110 | 89 | 76 | 63 | 42                                           | 37 | 126        |
| 11        | 180                          | 1374                              | 508                                          | 106            | 82                                | 63 | 60 | 57 | 54   | 45      | 172 | 134 | 110 | 89 | 76 | 63 | 42                                           | 37 | 120        |
| 12        | 144                          | 1374                              | 306                                          | 109            | 77                                | 71 | 64 | 58 | 55   | 0       | 0   | 137 | 109 | 88 | 76 | 63 | 43                                           | 38 | 132        |
| 13        | 210                          | 1374                              | 405                                          | 106            | 82                                | 63 | 60 | 57 | 54   | 45      | 0   | 137 | 109 | 88 | 76 | 63 | 43                                           | 38 | 126        |
| 14        | 210                          | 1374                              | 405                                          | 106            | 82                                | 63 | 60 | 57 | 54   | 45      | 0   | 137 | 109 | 88 | 76 | 63 | 43                                           | 38 | 132        |
| 15        | 156                          | 1374                              | 306                                          | 109            | 77                                | 71 | 64 | 58 | 55   | 0       | 0   | 137 | 109 | 88 | 76 | 63 | 43                                           | 38 | 132        |
| 16        | 162                          | 1374                              | 306                                          | 109            | 77                                | 71 | 64 | 58 | 55   | 0       | 0   | 137 | 109 | 88 | 76 | 63 | 43                                           | 38 | 132        |

\*EmrA—an enzyme from Escherichia coli

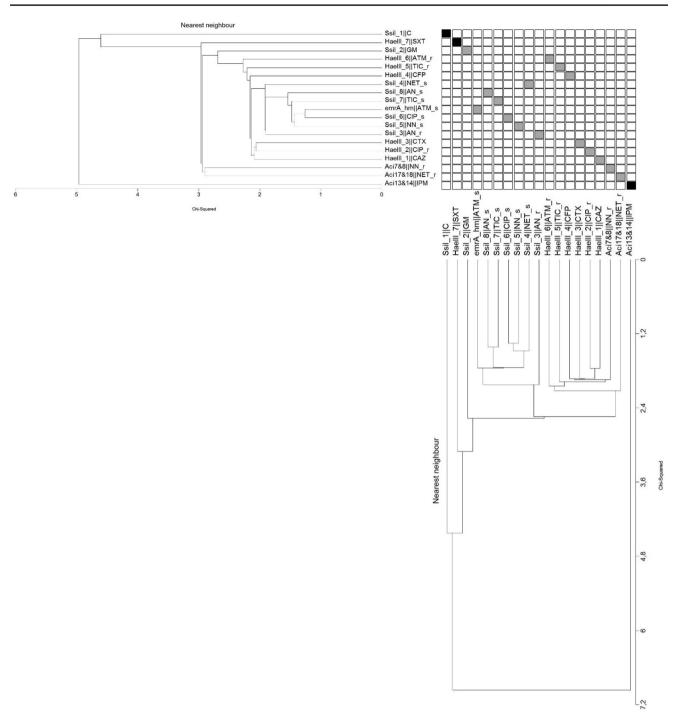
<sup>#</sup>—restriction pattern number

Deringer

Table 5Set of differentantibiotic resistance patternsdetermined for 51 MDRAcinetobacter baumannii strains

| Resist-         | Antib | iotic res | sistanc | e/suscep | otibility | /   |     |     |     |     |      |      |    |
|-----------------|-------|-----------|---------|----------|-----------|-----|-----|-----|-----|-----|------|------|----|
| ance<br>pattern | IPM   | NET       | NN      | CAZ      | CIP       | CTX | CFP | TIC | ATM | SXT | C/GM | GM/C | AN |
| I               | R     | S         | R       | S        | R         | R   | R   | R   | R   | R   | R    | R    | R  |
| II              | S     | R         | R       | R        | R         | R   | R   | R   | R   | R   | R    | R    | R  |
| III             | S     | R         | S       | R        | R         | R   | R   | R   | R   | R   | R    | R    | R  |
| IV              | S     | R         | R       | R        | R         | R   | R   | R   | R   | R   | R    | R    | S  |
| V               | S     | R         | R       | R        | S         | R   | R   | R   | R   | R   | R    | R    | R  |
| VI              | S     | S         | R       | R        | R         | R   | R   | R   | R   | R   | R    | R    | R  |
| VII             | S     | S         | S       | R        | R         | R   | R   | R   | R   | R   | R    | R    | R  |
| VIII            | S     | S         | S       | S        | S         | S   | S   | S   | S   | S   | R    | R    | R  |
| IX              | S     | S         | R       | R        | R         | R   | R   | Ι   | R   | R   | R    | R    | R  |
| Х               | S     | S         | Ι       | R        | R         | R   | R   | Ι   | R   | R   | R    | R    | R  |
| XI              | S     | R         | R       | R        | Ι         | R   | R   | R   | Ι   | R   | R    | R    | R  |
| XII             | S     | Ι         | R       | R        | R         | R   | R   | R   | R   | R   | R    | R    | R  |
| XIII            | S     | R         | R       | R        | R         | R   | R   | Ι   | R   | R   | R    | R    | R  |
| XIV             | S     | R         | Ι       | R        | R         | R   | R   | Ι   | R   | R   | R    | R    | R  |
| XV              | S     | R         | R       | R        | R         | R   | R   | R   | R   | R   | R    | R    | Ι  |

Meaning of symbols: R, resistance; S, susceptibility; I, intermediate phenotype


Antibiotics abbreviations: AN, amikacin; ATM, aztreonam; C, chloramphenicol; CAZ, ceftazidime; CFP, cefoperazone; CIP, ciprofloxacin; CTX, cefotaxime; GM, gentamycin; IPM, imipenem; NN, tobramycin; NET, netilmicin; SXT, trimethoprim/sulfamethoxazole; TIC, ticarcillin

Identical results for GM and C for different restriction patterns  $SsiI\_1$  and  $SsiI\_2$  are named C/GM and GM/C

**Table 6** Set of two joined-similarity matrices obtained for 19 different genotypes indicated by underlined values, and for 19 different antibiotic resistance patterns. All values are from the range between 1 and 100%. Abbreviations "\_s" and "\_r" indicate intermediate

resistance patterns considered two times as susceptible or resistant, respectively. The "0" value was replaced by "1E-06" for diagonal correlation calculation purposes. Significant (p < 0.05) combinations of genetic and resistance/susceptibility features are highlighted in black

| Resistance<br>features    Image: Section of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |            |        |          |            |       |   | pes | Genotyj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |            |   |             |            |          |   |    |       |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------|--------|----------|------------|-------|---|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|---|-------------|------------|----------|---|----|-------|--------|
| Aci13&14    IPM  78.9  49.4  33.4  20.6  15.1  13.2  12.3  11.6  11.1  7.7  11.0  24.2  21.1  16.4  15.1  12.7    Aci17&18    NPL_r  0.0  65.2  63.4  39.7  30.0  26.4  24.8  23.5  22.5  15.9  22.2  45.7  40.5  32.2  29.9  25.5    Aci78.8    NN_r  15.4  76.2  40.6  69.6  55.1  49.3  46.8  44.6  42.9  31.4  42.4  77.9  70.8  58.6  55.0  47.9    HaellI_1   CAZ  0.0  81.8  80.0  47.8  83.2  76.1  72.8  78.4  60.7  39.5  60.6  82.0  89.2  93.7  84.9    HaellI_2   CIP_r  14.3  72.7  88.0  92.3  96.3  96.3  90.9  72.5  33.0  62.8  74.8  81.7  92.3  98.0    HaellI_3   CTX  13.3  78.3  92.3  96.3  96.9  94.4  75.7  32.7  60.5  71.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ssil_7    TIC_s<br>Ssil_8    AN_s | _7    TIC_ | I CIP. | 5    NN_ | _4    NET_ | 3     | 2 | =   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _6    ATM_ | _5    TIC_ | 4 | ۳<br>ا      | _2    CIP_ | _1    CA | = | NE | 3& 14 |        |
| Aci7&8    NN_r  15.4  76.2  40.6  69.6  55.1  49.3  46.8  44.6  42.9  31.4  42.4  77.9  70.8  58.6  55.0  47.9    HaellI_1    CAZ  0.0  81.8  88.0  47.8  83.2  76.1  72.8  70.0  67.6  51.7  41.3  85.4  98.7  87.4  83.2  74.2    HaellI_2    CIP_r  14.3  72.7  88.0  92.3  45.6  87.0  83.6  80.7  78.4  60.7  39.5  69.6  82.0  89.2  93.7  84.9    HaellI_3    CTX  13.3  78.3  92.3  96.3  96.3  96.5  93.4  90.9  72.5  33.0  62.8  74.8  81.7  92.3  98.0    HaellI_4    CFP  13.3  78.3  92.3  96.3  96.3  100  36.4  97.4  78.7  32.1  60.5  71.6  79.3  89.1  97.9    HaellI_5    TIC_r  13.3  78.3  92.3  96.3  96.3  100  100  33.5  81.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>8.8</u> <u>7.8</u>             |            | 12.7   |          |            |       |   |     | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            | _ | <u>13.2</u> | 15.1       |          |   |    |       |        |
| HaelII_1    CAZ  0.0  81.8  88.0  47.8  83.2  76.1  72.8  70.0  67.6  51.7  41.3  85.4  98.7  87.4  83.2  74.2    HaelII_2    CIP_r  14.3  72.7  88.0  92.3  45.6  87.0  83.6  80.7  78.4  60.7  39.5  69.6  82.0  89.2  93.7  84.9    HaelII_3    CTX  13.3  78.3  92.3  96.3  96.3  96.5  93.4  90.9  72.5  33.0  62.8  74.8  81.7  92.3  98.0    HaelII_4    CFP  13.3  78.3  92.3  96.3  96.3  100  38.9  96.9  94.4  75.7  32.7  60.5  71.6  79.3  89.1  97.9    HaelII_6    ATM_r  13.3  78.3  92.3  96.3  96.3  100  100  36.4  97.4  78.7  32.1  56.0  68.8  76.5  86.1  95.4    HaelII_6    ATM_r  13.3  78.3  92.3  96.3  96.3  100  100  100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>18.0</u> <u>16.1</u>           |            |        | -        |            |       |   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |   |             |            |          |   |    |       |        |
| HaelII_2    CIP_r  14.3  72.7  88.0  92.3  45.6  87.0  83.6  80.7  78.4  60.7  39.5  69.6  82.0  89.2  93.7  84.9    HaeIII_3    CTX  13.3  78.3  92.3  96.3  96.3  40.3  96.5  93.4  90.9  72.5  33.0  62.8  74.8  81.7  92.3  98.0    HaeIII_4    CFP  13.3  78.3  92.3  96.3  96.3  100  38.9  96.9  94.4  75.7  32.7  60.5  71.6  79.3  89.1  97.9    HaeIII_5    TIC_r  13.3  78.3  92.3  96.3  96.3  100  100  36.4  97.4  78.7  32.1  58.0  68.8  76.5  86.1  95.4    HaeIII_6    ATM_r  13.3  78.3  92.3  96.3  96.3  100  100  33.5  81.1  31.2  55.8  66.5  74.0  83.6  92.9  92.9    HaeIII_6    ATM_r  13.3  78.3  92.3  96.3  100  100  100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>35.2</u> <u>31.7</u>           |            |        |          |            | 100 C |   |     | All and a second s |            |            |   |             |            |          |   |    |       |        |
| Haelli 3    CTX  13.3  78.3  92.3  96.3  96.3  96.5  93.4  90.9  72.5  33.0  62.8  74.8  81.7  92.3  98.0    Haelli 4    CFP  13.3  78.3  92.3  96.3  96.3  100  38.9  96.9  94.4  75.7  32.7  60.5  71.6  79.3  89.1  97.9    Haelli 5    TIC_r  13.3  78.3  92.3  96.3  96.3  100  100  36.4  97.4  78.7  32.1  60.5  71.6  79.3  89.1  97.9    Haelli 6    ATM_r  13.3  78.3  92.3  96.3  96.3  100  100  36.4  97.4  78.7  32.1  58.0  68.8  76.5  86.1  95.4    Haelli 7    SXT  13.3  78.3  92.3  96.3  96.3  100  100  100  43  30.9  41.0  50.7  56.3  65.8  74.3  83.6  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>57.2</u> <u>52.2</u>           |            |        | -        | _          | _     |   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |   |             | _          |          |   |    |       |        |
| HaelII_4    CFP  13.3  78.3  92.3  96.3  96.3  100  38.9  96.9  94.4  75.7  32.7  60.5  71.6  79.3  89.1  97.9    HaeIII_5    TIC_r  13.3  78.3  92.3  96.3  96.3  100  100  36.4  97.4  78.7  32.1  58.0  68.8  76.5  86.1  95.4    HaeIII_6    ATM_r  13.3  78.3  92.3  96.3  96.3  100  100  36.4  97.4  78.7  32.1  58.0  68.8  76.5  86.1  95.4    HaeIII_7    SXT  13.3  78.3  92.3  96.3  96.3  100  100  100  33.5  81.1  31.2  55.8  66.5  74.0  83.6  92.9  92.9    HaeIII_7    SXT  13.3  78.3  92.3  96.3  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6 <td><u>67.4</u> <u>62.1</u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>All and a second s</td> <td></td> | <u>67.4</u> <u>62.1</u>           |            |        |          |            |       |   |     | All and a second s |            |            |   |             |            |          |   |    |       |        |
| Haelli 5    TIC_r  13.3  78.3  92.3  96.3  96.3  100  100  36.4  97.4  78.7  32.1  58.0  68.8  76.5  86.1  95.4    Haelli 6    ATM_r  13.3  78.3  92.3  96.3  96.3  100  100  36.4  97.4  78.7  32.1  58.0  68.8  76.5  86.1  95.4    Haelli 6    ATM_r  13.3  78.3  92.3  96.3  96.3  100  100  100  33.5  81.1  31.2  55.8  66.5  74.0  83.6  92.9    Haelli 7    SXT  13.3  78.3  92.3  96.3  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.6  96.7  92.9  92.9  92.9  92.9  92.9  92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>79.0</u> <u>73.1</u>           |            |        |          |            |       |   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _          |            | _ |             |            |          |   |    |       |        |
| Haelli_6    ATM_r  13.3  78.3  92.3  96.3  90.3  100  100  33.5  81.1  31.2  55.8  66.5  74.0  83.6  92.9    Haelli_7    SXT  13.3  78.3  92.3  96.3  96.3  100  100  100  33.5  81.1  31.2  55.8  66.5  74.0  83.6  92.9    Haelli_7    SXT  13.3  78.3  92.3  96.3  96.6  100  100  100  443  30.9  41.0  50.7  56.3  65.8  74.3    Ssi_1    C/GM  12.5  75.0  88.9  92.9  92.9  96.6  96.6  96.6  96.6  47.8  46.2  42.1  40.7  36.6  33.8    Ssi_2    GM/C  12.5  75.0  88.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>82.3</u> <u>76.4</u>           |            |        | _        | _          | _     |   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |   |             |            |          |   |    |       |        |
| HaelII_7    SXT  13.3  78.3  92.3  96.3  90.3  100  100  100  41.3  30.9  41.0  50.7  56.3  65.8  74.3    Ssil_1    C/GM  12.5  75.0  88.9  92.9  92.9  96.6  96.6  96.6  96.6  96.6  96.6  47.8  46.2  42.1  40.7  36.6  33.8    Ssil_2    GM/C  12.5  75.0  88.9  92.9  92.9  96.6  96.6  96.6  96.6  100  14.1  86.5  78.8  70.1  62.0    Ssil_3    AN_r  13.3  69.6  84.6  88.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  92.9  9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>85.3</u> <u>79.3</u>           |            |        | -        |            |       |   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |   |             |            |          |   |    |       |        |
| Ssil 1    C/GM    12.5    75.0    88.9    92.9    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6    96.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>87.8</u> <u>81.8</u>           |            |        | -        | _          | _     |   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |   |             |            |          |   |    |       | _ !! _ |
| Ssil_2    GM/C    12.5    75.0    88.9    92.9    96.6    96.6    96.6    96.6    100    14.1    86.5    78.8    70.1    62.0      Ssil_3    AN_r    13.3    69.6    84.6    88.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>86.7</u> <u>81.6</u>           |            |        | -        |            |       |   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |   |             |            |          |   |    |       |        |
| Ssi-3    AN_r    13.3    69.6    84.6    88.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9    92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>27.2</u> <u>25.3</u>           |            |        | -        | _          |       |   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |   |             |            |          |   |    | -     |        |
| Ssil_4    NET_s    0.0    94.1    70.0    76.2    66.7    72.7    72.7    72.7    69.6    69.6    63.6    49.8    89.8    81.1      Ssil_5    NN_s    18.2    73.7    90.9    78.3    78.3    83.3    83.3    83.3    83.3    80.0    80.0    75.0    66.7    58.2    90.6      Ssil_6    CIP_s    15.4    66.7    83.3    80.0    92.3    92.3    92.3    88.9    84.6    60.0    72.7    58.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>47.0</u> <u>42.8</u>           |            |        | _        |            |       |   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |   |             |            |          |   |    |       |        |
| Ssi-5    NN_s    18.2    73.7    90.9    78.3    78.3    83.3    83.3    83.3    80.0    80.0    75.0    66.7    58.2    90.6      Ssil_6    CIP_s    15.4    66.7    83.3    80.0    92.3    92.3    92.3    92.3    88.9    84.6    60.0    72.7    58.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>56.1</u> <u>51.2</u>           |            |        |          |            |       |   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |   |             |            |          |   |    |       |        |
| Ssil_6    CIP_s    15.4    66.7    83.3    88.0    96.0    92.3    92.3    92.3    92.3    88.9    88.9    84.6    60.0    72.7    58.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>63.7</u> <u>58.6</u>           | _          |        | -        |            |       |   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |   |             |            |          |   |    |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>72.0</u> <u>66.4</u>           |            |        |          |            |       |   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |   |             |            |          |   |    |       | _ !! _ |
| SSI_/    IIC_S   I0.2   73.1   72.1   70.3   70.3   03.3   03.3   03.3   03.3   03.3   03.3   00.0   00.7   00.0   00.7   00.0   72.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>80.9</u> <u>75.0</u>           | _          |        |          |            |       |   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |   |             |            |          |   |    |       |        |
| Ssil 8   AN s 14.3 63.6 80.0 84.6 84.6 88.9 88.9 88.9 88.9 88.9 88.9 92.9 92.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56.6 <u>93.8</u><br>69.6 37.8     |            |        |          |            |       |   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |   |             |            |          |   |    |       |        |
| emrA hm    ATM s 14.3 72.7 88.0 92.3 92.3 96.3 96.3 96.3 96.3 96.3 92.9 92.9 92.9 92.9 92.9 92.9 92.9 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 78.3 84.6                         |            |        |          |            |       |   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |            |   |             |            |          |   |    |       |        |



MOST WIEDZY Downloaded from mostwiedzy.pl

Deringer

Fig. 1 Phylogenetic trees for different pairs of genetic polymorphisms and resistance/susceptibility features. Branches order obtained based on nearest neighbor method and length-distance calculation based on

 $\chi^2$  method. Significant (p < 0.05) differences indicated in black boxes were identified based on cut-off  $\chi^2$  value = 4

with resistance to chloramphenicol and gentamycin; (2) 45 and 55 bp DNA insertions in the same locus, identified using the *Hae*III enzyme, combined with trimethoprim/ sulfamethoxazole resistance or susceptibility patterns; and (3) 184 or 1374 bps DNA length polymorphisms in the second genomic region (see tree new PCR region, Table 4),

identified in our study for genotypes 1 to 6 and 7 to 16, in combination with imipenem resistance, characteristic for pattern I or susceptibility features, characteristic for other patterns (Table 6).

The presence of *A. baumannii* genotypes over a period of 4 years in the hospital wards (Table 7), and location of

|                                                                                                                                                                                                                                                                                              | L                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                     | 2000(8)                                                                                                                                                                                                                                                                                                                                | 100, 100, 10                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                              | G                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                       | $2005_{(5)}$                                                                                                                                                                                                                                                                                                                           | ICU, R, Nef                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2005 <sub>(6)</sub>                                                                                                                                                                                                                                                                          | ICU                                                                                                                                                                                                                                                                                                                 | 1, 8 (2), 15, 10                                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                    | 2006 <sub>(2)</sub>                                                                                                                                                                                                                                                                                                                    | ICU, G                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                              | R                                                                                                                                                                                                                                                                                                                   | 8, 10, 13                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                       | $2005_{(4)}$                                                                                                                                                                                                                                                                                                                           | ICU, R, NS, G&VS                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                              | PS                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                     | 2005 <sub>(2)</sub>                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                              | NS                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                       | 2004(2)                                                                                                                                                                                                                                                                                                                                | OC, G                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                   | 4 (2)                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                     | 2003(7)                                                                                                                                                                                                                                                                                                                                | ICU, G&ES, O, N                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                              | G&ES                                                                                                                                                                                                                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                     | 2006 <sub>(3)</sub>                                                                                                                                                                                                                                                                                                                    | Е                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                              | SC                                                                                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                     | $2005_{(1)}$                                                                                                                                                                                                                                                                                                                           | ICU                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                              | Nef                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                     | $2004_{(1)}$                                                                                                                                                                                                                                                                                                                           | ICU                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                              | G&VS                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                     | $2004_{(1)}$                                                                                                                                                                                                                                                                                                                           | R                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2004 <sub>(7)</sub>                                                                                                                                                                                                                                                                          | ICU                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                     | $2004_{(1)}$                                                                                                                                                                                                                                                                                                                           | ICU                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                   | 9                                                                                                                                                                     | $2006_{(1)}$                                                                                                                                                                                                                                                                                                                           | ICU                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                              | OC                                                                                                                                                                                                                                                                                                                  | 4, 2                                                                                                                                                                                                                                                                                                                                 | 11                                                                                                                                                                    | 2004(1)                                                                                                                                                                                                                                                                                                                                | NS                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                              | Е                                                                                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                    | 2003(1)                                                                                                                                                                                                                                                                                                                                | ICU                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                              | R                                                                                                                                                                                                                                                                                                                   | 15, 3                                                                                                                                                                                                                                                                                                                                | 13                                                                                                                                                                    | $2005_{(1)}$                                                                                                                                                                                                                                                                                                                           | R                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                              | NS                                                                                                                                                                                                                                                                                                                  | 11, 15                                                                                                                                                                                                                                                                                                                               | 14                                                                                                                                                                    | 2003 <sub>(1)</sub>                                                                                                                                                                                                                                                                                                                    | D                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                              | G                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                    | 16                                                                                                                                                                    | 2004(1)                                                                                                                                                                                                                                                                                                                                | Ν                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                              | Ν                                                                                                                                                                                                                                                                                                                   | 16                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                        | Les E Enterinder C                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2003 <sub>(3)</sub>                                                                                                                                                                                                                                                                          | ICU                                                                                                                                                                                                                                                                                                                 | 6 (2), 12                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                        | ology, E—Endocrinology, G—<br>ocrine Surgery, G&VS—Gen-                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                              | G&ES                                                                                                                                                                                                                                                                                                                | 6 (2)                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                        | sive Care Unit, N—Neurology,                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                   | 6 (2)                                                                                                                                                                                                                                                                                                                                | Nef—Nepł                                                                                                                                                              | nrology, NS—Neurosurgery                                                                                                                                                                                                                                                                                                               | , O—Orthopedic, OC—Ortho-                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                              | Ν                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                      | c Surgery, R—Rehabilitation,                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                              | D                                                                                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                   | SC—Surgi                                                                                                                                                              | cal Outpatient Clinic                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Geriatrics, G&ES—G<br>eral and Vascular Surg<br>Nef—Nephrology, NS<br>pedic Outpatient Clin<br>SC—Surgical Outpatie<br>determined genotyp<br>(Table 8), was also a<br>ity to identify the pro<br>over the period of s<br>ses may be useful i<br>and migration of par<br>wards of an investig | eneral and Endocrine<br>ery, ICU—Intensive Ca<br>—Neurosurgery, O—Co<br>nic, PS—Plastic Surg<br>ent Clinic<br>bes over a 4-year per<br>assessed. This analys<br>esence of specific iso<br>everal years. We sug<br>in epidemiological<br>rticular bacterial stra-<br>gated hospital. It also<br>ns regardless of the | E—Endocrinology, G—<br>Surgery, G&VS—Gen-<br>are Unit, N—Neurology,<br>Orthopedic, OC—Ortho-<br>ery, R—Rehabilitation,<br>iod in hospital wards<br>is provides a possibil-<br>lates in various wards<br>ggest that such analy-<br>studies on the origin<br>ains between different<br>o gives the possibility<br>time period in which | resistance<br>DNA pol<br>ance to o<br>resistance<br>zole, spec<br>genetic n<br>them wer<br>using two<br>184 or 12<br>region no<br>I gene, w<br>in 94% v<br>Finally, t | ymorphisms in the CRI<br>chloramphenicol and g<br>e or susceptibility to tri<br>cific groups of isolates<br>narkers and antibiotic re<br>re shown to be statistica<br>o statistical tools (Tab<br>374 bp DNA length po<br>b. 2, located upstream of<br>with the Locus_tag = "A<br>with susceptibility to in<br>the highest genetic div | antly different patterns of<br>SPR coding region, resist-<br>gentamycin features, and<br>methoprim/sulfamethoxa-<br>were identified. Out of 19<br>esistance features, three of<br>ally significantly different<br>le 6, Fig. 1). In addition,<br>olymorphisms in genomic<br>of the GTP cyclohydrolase<br>ABTJ_01152", associated<br>mipenem, was identified.<br>ersity, determined within<br>t gamma/tau gene, can be |
| they were collected.                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                      | the DNA                                                                                                                                                               | polymerase III subuni                                                                                                                                                                                                                                                                                                                  | t gamma/tau gene, can b<br>bing of multidrug-resistan                                                                                                                                                                                                                                                                                                                                                                 |

Journal of Applied Genetics

Year of isolation of the strain

(number of genotypes determined)

2006(5)

Ward

ICU

NS

R

Е

Genotype

(number of isolates)

8 (3), 10, 9, 15

8 (3), 7 (2)

8 (2)

7

In conclusion, 16 different genotypes out of 51 MDR A. baumannii clinical isolates were identified in our study. Based on combined comparative analysis of genetic and

ndocrinology, Gery, G&VS-Gennit, N—Neurology, bedic, OC-Ortho-R-Rehabilitation,

rent patterns of g region, resistn features, and n/sulfamethoxatified. Out of 19 eatures, three of icantly different 1). In addition, sms in genomic cyclohydrolase 52", associated was identified. ermined within au gene, can be recommended for future genotyping of multidrug-resistant A. baumannii strains. We suggest that the optimized methods, proposed in this report and based on combination of Repeated Sequences and Whole Genome Alignment Differential Analysis (RS&WGADA), can be useful in epidemiological studies concerning specific strains of pathogenic bacteria present in investigated hospitals.

Table 8 Location of determined genotypes over a 4-year period in 
 Table 7 Presence of A. baumannii genotypes over a period of 4 years
hospital wards

 $2006_{(1)}$ 

2005(3)

2004(4)

 $2006_{(8)}$ 

Year(number of genotypes)

Hospital ward(s)

ICU, G&ES, SC

O, E, R, NS

ICU, NS, R

ICU

Genotype

15

8

Authors' contributions R.K.: data curation, investigation, writing original draft, writing—editing and review, supervision. A.N-Z.: data curation, investigation, writing—original draft and review. G.W.: writing—editing and review.

**Funding** This work was partly supported by the State Committee for Scientific Research, grant no. KBN 2P05D 10128.

Data availability Not applicable.

Code availability Not applicable.

## Declarations

**Ethics approval** The Bioethics Committee waived the need for consent from all patients from whom bacterial strains were isolated and used in this study. Decision no. KB 248/2016 was issued by the Local Bioethics Committee at the Nicolaus Copernicus University Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland.

Consent to participate Not applicable.

Consent for publication Not applicable.

**Conflicts of interest** The authors declare that they have no conflict of interest.

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

# References

- Adams MD, Goglin K, Molyneaux N, Hujer KM, Lavender H, Jamison JJ, MacDonald IJ, Martin KM, Russo T, Campagnari AA, Hujer AM, Bonomo RA, Gill SR (2008) Comparative genome sequence analysis of multidrug-resistant *Acinetobacter baumannii*. J Bacteriol 190:8053–8064. https://doi.org/10.1128/JB.00834-08
- Ahmed SS, Alp E (2015) Genotyping methods for monitoring the epidemic evolution of *Acinetobacter baumannii* strains. J Infect Dev Ctries 9:347–354. https://doi.org/10.3855/jidc.6201
- Antunes LC, Visca P, Towner KJ (2014) Acinetobacter baumannii: evolution of a global pathogen. Pathogens and Disease 71:292– 301. https://doi.org/10.1111/2049-632X.12125
- Barbe V, Vallenet D, Fonknechten N, Kreimeyer A, Oztas S, Labarre L, Cruveiller S, Robert C, Duprat S, Wincker P, Ornston LN, Weissenbach J, Marlière P, Cohen GN, Médigue C (2004) Unique features revealed by the genome sequence of *Acinetobacter* sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 32:5766–5779. https://doi.org/10.1093/nar/gkh910

- Ergin A, Hascelik G, Eser OK (2013) Molecular characterization of oxacillinases and genotyping of invasive Acinetobacter baumannii isolates using repetitive extragenic palindromic sequence-based polymerase chain reaction in Ankara between 2004 and 2010. Scand J Infect Dis 45:26–31. https://doi.org/10.3109/00365548. 2012.708782
- Irfan S, Turton JF, Mehraj J, Siddiqui SZ, Haider S, Zafar A, Memon B, Afzal O, Hasan R (2011) Molecular and epidemiological characterisation of clinical isolates of carbapenem-resistant Acinetobacter baumannii from public and private sector intensive care units in Karachi, Pakistan. J Hosp Infect 78:143–148. https://doi. org/10.1016/j.jhin.2011.01.029
- Karah N, Samuelsen Ø, Zarrilli R, Sahl JW, Wai SN, Uhlin BE (2015) CRISPR-cas Subtype I-Fb in *Acinetobacter baumannii*: evolution and utilization for strain subtyping. PLoS ONE 10(2):e0118205. https://doi.org/10.1371/journal.pone.0118205
- Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 15:3059–3066
- Martín-Lozano D, Cisneros JM, Becerril B, Cuberos L, Prados T, Ortíz-Leyba C, Cañas E, Jachón P (2002) Comparison of a repetitive extragenic palindromic sequence-based PCR method and clinical and microbiological methods for determining strain sources in cases of nosocomial Acinetobacter baumannii bacteremia. J Clin Microbiol 40:4571–4575
- Minandri F, D'Arezzo S, Antunes LCS, Pourcel C, Principe L, Petrosillo N, Visca P (2012) Evidence of diversity among epidemiologically related carbapenemase-producing *Acinetobacter bau-mannii* strains belonging to international clonal lineage II. J Clin Microbiol 50:590–597. https://doi.org/10.1128/JCM.05555-11
- Nabil K, Samuelsen Ø, Zarrilli R, Sahl JW, Wai SN, Uhlin BE (2015) CRISPR-cas subtype I-Fb in Acinetobacter baumannii: evolution and utilization for strain subtyping. PLoS ONE 10(2):e0118205. https://doi.org/10.1371/journal.pone.0118205
- Nowak-Zaleska A, Krawczyk B, Kotłowski R, Mikucka A, Gospodarek E (2008) Amplification of a single-locus variable-number direct repeats with restriction fragment length polymorphism (DR-PCR/ RFLP) for genetic typing of *Acinetobacter baumannii* strains. Pol J Microbiol 57:11–17
- Nowak-Zaleska A, Wieczór M, Czub J, Nierzwicki Ł, Kotłowski R, Mikucka A, Gospodarek E (2016) Correlation between the number of Pro-Ala repeats in the EmrA homologue of *Acinetobacter baumannii* and resistance to netilmicin, tobramycin, imipenem and ceftazidime. J Glob Antimicrob Resist 7:145–149. https:// doi.org/10.1016/j.jgar.2016.09.004
- Pourcel C, Minandri F, Hauck Y, D'Arezzo S, Imperi F, Vergnaud G, Visca P (2011) Identification of variable-number tandem-repeat (VNTR) sequences in *Acinetobacter baumannii* and interlaboratory validation of an optimized multiple-locus VNTR analysis typing scheme. J Clin Microbiol 49:539–548. https://doi.org/10. 1128/JCM.02003-10
- Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
- Shariat N, Dudley EG (2014) CRISPRs: molecular signatures used for pathogen subtyping. Appl Environ Microbiol 80:430–439. https:// doi.org/10.1128/AEM.02790-13
- Skariyachan S, Taskeen N, Ganta M, Krishna BV (2019) Recent perspectives on the virulent factors and treatment options for multidrug-resistant Acinetobacter baumannii. Crit Rev Microbiol 45:315–333. https://doi.org/10.1080/1040841X.2019.1600472
- Smith MG, Gianoulis TA, Pukatzki S, Mekalanos JJ, Ornston LN, Gerstein M, Snyder M (2007) New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev 21:601–614. https://doi. org/10.1101/gad.1510307

🖄 Springer

- Touchon M, Cury J, Yoon E-J, Krizova L, Cerqueira GC, Murphy C, Feldgarden M, Wortman J, Clermont D, Lambert T, Grillot-Courvalin C, Nemec A, Courvalin P, Rocha EPC (2014) The genomic diversification of the whole *Acinetobacter* genus: origins, mechanisms, and consequences. Genome Biol Evol 6:2866–2882. https://doi.org/10.1093/gbe/evu225
- Turton JF, Matos J, Kaufmann ME, Pitt TL (2009) Variable number tandem repeat loci providing discrimination within widespread genotypes of Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis 28:499–507. https://doi.org/10.1007/s10096-008-0659-3
- Villalón P, Valdezate S, Cabezas T, Ortega M, Garrido N, Vindel A, Medina-Pascual MJ, Saez-Nieto JA (2015) Endemic and epidemic Acinetobacter baumannii clones: a twelve-year study in a tertiary care hospital. BMC Microbiol 15:47. https://doi.org/10.1186/ s12866-015-0383-y
- Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B (2017) Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev 30:409–447. https://doi.org/10.1128/CMR.00058-16
- Zhou K, Aertsen A, Michiels CW (2014) The role of variable DNA tandem repeats in bacterial adaptation. FEMS Microbiol Rev 38:119–141. https://doi.org/10.1111/1574-6976.12036

**Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.