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1 Introduction

The authors of [1] present an interesting analysis of dynamic soil-structure interaction with references

and validation to the records from the Lotung large-scale seismic test site. In the numerical calculations

they use the commercial FE code Plaxis [5] with the Hardening Soil Small (HSS) constitutive model.

The authors claim that a satisfactory agreement is achieved between the experimental and numerical

results. However, usage of the HSS model may in general lead to a significant error known as overshoot-

ing. In particular, the problem may appear during a predominantly monotonic deformation interrupted

by an occasional small unloading-reloading cycle (e.g. due to a dynamic disturbance).

Admittedly, we use this discussion of [1] as the opportunity to present the overshooting problem in

the HSS and this discussion may be of more general interest. The HSS model originates from the

elastoplastic Hardening Soil (HS) model by Schanz [12]. It was extended for small-strain stiffness by

Benz [3, 4] and implemented into Plaxis FE code [5]. As a part of Plaxis the popularity of HSS is

growing in geotechnical community. Being aware of this popularity of the HSS [1, 2, 7, 11, 13, 14] we

decided to report on the overshooting.

The small-strain extension [3,4] was meant to improve the behaviour of the model making the reloading

stiffer than the first loading. The main source of errors is related to the instantaneous decay of the

history tensor H upon some even infinitesimally small strain increments. The consequences seem to

have been overlooked so far.

The HSS is claimed to be paraelastic in [1]. The authors cite this claim after [3] without due scrutiny.

Actually, the model is not paraelastic according to the definition in [3]. We may obtain accumulation

of stress upon closed strain cycles (or vice versa) despite the fact that the loop starts and ends at a

reversal point. Even the 1D version of the HSS is not paraelastic, let alone the full tensorial formulation.

The HSS definition of the reversal point is a source of additional complication here. Actually, one can

distinguish three different kinds of a reversal point depending on a comparison of non-coaxial tensors

(see the next section). Besides, we do not recommend to classify the HSS as an ”overlay model” because

there is no parallel coupling of different materials, neither in the computation nor in the derivation of

the model.
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In the following text the naming conventions used by Benz [3] are preserved. The numbers of the

original equations from [3] are written as (B6.x). In order to understand all technical details of this

discussion readers are advised to have [3] at hand.

2 History tensor

The evolution of history tensor H proposed in [3] is rather unusual for elastoplastic models because it

is driven by the total strain increments instead of the plastic ones. Hence, formally speaking, H is not

a hardening parameter and it can be affected even by infinitesimally small elastic strain increments.

First, the deviatoric portion ∆emn = ∆εmn − δmn∆εkk of strain increment ∆εmn is diagonalized

∆e = S ·∆e · ST or ∆ekl = Skm∆emnSln (1)

obtaining the eigenvalues ∆ekl = diag(∆e1,∆e2,∆e3), where Sln consists of the orthonormalized eigen-

vectors of the strain increment, as rows of the matrix S.

The history of strain Hij is proposed to be of the second rank. Roughly speaking, small Hij means

increased stiffness. Tensor Hij is initialized with zero components. In Appendix A of [3] on page. 168

we find the initialization1 of Wij = δij +Hij denoted in the code as Hist1 in the form

W 0
ij = δij +H0

ij = δij (2)

in agreement with the Box (B6.1) on page 67, wherein H0
ij = 0. In general, Hmn and ∆emn are not

coaxial. Hence, the transformation (B6.3), i.e.

Hkl = SkmHmnSln (3)

with Sln from (1) typically leaves some non-zero off-diagonal components2. The components on the

1The original implementation code sets Wij = 100 δij , because strain increments are presumably in [%]
2Comparing (3) with (B6.3) or (1) with (B6.2) we note that the transposition is missing in the original text. The error

(omission of transposition) is absent in the Fortran implementation

3

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


diagonal of Hkl i.e. H11, H22, H33 are stored as chi(1,:) in the Fortran code3. For the evolution

of Hkl Benz defines a diagonal so-called transformation matrix T km = diag(T 11, T 22, T 33) with

T 11 =
1√
W11

[
1 + h(∆e1H11)(

√
W11 − 1)

]
with W11 = 1 +H11 , (4)

and analogously: T 22 = . . . , T 33 = . . . , (5)

where h(t) = 1
2
(1 + sign(t)) is the Heaviside function. In particular4 (a): T11 = 1 if ∆e1H11 ≥ 0 and

(b): T11 = 1/
√
W11 if ∆e1H11 < 0. Judging by the Fortran code (line 131) the update of the history

tensor from time t(i) to t(i+1) is calculated as

H
(i+1)
kl + δkl = T km

(
H(i)

mn + δmn

)
T nl + ∆ekl (6)

in agreement with Box B.6.1 on page 67 but not with (B6.6). The transformation (6) applies to all

components of H(i)
mn and not just to the diagonal ones. After transformation (6) the ”diagonalization”

must be undone, viz.

H
(i+1)
kl = SmkH

(i+1)
mn Snl (7)

using the same matrix Sij as in (3) but with different multiplications. A reversal point of the strain

path is defined when the product ∆eiH ii (no sum over i) for any i = 1, 2, 3 is negative. After the update

(6) both H
(i+1)
kl + δkl and ∆ekl are diagonal. A scalar strain measure is defined by the product (B6.7),

i.e.

γHist =
√

3‖∆ekmH
(i+1)
ml ‖ / ‖∆ekl‖ (8)

It is slightly inconsistent with the Fortran code (lines 137-140 p. 169). The code calculates a different

3Note that the eigenvectors in matrix Trafo are columns and not in rows. Besides, lines 98-111 of the code could be

nicely abbreviated as Hist2 = matmul( Transpose( Trafo), matmul( Hist1 , Trafo) ) in Fortran 90

4Fortran code on page 169, lines 113-124
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norm, viz. ‖∆ekmĤ
(i+1)

ml ‖ 6= ‖∆ekmH
(i+1)
ml ‖ using just the diagonal components Ĥ

(i+1)

ml from H
(i+1)
ml . The

secant stiffness

G =
G0

1 + aγHist/γ0.7
(9)

is large if γHist is small. The material constants are G0, a and γ0.7.

Summing up, the deviatoric strain increment ∆e is diagonalised using rotation matrix S. The history

H is rotated with the same S but H is not coaxial with ∆e and hence S · H · ST is not diagonal.

Wherever the diagonal components of rotated matrices have opposite signs the history component is set

to zero. Next, three products of diagonal components pi = ∆eiH ii (no sum) are arranged in a vector

(p1, p2, p2). Its length γHist/
√

3 is used to reduce the stiffness, viz. (9). After such modification the

history is superposed by the diagonalized strain increment and then unrotated.

3 Overshooting

Let us consider a state with H 6= 0 accumulated upon a long monotonic strain path. Suppose, we

interrupt this path by an infinitesimally small disturbance. We choose it to be a small strain increment

∆e coaxial with H and directed roughly towards −H. In such case no rotation is required and since

all diagonal components of ∆e and H have opposite signs the HSS evolution rule renders H = 0.

Hence, even a single, infinitesimally small disturbance of the strain path may completely erase H. This

may strongly increase stiffness for all subsequent increments, here the continuation of the monotonic

loading, see Figure 1. In the literature this problem is known as overshooting and it appears in numerous

constitutive models. In particular, overshooting occurs in the hypoplastic model with the intergranular

strain [8] (IS). However, we observe it first after a considerable number of small strain cycles which

constitute a small elastic range. This effect is physically observed as a shake-down. In the small-strain

paraelastic model [9, 10] (a revised version of the model by Hueckel and Nova [6]) the difficulties with

overshooting have been overcome.
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infinitesimal cycles
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overshot by reset  

after each sharp reversal  

Figure 1: The overshooting caused by an infinitesimally small unloading-reloading cycle (red). One can
find various infinitesimal unloadings after which an arbitrary history tensor H vanishes completely.

4 Incorrect response of the HSS obtained with Plaxis

One can easily reproduce the above mentioned problems using the original implementation of the HSS

model in the latest version of the Plaxis FE code [5]. The element test of drained triaxial compression

of initially overconsolidated soil has been chosen as an illustration.

The following set of material constants are taken from [3] :

Eref
50 = 8500 kPa, Eref

oed = 6150 kPa, Eref
ur = 25750 kPa, m = 0.7, c′ = 6 kPa, φ′ = 28◦, ψ = 0◦,

γ0.7 = 3.0 · 10−4, Gref
0 = 60000 kPa, νur = 0.29, pref = 100 kPa.

The FE model for axisymmetric element tests (stress and strain fields are homogeneous) of dimensions

1×1m is meshed with 2 triangular elements. The vertical displacements at the bottom are fixed and the

standard horizontal fixities at the symmetry line are applied. The uniform loading is controlled sepa-

rately on the top and right sides of the sample (axial σa and radial σr stress components respectively).

The soil is weightless and small initial isotropic stress (p = 1 kPa) is applied. The initial overconsolida-

tion is set by the pre-overburden pressure (POP = 100 kPa) which results in preconsolidation pressure

pp = 83.3 kPa. The initial small strains are set to zero (the initial history tensor H is zero).

First, the soil is isotropically consolidated by applying the same axial and radial loading σa = σr =

−p0 = −50 kPa. Next, the soil is axially compressed under drained conditions keeping the radial stress

σr = const.
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monotonic
5 small load reversals       =

2 kPa

Figure 2: Left: the overshooting calculated with the HSS model in the triaxial compression curve caused
by 5 mini unloading-reloading cycles. Right: the first 2h of the axial deformation.
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Figure 3: Some hysteretic loops cannot be reproduced by the HSS model. The obtained response is not
closed in strain.

In the first calculation we demonstrate a typical numerical overshooting due to small-unloading reloading

cycles during monotonic triaxial compression. Two stress-strain curves, both from HSS calculations,

are compared in Figure 2:

• a monotonic increase of σa(t) calculated as the reference - the lower curve,

• a non-monotonic increase, of σa(t) with 5 small unloading-reloading cycles ∆σa = 2.0 kPa, applied

after reaching the level of every following 20 kPa up to shear failure - the upper curve.

The overshooting produced by the HSS upon non-monotonic loading is evident and consistent with the

evolution of the history tensor H analysed in the discussion.
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In the next calculation the HSS model is shown to violate the declared paraelastic behaviour. The

numerical element test is performed with the same parameters set and with identical initial conditions.

Starting from the isotropic consolidation p0 = 50 kPa the axial stress reaches σa = −120 kPa followed

by unloading to σa = −30 kPa and reloading back to σa = −120 kPa. If the reloading is interrupted

by a mini unloading-reloading loop (here with ∆σa = 10 kPa at σa ≈ −80 kPa) then the hysteretic loop

is not closed at σa = −120 kPa, see Figure 3. A truly paraelastic model should respond with a closed

εa − σa loop despite the mini sub-cycle.
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