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A method of high accuracy polarimetry, which includes optical activity measurement’s systematic errors, was 
realized with dual-wavelength polarimeter for two wavelengths of 635 and 650 nm. Simultaneous measurement 
with neighboring wavelengths significantly improved the data processing, by increasing the amount of obtained 
data to eliminate the systematic errors. For langasite crystal La3Ga5SiO14 we measured temperature dependence of 
the gyration tensor component g11. Our acquired value doesn’t exceed 0.47×10–5 and is much smaller than previous 
results obtained by different experimental methods. Results presented in this paper are consistent with the 
calculated optical rotatory power from crystal structure data and polarizabilities of the atoms. 
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1. INTRODUCTIONHigh-accuracy universal polarimeter (HAUP) [1], which undergone several modifications and improvements over time [2–6], can be effectively applied to obtain information about main optical anisotropic parameters of crystals such as linear birefringence, circular birefringence (also known as optical rotation or optical activity), linear and circular dichroism. Recently, also Mueller matrix polarimetry was successfully applied for simultaneous measurement of main optical anisotropic crystal parameters [7-9]. First experimental data with this method for quartz and achiral AgGaS2 crystals shows good results. Polarimeters allow measuring of optical activity (ОА) for light propagation directions distinct from the optical axes, but results can significantly differ between themselves. The main cause of such discrepancies are the systematic errors. Quantitively one can take them into account by considering parasitic ellipticities of polarizer and analyzer – p and q respectively. These ellipticities (normally of 10–4 order) are usually comparable with eigen waves ellipticities k in crystals or sometimes they can be even bigger than k. Ellipticities are measured as a ratio of the minor to the major axes of the ellipse, which define the polarization state of two waves [10,11]. Therefore, measurement errors are significant. Experiments [1-5] showed that systematic errors should be estimated for each experimental process, because they depend also on specimen quality, system alignment, even on the precise profile of the laser beam passing through the specimen. 

Measurement with different crystals keeping all the initial parameters constant lead to varying systematic errors. An extended laser polarimeter, with similar design to HAUP, but with implementation of two wavelengths and different principles for data gathering and processing, was designed and was applied to investigate the OA of langasite crystal La3Ga5SiO14 (point group 32). Optical properties of these crystals are well studied [12], but precise value of OA was acquired along the optical axis only, which corresponds to the gyration tensor component g33. The full detection of OA in uniaxial crystals of this point group requires measurement in direction perpendicular to the optical axis and calculation of the g11 gyration component. There are other uniaxial point groups ( 4  and 
m24 ) of nonenantiomorphous (achiral) uniaxial crystals, which have null optical activity along the optical axis [10]. For example, the well-known KDP group and AgGaS2 are of such type of crystals. OA is a vital parameter of crystal optical anisotropy and is heavily related to the structural peculiarities of the crystal. Therefore, we believe that it is important to find the experimental value of OA, by means of dual wavelength polarimeter and compare it with the results based on the classical polarization model [13]. 

2. PRINCIPLES OF EXPERIMENTThe polarimetric scheme used for studying of OA in birefringent sections is a polarizer-sample-analyzer (PSA), in which polarizer azimuth θ and analyzer azimuth χ are measured from the principal 



crystal axes and are small (θ, χ << 1). Both the polarizer and the analyzer are Glan type calcite prisms. The measuring procedure is fully automated with independent rotations of both polarizer and analyzer, controlled by the stepper motors. In order to measure small intensity changes, the so-called delta-sigma analog-to-digital converter with high resolution is used. During the experiment the intensity I of transmitted through the PSA system light is measured as a function of angles I(θ,χ). Intensity readings are typically collected for 15-20 values of polarizer azimuths, θ, and for the same amount of analyzer azimuth, χ, close to the position of minimum intensity. This data I(χ) is then fitted to a biquadratic function using the method of linear least squares, which allows one to find the analyzer azimuth χmin that corresponds to minimum transmission of polarization system, i.e. ( ) 0θ =∂∂ χI . For PSA system the corresponding relation for ( )θPSA
min

χ  may be expressed as [6,14]: 
( ) δχχ −Γ−+Γ sincosθPSA

min
pk= ,  (1) where λπ ndΔ=Γ 2  is the phase difference, d is the thickness of the specimen, Δn – linear birefringence and λ – wavelength of monochromatic light. One should also define angular systematic error δχ. It is considered that most likely δχ error is associated with mechanical elements of the polarimeter [4,5]. In a (θ,χ) coordinate system the intensity minima azimuths ( )θPA

min
χin the absence of a sample (PA system) form a straight line θPA
min
=χwith a slope angle of 45° (Fig. 1). 
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Fig. 1. Characteristic azimuths θ0, θ1, θ2 for optically active birefringent crystal in (θ,χ) coordinate system. Scanning area of polarizer and analyzer in PSA system is shown as a grey parallelogram. Also the HAUP-maps schematic images for different phase differences are presented: 1 – Γ = 2πm, 2 – Γ = π/4 + 2πm, 3 – Γ = π/2 + 2πm, 4 – Γ = 3π/4 + 2πm, 5 – Γ = (2m + 1)π; m – natural number. In the PSA system, the intensity minima also form a straight line 
( )θPSA

min
χ , however according to the relation (1) the tangent of its slope angle is equal to Γcos . Thus, the optimum scanning area of the analyzer (when PSA

min
χ is in the middle) depends on the phasedifference Γ. Fig. 1 shows the surface I(θ,χ) cross-sections with planes of constant intensities I(θ,χ) = const, which form the so-called HAUP maps in the shape of ellipses [2,15]. Major axes of these ellipses are 

always tilted by 45° (see maps 1-5 on Fig. 1), but ( )θPSA
min

χ tilt anglechanges (dashed lines on maps 1-5). On Fig. 1 the positions of three characteristic polarizer azimuths θ0 (invariant azimuth, for which )()( 0
PA
min0

PSA
min θχθχ = ), θ1 (corresponds to the global minimum) and θ2 (corresponds to the minimum light intensity with crossed polarizers) of the incident light in the PSA system are shown, and the principles of their definition are schematically represented. The relations for these azimuths can be expressed as [6,14]: 

( ) ( ) ( )Γ−−Γ− cos12cotθ0 δχpk= , (2) 

( ) ( ) Γ−Γ− sincotθ1 q+kpk= , (3) 

( )( ) ( ) 22cot21θ2 δχ−Γ+− qp= . (4) The relation (4) is also used in the HAUP method [1-5]. Due to the unknown initial angles between crystallophysical axes and azimuth of the polarizer, exact measurement of angles θ0, θ1, θ2 is not possible. Therefore, we analyze experimentally only their differences 1001 θθθ −Δ = , 2002 θθθ −Δ = and 2112 θθ=θ −Δ . Relations between θ0 and θ1 can be derived from (2) – (4): 
( )2cot2sinθ01 Γ−+−ΓΔ δχqpk= . (5) It is easy to notice that 

( ) 0201 θ2cos1θ ΔΓΔ =+ ; ( ) 1201 θ2cos1θ Δ−Γ−Δ = , (6) so determining Γcos  and two of the characteristic azimuth θ0, θ1 and θ2, or one of the differences 01θΔ , 02θΔ , 12θΔ  is sufficient to get complete data. However, permanent verification of equation (6) during the experiment gives us an additional evaluation criterion of correct measurement procedures. We should remember that precision of acquired θ0, θ1 and θ2 greatly depends on the phase difference Γ.  By using two sources of light with almost coinciding wavelengths λ1 and λ2, we can neglect, in good approximation, the effects of k value dispersion and assume values p, q, δχ to be constant. In this dual-wavelength polarimeter systematic errors can be differently eliminated. In particular, we can have a set of data for characteristic azimuths, which were measured in identical conditions but with alternating laser wavelengths. From this point of view the differences Δθ01, Δθ02, Δθ12 for separately λ1 and λ2, but also the differences ( ) ( )21 θθθ λλλ iii = −Δ , (i = 0, 1, 2) can be successfullyanalyzed. To increase the number of measured quantities we use two orientations of the crystal in the polarization system. It can be achieved by rotation of the sample 90° around the incident light, then the signs of Γ and k parameters are reversed [1–3]. Perpendicularity of the sample surface to the incident beam was ensured by adjusting the crystal position, so that the beam reflects back to the laser. Using the relations (2)–(4) for characteristic azimuths, the differences Δθ0λ, Δθ1λ and Δθ2λ can be expressed as: 
( ) δχλ 110θ BpkA= −−Δ , (7)

( ) ( )qkBpkA= +−−Δ 221θ λ , (8) 

( ) 2θ 12 qpA= +−Δ λ . (9)Here we introduced the following notations: 
( ) ( )2cot2cot 211 Γ−Γ=A , ( ) ( ) 1

2
1

11 cos1cos1 −− Γ−−Γ−=B , 
212 cotcot Γ−Γ=A , 212 sin1sin1 Γ−Γ=B , ( )11 λΓ=Γ  and

( )22 λΓ=Γ . As a result, the number of equations which can be used to 
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calculate the eigen wave ellipticity k and eliminate the systematic errors is higher when compared to the previously used high-accuracy polarimetric methods. 
3. RESULTS AND DISCUSSION

3.1. Characteristic azimuths differences and systematic errors The experiment was performed on (010)-plates of La3Ga5SiO15 crystal with 2.51 mm thickness in a temperature range from 290 to 370 K. In dual-wavelength laser polarimeter we used two semiconductor lasers with neighboring wavelengths of λ1 = 635 and λ2 = 650 nm. We consider that in equations (1)–(9) all quantities but Γ (Fig. 2), do not depend on the small wavelength change δλ = λ2 – λ1 = 15 nm. Because the ellipticity k of eigen waves does not depend on the specimen thickness, we chose it to be about 2.5 mm. With such thickness we achieved optimal change of phase difference ΔΓ = 0.65 in convenient temperature range of 290-370 K. The temperature of the sample was stabilized with precision of ±0.5 K, which is enough, considering the slow change of birefringence Δn with temperature for langasite crystals. 

290 310 330 350 370
-0 8.

-0 6.

-0 4.

-0 2.

0

0 2.

0 4.

0 6.

0 8.

1 0.

c
o

s
�

�
�
c

o
s

�
�

T, KFig. 2. Temperature dependences of 1cos Γ  for λ1 = 635 nm () and 2cosΓ  for λ2 = 650 nm () acquired from the tangent angle of linear dependences of ( )θPSA
min

χ  on (010)-plates of La3Ga5SiO15. Experimental temperature dependencies of the characteristic azimuths differences Δθ0λ, Δθ1λ and Δθ2λ for langasite crystal are shown on Fig. 3. As one can see, differences of the characteristic azimuths become too big compared to the typical value of k ≈ 10–4. With the considerable change of characteristic azimuths it is difficult to find the systematic errors p, q, δχ. We also did not observe contributions from multiple light reflections inside the crystal during our experiments, as, for example, did the authors of [16] during their experiments. If this effect would take place, then relations (6) would not execute correctly, and slope angles of the major axes of ellipses on the HAUP-maps (Fig. 1) would not be equal to 45°. This fact underlines once again the importance of experimental evaluation of the relations between azimuth differences Δθ01, Δθ02, Δθ12. 
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Fig. 3. Dependencies of characteristic azimuths differences λ0θΔ  (,), λ1θΔ (,), λ2θΔ (,) for LGS crystal on the temperature change for alternative crystal orientations as obtained before (a) and after (b) 90° rotation of the specimen around the light beam direction. 
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Fig. 4. Dependencies of characteristic azimuths λ2θΔ on cot(Γ1/2) – cot(Γ2/2) in LGS crystal for alternative crystal orientations as obtained before () and after () 90° rotation of the specimen around the light beam direction. Solid lines represent the best linear fit. 
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Consecutive analysis of the characteristic azimuths for two wavelengths in stable experimental conditions allows us to find the desired quantities. Fig. 4 shows that angles difference λ2θΔ  does not depend on the crystal orientation. Sign change of the phase differences Γ1, Γ2 and λ2θΔ , has also been taken into account because the sum of parasitic ellipticities of polarizer and analyzer p + q should remain unchanged. For alternative crystal orientations before (0°) and after 90° rotation of the specimen around the light beam direction, we could find (using equation (9)) that for 0° crystal setup p + q = (7.74 ± 0.28)×10−4 (in radians) and for 90° crystal setup p + q = (11.0 ± 0.2)×10−4. The difference between these two values is insignificant, and x- and y-intercepts of the fitted lines are very close to their origin, asfollows from the equation (9). For further calculations we used the characteristic azimuths differences λ1θΔ . By adjusting the temperature of the crystal we acquired two experimental dependencies (8) for alternative crystal orientations (0° and 90°). Keeping in mind that after the rotation the eigen waves ellipticity k should change its sign, the sum of the respective characteristic azimuths differences becomes the following: 
22

90
1

0
11 22θθθ qBpA= −−Δ+Δ=Δ +

λλ . (10) Afterwards, by plotting the temperature dependencies 2
0
1θ AλΔand 2

90
1θ AλΔ  (Fig. 5), we calculated the sum of these values

2221 22θ AqBp=A −−Δ + , as a result of addition of second degree polynomial fitted curves. Figure 5 also represents the temperature dependence of the B2/A2 ratio values. This value doesn’t change its sign after the rotation of the crystal and we get well matching experimental data for two crystal setups. Such fact confirms that 90° rotation procedure of the specimen around the light beam direction was very accurate. 
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Fig. 5. The two plots of the parameters 2
0
1θ AλΔ , 2

90
1θ AλΔ and their sum 21θ A+Δ (short dash line) versus temperature T of LGS crystal correspond to alternative crystal orientations before (○) and after (●) 90° rotation of the specimen. The points (, ) for two crystal setups represent the temperature dependence of the B2/A2 values, that changes sign at 346 K. Solid lines represent the best second degree polynomial fits. For the data analysis it is important that at 346 K ratio 022 =ABand we get just parasitic ellipticity of the polarizer 

p = (1.32 ± 0.15)×10−4, which, of course, does not depend on the temperature. Values of p and p + q are averaged for two wavelengths of 635 and 650 nm. So, we get two systematic errors, which are present 

in equation (8). However, parasitic ellipticity q of the polarizer has two values for different orientations of the crystal q0 = (6.42 ± 0.28)×10−4 and q90 = (9.68 ± 0.20)×10−4. Difference in values can be explained by different conditions of light passing through the PSA system for two crystal positions. In further calculation we use mean value 
( ) ( ) 4

900 1028.005.82 −×±=+= qqq . Using equation (7) we can find
11

90
0

0
00 22θθθ BpA= δχλλ −−Δ+Δ=Δ + and the angular error meanvalue ( ) 41040.032.1 −×±−=δχ . Let us note, that in dual-wavelength polarimeter determination of systematic error δχ value is insignificant, while in standard HAUP methods, where this angular error is usually noted as δY, its calculation is important for correct data processing [2-5, 14]. 

3.2. Optical activity of LGS crystal Langasite family crystals belong to trigonal point group symmetry 32, space group P321, they are uniaxial and optically active. Along the optical axis g33 component of the gyration tensor is determined by measurement of the specific rotation ρ. During the studies of the optical activity in a plate cut parallel to optical axis the gyration tensor component g11 is measured. For uniaxial crystals the relation between g11 and eigen wave ellipticity k is 
nnkg Δ= 211  [10], were n is the mean refractive index. For the mean wavelength of λ = 642.5 nm n = 1.905 [17], and with channeled spectrum method [18] we acquired birefringence Δn = 0.0116. We also consider, that influence of the eigen waves ellipticity k dispersion is insignificant. For characteristic azimuths differences according to (8) we get: 

( )22
90
1

0
11 12θθθ ABk= −Δ−Δ=Δ −

λλ . (11)This allows finding k = (1.3 ± 0.4)×10−4 for temperature 346 K. As one can see, the eigen waves ellipticity is significantly smaller then the parasitic ellipticities p and q, therefore calculation error of k is substantial and depends mostly on the experimental precision of characteristic azimuths and phase differences Γ for both wavelengths, which influence A2 and B2. Nevertheless, taking into account the systematic errors grants a chance of consecutive calculations of OA perpendicularly to the optical axis of the crystal. The temperature dependencies of g11 components of gyration tensor derived from two measurements of eigen waves ellipticity k are shown on Fig. 6. The presented results of calculations take into account equation (8), values p and q, and also temperature dependent mean refractive index and birefringence. From the linear fitting of our data for temperature 295 K we get the value ( ) 5
11 1017.047.0 −×±=g , which is much smaller than given in [17,19]. These values of OA were determined by the spectral measurement of the amplitude of oscillations of the rotation angle χ of the major axis of the ellipse of passing light polarization. Such method assumes that polarizer is perfect (parasitic ellipticity p = 0), is stationary during the experiment and its input azimuth should be θ = 0. Then according to equation (1) Γsink=χ  and χ = ± k for wavelengths for which 1sin ±=Γ . In [17] gyration tensor component g11 ≈ 4.010–5, so the corresponding ellipticity k = 9.110–4 for λ = 633 nm. If this much larger ellipticity was real it would have prominently emerged on dependences shown in Fig. 3 and Fig. 5. 
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T, KFig. 6. The temperature dependencies of g11 components of the gyration tensor for the LGS crystal before (○) and after (●) 90° rotation of the sample. Error bar shows the goodness of linear fit. Previous data [6] should also be treated critically, because the use of a reference crystal for measuring the parasitic ellipticity p often gives incorrect results. Our current method does not use the reference crystal, because earlier it was established that a measurement with different samples gives different values of parasitic errors [4,5]. Therefore, we used only rotation of the sample during the experiment and it allowed us to include systematic errors more accurately. Earlier results obtained for LGS crystal did not consider such errors and, in our opinion, this fact had negative impact on acquired in [6] results. Using formally the relation ( )eng λπ 11ρ =⊥  for the specificrotation [10] perpendicular to the optic axis, we get ρ⊥ = 0.73 deg/mm compared to ρ = – 3.3 deg/mm in direction of the optical axis [17]. The structure of langasite crystal does not contain screw axes. Its OA connected with helical formations of electron density, imitating the screw axis [20]. Therefore, in direction of the optical axis specific rotation in LGS is almost 6 times smaller than α quartz SiO2. We would like to compare our results of polarimetric experimental data with calculated ones (the calculation method described in [13]). Using the same values of polarizability volumes [21] (αLa = 1,886 Å3, αGa = 0,375 Å3, αSi = 0,050 Å3, αO = 1,740 Å3) we obtained ρ⊥ = 1.1 deg/mm. Unfortunately, this result is inaccurate, because ρ and ρ⊥ should be opposite in sign (according to gyrotropic properties of crystals with point group symmetry 32). Langasite crystals have the smallest OA among the langasite family [22]. With such crystal properties it is hard to expect theoretical calculations within the classical OA model to be accurate. Small changes of polarizability volumes influence the result significantly. One can only estimate the OA value, what we have accomplished. Nevertheless, we have attempted to verify theoretically whether our experimental results are correct. In contrast, these calculating techniques were applied with success for pure Ca3Ga2Ge4O14 crystals (langasite family) [23]. As a result, values of electronic polarizability volumes should be specified for studied LGS crystals. It is interesting to note, that some crystals with langasite structure show unusually large values of the specific rotation when compared to LGS [24]. Finally, it should be noted that almost all langasite family crystals are disordered, therefore, precise structure data and correct values of electronic polarizability volumes are necessary for consequent calculations. 
4. CONCLUSIONSWe used the extended HAUP polarimetric method by using twoneighboring laser wavelengths and applied a new method for the 

elimination of systematic errors in the measurement of optical activity in directions perpendicular to the optical axis of a crystal. Acquired value of eigen waves ellipticity k is significantly smaller than systematic errors, which are caused by polarizers imperfections. Nevertheless, we were able to find systematic errors and calculate temperature dependence of g11 component of the gyration tensor. The dual wavelength HAUP polarimetric method avoids the influence of angular errors, which play major perturbation role in the standard HAUP method. Optical activity of langasite crystals perpendicular to the optical axis turned out to be significantly lower than OA along the z-axis.  
References 

1. J. Kobayashi and Y. Uesu, “A new optical method and apparatus HAUP
for measuring simultaneously optical activity and birefringence of
crystals. I. Principles and construction”, J. Appl. Crystallogr. 16, 204–211 
(1983). 

2. J. Moxon and A. Renshaw, “Improved techniques for the simultaneous
measurement of optical activity and circular dichroism in birefringent
crystal sections”, Zeitschrift für Kristallogr. 185, 636–655 (1988). 

3. E. Dijkstra, H. Meekes and M. Kremers, “The high-accuracy universal
polarimeter”, J. Phys. D. 24, 1861–1868 (1991). 

4. C.L. Folcia, J. Ortega, and J. Etxebarria, “Study of the systematic errors in 
the HAUP measurements”, J. Phys. D: Appl. Phys. 32, 2266–2277
(1999). 

5. C. Hernández-Rodríguez, P. Gomez-Garrido, and S. Veintemillas,
“Systematic errors in the high-accuracy universal polarimeter:
application to the determining temperature-dependent optical
anisotropy of KDC and KDP crystals”, J. Appl. Cryst. 33, 938–946 (2000). 

6. Y. Shopa, and M. Kravchuk, “Study of optical activity in La3Ga5SiO14 with 
high-accuracy polarimetric methods”, Phys. Stat. Sol. A. 158, 275–280
(1996). 

7. O. Arteaga, A. Canillas, and G. E. Jellison, “Determination of the
components of the gyration tensor of quartz by oblique incidence
transmission two-modulator generalized ellipsometry,” Appl. Opt. 48, 
5307–5317 (2009). 

8. O. Arteaga, J. Freudenthal and B. Kahr, “Reckoning electromagnetic
principles with polarimetric measurements of anisotropic optically
active crystals,” J. Appl. Cryst. 45, 279–291 (2012). 

9. O. Arteaga, “Spectroscopic sensing of reflection optical activity in achiral 
AgGaS2’” Optics Letters, 40, 4277–4280 (2015). 

10. J. F. Nye, Physical Properties of Crystals: Their Representation by
Tensors and Matrices (Oxford U. Press, 1985). 

11. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control 
of Laser Radiation (Wiley-Interscience, New York, 2002). 

12. W. T. Arkin, New Research on Lasers and Electro-Optics (New York:
Nova Science Publishers, 2007). 

13. V. Devarajan and A. Glazer, “Theory and computation of optical
rotatory power in inorganic crystals”, Acta. Cryst. A. 42, 560–569
(1986). 

14. Y. Shopa, “High accuracy polarimetry and its application”, Ukr. J. Phys. 
Opt. 2, 58–74 (2001). 

15. Y. Shopa and N. Ftomyn, “Polarimetric studies of linear dichroism in Cr-
doped gallogermanate crystals”, Ukr. J. Phys. Opt. 7, 183–188 (2006). 

16. C. Hernández-Rodríguez and P. Gomez-Garrido, “Optical anisotropy of 
quartz in the presence of temperature-dependent multiple reflections
using a high-accuracy universal polarimeter,” J. Phys. D: Appl. Phys. 33, 
2985–2994 (2000). 

17. A. A. Kaminskii, B. V. Mill, G. G. Khodzhabagyan, A. F. Konstantinova, A. 
I. Okorochkov, and I. M. Silvestrova “Investigation of trigonal
(La1-xNdx)3Ga5SiO14 crystals”, Phys. Stat. Sol. (a). 80, 387–398 (1983). 

18. J. W. Ellis and L. Glatt, “Channeled infra-red spectra produced by
birefringent crystals,” J. Opt. Soc. Am. 40, 141–142 (1950). 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


19. B. N. Grechushnikov and A. F. Konstantinova, “Crystal optics of
absorbing and gyrotropic media,” Comput. Math. Applic. 16, 637–655
(1988). 

20. A. P. Dudka and B. V. Mill’, “Accurate crystal-structure refinement of
Ca3Ga2Ge4O14 at 295 and 100 K and analysis of the disorder in the
atomic positions,” Crystallogr. Rep., 58, 594–603 (2013). 

21. Y. Shopa, N. Ftomyn, and I. Sokoliuk, “Crystal structure and optical
activity of La3Ga5SiO14 crystals,” Ukr. J. Phys. Opt. 15, 155–161 (2014). 

22. A. F. Konstantinova, T. G. Golovina, B. V. Nabatov, A. P. Dudka, and B. V. 
Mill’, “Experimental and Theoretical Determination of the Optical
Rotation in Langasite Family Crystals,” Crystallogr. Rep. 60, 907–914
(2015). 

23. Y. Shopa, and N. Ftomyn, “Optical activity of Ca3Ga2Ge4O14 crystals:
experiment and calculus”, Optica Applicata. 43, 217–228 (2013). 

24. Qi Haifeng, Wei Aijian and Yuan Duorong, “Investigation on giant
optical activity of piezoelectric crystals with langasite structure,”
Materials Science and Engineering: B, 117, 143–145 (2005). 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl



