
STUDIA INFORMATICA 2011

Volume 32 Number 2B (97)

Artur OPALIŃSKI

Gdańsk University of Technology, Faculty of Electrical and Control Engineering

DISTRIBUTED REPRESENTATION OF INFORMATION ON

CYCLIC EVENTS

Summary. A representation of information on cyclic events has been proposed

which is advantageous for computing environments where a distributed set of

Receivers reacts to cyclic events generated by distributed sources. In such scenario no

immanent central information repository exist on event timing or volume. Receivers

are able to learn the event cycles without communicating with each other, merely on

the basis of the fact that an event at a given instant of time has or has not been acted

upon by other Receivers.

Keywords: distributed processing, cyclic events, multi-agent systems

ROZPROSZONA REPREZENTACJA INFORMACJI O ZDARZENIACH

CYKLICZNYCH

Streszczenie. W artykule zaproponowano sposób reprezentacji informacji o

zdarzeniach zachodzących cyklicznie, przydatny dla środowisk, w których rozproszo-

ny zbiór Odbiorników obsługuje cykliczne zdarzenia generowane przez rozproszone

źródła. Mimo braku scentralizowanej informacji o ilości i czasie występowania

zdarzeń, Odbiorniki wykrywają cykliczność zdarzeń bez potrzeby komunikacji mię-

dzy sobą, a jedynie na podstawie informacji, że zdarzenie zostało lub nie zostało

obsłużone przez inne Odbiorniki.

Słowa kluczowe: przetwarzanie rozproszone, zdarzenia cykliczne, systemy

wieloagentowe

1. Introduction

In some computing environments distributed set of Receivers reacts to events originating

from distributed sources. Such working schema is very typical and basic eg. in [1, 2, 3]. No

416 A. Opaliński

immanent central repository usually exists with the information on volume, type and timing

of events. Information on individual event patterns would intrinsically be averaged during

aggregation and requires Fourier analysis or other forms of harmonics analysis [4] to restore

it. Also collecting distributed information and disseminating results of processing may be

challenging in distributed environments [5].

The natural cycles of human activity and technical factors may cause events to repeat in

a cyclic manner in some scenarios, as depicted in Fig. 1, especially if the sources are

numerous and diversified.

In this paper a mechanism for distributed repository of information on such events is

researched. This mechanism allows for learning, representing and updating the information

on timing and volume of events independently by individual Receivers. Receivers are able to

achieve this goal without explicit communication, just based on timing analysis of events

received by each participating Receiver.

Fig. 1. Examples of cyclic events addressed in this paper, manifesting some daily and weekly

periodicity [6]

Rys. 1. Przykłady cyklicznych zdarzeń rozważanych w artykule, zachodzących w rytmach dobowym

i tygodniowym [6]

2. Solution

The solution proposed in this paper considers cyclic events. It is based on the assumption

that when similar events occur in higher quantities then they can be represented by almost

periodic functions [7], specifically that events feature some time sequence during period T,

and that such similar yet not identical sequences repeat with a period being a multiply of T.

The period T is sometimes called “almost-period”.

The events are received separately even when they occur in higher quantities, so timing

and other properties of each individual event can be easily identified by Receivers. For this to

work Receivers should be software agents that are capable of learning the pattern of events

they acted upon. It is assumed that Receivers are capable to react to at most one event at once.

The following is considered crucial for the Receiver to learn the pattern of events:

 events should appear cyclically for the given Receiver,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Distributed representation of information on cyclic events 417

 Receiver must posses an internal representation of cyclic events, encompassing many

different cycles revealed during a common stretch of time,

 events which prove not to be cyclic in the time regarded should be forgotten as mere

incidents. While these events will not be solidly learned, this does not preclude that they

will be acted upon accordingly by Receiver.

The example Receiver internal representation of cyclic events is described below. Each

Receiver has two attributes:

 the common almost-period T assumed for all events this Receiver encounters,

 the multiply n of the almost-period T. The value T∙n is the period of all similar event

sequences regarded.

Each Receiver attribute values may derive from its capabilities and are assumed constant.

The Receiver will detect and separately represent internally all event cycles with periods k∙T ,

1 ≤ k ≤ n . All events not belonging to any of these cycles will be treated as random incidents

by this Receiver, meaning they will be acted upon accordingly by Receiver but not recognized

as cyclic and not solidly learned by this Receiver.

Each Receiver tracks discrete absolute time t and calculates its internal time tR modulo

T∙n:

tR ≡ t (mod T∙n) (1)

Every time a Receiver encounters an event at internal time instant tRE, it treats the event as

cyclic. If this event does not belong yet to any known cycle, Receiver assumes that the cycle

of this event started during previous T∙n period, at time instant:

ER

ER

ER

ER

prevB t
T

t
nTtT

T

t
nTt

 11 (2)

of that period, i.e. in the last almost-period T of the previous T∙n period. Therefore the

Receiver calculates event base time tBE and event almost-period multiply kE using the floor

function denoted as and stores the resulting values as:

nk
T

t
k E

ER

E

 ,1 (3)

Tnttt BEERBE ,

The internal representation of cyclic events by the Receiver comprises only pairs of

almost-period multiply kE and base time tBE for all cycles learned so far by this very Receiver.

This allows for easy determination if an event received belongs to an already known cycle. In

case of receiving an event at time instant belonging to a known cycle, only the corresponding

base time tBE is updated with the Receiver current internal time tR = tRE.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

418 A. Opaliński

Example a) in fig. 2 presents events constituting a cycle with kE=1 and initial tBE in the

range 0 ≤tBE < T. Events in all figures are represented by Kronecker delta which is described

for discrete time instants i,j as:

jiif

jiif
ji

,0

,1
, (4)

Fig. 2. Example event cycles observed by a Receiver: a) kE=1 and initial tBE in the range 0≤tBE<T, b)

kE=3 and initial tBE in the range 2T≤tBE<3T, c) kE=4 and initial tBE in the range 0≤tBE<T

Rys. 2. Przykłady cykli zdarzeń z punktu widzenia Receivera: a) kE=1 i początkowa wartość tBE w za-

kresie 0≤tBE<T , b) kE=3 i początkowa wartość tBE w zakresie 2T≤tBE <3T, c) kE=4 i początkowa

wartość tBE w zakresie 0≤tBE<T

At the instant tRE1 the first event is noted by the Receiver. According to (3) this event is

assumed to belong to a new cycle with kE=1 and tBE= tRE1 . All later encounters with events

fitting this known cycle at time instants tRE2 , tRE3 ,tRE4 , etc. results in updating tBE only.

Example b) in Fig. 2 presents events constituting a cycle with kE=3 and initial tBE in the

range 2T ≤ tBE < 3T. At the instant tRE1 the first event is noted by the Receiver. As in the

example a) according to (3) this event is assumed to belong to a new cycle with kE=3 and tBE=

tRE1 end the following events in this cycle result in updating tBE only.

If an expected event of a known cycle has been missed, it is assumed that the formerly

received events of this cycle have been mistaken as belonging to a common cycle. It is

assumed instead that these events belonged to separate cycles with common longer period but

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Distributed representation of information on cyclic events 419

with different base times tBE. So new cycle representations are created for each of these past

events instead of a common one. The common almost-period multiply kE corresponding to

these cycles gets incremented, while each new i-th cycle gets a different base time tBE :

nkif
T

t
k E

ER

E

 ,1: (5)

E

BE
ERBEi

kT

t
iTitt ..1,: .

If the resulting almost-period multiply kE would exceed T∙n then it is assumed that the

events were non-periodic incidents or that they belong to cycles with period exceeding T∙n.

Such cycles will not be stored any longer, but this does not preclude the Receiver usual

reaction to the event received.

Example c) in Fig. 2 presents events constituting a cycle with kE=4 and initial tBE in the

range 0 ≤ tBE < T. At the instant tRE1 the first event is noted by the Receiver and is erroneously

assumed based on (3) to belong to an identical cycle as in example a) in Fig.2, i.e. a cycle

with kE=1 and tBE= tRE1 . When no expected event of this cycle appears at tRE2 Receiver

recalculates the values according to (5), achieving kE=2 and tBE= tRE1 -T (possibly in

previous n∙T period). At time instants tRE3 , tRE4 , Receiver recalculates the values according to

(5) again arriving finally at the correct values kE=4 and tBE= tRE1 .

Priority queue mechanism can be used to ensure that events belonging to a known cycle

will appear cyclically for any given Receiver. To achieve that, any Receiver expecting event

of a known cycle enqueues with the highest priority exactly for the expected time instant of

the event. Highest priority Receiver will be dequeued and notified on event. Therefore, the

Receiver will not miss the event as long as the event happens.

A Receiver not expecting any event enqueues with the lowest priority to only learn new

cycles not tapped by other Receivers. Enqueueing at the given priority level must be an

atomic operation.

3. Verification

The approach has been verified with a C++ program published on the authors web page

[8]. The verification program implements the part of Receiver code pertaining to event

representation, event Generator, queue mechanism and a perfect discrete time. The time is

perfect in the sense that time tics always differ by 1 and that every time tic is observable by

all the program components.

Verification has been conducted with Receivers with identical T and n attribute values.

Whenever a Receiver

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

420 A. Opaliński

 missed an expected event,

 or encountered an expected event,

 or encountered an unexpected event

it presented its number and status, current global time t, Receiver time tR, and event cycle

attributes (tBE and kE).

The verification program has been validated first against simulated single and double

event cycles similar to those presented in fig.2 using the values presented in table 1.

Table 1

Validation data

Receiver Event cycles

Number of

Receivers and

event cycles (R)

T n kE initial tBE

1 5 2 1..10 0..(kE-1) ∙ T

2 6 3 kE1=2 ,

kE2=3

0..(kEi-1) ∙ T

After successful validation the program has been run with the values presented in table 2

in order to verify the approach. It has been assumed that operating without the need to learn

new cycles with periods between T and n∙T after time three times longer than the multiply of

all cycles involved is an adequate positive verification result.

Table 2

Verification data

Receiver Event cycles

Number of

Receivers and

event cycles (R)

T n kE initial tBE

1 5 2 1..12 0..(kE-1) ∙ T

2 5 3 kE1=2 ,

kE2=3

0..(kEi-1) ∙ T + random

value from (0,T)

10 5 2 kEi=i ,

i=1..10

random value from

(0,T)

10 5 7 kEi=i ,

i=1..10

0..(kEi-1) ∙ T + random

value from (0,T)

Verification results were positive for every combination listed in Table 2. The Receivers

were able to detect and learn all cycles needed to represent the events observed. Event cycles

with periods shorter than T and event cycles with periods longer than n∙T have not been

solidly learned as expected.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Distributed representation of information on cyclic events 421

4. Conclusion

It has been verified that Receivers are able to independently represent event cycles

without communicating with each other and only based on the information on events they

observed themselves. Through attributes the representation method allows to control how

Receivers share information on event cycles.

The approach requires that events are not directed to Receivers stochastically, so a queue

mechanism is used instead. The influence of different queuing methods and the influence of

other cycle representations needs additional research.

Representation of detected event cycles could be fed directly to event prediction, e.g. to

provide resources timely or to resolve conflicts if events from different cycles would line up

for one Receiver at the same instant of time. Further research needs to address these

challenges.

It is worth noting that event cycles need not be correlated with time. It is conceivable to

correlate the events reception with any other discrete value which is known to all Receivers.

This has not been explored yet.

Future work could also be devoted to analyzing the appropriateness of the suggested event

cycles representation to filtering events based on their periods.

BIBLIOGRAPHY

1. Berson A.: Client/server architecture. McGraw-Hill, Inc., New York 1996.

2. Huhns M. N., Singh M. P., Burstein M., Decker K., Durfee K. E., Finin T., Gasser, T. L.,

Goradia H., Jennings P. N., Kiran L., Nakashima H., Van Dyke P. H., Rosenschein J. S.,

Ruvinsky A., Sukthankar G., Swarup S., Sycara K., Tambe M., Wagner T., Zavafa L.:

Research directions for service-oriented multiagent systems. IEEE Transactions on Inter-

net Computing, Vol. 9, Issue 6, 2005.

3. Bailey D., Wright E.: Practical SCADA for Industry. Newnes, 2003.

4. Smith S. W.: The Scientist & Engineer's Guide to Digital Signal Processing. Technical

Pub., California 1997.

5. Jordan H. F., Alaghband G.: Fundamentals of Parallel Processing, Prentice Hall, 2002.

6. Random google.com image search with “weekly server load”.

7. Stoiński S.: Funkcje prawie okresowe. Wydawnictwo Naukowe UAM, Poznań 2008.

8. Verification program URL, https://sites.google.com/site/flecabinet/downloads/BDAS11-

.zip.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

422 A. Opaliński

Recenzenci: Dr inż. Dariusz R. Augustyn

Dr inż. Katarzyna Harężlak

Wpłynęło do Redakcji 31 stycznia 2011 r.

Omówienie

Wiele środowisk przetwarzania architektury do rozproszonego przetwarzania

równoległego, na przykład szeroko stosowana architektura klient-server, czy układy

sterowania i monitoringu wykorzystują pojęcie zdarzenia, które jest obsługiwane przez

przeznaczone do tego elementy, określane w niniejszym artykule jako Odbiorniki (Receivers).

Ponieważ zarówno źródła zdarzeń, jak i obsługujące je Odbiorniki są rozproszone, często

brak jest scentralizowanej informacji na temat ilości, rozłożenia w czasie i typach zdarzeń.

Utrudnia to planowanie obsługi tych zdarzeń. Jednocześnie tworzenie scentralizowanych

zbiorów informacji na temat licznych zdarzeń wymaga dość intensywnej komunikacji oraz

może prowadzić do agregowania danych dotyczących zdarzeń, które to dane następnie trzeba

analizować, np. metodami DSP [4].

W niniejszym artykule proponuje się rozproszoną reprezentację przechowywania infor-

macji o pewnych cyklicznych (patrz rys. 1) zdarzeniach. Sposób analizy informacji o zda-

rzeniach i jej reprezentacji nie wymaga od Odbiornika wiedzy o innych zdarzeniach niż

zdarzenia obsłużone przez niego samego. Umożliwia to unikniecie dodatkowej komunikacji,

a jednocześnie sam fakt obsłużenia lub nieobsłużenia zdarzenia stanowi informację wspólną

dla zbioru Odbiorników. Proponowana metoda pozwala na gromadzenie rozproszonej

wiedzy. Pomyślną weryfikację metody przeprowadzono, tworząc program weryfikujący [8]

w języku C++.

Address

Artur OPALIŃSKI: Politechnika Gdańska, Wydział Elektrotechniki i Automatyki, ul.

Narutowicza 11/12, 80-233 Gdańsk, Polska, Artur.Opalinski@pg.gda.pl. D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

	1. Introduction
	2. Solution
	3. Verification
	4. Conclusion

