] | the International Journal Volume 7
RANS Av on Marine Navigation Number 2
http://www.transnav.eu and Safety of Sea Transportation June 2013

DOI: 10.12716/1001.07.02.17

Distributed Evolutionary Algorithm for Path Planning
in Navigation Situation

R. Smierzchalski, L. Kuczkowski, P. Kolendo & B. Jaworski
Gdansk University of Technology, Gdansk, Poland

ABSTRACT: This article presents the use of a multi-population distributed evolutionary algorithm for path
planning in navigation situation. The algorithm used is with partially exchanged population and migration
between independently evolving populations. In this paper a comparison between a multi-population and a
classic single-population algorithm takes place. The impact on the ultimate solution has been researched. It was
shown that using several independent populations leads to an improvement of the ultimate solution compared
to a single population approach. The concept was checked against a problem of maritime collision avoidance.

1 INTRODUCTION

One of the ways of solving optimization tasks is using
an evolutionary algorithm with many populations.
Multi-population distributed evolutionary algorithm
(DGA) is a one of such programs, first presented in
(Tanese 1989a; Tanese 1989b) as a method of parallel
calculations on a simple genetic algorithm (Goldberg
1989). The proposed solution divided global
population into several subpopulations. Afterwards a
simple generic algorithm was applied to each
subpopulation using a single processor, which
computed a single evolution cycle. In every
generation few individuals were exchanged between
subpopulations (in a synchronous or asynchronous
way). That research showed the genetic algorithm
defined in this way provided better results in terms of
computation time and results quality in comparison
to a single population algorithm. In (Forrest and
Mitchell 1991) Forrest and Mitchell repeated the
research on the multi-population algorithm using
Tanese’s functions. Their work proven that Tenese’s
results could be connected to the fitness function used
in her research and the parallelization of the

calculations. In (Belding 1995) Theodore C. Belding
continued the work on DGA using Royal Road
functions, called Ri, Rz, R3, Rewhich were presented in
detailed in (Mitchell, Forrest and Holland 1992;
Forrest and Mitchell 1993; Mitchell and Holland 1993;
Mitchell, Holland and Forrest 1994). Author has
shown that in the case of complex tasks (Rs, Ra
functions), the multi-population algorithm reached
far better results (in comparison to a single
population algorithm). In other cases the results were
comparable.

One of the examples of an application of a multi-
population evolutionary algorithm is a two step
variation used for planning networks of parallel
connected computers (Cochran, Horng and Fowler
2006). In the first step algorithm optimizes using a
weighed fitness function and in the second, based on
the results from the previous step, subpopulations are
being created which evolve in parallel. The paper
compares the achieved results with solution given by
other methods. The authors shown the DGA provided
better results. In (Martikainen and Ovaska 2006) a
hierarchical two population evolutionary algorithm

293

A\ MOST

operating based on a base and elite populations was
presented. The elite population consisted of the best
individuals and the base one contains individuals of
lesser fitness score. Both populations are evolved
using different methods i.e. mutation and crossover
probability. The paper shows the superiority of a
multi-population variation over the single population
while using the same number of generations.

Multi-population distributed evolutionary
algorithm can work both in parallel and sequential
modes. Different variations are used to solve complex
optimization tasks. In (Gehring and Bortfeldt 2002)
Gehring and Bortfeldt showed multi-population
algorithm that calculated the optimal container
loading sequence. The DGA modification used by
them provided results better than those of a single
population algorithm. There are many publication
such as (Whitley 1997; Cantu-Paz 1999; Martikainen
2006) that show an overview currently used
variations of the multi-population algorithms.
Different ways of individual migration and dedicated
genetic operators that allow for an exchange of
individuals between populations are shown.

One of the tasks that the multi-population
algorithm can be used with is remote control of a
mobile object (i.e. mobile robot or autonomous
overwater ships). It consists in leading an object from
a starting position to its destination or the operation
(mission) area. In order to do this, an optimal (by the
criteria of i.e. length) path has to be plotted. This path
has to avoid obstacles: static and dynamic constraints
of the environment. The dynamic constraints can
present themselves as other moveable objects
travelling along their own trajectory with certain
speed. The problem can be examined in two modes:
off-line and on-line. The off-line mode of path
planning is carried out in an environment where the
movement parameters of other dynamic objects are
known and are constant. The on-line mode takes into
account the changes in the environment and the
uncertainty of the movement of other objects. As a
result of this, a constant control over the
environment’s changes and the other objects
parameters is required. In the event of changes, a
modification of previously plotted path takes place.

The problem was reduced to an optimization tasks
with static (islands, forbidden areas) and dynamic
(other ships, changeable weather conditions)
constraints (Smierzchalski 1997). In order to solve the
presented problem an adaptive evolutionary method
was used (Goldberg 1989; Michalewicz 1996), which
operated based on the Evolutionary
Planner/Navigator (VEP/N++) (Xiao and Michalewicz
1999). This algorithm uses the evolutionary algorithm
library GALib (Wall 1996). Based on the available
library components a multi-population distributed
evolutionary algorithm (Tanese 1989a; Tanese 1989b;
Belding 1995) was examined and its results were
compared with a single population version.

This article presents a multi-population
distributed evolutionary algorithm used in the
problem of maritime path planning. Its organized so
that in the chapter two the maritime path planning
problem is presented. The evolutionary method and
the multi-population variant is described in chapter
three and four. Chapter five defines the simulation

294

environment, while chapter six presents the results.
Chapter seven concludes the paper.

2 PATH PLANNING FOR A COLLISION
SCENARIO

The problem of collision avoidance consists of
plotting a path P, as a part of given route, which the
mobile object covers of the initial position (start point)
(o, yo) to the actual destination point (xc, yc). The path
is composed of a linear segment sequence pi (i =
1,..,n), interconnected by the turning points (xi vyi).
The start and destination points are chosen by the
operator. Taking the above into account, path P is
feasible (belongs to the safe paths set): if every
segment pi (i = 1,...,n) remains in the area of the
environment and it does not cross with any dynamic
or static constrain. The paths that do not meet this
requirement are considered unfeasible (Cochran,
Horng and Fowler 2003).

According to the collision avoidance rules, when
an encountered object is in the area of observation
and if the object’s course crosses own path in an
unsafe distance, we consider the object to be on a
potential collision course (target 1, point px, Fig 1).

target 1
speed — 20 knots
course - 225°

D2 (X4, y4)

Po (X0, yo)

1 (X3, 3)

Figure 1. Potential collision scenario.

The safe distance from the own ship depends on
the adopted collision danger level (usually a distance
of 5-8 nautical miles in front of the bow and 2-4
nautical miles astern, depending on the size, type of
vessel and the ratio of own and target ships” speed)
(Smierzchalski 1998). The distance of the closest
approach and the time needed to reach this distance
has to be also considered. The collision danger
condition is reduced to detecting if (Lenart 1986):

Dmin S Dkr (1)
TDmin < Tkr (2)
where:

Duin — closest approach distance,
Tomin — time to achieve closest approach distance,

Dr, Tir — critical values of Dwin and Tpmin set by
the system’s operator.

In case of the collision avoidance task, the objects
the present a collision danger are interpreted as
mobile objects travelling with certain speed and
course.

http://mostwiedzy.pl

A\ MOST

According to the movement concept, the own ship
should cover the given route in a given time. On the
other hand it should move safely along the given path
in order to avoid objects that present a thread of
collision. Path planning for an object in a collision
scenario has to be a compromise between a deviation
from the given route and the safety of the travel. Thus
the problem is defined a multi-criteria optimization
task, which includes the safety and the economy of
the movement. The total cost of a path’s fitness
considers the safety cost and the cost of moving along
the given path. The safety cost in calculated based on
the distance from the constraints and the cost of travel
takes into account: total path’s length P, the
maximum turn angle between the segments pi and the
time needed to cover the route (Smierzchalski 1998).

3 SINGLE POPULATION ALGORITHM WITH
PARTIALLY REPLACED POPULATION.

Evolutionary algorithm processes a set of solutions
called the population. The environment on which it
operates is defined based on the task pending (fitness
function, constrains). Each individual (single
population member) represents a different problem’s
solution. Based on the fitness function each individual
is assigned a parameter called the fitness score. The
fitness score determines the quality of the solution
represented by each member. In the moment of
algorithm’s initialisation, the initial conditions are set.
Each individual is being randomly generated.
Afterwards the following steps are executed:
reproduction, genetic operations, evaluation and
succession (Fig. 2). In reproduction phase a temporary
population is created to which random individuals
from the base population are being copied. It is
possible to introduce more than one copy of any
individual. The greater the fitness score, the greater
the chance of selecting particular member of the
population. In the next step the temporary population
is processed by the genetic operations, which
modifies individuals. The VEP/N++ program has the
following genetic operator build-on: hard mutation,
soft mutation, adding a gene, gene removal, gene
position swap, smoothing and single point crossover
(Smierzchalski 1997). The set of solutions calculated
in this way is called the child population, which is
evaluated. The succession phase creates a new base
population. In the single population algorithm with
partially replaced population the new population
gathers individuals from the child population and the
old base population. The amount of individuals
added to the base population is defined by the user.
The individual passes over only if its fitness score is
greater than the fitness score of the worst individual
of the old base locations. Those algorithm’s phases are
repeated in a loop until the termination condition is
met (The algorithm runs for a specific number of
generations or a desired fitness score has been
achieved). In the GALib library the algorithm like this
is called a Steady-State GA.

Succession

Stopping
criteria

(Stop

Figure 2. Single population algorithm diagram

4 MULTI-POPULATION ALGORITHM

Multi-population algorithm provides the ability of
running simultaneous, independent evolutions of
many populations. To achieve this VEPN++ uses the
partial exchange evolutionary algorithm. General
diagram of the multi-population algorithm is shown
on Fig. 3. In the first phase of the algorithm an
initialization of user defined number of populations
of randomly generated individuals takes place. After
that the evolution process is applied to each
population separately. This process, similar as in the
single population algorithm, consists of the following
steps: reproduction, crossover, mutation, individual
evaluation and the new base population individual
selection. When the evolution cycle of all populations
is completed, the migration and succession of the
superior population takes place.

The considered algorithm utilizes the stepping-
stone migration (Fig. 4a) (Tanese 1989a; Tanese
1989b). From each population, starting with the zero
one, a specific number of individuals is being passed
on to the neighboring (next in the set) population.
This process is repeated until the last population
won't export its individuals to the zero population.

In the next step, the succession of the superior
population takes place (Fig. 4b). This population
stores the best solution and is not undergoing an
evolution process. From each inferior population (a
population affected by the evolution process) a certain
number of best adapted individuals is selected.
Afterwards the algorithm verifies if any of the chosen
individuals has fitness score better than the worst
adapted member of the superior population. If so, the
worse individual is replaced by the better one. The
ultimate solution is the individual of the superior
population with the greatest fitness score.

295

http://mostwiedzy.pl

A\ MOST

DA A

Evolution of single population

No ///Df)és all populafisﬁ\\\
evolve

Succession of superior
population

T
No _— ~_

— Stopping criteria_
(Stop

Figure 3. The multi-population evolutionary algorithm
diagram.

b)

evolution evolution evolution

generations

evolution evolution evolution

Figure 4 a) Stepping stone migration, b) elite population
succession

5 SIMULATION ENVIRONMENT

The multi-population distributed evolutionary
algorithm presented has been used to solve the
problem of maritime path planning. The algorithm
research requires the selection of appropriate test
tasks. Three environments representing close to real

296

maritime scenarios were selected. The following
parameters were considered: 1) — course, v — speed.

Environment 1 (Fig. 5a) presents the problem of
static forbidden area avoidance. The constraint
introduced represents an island. Environment 2 (Fig.
5b) reflects a problem of avoiding a collision with
dynamic objects (representing target ships) travelling
in opposite directions. One of the objects is travelling
with ¢ - 180° and v - 12 knots (target 1) and the other
with ¢ - 0°, v - 8 knots (target 2). Environment 3 (Fig.
5c) is a combination of both previous situations, thus
it consists of a static obstacle and dynamic ships
travelling with ¢ - 140° and v - 8 knots (target 1) and
with ¢ - 0° and v - 12 knots (target 2).

a) b) target 1 Q
/ -
. end
start
o start d target 2
c) .
end
target 1
Q
. target 2 d
start

Figure 5. Environment a) 1, b) 2, ¢) 3

6 SIMULATIONS

The synergy of solutions presented in the tables
below was prepared based on the environment type
and the initial populations marked as a and b. Only
the parameters analysed were changing. The results
below utilize the following abbreviations: SSGA -
Steady-State Genetic Algorithm, DGA - Deme Genetic
Algorithm, env — the type of environment (based on
the enumeration from the previous chapter), init — the
initial population, pop — the number of populations,
mig — the number of migration inviduals, ¢ -
calculation time, best - fithess score of the best
individual, F - fitness score. Undependably from the
simulation, the following algorithm parameters were
set:

single population size: 30 individuals, crossover
probability: 0.8, mutation probability: 0.15, the
number of individuals replaced in the population: 6,
selector: proportional roulette, algorithm termination
SSGA: 1000 generations, DGA: 200 generations, initial
own ship’s speed: 20 knots.

Each figure’s individual with highest fitness score
has his path bolded. The position of the dynamic
objects is displayed for the best member of the
population. The best calculated solution for each
environment is presented in graphical form in Fig. 6

http://mostwiedzy.pl

A\ MOST

a) b)
target 1
end
start
target 2
start

Figure 6. The best calculated solution for each environment

The goal of the research undertaken was to
compare the results of SSGA and DGA or also for
DGA to establish the impact of the amount of
populations and the numbers of migrating
individuals on the solution’s quality and the
computing time. Based on the achieved results a
convergence (the ratio between the ultimate fitness
score and the number of generation needed to achieve
it) analysis was made for SSGA and DGA algorithms.

6.1 Single and multi-population algorithm comparison

In the first phase SSGA was compared with the DGA.
In the analysed simulations the DGA was operating
based on the following parameters: pop = 5, mig = 3.
The use of DGA in comparison to SSGA has extended
the calculation time of average 2.5 times. Though the
DGA'’s evolution process was shorter (SSGA - 1000
generation, DGA — 200 generation) it makes higher
number of calculations for fitness score for each
population. Strong selection pressure used in SSGA
makes it so that there is a lot of best individual’s
copies in the population. Thus it is not necessary to
re-calculate its fitness score. Using several
independent populations and exchanging individuals
between them, DGA introduces higher variety of
solutions. In the same time, the probability of creating
new individuals during the genetic operations
increases. Individuals created this way require
evaluation, which extends the calculation process. The
time it takes (average 130 seconds) is acceptable for
the problem of collision avoidance and meets the near
real time requirement (Smierzchalski and
Michalewicz 2000).

After comparing the single population with the
multi-population algorithm it has been concluded
that regardless of the environment and the initial
population, better result were achieved with DGA
(Tab. 1). The average score improved by 18%.

Table 1. SSGA and DGA comparison

env init SSGA DGA pop =5, mig=3
t[s] best t [s] best
1 a 18 236.58 55 192.38
b 16 216.56 44 199.47
2 a 42 198.89 129 192.68
b 32 277.02 130 175.85
3 a 54 316.35 217 260.99
b 59 31535 218 248.01

6.2 The impact of the number of populations on the
DGA’a performance.

For the research the mig parameter was set to 3. The
results are presented in Tab. 2. The algorithm
improved or kept the same level of fitness score with
the increasing number of populations. The rule
doesn’t apply to all cases. Simulations with pop = 5
provided solutions of the lowest fitness score, while
pop = 8 provided the best result. Taking the above into
account, increasing the population’s amount
noticeably extends the calculation time, however
doesn’t guarantee the solution’s improvement. Based
on the research one can conclude that using pop = 3 to
5 allows one to achieve the best results (Tab. 2).

Table 2. Impact of the number of population on the DGA
performance

env init DGA pop =2, DGA pop =5, DGA pop =8,
mig =23 mig =3 mig =3
t[s] best t[s] best t[s] best
1 a 23 205.16 55 19238 75 201.49
b 24 201.03 44 19947 91 197.07
2 a 54 22314 129 192.68 201 192.86
b 51 176.44 130 175.85 212 176.5
3 a 82 258.82 217 260.99 334 272.67
b 90 25543 218 248.01 330 252.63

6.3 The impact of the number of migrating individuals on
the DGA's performance.

Simulations were run with mig = 3, 6 and 15
individuals (Tab. 3). The results showed that the
number of migrating individuals doesn’t affect the
ultimate solution. In case of init b both env 1 and 3
produced similar fitness score. Using init a gives
various solutions. It was noticed that increasing the
amount of migrating individuals helps to smoothen
the algorithm convergence characteristicc, which
eliminates the step aspect of the changes to the fitness
score of the best individual (Fig. 8).

Table 3. The impact of the number of the migrating
individuals on the DGA’s performance

env init DGA pop =5, DGA pop =5, DGA pop =5,
mig =3 mig =6 mig =15
t[s] best t[s] best t[s] best
1 a 55 192.38 48 203.02 59 202.45
b 44 19947 52 195.07 48 198.96
2 a 129 192.68 127 163.25 134 163.31
b 130 175.85 126 175.92 132 175.96
3 a 217 260.99 217 308.07 288 239.96
b 218 248.01 234 250.57 223 252.37

297

http://mostwiedzy.pl

/\/\\ MOST WIEDZY Downloaded from mostwiedzy.pl

6.4 The course of the algorithm’s convergence

Fig. 7 - Fig. 8 show the diagram of the solution’s
convergence depending on the algorithm used,
parameters, initial population and the environment.
Intermediate results were recorded every 50
generations for the SSGA (Fig. 7) and every 10 for the
DGA (Fig. 8). This way 20 samples were achieved for
each algorithm. Based on Fig. 7 it was concluded that
using SSGA results in poor solution’s diversity
through the process of evolution. After the
exploration phase (regardless of the environment up
until about 200" generation) it stagnates within the
local minimum. The best result does not improve. The
only exception was the simulation made for env 2
using init a. A sudden improve of the best solution
takes place between 850" and 900t generation due to
the mutation operator. In DGA the best fitness score is
constantly improving. This is due to the number of
population which diversifies the solutions. Based on
Fig. 8, one can deduce that DGA in comparison with
SSGA requires significantly fewer generations to
achieve the ultimate fitness score. For env 2 it was
about 70 and for env 3. about 100 generations. While
using DGA the solutions provided are consistent
regardless of the initial population.

a) o
430 r
380
330 ._\: P —
280
330 o e s S 0 L PUPY
180 T T 1
0 200 400 600 800 1000
——1 2 ——3 gen
b)
a5
400 “'_'*\
350 5
300
250
{ FH
200 T T T]
0 200 400 600 800 1000
—_—1 2 —a—3 gen

Figure 7. Convergence of the SSGA a) init a, b) init b (trend:
1-envl,2-env?2,3—-env3)

298

a)

240

230

220
210
200

190

215
210
205
200
195

190

290
270
250
230
210
190
170
150

d)
240

2320 -

220
210
200
190
180
170

http://mostwiedzy.pl

/\/\\ MOST WIEDZY Downloaded from mostwiedzy.pl

€
) D g
350 262
330 *:;—‘—&—‘—H—\O—"‘
310 \ ‘\ 5/ 4+——
290 H‘*H‘l—k—*
K
TR
270 —J‘——— s 252 -
250 -
230 . | | | 247 . | T |
0 50 100 150 200 0 50 100 150 200
——1 2 ——3 4 ——5 8N ——1 2 —4—3 ——4 5 8N
Figure 8. Convergence of the DGA a) env 1, init a, b) env 1,
init b, c) env 2, init a, d) env 2, init b, €) env 3, init a, f) env 3,
init b (trend: 1 - pop =2, mig =3, 2 — pop =5, mig =3, 3 — pop =
5, mig =6, 4 —pop =5, mig =15, 5 — pop = 8, mig = 3)
t[s] env 1 env 2 env 3
inita initb inita initb inita initb
350
300
250
200
150
100
0 -
1234561234561 2345612345612345612345@%6

Figure 9. Juxtaposition of the simulation times for the simulations (horizontal axis: 1 - SSGA, 2 - DGA pop=2, mig=3, 3 -
DGA pop=5, mig=3, 4 - DGA pop=>5, mig=6, 5 - DGA pop=5, mig=15, 6 - DGA, pop=8, mig=3)

6.5 Calculation time analysis

The next research step was to analyse the program’s
performance depending on the environment, initial
population, number of populations and the amount of
migrating individuals. Fig. 9 presents a juxtaposition
of calculation times for selected simulations. It was
concluded that calculation times are dependent from
the environment’s complexity and at a small degree
from the initial population. Calculations for env
1which consists of a single static obstacle took the
shortest amount of time. The -calculation time
extension was observed for env 2 and 3 which is
connected with triangulating the position of the
dynamic obstacles and the points of potential
collision.

In Tab. 4 percentage comparison between
calculation time and fitness score of the best
individual was presented. All the data are shown for
the single population algorithm. In example, using
DGA with pop =2 and init a (first row in the table) for
env 1 the calculation time has extended by 27% and
the solution improved by 13% in comparison to the
result achieved by SSGA.

In terms of computing time, the best solutions
were provided by the SSGA. Using DGA with pop =2
results in average solution improvement by 14% and
increase of the calculation time by 45%. Similar for pop
= 5 we get 18% solution improvement and 260%
calculation time increase and for pop = 8 16% and
450%.

From the data above one can conclude that it’s best
to use 2 or 3 populations. Increasing the number of
generations increases the computation time
disproportionate to the quality of the solution.

Table 4. The quality of the solution depending on the
calculation time

env 3
t [%] best [%]

env 2
t [%] best [%]

init pop envl
t [%] best [%]

a 2 27.7 13.2 28,5 -12.1 51.8 181

b 2 50 7.1 59.3 36.3 525 19.0

a 5 200 15.7 209.5 129 345.6 14.7

b 5 200 8.6 304.1 36.5 281.3 20.6

a 8 316.6 14.8 3785 3 5185 13.8

b 8 468.7 9 562.5 36.2 459.3 19.8
299

http://mostwiedzy.pl

A\ MOST

7 CONCLUSIONS

The undertaken research has shown that using a
distributed genetic algorithm improves the ultimate
fitness score in comparison with an algorithm
working on a single population. This is achieved
regardless of the initial population and the
environment’s type. It was also shown, that DGA
requires far fewer generation to reach a solution
comparable to or better than the SSGA. The
convergence analysis of both types of the algorithms
shows that the distributed approach has a positive
impact on maintaining the population’s diversity. At
the same time the deviations in the solution search for
optimum characteristic have decreased. The increase
of the number of evolved populations impacts the
improvement of the ultimate fitness score. A critical
number of populations which prevented further
results’ improvement was shown. Changing the
amount of the migrating individuals had no effect on
the final solution, however it did shape the
algorithm’s convergence characteristic. Using the 20-
40% of the population size migration prevented
sudden changes of the best fitness score value. After
comparing the results of all simulations it was
concluded that the greatest impact on the calculation
time comes from the environment’s complexity and
the amount of populations. It was also recognized
that using more than 2-3 population brings an
unsatisfactory improvement of the ultimate solution
taking into account the extended calculation time.

REFERENCES

Belding T. C. (1995). “The Distributed Genetic Algorithms
Revised.” Proc. of 6th Int. Conf. Genetic Algorithms:
114-121.

Cantu-Paz E. (1999). “Topologies, Migration Rates, and
Multi-Population Parallel ~ Genetic ~ Algorithms.”
Proceedings of GECCO.

Cochran J.K., Horng S. and Fowler J.W. (2003). “A Multi-
Population Genetic Algorithm to Solve Multi-Objective
Scheduling Problems for Parallel Machines.” Computers
and Operations Research, Vol 30: 1087-1102, Oxford,
UK.

Forrest S. and Mitchell M. (1991). “The performance of
genetic algorithms on Walsh polynomials: Some
anomalous results and their explanation.” Proceedings
of the Fourth International Conference on Genetic
Algorithms, In Belew, R. & L. Booker (Eds.): 182-189,
San Mateo.

Forrest S. and Mitchell M. (1993). “Relative building-block
fitness and the Building Block hypothesis.” In Whitley

300

L.D. (Ed.), Foundations of Genetic Algorithms 2: 109-
126, San Mateo, CA: Morgan Kauf-mann.

Gehring H. and Bortfeldt A. (2002). “A parallel genetic
algorithm for solving the container loading problem.”
International Transactions in Operational Research, Vol.
9, No. 4: 497-511.

Goldberg D.E. (1989). “Genetic Algorithms in Search,
Optimization, and Machine Learning.” Boston:
Addison-Wesley Longman Publishing Co., Inc.

Lenart A.S. (1986). “Wybrane problemy analizy i syntezy
okretowych systemow antykolizyjnych.” Budownictwo
okretowe nr XLIV, Zeszyty naukowe Politechniki
Gdanskiej nr 405, Gdansk 1986.

Martikainen J. (2006). “Methods for Improving Reliability of
Evolutionary Computation Algorithms and Accelerating
Problem Solving.” Ph.D. Thesis, Helsinki University of
Technology, Dep. of Electrical and Communications
Engineering, Espoo.

Martikainen J. and Ovaska S.J. (2006). “Hierarchical two-
population genetic algorithm.” International Journal of
Computational Intelligence Research vol. 2, No. 4.

Michalewicz Z. (1996). “Genetic Algorithms + Data
Structures = Evolution Programs.” Spriger - Verlang.

Mitchell M., Forrest S. and Holland J. H. (1992). “The royal
road for genetic algorithms: Fitness landscapes and GA
performance.” In Proc. of the First European Conference
on Artificial Life: 245-254, Cambridge, MIT Press.

Mitchell M., Holland J.H. (1993). “When will agenetic
algorithm outperform hill climbing?” Santa Fe Institute
working paper 93-06-037, Santa Fe, NM: Santa Fe
Institute.

Mitchell M., Holland J.H. and Forrest S. (1994). “When will
a genetic algorithm outperform hill climbing?”
Advances in Neural Information Processing Systems 6

_ San Mateo, CA: Morgan Kaufmann.

Smierzchalski R. (1997). “Trajectory planning for ship in
collision situations at sea by evolutionary computation.”

_ InProc. of the IFAC MCMC'97, Brijuni, Croatia.

Smierzchalski R. (1998). “Synteza metod i algorytmow
wspomagania decyzji nawigatora w sytuacji kolizyjnej

_ namorzu.” DSc. dissertation, Gdynia.

Smierzchalski R. and Michalewicz Z. (2000). “Modeling of a
Ship Trajectory in Collision Situations at Sea by
Evolutionary Algorithm.” IEEE Transaction on
Evolutionary Computation, Vol.4, No.3.

Tanese R. (1989a). “Distributed Genetic Algorithms.” Proc.
of 3rd Int. Conf. Genetic Algorithms: 432-439.

Tanese R. (1989b). “Distributed Genetic Algorithms.” Ph.D.
Thesis, University of Michigan, Ann Arbor.

Wall M. (1996). “GAlib: A C++ Library of Genetic Algorithm
Components.” MIT.

Whitley D. (1997). “Island Model Genetic Algorithms and
Linearly Separable Problems.” Proc. of AISB Workshop
on Evolutionary Computation.

Xiao]. and Michalewicz Z. (1999). “An Evolutionary
Computation Approach to Planning and Navigation.”
Chapter in Soft-Computing and Mechatronics, Physica-
Verlag.

http://mostwiedzy.pl

