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ABSTRACT New information and communication technologies have contributed to the development of the
smart city concept. On a physical level, this paradigm is characterized by deploying a substantial number
of different devices that can sense their surroundings and generate a large amount of data. The most typical
case is image and video acquisition sensors. Recently, these types of sensors are found in abundance in urban
spaces and are responsible for producing a large volume of multimedia data. The advanced computer vision
methods for this type of multimedia information means that many aspects can be dynamically monitored,
which can help implement value-added applications in the city. However, obtaining more elaborate semantic
information from these data poses significant challenges related to a large amount of data generated and the
processing capabilities required. This paper aims to address these issues by using a combination of cloud
computing technologies and mobile computing techniques to design a three-layer distributed architecture
for intensive urban computing. The approach consists of distributing the processing tasks among a city’s
multimedia acquisition devices, a middle computing layer, known as a cloudlet, and a cloud-computing
infrastructure. As a result, each part of the architecture can now focus on a small number of tasks for which
they are specially designed, and data transmission communication needs are significantly reduced. To this
end, the cloud server can hold and centralize the multimedia analysis of the processed results from the lower
layers. Finally, a case study on smart lighting is described to illustrate the benefits of using the proposed
model in smart city environments.

INDEX TERMS Mobile cloud computing, data processing, distributed architectures, smart city, urban
computing.

I. INTRODUCTION
Embedded systems have extended to new application areas
such as healthcare, the automotive industry, robotics, home
automation and smart cities, consequently leading to the
development of the Internet of Things (IoT). This new
paradigm consists of networking any device with processing,
sensing and computation capabilities ready to understand the
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environment. With the growing presence of wireless com-
munication technologies, such as wireless local area net-
works (WLAN), long-term evolution (LTE) communications
and radio-frequency identification (RFID), devices can be
connected to the Internet and remote monitoring and man-
agement performed through cloud applications. Ubiquitous
IoT-enabled features allow us to measure, infer and under-
stand environmental indicators in many application areas.
Combining the IoT paradigm and the cloud offers new pos-
sibilities for upgrading service quality [1]. Indeed, edge
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computing possibilities aim to handle the new processing
needs of IoT applications. This paradigm is near the data
sources and brings cloud resources and services to the edge
of the network in order to minimize latency minimization and
improve service quality [2].

One of the most common IoT scenarios is the smart
city [3], [4]. It is characterized by two main features: firstly,
a collection of distributed sensors that sense the city by
capturing andmeasuring a set ofmagnitudes onwhat is occur-
ring in any place, at any time. Secondly, suitable tools and
applications analyses data for generating value-added infor-
mation. This information helps improve decision-making,
anticipate problems to resolve them proactively and coordi-
nate resources in order to act efficiently. In this way, smart
cities are increasingly being equipped with sensing devices
to capture data. Examples of such are smart metering to
track utilities consumption, citizen traceability, transportation
facilities, etc. These data provide a wealth of value-added
services to citizens [5].

Edge computing provides competitive advantages in terms
of latency for processing the diverse data acquired by city
sensors [6]. This paradigm plays a key role in the develop-
ment of citizen-centric applications since edge computing can
be deployed on several layers at the edge of the network,
e.g. fog, mobile edge computing (MEC), ad hoc clouds, and
cloudlets [7].

Sensing devices can acquire a very large volume of data.
In addition, new big data capabilities enable data-driven smart
city transformation [8] and implementing sustainable initia-
tives for the city [9].

Sensors, especially image and video acquisition sensors
are becoming increasingly common in urban spaces. Their
purpose is to control traffic and improve public safety by
reducing and preventing crime. Latterly, video cameras have
been mass deployed in many cities, with cases like London,
Chicago and Vancouver where thousands of cameras are
installed [10]. However, in most cases, these cameras are
underused. The multimedia data captured by these devices
offer many more possibilities than the functions for which
they were installed. Analyzing the multimedia data captured
could effectively contribute to transforming the city into a
smart city.

There is much research on image and video analysis.
By applying computer vision methods and techniques to the
multimedia data collected by the cameras installed in the
urban environment, many aspects can be dynamically moni-
tored, which can help implement value-added applications in
the city.

Context awareness applied in smart city environments
introduces new ways of deploying user-centric services. For
example, detecting people walking down a street to activate
intelligent lighting systems, assessing the traffic flow level
to adjust traffic lights, estimating the number of people in a
street to ensure adequate safety services, identifying obstacles
on the road that may hinder traffic, detecting rubbish or other
items to manage as well as improve urban cleaning, etc.

These possibilities can significantly improve an IoT
paradigm’s development. However, there are significant chal-
lenges associated with the idea of using a set of cameras in
an urban area to obtain more detailed semantic data, among
which, the following are related to this research:
• Running complex algorithms for image processing and
computer vision has a high computational cost. In most
cases, acquisition devices are not powerful enough to
compute the required processes. In addition, not every
edge computing option is capable of providing a satis-
factory performance.

• Transferring raw multimedia data acquired by a large
number of sensors can saturate communication networks
and cloud storage systems.

• Analyzing a large amount of multimedia data from
multiple cameras can cause a bottleneck in the remote
servers.

• The computing power available to the centralized pro-
cessing servers bypasses the dynamic operations of
many video or image acquisition systems that capture
information only when motion occurs. The fact that
computing power is provided for the peak work may
mean that resources are underused most of the time.

This study’s main objective is aimed at researching how
to leverage cloud computing technologies and mobile com-
puting techniques and provide flexibility for supporting mul-
timedia data processing in IoT environments. The ultimate
objective is to use the images and videos captured by cameras
deployed in the city to provide information and knowledge
that can help design high-level applications for smart cities.

Accordingly, the technological developments of recent
times are providing acquisition sensors with Internet connec-
tivity and processing capabilities. The concept of IoT is now
evolving towards the development of complex systems with
smarter things [11], [12].
Our study’s key contributions can be summarized as

follows:
• Weprovide a constructive review to reach the knowledge
border both in terms of video and image processing tech-
niques and the distributed architectures for processing
them. We raise some useful findings to guide proposal
design to address intensive multimedia computing in
urban environments.

• We offer a distributed architecture that can benefit from
existing computing capabilities in acquisition devices
and cloud infrastructure and exploits the opportunities
of deploying additional middle-platforms along the net-
work to reinforce the performance so that it can handle
big multimedia data processing.

• We put the proposed architecture into practice, showing
how advanced services based on analyzing the image
and video data acquired from the city can be imple-
mented.

The main novelty of this work lies in extending the IoT
paradigm with mobile cloud computing techniques to build a
distributed architecture, enabling intensive urban computing.
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The rest of the paper is organized as follows: Section II
reviews multimedia data processing techniques and architec-
tures. Section III describes the proposed distributed architec-
ture. Section IV introduces a case study to better demonstrate
the proposal and its advantages for intensive multimedia
processing. Finally, SectionV provides some conclusions and
future directions.

II. BACKGROUND AND LITERATURE REVIEW
This section addresses the research conducted on multimedia
data processing. Firstly, we review image and video process-
ing techniques, followed by the architectures that support
them. A final subsection summarizes the contributions to
previous studies.

A. IMAGE AND VIDEO PROCESSING TECHNIQUES
There is a significant amount of research on this topic.
Only some of the recent and most representative works are
discussed.

The healthcare sector has traditionally been the subject
of intensive research on computer vision, image analysis
and pattern recognition [13], [14]. These areas have substan-
tially progressed during the past several decades, enabling
the development of applications for advanced predictive
analytics and therapy [15].

Video-based and image-based human detection has been
an important problem for decades, given its relevance to
a wide range of applications in robotics, intelligent trans-
portation, collision prediction, driver assistance, car safety,
road scene understanding, surveillance systems, demographic
recognition, etc.

Classic pedestrian detection methods involve first extract-
ing image features and then applying classifiers such as
support vector machines, adaptive boosting, decision trees,
among others to classify the features [16]. Dalal and Triggs
proposed one of the most widely used pedestrian detection
algorithms, which was characterized by the histogram of
oriented gradient (HOG) [17]. HOGdescribes the distribution
of the intensity and direction of the gradient of the local
image regions. Based on HOG, Felzenszwalb et al. defined
the deformable part model (DPM) [18], which studied HOG
relationships at different scales in the image pyramid. In order
to increase computational efficiency, the aggregate channel
features (ACF) algorithm is designed to first estimate the
HOG’s large-scale effectiveness and then omit the useless
parts in small-scale images.

Large amounts of training data and increased computing
power have led to recent deep architecture advances (typically
convolutional neural networks) on diverse computer vision
tasks: large-scale classification and detection, semantic label-
ing, etc. [19]. These results have inspired applying deep
architectures to human tasks [20], [21].

Deep learning is part of the family of machine learn-
ing methods and is the most promising method in modern
image recognition and semantic segmentation [22]. Because
of the computing power’s rapid development, due to the

graphics processing unit’s (GPU) parallel processing, deep
learning has recently made some breakthrough results within
the machine-learning field [23]. In short, many novel tech-
niques have been developed due to technology advances
and because mining techniques have matured. In addition,
the use of mobile apps contributes to the proliferation of these
methods [24].

Deep learning consists of multiple processing layers that
are capable of learning representations of data with mul-
tiple levels of abstraction. These methods are responsible
for huge improvements in the aforementioned applications,
speech and facial recognition, natural language processing,
bioinformatics, etc.

In 2014, Benenson et al. conducted a study on more than
40 pedestrian detection methods included in the Caltech
Pedestrian Detection Benchmark [25]. They determined
three main families of approaches: (1) DPM-based [26],
(2) deep neural networks (DNN) [27] and (3) decision
forests [28]. They concluded that overall, DPM variants,
deep networks and (boosted) decision forests all reached top
performance in pedestrian detection (around 37% miss-rate
on Caltech-USA).

Two main practical requirements are associated with
pedestrian detection methods: high accuracy and real-time
performance. Pedestrian detectors need to be accurate and
fast enough to run on systems with limited computing power.
As mentioned above, pedestrian detection methods have
employed a variety of techniques and features. Some have
focused on increasing detection performance [29], where
others centered on accuracy [30]. Recently, the novel range
of DNN-based methods have shown impressive improved
accuracy [19]. However, DNN models are known to be very
slow, especially when used as sliding-window classifiers.

Regarding the better features, the most popular approach
for improving detection quality is to increase or diversify
the features computed over the input image [16]. By hav-
ing richer and higher dimensional representations, classifi-
cation becomes somewhat easier, enabling improved results.
To date, a large set of feature types have been explored:
edge information, color information, texture information,
local shape information, covariance features, among others.
More and more diverse features have proven to systemat-
ically improve performance. However, DNNs possess one
great advantage: they extract features directly from raw image
values. Benenson et al. conclude that during the last decade,
improved features have been a constant driver for enhancing
detection quality, and it seems that this will be the case in
the coming years. Most of this improvement was obtained by
extensive trial and error. The next scientific step would be to
develop a more profound understanding of what makes good
features good and how to design even better ones (including
deep learning).

Apart from isolated multimedia processing, information
centralization and the cloud computing evolution enable big
data analysis and advanced result management [31], [32].
In this regard, storage and communication problems are
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added. Some proposals suggest that one solution would be
storing or transmitting a descriptive summary of the original
video. For example, Zhang et al. [33] propose a summa-
rization technique that enforces video stability and preserves
well-aesthetic frames, which is based on multitasking feature
selection to efficiently discover the semantically important
features. Xia et al. [34] propose a different solution that uses
intelligent monitoring and recording systems, which include
the front-end image acquisition system and the back-end
data processing platform. After the image data is recorded,
the front-end processing system analyses the image data and
automatically extracts some data from the passing vehicles
(time, location, direction, car color, registration plate num-
ber, etc.). The information is then sent to the back-end data
processing platform for deeper analysis, looking at factors
such as vehicle trajectory tracking and traffic state estimation.

As a conclusion, researchers agree that there is a need
for cleaning, filtering, feature extraction and simplification,
which is computationally expensive. For example, Ang and
Seng [35] summarized recent developments for big sensor
data systems in various representative studies on urban envi-
ronments, including air pollution monitoring, assisted living,
disaster management systems and intelligent transportation.
To deal with the high volume of data, the authors discuss
an intelligent data forwarder that is embedded in each data
source with context-aware capability. The key idea is to
reduce the data at each stage of the data collection/generation
process.

B. MULTIMEDIA ARCHITECTURES
This subsection reviews how architectures have evolved to
face the problems described in the previous subsection. These
proposals can be used to address similar problems related to
other IoT applications. Table 1 presents a summary of the
proposals.

Traditionally, multimedia data processing systems have
been equipped with elements that supplement specialized
local processing and provide the power required by appli-
cations. To this end, dedicated very-large-scale integration
implementations of image and video processing algorithms
have been designed for several platforms.

Some proposals are based on reconfigurable hard-
ware to make the architectures more versatile [36], [37].
These designs are implemented in reconfigurable Field-
Programmable Gate Array (FPGA) cards. Other alternatives
propose using systems composed of digital signal process-
ing (DSP) elements known for providing high performance
and low response times in multimedia processing [38], [39].
DSP and reconfigurable systems were also proposed to com-
bine these two aspects and build versatile systems with
high-throughput architectures that integrate into the same
system [40].

Graphics processor units (GPU) have evolved immensely
and the ease to which they can be programmed due to the
popularity of languages, such as computer unified device
architecture (CUDA), has promoted research into a large

TABLE 1. Architecture proposals for multimedia processing.

number of proposals based on these devices [41]–[43]. These
architectures provide intensive multimedia processing due to
their high level of parallelism. Other proposals aim to take
advantage of these processing units with other elements to
improve performance, such as combining GPUs with recon-
figurable architectures [44] and multicore central processing
units [45], [46].

Research addressing multimedia big data processing chal-
lenges [47], mainly recommends architectures and parallel
computing methods that take advantage of the high degree
of algorithm parallelization.

Hadoop and MapReduce have become the most fre-
quently used image processing platforms [48]–[51]. These
parallel processing techniques favor the use of computing
resources on the cloud for processing multimedia data, offer-
ing very competitive proposals for massive parallel process-
ing [52], [53]. Additionally, the cloud computing paradigm is
emerging as a solution to supply specific computing resources
for applications with massive computing needs. Computing
as a utility has overcome many of the barriers to designing
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processing intensive applications without requiring a large
proprietary infrastructure. Cloud-based multimedia data pro-
cessing has also been taking advantage of this trend, espe-
cially in those cases where a large multimedia database is
stored on the cloud [54], [55].

The great challenge associated with cloud-based multi-
media data processing is transmitting the information to
the remote server where it will be processed. Image trans-
mission techniques can mainly be divided into two cate-
gories: (1) improving transmission protocol design [56] and
(2) image data encoding and compression [57]. This can be
problematic for applications that process a lot of multimedia
information, due to a large number of sensors (e.g. cameras)
or the large volume of data collected (e.g. video streaming).
In these cases, transmitting raw information for remote pro-
cessing is not feasible and processing techniques are required
for the acquisition devices.

Mobile cloud computing (MCC) is a computational
scheme that distributes the processing load between acqui-
sition devices and cloud infrastructure. With this paradigm,
processes can be offloaded from the cloud to improve running
applications’ performance. There are some proposals that
apply these techniques to multimedia processing tasks to
improve their flexibility and performance [58], [59]. Some of
the most common applications include solutions that broad-
cast both image [60], [61] and video data [62], [63] among
acquisition devices and cloud servers.

A middleware layer can manage the running of tasks
between acquisition devices and cloud resources by deciding
how processes are distributed based on different aspects, such
as energy consumption, response times or priority [64].

The cloudlet infrastructure is a step forward in bring-
ing cloud resources closer to IoT devices. Cloudlet com-
puters should have the same general architecture as cloud
servers, but they are less powerful, smaller and less expen-
sive [65], [66]. Thus, the cloudlet’s physical proximity sim-
plifies the challenge of meeting the required bandwidth and
provides better response times [67]. In addition, if the num-
ber of user devices increases, the cloudlet can move this
extra processing load to core cloud systems in order to
meet the quality-of-service (QoS) requirements. This cloudlet
infrastructure is usually deployed within a local area net-
work (LAN) and can be accessed by wireless network con-
nections [68]. WLAN bandwidth is typically two orders of
magnitude higher than the wireless Internet bandwidth avail-
able on a mobile device [65]. Cloudlet deployment is specifi-
cally designed to provide flexibility to the cloud provisioning.
Consequently, it can be used for improving multimedia appli-
cations’ QoS in citizen-centric environments such as smart
cities [69]. With this feature, those companies interested in
boosting their applications’ performance can do so by placing
a cloudlet close to their users. For example, inside a shopping
center, a hospital, an airport or a city district.

Cloudlets would be decentralized, widely dispersed and
self-managing [70]. To this end, they are not as efficient as
core cloud computing because the resources are very sparse

in a wide area (for example, each city district may have
its own cloudlet) [71]. With respect to security and privacy
issues, cloudlet nodes are closer to the users and companies
providing the service own the platforms. As such, computing
the data in the cloudlet poses less of a risk than in a remote
server.

Finally, recent proposals recommend using cloudlets to
reduce power consumption and the network delay on multi-
media applications [72], [73]. In these proposals, cloudlets
are a widely distributed computing infrastructures that are
basically leveraged by nearby mobile devices.

C. FINDINGS
After reviewing the literature, some findings can be drawn
that justify and summaries our contributions to the previous
works:
• Reviewing architectures and video and image processing
in distributed environments proved that software and
technology have seen huge progress in recent years.

• Multimedia data processing and advanced data min-
ing techniques from cameras deployed in cities present
a critical complexity. This issue needs to be bet-
ter addressed by discovering novel paradigms and
architectures.

• Researchers agree that there is a need for pre-processing
before multimedia data is transmitted to remote cloud
servers in order to stop communication channels and
storage systems being saturated. However, these pro-
cesses are computationally expensive to be run only on
acquisition devices.

• The trend for upgrading the overall performance of com-
plex applications deployed in distributed environments
(such as IoT, mobile apps, etc.) is finding ways to use
the networks and Internet to provide additional com-
puting power to mobile devices and ‘things’. Proposals
are intended to add computational resources to the net-
work and bring more computing capabilities near to the
datasources and users.

• MCC techniques become a computational scheme that
partially overcome the previous problems, by allowing
processing load distribution between acquisition devices
and cloud infrastructure.

The research conducted in this paper focuses on addressing
the main challenge associated with intensively processing
multimedia data acquired on the fly in real IoT environments:
the difficulty in transmitting and processing the huge amount
of generated data.

The key idea is based on using the network and cloud
infrastructure to provide several computing layers and further
capabilities for intensive processing. Accordingly, the pro-
posal consists of gradually computing the tasks across a
distributed three-layer architecture, which includes the net-
worked ‘things’, cloudlets and cloud infrastructure. The idea
of introducing more computing power through cloudlets is
not new, however, what is relevant is integrating deployed
‘things’ and the cloud resources to build a comprehensive
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architecture to enhance IoT applications and enable intensive
multimedia data processing.

As a technical contribution, distributed architecture can
implement advanced multimedia applications and multime-
dia big data analysis from the information acquired by the
many sensors in a smart city environment. This architecture’s
potential to handle the intensive data processing in urban
environments is illustrated through a case study on a smart
lighting application.

III. ARCHITECTURE FOR MULTIMEDIA PROCESSING
This section is divided into three subsections that this research
proposal expands on. The first subsection describes the prob-
lem and the potential computing resources’ deployment for
intensive urban computing. The second subsection proposes
a flexible architecture and a computing model to address
distributed processing of multimedia data acquired in smart
city environments.

This section is based on an application that detects human
presence in multimedia data taken by surveillance cam-
eras [74]. The application context is an urban area where
several video cameras and street lamps have been deployed,
as shown in Fig. 1.

FIGURE 1. Application context deployment.

In this case, video cameras are context-aware sensors and
acquire knowledge about the environment, and street lamps
are actuators, in that they render the smart lighting service.
Both of them are considered IoT devices with communica-
tion capabilities. This scenario is part of an IoT system and
represents an example where the convergence of informa-
tion and communication technologies [75] can help develop
smart city services. In addition, this configuration is quite
common in today’s cities where the cameras are already
deployed to monitor traffic and provide surveillance. For
example, Fig. 2 shows the cameras deployed in the center
of Vancouver, where more than 2,000 video cameras are
installed. The information acquired can help make decisions
about traffic management and security issues in real time.

However, this large amount of information can be further
exploited to advance in smart city service development, for
example, intelligent systems based on live street analysis that
enables sustainable city implementation.

A. DISTRIBUTED MULTIMEDIA PROCESSING
The vast amount of data acquired by image and video sensors
and the complexity of multimedia big data applications may
require powerful datacenters and communication networks
with rich computing resources and very high bandwidths.

To address this challenge, the proposed architecture per-
forms the processing as close to where the data are acquired
as possible. To this end, communication needs are reduced
and the central server’s computing resources can perform
analysis and big data processing rather than the non-value-
added stages of multimedia methods. This approach aims to
produce the best response times and application performance.
Once the data has been processed (or partially processed),
the results can be sent to the central system for a combined
analysis.

Instead of transmitting raw multimedia data captured by
cameras, the example application relays the presence or
absence of people in images and videos. As can be easily
observed, this drastically reduces the amount of information
sent to the cloud server.

However, computing complex multimedia applications in
data capture devices would not be feasible. Implementing
complex multimedia algorithms requires powerful computa-
tional resources. In many cases, the infrastructure employed
by the cameras and acquisition sensors deployed does not
have or has very little processing capability. In this situa-
tion, device hardware has to adapt to the application needs,
incurring an economic cost, which is unaffordable in many
cases. Moreover, in most scenarios, installing reconfigurable
coprocessors, GPUs or DSP in the acquisition devices to
process the algorithms is not physically possible, so their
computing power is limited.

Furthermore, moving the processing to a central server in
the cloud does not seem to be the best choice for multimedia
data. Scenarios with several acquisition sensors require a lot
of bandwidth to transmit raw multimedia data. In addition,
this configuration requires a very powerful centralized cloud
infrastructure capable of simultaneously processing the com-
putational load of all the data with acceptable response times.

B. PROPOSED DISTRIBUTED ARCHITECTURE
To address the above issue, this research aims to design a
flexible architecture where processing resources are deployed
at various levels depending on the acquisition sensors’ capa-
bilities, installation possibilities and the cloud infrastructure.
With thismodel, multimedia data applications can be partially
processed at each level according to the operating condi-
tions and the execution context for the best performance.
The proposed architecture is based on our previous works
on distributed computing for IoT and cyber-physical sys-
tems [76], [77]. In addition, the findings from the review
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FIGURE 2. Video cameras in Vancouver city center (∼ 5 km2). Source: Vancouver public space network
(http://vancouverpublicspace.ca/).

of related work led us to propose a distributed architecture,
as it would take advantage of the flexibility and possibilities
associated with providing several computing layers for mul-
timedia processing.

The proposed architecture configuration adds an interme-
diate processing level between the acquisition sensors and
cloud infrastructure. This layer, known as a cloudlet, has
advantages over processing in the remote cloud server [65],
as it can bring the computing closer to where the data is
generated, distribute the processing cost between intermedi-
ate nodes and reduce the need to communicate with remote
cloud servers. In fact, this cloudlet layer is a mini cloud
server that can be equipped with specialized processing units
(such as GPUs) and can be deployed by city managers where
needed. Because of this, it is the most suitable edge com-
puting option to handle the huge computing needs associated
with image and video processing in a city context.

This distributed architecture’s objective is to share multi-
media processing between acquisition devices, the interme-
diate cloudlet layer and the cloud infrastructure. This design
enables cloud servers to focus on the application operation
and high-level analysis of the multimedia algorithms’ results
without having to allocate resources to process them.

The intermediate results do not need to be temporarily
stored in the cloudlet or other middle layers. The results can
be sent to the server on the fly since it is responsible for the
multimedia application’s timing.

Fig. 3 shows a flow chart of the proposed architecture.
As the figure shows, the acquisition devices are connected to
a network of second-level cloudlet elements that contribute to
computation. Lastly, a final layer consisting of cloud servers

FIGURE 3. General scheme of the infrastructure of the proposed
architecture.

and databases accessible via the Internet performs the deep
analysis.

Communication technology evolution has been one of the
key features that has enabled the smart city paradigm. Cur-
rently, several alternatives allow ‘things’ to interact with each
other while ensuring network connectivity [78], [79], [80].
Acquisition sensors can be connected to a local area net-
work (LAN) via wireless technology such as Bluetooth low
energy (BLE), WiMAX or Wi-Fi. In this regard, a novel
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Wi-Fi technology based on IEEE 802.11ah has been designed
for smart city contexts [81]. It has low power consumption
and long-range sensors and controllers. In addition, mobile
telecommunication technology such as LTE can be also a
good choice to connect the devices. In this case, the available
bandwidth is typically two orders of magnitude lower than
WLAN bandwidth [82].

The cloudlet layer can be on the sameWLAN as the acqui-
sition sensors with the objective of reducing latency and jitter.
This proposal supports multiple design configurations. In the
example described, the cloudlets can be installed on every
street, in a group of streets or city district according to the
devices’ connectivity options and the processing capabilities.
Efficiency criteria must be met before deciding to deploy
the cloudlet infrastructure. The results generated by all the
cloudlets are sent to the cloud server, where they are analyzed.

Based on the above, the available computing infrastructure
can be defined as follows:

Computing Infrastructure = {L1,L2,L3} (1)

The acquisition devices (Layer L1) can be heterogeneous
with different data processing capabilities. This hardware
consists of fixed cameras for traffic and security applica-
tions or mobile cameras installed on vehicles and/or worn by
people.

The second computing level (Layer L2) introduces flexibil-
ity to the model for multimedia application processing. This
level performs part of the processing and reduces the amount
of data transmitted to the cloud server (Layer L3). This model
is in line with the MCC paradigm, in which the devices can
offload some of the processing to the cloud. In this case,
the distributed architecture allows the ‘things’ to outsource
their workload to the cloudlets for partial processing and, as a
result, reduces the communication costs with the cloud server.

The operation mode that outsources the workloads among
the layers is usually based on a client-server methodol-
ogy [66]. This method defines how to link the things with the
cloudlets, and the latter with the cloud server. Client-server
communication requires the deployment of specific services
to carry out the offloading and perform the interactions.
Thus, the network infrastructures must include the applica-
tion code as a service to be invoked by the architecture’s lower
layers [83].

The proposed architecture is one ofmany possible architec-
tures for distributed data processing. However, this approach
significantly reduces the need to communicate data to a
central element. This feature favors the execution of big
data applications in the cloud system, processing the results
transmitted by the lower levels and provides a platform that
is ideal for handling the increasing amount of acquired data
in urban environments.

In addition, this proposal can be considered from a service-
provision point of view. In consequence, Figure 4 shows
the service architecture of this distributed approach where
services are divided between different architecture layers.
From this point of view, we can infer three layers in general

FIGURE 4. Service architecture.

terms: the sensor/actuator layer, the networking layer and
the application layer. Each layer has specific features and
provides its own services.

Our proposal’s main contribution to this service architec-
ture is that all layers provide computing services, and this
helps in developing intensive urban computing of multimedia
data applications since the advanced and complex calcula-
tions involved can be divided among all infrastructure layers.

This distributed architecture is particularly suitable for
intensive data processing because it provides configuration
flexibility and a scalable application execution through the
computing layers. In contrast, other proposals concentrate the
processing power in local computers or in remote systems on
the cloud.

The proposal’s key feature lies in deploying this multilevel
scheme in urban environments to exploit the increasing num-
ber of image and video acquisition devices being installed,
and where a cloudlet infrastructure can be easily deployed in
order to scale advanced smart city applications. This architec-
ture allows a combination of network computing resources:
from local processing in acquisition devices (where available)
to near and remote cloud computing.

The proposed architecture goes further than the MCC
paradigm as the cloudlets are ideally installed near the
data acquisition and could configure LANs to provide high
communication speeds.

After a general overview of the architecture, we shall out-
line the main aspects involved in distributed computing for
massive multimedia processing.

Firstly, multimedia applications are considered to consist
of a list of tasks that are executed sequentially. The general
inputs’ application is a multimedia flow acquired by video
and/or image sensors, and a task’s results are the inputs for
the next task:

Application ≡ {t1, t2, . . . , tn} (2)

These tasks (ti) can be processed at different processing
and platform levels (Li), for example, on the acquisition
device itself, on the cloudlet infrastructure or on the cloud
computing server. The intermediate platforms and the cloud
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infrastructure collect data from various lower level elements.
Each layer has a set of computing platforms, which can
be heterogeneous and have different processing capacity
according to their characteristics. Furthermore, there may be
platforms that are specifically capable of performing certain
task types (multimedia, cryptographic, etc.). To this end,
the intermediate layers, such as cloudlets, can be equipped
with specific computing capabilities depending on the type
of workload they usually run.

Secondly, the time it takes to compute the application
(Computing_timeApp) is the time needed to compute each
task. The computing time of a certain task (ti) at a layer (Lj)
can be formalized as follows:

Computing_time (ti)∗ ≡ CmpLj(ti)
∗in time units (3)

In addition to computational cost, the network commu-
nication cost must be also taken into account in the MCC
paradigm, i.e., moving the tasks between the platforms aswell
as the data they need. Therefore, there is a second component
in the overall time cost of computing a certain task (ti) at a
layer (Lj):

Network_time(ti)∗ ≡ NetLj(ti) ∗in time units (4)

Of course, the cost will be null when the task does not move
between layers.

The volume of each task’s input data is associated with
this network time cost. It is formulated in the following
expression:

Input_Data(ti)∗ ≡ Data(ti) ∗in data volume units (5)

where Data(t1) = multimedia input.
Usually, for video/image analysis algorithms, the required

data tends to decrease as the algorithm progresses. That is,

Data(ti+1) ≤ Data(ti) (6)

This is one of the middle layers’ main advantages. By com-
puting part of the workload in the cloudlet, communication
costs are dramatically reduced. Thus,

Data(Li+1) ≤ Data(Li) (7)

where Data(Li) is the data input arriving to Layer i.
From the previous formula, the overall time cost of the

Application can be expressed as follows:

Computing_time∗App =
∑

i
[CmpLj(ti)+ NetLj(ti)]

∗in time units (8)

where j is the layer where each ti is processed.
According to the scheme in Fig. 3, the data flow and

platforms’ connectivity define a tree of connected platforms
in which a set of acquisition devices is connected to a cloudlet
platform and a set of cloudlets is connected to the cloud
computing infrastructure. In this architecture, the tasks may
move depending on the offloading configuration. The pos-
sible options enable flexible multimedia application imple-
mentation in order to optimize any of the system parameters,

such as minimizing the response time, reducing the data
flow through the communication network, minimizing the
acquisition devices’ energy consumption and monetary costs
associated with using cloud services, increasing the cloud
system’s processing time, etc. Accordingly, the proposed
distributed architecture means that numerous task execution
configurations can be designed, depending on the applica-
tion type, execution restrictions or operating conditions, tak-
ing into account the aspects above. In any case, a suitable
scheduling function is needed to decide where to offload each
of the application tasks [64], [77]. However, this architecture
is intended to move the processing flow from the acquisition
devices to the cloud infrastructure. This is how advanced
smart city applications’ increasing requirements could be
met, especially those associated with analyzing data acquired
by multimedia sensors.

Although possible, a data stream back from the cloud to the
cloudlet or the sensors is not common. Hence, the expected
ideal configurations are oriented towards incrementally dis-
tributing the application processing at each level with the
objective of reducing the communication needs and moving
the specialist multimedia analysis tasks to the cloud process-
ing infrastructure. Fig. 5 illustrates some possible configu-
rations depending on the characteristics of the infrastructure
deployed.

FIGURE 5. Distributed processing configurations. (a) Device processing.
(b) Cloudlet processing. (c) Cloud processing. (d) Shared processing.

In Fig. 5, the (a) configuration corresponds to an on-device
processing scheme. It requires powerful acquisition devices
to perform most of the processing and transmit the results to
the cloud system. This scenario could occur in applications
where data are collected by smart mobile devices with enough
computing power. The (c) configuration corresponds to a sce-
nario in which the acquisition devices lack processing power,
are limited to data acquisition and transmit the data to a
central element for processing. The configurations (b) and (d)
distribute the tasks among the three levels to different degrees.

IV. CASE STUDY
A. APPLICATION DEFINITION
In order to illustrate how the proposed distributed architecture
functions, this section describes a case study in which the
proposed architecture is used to process the multimedia data
acquired by cameras deployed in a city context similar to the
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TABLE 2. Comparison of smart lighting implementation methods.

one shown in Fig. 1. The case study is a simplified version of
a smart lighting application for smart cities. This application
aims to optimize street lamps’ power consumption and pro-
vide a better service to citizens. In this application, the urban
street lamps light up when humans are in the street.

Smart lighting applications are a recent trend that has
arisen as a result of the new global awareness of the dangers
of climate change. The final objective is to use energy in
the most rational manner possible by providing night light
to the streets only when necessary. This would make cities
more sustainable and comfortable since it guarantees optimal
control of light pollution. Currently, as a first step, many cities
are replacing old sodium street light bulbs with LEDs, which
are much longer-lasting and consume less energy. The next
step is turning the light on only when needed.

The night luminosity can be graduated in three levels
with different power consumptions: {no_luminosity (0%),
low_luminosity (20%), normal_luminosity (100%)}. During
the day, the luminosity level is no_luminosity, at night,
when there are pedestrians on the street, it is set to nor-
mal_luminosity and, at night, when there are no pedestrians
on the street, it is low_luminosity. This level means that the
city streets are not in complete darkness, but the street lamps
only consume 20% of energy.

The existing proposals for smart lighting are mainly
based on the use of presence detectors installed along the
street [84], [85] or on each street lamp [86]. These devices
basically consist of an infrared sensor that detects pedestri-
ans [87], [88]. This type of technology is used by the most
common commercial solutions around the world [89].

Other recent methods use Wi-Fi connections to detect
human presence [90], [91]. They are based on smartphones
and other devices with Wi-Fi connection having a high pen-
etration rate among the population. Finally, novel proposals
aim to learn from the individual behaviors and context con-
ditions to adapt to the environment luminosity accordingly.
At present, these proposals are being developed for indoor
scenarios [92], [93].

The sensor devices and streets lamps need to be connected
in order to send the presence detection to the street lamps or
from one street lamp to another. In all cases, these proposals
involve adapting the existing lamps with new hardware and
communication capabilities.

In this case study, our proposal consists of using standard
unmodified street lamps and video cameras deployed for
traffic and surveillance, to detect human presence. All of the
‘things’ involved can communicate through new machine-
to-machine wireless communication technologies at a low
cost [94].

This case study does not specifically focus on solving
this issue. However, using video cameras to provide value-
added services to the user in city environments offers several
advantages when compared to other methods. Table 2 shows
a simple comparison in regard to some aspects related to
precision and installation.

The proposed architecture makes handling the multimedia
data possible and can enrich the applications based on the
data acquired from the city’s video cameras. As mentioned,
in most cases, cameras are already deployed for traffic and
surveillance purposes.

We have described a simplified version of the application
to ensure that we do not discuss details that are not relevant
for the purpose of this paper. It can be decomposed on some
common tasks related to processing multimedia data from
digital signals in a possible smart city context. Based on well-
knownmethods, the smart lighting application taskset used in
this study is shown in Figure 6.

This case study will focus on analyzing the feasibility of
the distributed architecture in handling intensive data pro-
cessing from heterogeneous acquisition devices. We analyses
the proposal’s ability to perform incremental processing
techniques that reduce the data volume as well as the
communication needs.

Other performance aspects such as the processing cost and
power consumption are not critical since the distributed archi-
tecture provides sufficient computing resources at cloudlet
and cloud levels to meet the computation needs.

A brief description of the tasks is as follows:
t1 – capture: data from streaming video cameras are

taken. The amount of data depends on the frames per sec-
ond (fps) and frame resolution in pixels. Typical values
for video surveillance cameras are: 30 fps and 720 ×
480 pixels [95]. These data are usually compressed, for exam-
ple, with MPEG-4 video compression standard, and between
1–2 Megabits per second (Mbps) are produced. In a con-
text with thousands of cameras (e.g. Vancouver city center),
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FIGURE 6. Smart lighting application decomposition.

communication networks of several Gbps bandwidth are
required to transmit these data to a central server to be pro-
cessed.

t2 – filter: a filtering step is performed to improve the
contrast and luminosity in shaded areas or evening environ-
ments. The data flow resulting from this stage is equal to the
previous one.

t3 – candidate selection: some areas are selected in the
image, which are candidates for containing a human figure.
This is a simple procedure carried out by movement detection
techniques, included in many modern cameras. As a result,
a set of image areas that could contain human forms is
obtained. These areas can represent up to 10% of the image
in those cases where people are walking along the streets.
For the purpose of this case study, we consider pedestrian
presence at all times of the day.

t4 – features extraction: characteristics of each area of the
candidate image are extracted. The features can be computed
from low-level information: such as edge, texture or color.
At this point, visual information does not need to be transmit-
ted. Only feature sets are required. The features are composed
of a data structure for each area depicting the captured form.
Theymay be formed by binary contours, the nearest distances
to the edge pixels, histograms of oriented gradients, etc.
These data structures are much smaller than the area of the
image they represent. It is set to 5KB size for the candidate
area’s features.

t5 – generation of human descriptors: the descriptors are
generated by combining the features. We consider that this
information is half the size of the previous input.

t6 – classification: classifiers and learning algorithms.
Once the human descriptors are extracted from the candi-
date areas, this step classifies them as human or non-human.
At this point, we know if the image contains one or more
humans. The data produced in this stage correspond to a bit
vector related to the presence or absence of humans in the
image as well as attributes associated with them, such as size,
location, etc.

t7 - behavioural & predictive analysis: The presence or
absence of a human in the images provides enough infor-
mation to increase or decrease an area’s luminosity. How-
ever, for comfort and convenience, turning street lamps on
and off as someone walks past them is not ideal. As such,
street lamps should be turned on and kept on to ensure
that the person’s path is lit up. For this purpose, pedestrian
behavioural analysis techniques can be applied to predict
the person’s movements and anticipate lighting the lamps.
This stage requires deeper analysis to be run in the cloud
level, so only the information extracted to predict pedestrian
behavior is transmitted to the architecture’s upper level. As a
result, selective lamp lighting proposals are produced.

t8 – light actuator: the light level to be provided is indicated
to each lamp or set of lamps.

Methods for conducting the previous tasks are not part
of this research. Well-known methods from state-of-the-art
developments can be used in each case.

In this example, the distribution of tasks among the pro-
cessing levels is dynamic and depends on the number of
cameras there are for each cloudlet element and the cloudlet
availability. Additionally, a centralized cloud infrastructure to
address processing is available.

For the proposed case study, both the cloudlet system
and the cloud infrastructure can run a wide range of tasks.
A typical configuration example could be the following:
• Tasks run by the camera (L1): usually{1..3}
• Tasks run by the cloudlet (L2): usually{4..5} + unusu-
ally{2..3}

• Tasks run by the cloud computing infrastructure (L3):
usually{6..8} + unusually{2..5}

The usually tasks are those that should be run by each
part of the architecture. The unusually tasks correspond to
tasks that could be performed if the lower level were to find
it difficult or is not able to. For example, if higher perfor-
mance cameras are combined with others already deployed
without processing capacity, the tasks assigned to the lower
performance cameras should be run by the cloudlet and, if it
is not capable of doing it either, they should be run by the
cloud infrastructure. Fig. 7 illustrates the distribution of tasks
for the case study based on the configuration model shown
in Fig. 5.c.

In this regard, the proposed architecture presents a
flexible model that combines a heterogeneous acquisition
device infrastructure. If the technology’s deployment scheme
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FIGURE 7. Task configuration.

allows it, the proposed model enables big multimedia data
processing at various levels, because the generated data vol-
ume is reduced as the processing progresses, and the chal-
lenges associated with its massive processing are reduced.

This approach drastically reduces the volume of data flow-
ing through the communication network, since each task
produces results that are smaller than their inputs. With
the proposed task distribution, the amount of information
transmitted to the cloudlet element reduces the flow of data
captured by each camera, and the processing sent to the cloud
infrastructure by each cloudlet, in turn, is drastically lower.
With this scheme, the cloud layer can absorb massive multi-
media processing applications and can focus on performing
intelligence or big data tasks on the information gathered
by a multitude of sensors, rather than be distracted by low
value-added processes.

This architecture is highly scalable, as it can extend the
area of action by simply incorporating new acquisition and
cloudlet elements where needed without altering the overall
scheme of operation.

B. SIMULATION RESULTS
This simulation’s planned configuration consists of a set of
cameras installed at various crossroads in the city. In addition,
each city district has a cloudlet that provides a service to a set
of six to 20 cameras and the whole city can access a cloud
processing service. The cloud infrastructure size depends on
the area being monitored, the services that can be deployed
in the cloudlets and the cameras themselves.

Fig. 8 shows an example of this infrastructure for a city
district that consists of 15 blocks, 12 streets and a square
occupying a total area of 8 ha. For this example, we have
11 cameras with different characteristics and processing
capacities. These cameras may have been initially deployed
for traffic management. They monitor a total street length of
around 10 km. Fig. 8 shows a possible location of the installed
cameras.

The 11 cameras shown in the previous figure are of three
different types, showing how the proposed architecture can
manage the heterogeneity of ‘‘things’’:: yellow cameras have

FIGURE 8. Urban camera distribution.

no processing power and only capture data {t1}; orange
cameras, with reduced processing capacity, capture the data
and apply a filter to them {t1, t2}; red cameras are advanced
and can identify image areas with motion {t1, t2, t3}.
In this example, street cameras have been simu-

lated through public webcams. As such, video stream-
ing was taken from an EarthCam public webcam (https://
www.earthcam.com/) which links video streams from thou-
sands of web cameras around the world. We used the ‘‘Abbey
Road Crossing’’ webcam (https://www.earthcam.com/world/
england/london/abbeyroad/?cam=abbeyroad_uk) (Figure 9a)
installed in London (UK) because it is directed at a
known place, where some street lamps are easily identified
(Figure 9b). Of course, this is a very busy area due to
its popularity. As such, the people flow is higher than in
other standard areas of the city. This camera has an average
dataflow of 2 Mbps. This experiment’s advanced cameras
(orange and red) were simulated by a Raspberry Pi 3 B +
device. The cloudlet and cloud server were simulated by a
laptop and a workstation respectively. Table 3 shows the main
features of the infrastructure used to simulate the architecture.

This experiment’s implementation uses public software to
take the frames from the video streaming source [96] and
select human figures (task t3) [97].

Human presence was detected every second from the video
streaming source provided by the webcam (Figure 9c). In this
way, data heterogeneity in this application is reduced. Ana-
lyzing the video streaming from webcams becomes an image
analysis process. This frequency is enough to maintain the
quality, taking into account the normal speed pedestrians
walk along the street (1.5 m/s). The frames only need to
be stored while they are processed and can be subsequently
deleted.

Simulated smart cameras’ performance (yellow and
orange) enables them to perform their tasks (frame capturing,
filtering and human candidate selection-motion detection) in
less than 250 ms in the worst case. The cloudlet performs the
feature extraction from each frame in 300 ms and the cloud
server detects human presence in 350 ms.

In this experiment, the cameras and cloudlets were con-
nected to the same WLAN by means of our Wi-Fi connec-
tion (IEEE 802.11ac), while the cloud server was deployed
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FIGURE 9. ‘‘Abbey Road Crossing’’ webcam. (a) Picture taken 10th December 2018. (b) Number of visible street lamps (including some Belisha beacons).
(c) Pedestrian identification.

TABLE 3. Infrastructure of the distributed architecture.

outside this LAN and was accessible via the Internet.
An urban environment like the one depicted in Figure 8
should use the new IEEE 802.11ah protocol in order to min-
imize the communication infrastructure and Wi-Fi hotspots.

The method to perform the code offloading in this experi-
ment is via the client-server communication mode. As such,
the acquisition devices are thin clients, the cloudlet is config-
ured both as client and server and the cloud machine always
works as server.

On the other hand, perceived delay and jitter in our exper-
iments have remained low (<25 ms). These results are in
line with other studies on IEEE 802.11ac, which prove that
a high data rate is compatible with a low mean delay and
mean jitter [98]. In addition, these features are not critical for
this kind of application where the response time in accessing
the server (cloudlet or cloud) does not affect the outcomes
achieved.

Following these results, the periodicity established
(1 frame/second) is enough to perform all the calculations in
the frame during this time. Nevertheless, a higher period can
be established (1 frame/10 seconds) once the motion has been
detected in the video stream since the tasks involved in human
detection are more computationally intensive. In this way,
the infrastructure described in Table 3 could handle the set
of cameras deployed in the urban scenario shown in Figure 8.

During the experiment, we analyzed live webcam video
streaming for a whole night (15 h 32 min). Human presence
was detected in 8,845 frames, i.e., for 2 h, 27 min and 25 sec,
representing 15.81% of the total time.

In this example, the cloudlet infrastructure crucially
collaborates in processing and reducing the storage and
communication requirements. Thanks to this multiple-layer
architecture, the data flow received by the cloud infrastructure
are too small for the set of cameras, meaning that the example
can be easily extrapolated to all areas of a medium-sized city.

Taking this data as a reference for the 11 cameras used
in the simulation, the amount of data generated as a result
of each task and the data input arriving towards the district
cloudlet and the cloud server is shown in Table 4.

For video streaming scenarios, previous studies on the
IEEE 802.11ah protocol show that there is an inverse pro-
portion between the number of acquisition devices and the
maximum attainable data rate [99]. Therefore, a data-flow
of 2 Mbps for each camera can easily saturate the network
bandwidth in a city environment. In this situation, the smart
cameras and the cloudlet layer play a vital role by reducing
communication needs. As can be observed in Table 3, the data
communicated to the cloud can be reduced from 0.59 TB to
475 MB per day.

With regard to the results of the smart lighting application
for the study area, considering the defined luminosity levels
and an average number of pedestrians at night-time of around
15% of the time, the system can produce energy savings
of 68%.

Based on the simulation, the area should be provided with
artificial light for a period of 15 hours and 32 min. It is
important to take into account that some neighborhoods are
busier at night (city center, tourist areas, etc.) than others
(residential, commercial, etc.). In addition, fewer artificial
light hours would be needed during the summer. Considering
the annual average, we use12 h of night/day as a reference.
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TABLE 4. Amount of data generated. (Data per second/data per night).

We identified 10 street lamps (Figure 9b) in the analyzed
scene shown in Figure 9. We suppose a standard power
consumption of 250 W for each one and a combined output
of 2.5 kWh. For a standard area, such as that shown in
Figure 8, we suppose that 300 street lamps have a combined
output of 75 kWh. In these small-scale cases, the smart
lighting system can achieve savings of 1.7 kWh and 51 kWh
respectively every day.

V. CONCLUSIONS
Designing modern applications for cyber-physical systems
and IoT environments aims for architectures able to address
the high computation and communication requirements of
multimedia data collected. We have presented a review of
the proposals for video and image processing in distributed
environments in order to identify the main challenges and
current research lines.

In this work, we have described a distributed architec-
ture that can perform data-intensive application processing.
The proposal overcomes the main computation issues found
and can simultaneously process multimedia data collected
from many images and video sources. The combination of
the network’s computing resources, from locally process-
ing the things to near and remote cloud computing, enables
the deployment of IoT environments where data-intensive
processing is needed.

This distributed multilevel scheme is a novel MCC
paradigm approach. The architecture consists of three com-
puting layers that execute complexmultimedia analysis tasks:
the acquisition devices, the middle computing cloudlets and
the cloud computing infrastructure. The first layer takes
advantage of the new data acquisition devices’ increasing
computing capabilities. For example, smartphones and other
mobile devices could be used in this scheme. The second
layer explores the idea of introducing a computing infras-
tructure close to where the data is taken in order to receive
results from a few acquisition devices. This infrastructure is
known as a cloudlet. The third layer is the cloud computing
server where all the previous partial results are transmit-
ted and the final analysis is conducted. The specifications

provided are useful for designing optimal distributed
configurations.

With this architecture, intensive, workload-dependent data
applications are distributed through three computing layers
and the communication needs are increasingly reduced at
each layer. This means that raw data do not need to be
transmitted to the central cloud server to be processed. To this
end, IoT applications take greater advantage of the cloud
infrastructure’s potential because they can focus on high-
level services, such as analyzing the big data associated with
pre-processed results received.

The case study shows how an advanced application for
smart city environments can handle multimedia data from
many deployed acquisition devices using the proposed archi-
tecture. The example describes the distributed processing
through the architecture layers and the data reduction that
takes place. Implementing the smart lighting application
usingmultimedia data from video cameras was possible using
the proposed architecture. As a result, the proposal adds ver-
satility to the IoT deployments to perform value-added appli-
cations and progress in developing the smart city concept.
Furthermore, it provides a scalable solution for deploying
such applications in urban environments.

For future research, we plan to study other distributed
multimedia applications, particularly bigmultimedia analysis
applications. In addition, we aim to extend the architecture
to n computing layers in order to increase flexibility. Other
aspects of the proposals need further research, such as the
cloudlets’ locations. Furthermore, we plan to build a proto-
type of the proposed smart lighting system and put it into
practice in a real city area.
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